JP2009156707A - Measurement evaluation method and measurement evaluation system of cathode corrosion protection state - Google Patents

Measurement evaluation method and measurement evaluation system of cathode corrosion protection state Download PDF

Info

Publication number
JP2009156707A
JP2009156707A JP2007335068A JP2007335068A JP2009156707A JP 2009156707 A JP2009156707 A JP 2009156707A JP 2007335068 A JP2007335068 A JP 2007335068A JP 2007335068 A JP2007335068 A JP 2007335068A JP 2009156707 A JP2009156707 A JP 2009156707A
Authority
JP
Japan
Prior art keywords
value
measurement
current density
measurement time
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007335068A
Other languages
Japanese (ja)
Other versions
JP4854653B2 (en
Inventor
Fumio Kajiyama
文夫 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2007335068A priority Critical patent/JP4854653B2/en
Publication of JP2009156707A publication Critical patent/JP2009156707A/en
Application granted granted Critical
Publication of JP4854653B2 publication Critical patent/JP4854653B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To confirm whether a sacrificial anode has a function satisfying a necessary protective current under influence of AC induction or not, or whether the sacrificial anode has a sufficient AC induction reduction effect or not, when grasping a cathode corrosion protection state of a structure placed in the state of cathode corrosion protection by a sacrificial anode system. <P>SOLUTION: This system is equipped with a current measuring means 11 for measuring a current flowing in a wire connected between the sacrificial anode and a metal structure, and an operation processing means 12 for performing operation processing of a measured value measured by the current measuring means 11. The operation processing means 12 is equipped with a measured value extraction means 12A, a DC current density calculation means 12B, an AC current density calculation means 12C, a commercial frequency identification means 12D, and a cathode corrosion protection state evaluation means 12E. When the commercial frequency identification means 12D confirms to be a sine wave having a unit measuring time as a period, the cathode corrosion protection state evaluation means 12E determines whether or not the maximum value in a measuring period of an AC current density exceeds a reference value set by using a phenomenon that function decline is generated in the sacrificial anode 2 by AC induction as a reference. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、流電陽極方式によってカソード防食されている金属構造物のカソード防食状況を計測評価する方法、及び同状況を計測評価するシステムに関するものである。   The present invention relates to a method for measuring and evaluating the cathodic protection status of a metal structure that is cathodic protected by a galvanic anode method, and a system for measuring and evaluating the same.

土壌等の電解質中に存在する金属構造物の腐食を防止するためには、先ずは金属構造物表面と電解質を隔絶することが必要であるが、金属構造物表面と電解質が接触している場合には、金属構造物表面に電流(防食電流)を流入させてアノード反応を起こさせないようにする(金属構造物表面にカソード反応を起こさせる)カソード防食法が最も有効な方法であることが知られている。   In order to prevent corrosion of metal structures existing in electrolytes such as soil, it is necessary to first isolate the metal structure surface from the electrolyte, but the metal structure surface and the electrolyte are in contact. Is known to be the most effective method of cathodic protection, in which a current (anticorrosion current) is allowed to flow into the surface of the metal structure so as not to cause an anode reaction (a cathode reaction is caused to occur on the surface of the metal structure). It has been.

現在、土壌埋設パイプライン等の金属構造物に対して行われているカソード防食法には、大きく分けて流電陽極方式と外部電源方式とその両者が混在したハイブリッド方式がある。外部電源方式は、電解質中に設置した電極(アノード)と金属構造物(カソード)との間に直流電源装置を接続して直流電圧を与え、電極から電解質を介して金属構造物に直流電流を流入させて腐食を防止する方法である。この外部電源方式では、通常、防食対象区間を絶縁区画して、その区画内に対応した出力を有する直流電源装置を設置し、直流電源装置の出力を調整することで所望のカソード防食状況を得るようにしている。   Cathodic protection methods currently used for metal structures such as soil-buried pipelines can be broadly divided into a galvanic anode method, an external power supply method, and a hybrid method in which both are mixed. In the external power supply system, a DC power supply device is connected between an electrode (anode) and a metal structure (cathode) installed in the electrolyte to apply a DC voltage, and a DC current is applied from the electrode to the metal structure through the electrolyte. This is a method of preventing corrosion by flowing in. In this external power supply system, usually, a section to be protected against corrosion is insulated, a DC power supply having an output corresponding to the section is installed, and a desired cathodic protection situation is obtained by adjusting the output of the DC power supply. I am doing so.

一方、流電陽極方式は、金属構造物よりも腐食電位がマイナスよりの金属を、アノード(流電陽極)として、これを金属構造物と電線で結び、流電陽極と金属構造物間の異種金属電池作用によって流電陽極から発生する防食電流を金属構造物へ流入させ、金属構造物表面の腐食を防止する方法である。一般に、鋼製の土壌埋設パイプラインに対しては流電陽極としてMg陽極が用いられることが多い。   On the other hand, in the galvanic anode method, a metal having a negative corrosion potential than that of the metal structure is used as an anode (fluidic anode), and this is connected to the metal structure with an electric wire. This is a method for preventing the corrosion of the surface of the metal structure by causing the anticorrosion current generated from the galvanic anode by the metal battery action to flow into the metal structure. In general, Mg anodes are often used as galvanic anodes for steel soil buried pipelines.

このような流電陽極方式によってカソード防食されている金属構造物のカソード防食状況を把握するには、流電陽極と金属構造物とを接続する電線に流れる電流を定期的に計測して、流電陽極から発生する防食電流をモニタリングすることが行われている。   In order to grasp the cathodic protection status of a metal structure that is cathodic-protected by such a galvanic anode method, the current flowing through the wire connecting the galvanic anode and the metal structure is measured periodically, Monitoring of the anticorrosion current generated from the electric anode is performed.

図1は下記特許文献1に示された従来技術を説明する説明図である。この従来技術では、土壌埋設パイプラインJ10と流電陽極(Mg陽極)J11とを電線J16,J17で接続する間に寿命予測器J12及びアナログ計測器J18を設けた計測システムをターミナルボックスJ19内に構築しており、寿命予測器J12では、電流モニタリング回路J13で流電陽極J11から流出している電流値を定期的にモニタリングし、この計測値を電気量演算回路J14に入力し、同時に、アナログ計測回路J18では流電陽極J11から発生した交流電流を計測し、この値を平滑化して電気容量演算回路J14に入力している。電気容量演算回路J14では、予め入力されている流電陽極J11の電気容量と、モニタリングされた交流電流を含む電流値とから、これまでの流電陽極J11の電気容量の消耗度、更には流電陽極J11があとどれくらい保つかという寿命予測値を演算して、これらを表示回路J15に出力している。
特許第3214778号公報
FIG. 1 is an explanatory diagram for explaining the prior art disclosed in Patent Document 1 below. In this prior art, a measuring system provided with a life predictor J12 and an analog measuring instrument J18 while connecting the soil buried pipeline J10 and the galvanic anode (Mg anode) J11 with electric wires J16 and J17 is provided in the terminal box J19. In the life predictor J12, the current monitoring circuit J13 periodically monitors the current value flowing out from the electroplating anode J11, and inputs this measured value to the electric quantity calculation circuit J14. In the measurement circuit J18, the alternating current generated from the galvanic anode J11 is measured, and this value is smoothed and input to the capacitance calculation circuit J14. In the electric capacity calculation circuit J14, the degree of consumption of the electric capacity of the current flowing anode J11 so far, and further the current flowing from the electric capacity of the flowing current anode J11 inputted in advance and the current value including the monitored alternating current. A life prediction value indicating how long the electric anode J11 is to be maintained is calculated and output to the display circuit J15.
Japanese Patent No. 3214778

流電陽極方式によってカソード防食されている埋設金属構造物が、高圧交流送電線や交流電気鉄道車両の走行によって交流誘導を受けると、流電陽極が低接地体のため流電陽極から交流電流が大地に流れることになり、これによって埋設金属構造物の交流電圧が低下し、埋設金属構造物の交流腐食が緩和ないし無視できることになる。この場合、流電陽極は、埋設金属構造物をカソード防食するために所要防食電流を発生する機能と、埋設金属構造物に影響する交流誘導を低減させて埋設金属構造物の交流腐食を防止するアース電極としての機能の両方を担うことになる。   When a buried metal structure that is cathodic protected by the galvanic anode method is subjected to AC induction by running a high-voltage AC power transmission line or AC electric railway vehicle, the galvanic anode is a low-grounded body, so an AC current is generated from the galvanic anode. As a result, the AC voltage of the buried metal structure decreases, and the AC corrosion of the buried metal structure can be reduced or ignored. In this case, the galvanic anode prevents the AC corrosion of the buried metal structure by reducing the function of generating the required anticorrosion current for cathodic protection of the buried metal structure and the AC induction affecting the buried metal structure. Both functions as a ground electrode are assumed.

このような場合には、埋設金属構造物に最も大きな影響を与えるのは商用周波数の正弦波であり、この周期的な変化によって、流電陽極の電位はプラスよりにもマイナスよりにも変化することになる。そうすると、大きな交流誘導の影響を埋設金属構造物が受けている場合には、それに接続されている流電陽極の電位が周期的に大きくプラスよりにシフトすることになり、流電陽極の対地電位と埋設金属構造物の対地電位との差が小さくなって、流電陽極が防食電流を発生する機能を発揮できなくなる。   In such a case, it is the commercial frequency sine wave that has the greatest influence on the buried metal structure, and this periodic change causes the potential of the galvanic anode to change from positive to negative. It will be. Then, when the buried metal structure is affected by a large alternating current induction, the potential of the galvanic anode connected to the buried metal structure periodically shifts to a large positive value. And the difference between the ground potential of the buried metal structure and the galvanic anode cannot function to generate the anticorrosion current.

このような場合において、流電陽極方式によってカソード防食されている埋設金属構造物のカソード防食状況を適正に把握するには、従来技術のように、計測した交流電流の平滑値を加えて流電陽極の寿命予測を求めるだけでは不十分であり、交流誘導の影響を受けている場合にも、流電陽極が所要防食電流を流出する能力をもっているかの確認が必要になる。   In such a case, in order to properly grasp the cathodic protection status of the buried metal structure that is cathodic protected by the galvanic anode method, the smoothing value of the measured alternating current is added as in the prior art. It is not sufficient to simply calculate the life expectancy of the anode, and it is necessary to confirm whether the galvanic anode has the ability to flow out the required anticorrosion current even when it is affected by AC induction.

また、流電陽極が交流腐食すると、その際のカソード反応によって流電陽極の表面に電気抵抗の高いエレクトロコーティングが生成されることがある。これによると、流電陽極の接地抵抗が高くなり、流電陽極から発生する防食電流が減少することになると同時に、アース電極としての交流誘導低減効果が低下することにもなる。   In addition, when the galvanic anode is subjected to AC corrosion, an electrocoating having a high electric resistance may be generated on the surface of the galvanic anode due to the cathodic reaction. According to this, the grounding resistance of the galvanic anode is increased, the anticorrosion current generated from the galvanic anode is reduced, and at the same time, the AC induction reducing effect as the earth electrode is reduced.

本発明は、このような事情に対処することを課題とするものであって、流電陽極方式によってカソード防食されている構造物のカソード防食状況を把握する上で、交流誘導の影響下で流電陽極が所要防食電流を満足する機能を有しているか否か、及び流電陽極が十分な交流誘導低減効果を有するか否かを確認することができること、更には、流電陽極が、所要防食電流を満足し、防食対象のパイプラインに交流腐食の懸念が無く、流電陽極を設計寿命まで使用することができるという大前提のものに、防食対象のパイプラインがカソード防食基準を満足していることを確認することができること、等が本発明の目的である。   An object of the present invention is to cope with such a situation. In order to grasp the cathodic protection status of a structure that is cathodic protected by the galvanic anode method, the present invention is applied under the influence of alternating current induction. It can be confirmed whether or not the current anode has a function that satisfies the required anticorrosion current, and whether or not the current anode has a sufficient AC induction reduction effect. The anticorrosion target pipeline satisfies the cathodic protection standards, with the premise of satisfying the anticorrosion current, there is no concern about AC corrosion in the anticorrosion target pipeline, and the galvanic anode can be used up to the design life. It is an object of the present invention that it can be confirmed.

本発明は、このような目的を達成するために、以下の特徴を少なくとも備えるものである。   In order to achieve such an object, the present invention includes at least the following features.

流電陽極方式によってカソード防食されている金属構造物のカソード防食状況を計測評価する方法であって、商用周波数の周期に当たる単位計測時間を設定して、流電陽極と金属構造物間に接続された電線に流れる電流を計測する工程と、前記電流の計測値から、前記単位計測時間毎に前記流電陽極から発生する電流の直流電流密度を求める工程と、前記電流の計測値と前記直流電流密度とから、前記単位計測時間毎に前記流電陽極から発生する電流の交流電流密度を求める工程と、前記計測値の時間的な変化が前記単位計測時間を周期とする正弦波であることを確認する工程と、前記工程で前記単位計測時間を周期とする正弦波であることが確認された場合に、前記交流電流密度の計測期間内最大値が、交流誘導によって前記流電陽極に機能低下が生じることを基準に設定された基準値を超えているか否かを判定する工程とを有し、前記工程で前記基準値を超えている場合に、前記金属構造物のカソード防食状況が不良であると評価することを特徴とする。   This is a method for measuring and evaluating the cathodic protection status of metal structures that are cathodic-protected by the galvanic anode method. The unit measurement time corresponding to the period of the commercial frequency is set and connected between the galvanic anode and the metal structure. A step of measuring a current flowing through the electric wire, a step of obtaining a direct current density of a current generated from the galvanic anode every unit measurement time from the measured value of the current, a measured value of the current and the direct current A step of obtaining an alternating current density of current generated from the galvanic anode from the density every unit measurement time, and a temporal change in the measurement value is a sine wave having the unit measurement time as a cycle. And a maximum value within the measurement period of the alternating current density when the step is confirmed to be a sine wave having the unit measurement time as a period in the step. A step of determining whether or not a reference value set based on the occurrence of a decrease is exceeded, and when the reference value is exceeded in the step, the cathodic protection status of the metal structure is poor It is characterized by evaluating.

また、流電陽極方式によってカソード防食されている金属構造物のカソード防食状況を計測評価するシステムであって、流電陽極と金属構造物間に接続された電線に流れる電流を計測する電流計測手段と、該電流計測手段で計測された計測値を演算処理する演算処理手段とを備え、前記演算処理手段が、設定されたサンプリング間隔で商用周波数の周期に当たる単位計測時間毎に前記計測値を抽出する計測値抽出手段と、抽出された前記計測値から、前記単位計測時間毎に前記流電陽極から発生する電流の直流電流密度を求める直流電流密度算出手段と、抽出された前記計測値と前記直流電流密度とから、前記単位計測時間毎に前記流電陽極から発生する電流の交流電流密度を求める交流電流密度算出手段と、前記計測値の時間的な変化が前記単位計測時間を周期とする正弦波であることを確認する商用周波数同定手段と、前記商用周波数同定手段で、前記単位計測時間を周期とする正弦波であることが確認された場合に、前記交流電流密度の計測期間内最大値が、交流誘導によって前記流電陽極に機能低下が生じることを基準に設定された基準値を超えているか否かを判定するカソード防食状況評価手段とを備えることを特徴とする。   Further, it is a system for measuring and evaluating the cathodic protection status of a metal structure that is cathodic-protected by the galvanic anode method, and a current measuring means for measuring the current flowing in the electric wire connected between the galvanic anode and the metal structure. And an arithmetic processing means for arithmetically processing the measurement value measured by the current measuring means, wherein the arithmetic processing means extracts the measurement value for each unit measurement time corresponding to a commercial frequency period at a set sampling interval. A measurement value extracting means for performing, a DC current density calculating means for obtaining a DC current density of a current generated from the galvanic anode for each unit measurement time from the extracted measurement value, the extracted measurement value and the AC current density calculating means for obtaining an AC current density of current generated from the galvanic anode at each unit measurement time from the DC current density, and a temporal change in the measured value When the commercial frequency identifying means for confirming that the sine wave has a unit measurement time as a period and the commercial frequency identification means confirms that the sine wave has a period as the unit measurement time, the alternating current A cathodic protection status evaluation unit for determining whether or not a maximum value of the current density within a measurement period exceeds a reference value set based on the fact that a function deterioration occurs in the galvanic anode due to AC induction. Features.

このような特徴によると、流電陽極方式によってカソード防食されている金属構造物が交流誘導の影響を受けている場合のカソード防食状況を、交流誘導によって生じる流電陽極の機能低下を基準にして計測評価することが可能になる。これによると、周辺状況の変化に対応した流電陽極の管理を定量的に行うことが可能になる。   According to these characteristics, the cathodic protection situation when a metal structure that is cathodic-protected by the galvanic anode method is affected by AC induction is based on the functional degradation of the galvanic anode caused by AC induction. It becomes possible to measure and evaluate. According to this, it becomes possible to quantitatively manage the galvanic anode corresponding to the change in the surrounding situation.

金属構造物として埋設パイプラインを防食対象とする場合には、流電陽極が、所要防食電流を満足し、防食対象のパイプラインに交流腐食の懸念が無く、流電陽極を設計寿命まで使用することができるという大前提のものに、防食対象のパイプラインがカソード防食基準を満足していることを確認することができる。   When a buried pipeline as a metal structure is subject to anticorrosion, the galvanic anode satisfies the required anticorrosion current, there is no concern about AC corrosion in the anticorrosion target pipeline, and the galvanic anode is used to the design life. It is possible to confirm that the pipeline to be protected against corrosion satisfies the cathodic protection standard.

以下、本発明の実施形態を図面に基づいて説明する。以下の説明では、金属構造物として地中に埋設されたパイプラインを例に挙げて説明するが、本発明の実施形態としては、特にこれに限定されるものではなく、水中に設置されたパイプライン等の金属構造物等、周囲を電解質で覆われて迷走電流腐食リスクのある金属構造物が対象になる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, a pipeline embedded in the ground as a metal structure will be described as an example. However, the embodiment of the present invention is not particularly limited to this, and a pipe installed in water. This applies to metal structures such as lines that are covered with electrolyte and that have a risk of stray current corrosion.

図2に示すように、パイプライン1を流電陽極方式によってカソード防食するには、パイプライン1に近接した周辺に流電陽極(例えば、Mg陽極)2を埋設する。流電陽極2に一端が接続された電線L1の他端は、例えばパイプライン1に沿って所定の間隔(例えば、250m間隔)で設けられるターミナルボックスTB内で地上に引き上げられ、また、パイプライン1に一端が接続された電線L2の他端が同じく地上に引き上げられており、この電線L1,L2を介してパイプライン1と流電陽極2とが電気的に接続されている。   As shown in FIG. 2, in order to prevent cathodic protection of the pipeline 1 by the galvanic anode method, a galvanic anode (for example, Mg anode) 2 is embedded in the vicinity of the pipeline 1. The other end of the electric wire L1 having one end connected to the galvanic anode 2 is pulled up to the ground in a terminal box TB provided at a predetermined interval (for example, 250 m interval) along the pipeline 1, for example. The other end of the electric wire L2 having one end connected to 1 is also pulled up to the ground, and the pipeline 1 and the galvanic anode 2 are electrically connected via the electric wires L1 and L2.

また、ターミナルボックスTB内には、パイプライン1のカソード防食状況を把握するための設備として、照合電極3(例えば、飽和硫酸銅電極)やプローブ4が配備されている。プローブ4は必要に応じて配備される。照合電極3は一般に点検時にターミナルボックスTB内に配備される。照合電極3は、ターミナルボックスTB内の地表面に設置されて一定の電位となる基準電極であって、パイプライン1に一端が接続されて他端がターミナルボックスTB内の地上に引き上げられた電線L3と電線L4,L5を介してパイプライン1と電気的に接続されており、電線L4,L5間に接続された直流電圧計5によって管対地電位(照合電極3とパイプライン1との電位差)を計測するものである。また、プローブ4は、パイプライン1と同一金属材料の所定面積を有する試験片であって、先端がパイプライン1の塗覆装欠陥部を模擬するようにパイプライン1に近接して設けられ、電線L6,l4,L3を介してパイプライン1と電気的に接続されており、電線L3,L4間に接続された直流電流計6によってプローブ直流電流(プローブ4からパイプライン1に流入する直流電流)を計測するものである。   In the terminal box TB, a verification electrode 3 (for example, a saturated copper sulfate electrode) and a probe 4 are provided as equipment for grasping the cathodic protection status of the pipeline 1. The probe 4 is deployed as necessary. The reference electrode 3 is generally provided in the terminal box TB at the time of inspection. The reference electrode 3 is a reference electrode that is installed on the ground surface in the terminal box TB and has a constant potential. One end of the reference electrode 3 is connected to the pipeline 1 and the other end is pulled up to the ground in the terminal box TB. L3 is electrically connected to the pipeline 1 via electric wires L4 and L5, and a tube-to-ground potential (potential difference between the verification electrode 3 and the pipeline 1) is obtained by a DC voltmeter 5 connected between the electric wires L4 and L5. It is to be measured. The probe 4 is a test piece having a predetermined area of the same metal material as that of the pipeline 1, and the tip thereof is provided close to the pipeline 1 so as to simulate the coating defect portion of the pipeline 1. It is electrically connected to the pipeline 1 via the electric wires L6, L4, L3, and is connected to the probe DC current (DC current flowing into the pipeline 1 from the probe 4) by the DC ammeter 6 connected between the electric wires L3, L4. ).

パイプラインに対して流電陽極を設置する場合としては、通常では、パイプラインの所要防食電流が小さく、電気抵抗率が低い環境にパイプラインが埋設される場合、主に外部電源方式でカソード防食されているが、このカソード電流が到達しない絶縁された短い区間をカソード防食する場合、裸又は塗覆装がかなり劣化したパイプラインの減肉部分を局所的に防食する場合、カソード防食されているパイプラインに供給すべき防食電流が他のパイプラインに流入する直流干渉を受けているパイプラインが、カソード防食されているパイプラインとメタルタッチ(金属部分同士が接触)しており、メタルタッチ部分の双方の腐食を防止する場合、前述のメタルタッチ部分が明らかになっても、パイプラインの複雑な埋設状況によってパイプライン相互の絶縁措置を直ちに講じることができない場合、パイプラインが交流誘導の影響を受けており、交流誘導低減のための低接地体(アース電極)として流電陽極を設置する場合、等がある。   When installing a galvanic anode for a pipeline, normally, when the pipeline is embedded in an environment where the required corrosion protection current of the pipeline is small and the electrical resistivity is low, cathodic protection is mainly performed by an external power supply method. However, when cathodic protection is applied to a short insulated section where this cathode current does not reach, it is cathodic protected if it is used to locally protect the thinned part of the pipeline where the bare or coating is considerably deteriorated. The pipeline that is subject to DC interference where the anti-corrosion current to be supplied to the pipeline is flowing into the other pipeline is in metal touch with the pipeline that is cathodic-proof, and the metal touch portion In order to prevent both types of corrosion, even if the above-mentioned metal touch part is revealed, the pipeline is not suitable for the complicated burial condition of the pipeline. In cases where mutual insulation measures cannot be taken immediately, the pipeline is affected by AC induction, and there is a case where a galvanic anode is installed as a low grounding body (earth electrode) to reduce AC induction. .

特に、本発明の実施形態は、パイプライン1が交流誘導の影響を受けており、設置された流電陽極2が交流誘導低減のための低接地体として機能すると共に、パイプライン1に防食電流を供給している状況下で、パイプライン1のカソード防食状況を適正に把握することを目的としている。   In particular, according to the embodiment of the present invention, the pipeline 1 is affected by AC induction, and the installed current-flow anode 2 functions as a low grounding body for reducing AC induction, and the pipeline 1 has an anticorrosion current. The purpose is to properly grasp the cathodic protection status of the pipeline 1 under the condition of supplying

前述した電線L1,L2間にカソード防食状況計測評価装置10が接続され、これによって、電線L1,L2を流れる電流、すなわち流電陽極2から発生する防食電流をモニタしながら、パイプライン1のカソード防食状況が計測評価される。   The cathodic protection status measurement / evaluation apparatus 10 is connected between the electric wires L1 and L2, and the cathode of the pipeline 1 is monitored while monitoring the electric current flowing through the electric wires L1 and L2, that is, the anticorrosion current generated from the galvanic anode 2. Corrosion protection is measured and evaluated.

カソード防食状況計測評価装置10は、電線L1,L2を流れる電流を計測する電流計測手段(電流計)11と、電流計測手段11で計測された計測値を演算処理する演算処理手段12とを備えている。また、演算処理手段12は、必要に応じて、直流電流計6,直流電圧計5によって計測されるプローブ直流電流,管対地電位の計測値を演算処理することもできるようになっている。   The cathodic protection status measurement / evaluation apparatus 10 includes a current measuring unit (ammeter) 11 that measures the current flowing through the electric wires L1 and L2, and an arithmetic processing unit 12 that performs arithmetic processing on the measurement value measured by the current measuring unit 11. ing. Moreover, the arithmetic processing means 12 can also process the measured values of the probe DC current and the tube-to-ground potential measured by the DC ammeter 6 and the DC voltmeter 5 as required.

演算処理手段12は、少なくとも、計測値抽出手段12Aと、直流電流密度算出手段12Bと、交流電流密度算出手段12Cと、商用周波数同定手段12Dと、カソード防食状況評価手段12Eとを備えている。これらの各手段は、演算処理手段12を動作制御するソフトウエアによって形成することができる。   The arithmetic processing means 12 includes at least a measurement value extraction means 12A, a direct current density calculation means 12B, an alternating current density calculation means 12C, a commercial frequency identification means 12D, and a cathodic protection status evaluation means 12E. Each of these means can be formed by software for controlling the operation of the arithmetic processing means 12.

計測値抽出手段12Aは、設定されたサンプリング間隔で商用周波数の周期に当たる単位計測時間毎に、電流計測手段11で計測された計測値を抽出するものである。商用周波数を50Hzとすると、単位計測時間は20msecとなり、その単位計測時間内で設定されるサンプリング間隔は例えば0.1msecに設定することができる。ここでは、流電陽極2の交流腐食が流電陽極2の発生電流にどのように影響するかを計測評価の技術思想にしており、流電陽極2の交流腐食には、高圧交流送電線や交流電気鉄道車両の走行に起因する交流誘導が最も影響することが知られているので、周波数としては商用周波数に着目している。   The measurement value extraction unit 12A extracts a measurement value measured by the current measurement unit 11 for each unit measurement time corresponding to a commercial frequency period at a set sampling interval. If the commercial frequency is 50 Hz, the unit measurement time is 20 msec, and the sampling interval set within the unit measurement time can be set to 0.1 msec, for example. Here, the technical idea of measurement and evaluation is how AC corrosion of the flowing current anode 2 affects the current generated by the flowing current anode 2. Since it is known that alternating current induction resulting from the traveling of an alternating current electric railway vehicle has the greatest influence, attention is paid to the commercial frequency as the frequency.

直流電流密度算出手段12Bは、抽出された電流計測手段11による計測値から、単位計測時間毎に流電陽極2から発生する電流の直流電流密度を求めるものである。交流電流密度算出手段12Cは、抽出された電流計測手段11による計測値と直流電流密度算出手段12Bで求めた直流電流密度とから、単位計測時間毎に流電陽極2から発生する電流の交流電流密度を求めるものである。   The direct current density calculation means 12B obtains the direct current density of the current generated from the flowing current anode 2 every unit measurement time from the extracted measurement value by the current measurement means 11. The alternating current density calculating means 12C is an alternating current of current generated from the galvanic anode 2 per unit measurement time from the measured value obtained by the extracted current measuring means 11 and the direct current density obtained by the direct current density calculating means 12B. The density is calculated.

商用周波数が50Hzで単位計測時間が20msecであって、データサンプリング間隔0.1msecで計測値の抽出を行った場合に、直流電流密度(IDC)を下記式(1)で求めることができ、また、交流電流密度(IAC)を下記式(2)で求めることができる。

Figure 2009156707
When the commercial frequency is 50 Hz, the unit measurement time is 20 msec, and the measurement value is extracted at the data sampling interval of 0.1 msec, the direct current density (I DC ) can be obtained by the following formula (1), Further, the alternating current density (I AC ) can be obtained by the following formula (2).
Figure 2009156707

商用周波数同定手段12Dは、電流計測手段11で計測された計測値の時間的な変化が単位計測時間を周期とする正弦波であることを確認するものである。より詳しくは、単位計測時間内での計測値の最大値と最小値の出現時刻差が単位計測時間の1/2(単位計測時間20msecの場合は10msec)であり、且つ単位計測時間内での最大値と平均値との差と当該単位計測時間内での平均値と最小値との差が等しいことを確認する。   The commercial frequency identification unit 12D confirms that the temporal change in the measurement value measured by the current measurement unit 11 is a sine wave having a unit measurement time as a cycle. More specifically, the difference in the appearance time between the maximum value and the minimum value of the measurement value within the unit measurement time is ½ of the unit measurement time (10 msec when the unit measurement time is 20 msec), and within the unit measurement time. It is confirmed that the difference between the maximum value and the average value is equal to the difference between the average value and the minimum value within the unit measurement time.

具体的には、計測期間全体から、交流電流密度(IAC)が最大となる値(IAC max)を特定する。そして、その最大値(IAC max)を示した単位計測時間の計測値I(t)を抽出する。図3は、単位計測時間t:20msecでサンプリング間隔t:0.1msecでの200個の計測値I(t)の時間変化を示す説明図である。そして、図示の時差Δt=10msecであり、ΔI1((最大値)−(平均値))=ΔI2((平均値)−(最小値))であることを確認する(図示のImax(t)は単位計測時間内の最大計測値、Imin(t)は単位計測時間内の最小計測値、Iave(t)は単位計測時間内の平均値、T1はImax(t)の出現時刻、T2はImin(t)の出現時刻)。ここでは、計測期間全体から交流電流密度(IAC)の最大値を示した計測値について確認処理を行ったが、最大値に加えて大きい順にいくつかの計測値を選択して前述したと同様の確認処理を行うようにしても良い。 Specifically, a value (I AC max ) that maximizes the alternating current density (I AC ) is specified from the entire measurement period. Then, the measurement value I (t) of the unit measurement time indicating the maximum value (I AC max ) is extracted. FIG. 3 is an explanatory diagram showing a time change of 200 measurement values I (t) at a unit measurement time t s : 20 msec and a sampling interval t 0 : 0.1 msec. Then, it is confirmed that the illustrated time difference Δt = 10 msec and ΔI1 ((maximum value) − (average value)) = ΔI2 ((average value) − (minimum value)) (I max (t) in the drawing). Is the maximum measurement value within the unit measurement time, I min (t) is the minimum measurement value within the unit measurement time, I ave (t) is the average value within the unit measurement time, T1 is the appearance time of I max (t), T2 is the appearance time of I min (t)). Here, the confirmation process was performed for the measurement value indicating the maximum value of the alternating current density (I AC ) from the entire measurement period. However, in addition to the maximum value, several measurement values are selected in descending order, and the same as described above. The confirmation process may be performed.

カソード防食状況評価手段12Eは、商用周波数同定手段12Dで単位計測時間を周期とする正弦波であることが確認された場合に、交流電流密度(IAC)の計測期間内最大値(IAC max)が基準値を超えているか否かを判定する。交流電流密度(IAC)の計測期間内最大値(IAC max)は前述の商用周波数同定手段12Dで求めた値を用いることができ、これを予め設定した基準値と比較して計測期間内最大値が基準値を超えている場合にカソード防食状況が不良であると判定する。 When the commercial anti-corrosion status evaluation means 12E confirms that the commercial frequency identification means 12D is a sine wave having a unit measurement time as a period, the maximum value (I AC max ) within the measurement period of the alternating current density (I AC ). ) Exceeds the reference value. As the maximum value (I AC max ) within the measurement period of the alternating current density (I AC ), the value obtained by the commercial frequency identification means 12D can be used, and this value is compared with a preset reference value within the measurement period. When the maximum value exceeds the reference value, it is determined that the cathodic protection situation is poor.

ここでの基準値は、交流誘導によって流電陽極2に機能低下が生じることを基準にして設定される基準値である。交流誘導による流電陽極の機能低下現象をMg陽極の例で説明すると、Mg陽極が交流腐食すると、カソード反応として、1/2O+HO+2e→2OHの反応が生じる。一方のMg陽極からはパイプラインへの防食電流の供給としてMg2+が流出している。Mg陽極から流出したMg2+と前述のカソード反応で生じた2OHが結合すると、Mg(OH)が生成され、これがMg陽極の表面に沈殿することになる。Mg(OH)は、エレクトロコーティングと称される高抵抗体であり、Mg陽極の表面にこのエレクトロコーティングが生成されると、Mg陽極の接地抵抗は高くなる。これによって、Mg陽極から発生する防食電流は低下することになり、同時に、アース電極としての交流誘導低減効果も低下することになる。これが、流電陽極の交流誘導による機能低下のメカニズムの一例である。 The reference value here is a reference value that is set on the basis that the function degradation occurs in the galvanic anode 2 due to AC induction. The phenomenon of the function deterioration of the galvanic anode due to AC induction will be explained using an example of the Mg anode. When the Mg anode is subjected to AC corrosion, a reaction of 1 / 2O 2 + H 2 O + 2e → 2OH occurs as a cathode reaction. Mg 2+ flows out from one Mg anode as a supply of anticorrosion current to the pipeline. When Mg 2+ flowing out from the Mg anode and 2OH generated by the above-described cathode reaction are combined, Mg (OH) 2 is generated and precipitated on the surface of the Mg anode. Mg (OH) 2 is a high resistance body called electrocoating, and when this electrocoating is generated on the surface of the Mg anode, the ground resistance of the Mg anode becomes high. As a result, the anticorrosion current generated from the Mg anode is reduced, and at the same time, the AC induction reduction effect as the ground electrode is also reduced. This is an example of a mechanism of functional degradation due to AC induction of the galvanic anode.

このような流電陽極の機能低下を引き起こさないようにするためには、流電陽極に作用する交流誘導の影響を監視する必要があり、本発明の実施形態では、流電陽極の発生電流の交流成分をモニタリングして、この交流成分が基準値以上にならないように監視している。Mg陽極を採用する場合で、交流誘導が50Hzの商用周波数によって起きている場合には、前述した交流電流密度IACを1A/m未満にしておくことで、経験的にMg陽極の機能保持が確認される。 In order not to cause such a decrease in function of the galvanic anode, it is necessary to monitor the influence of the AC induction acting on the galvanic anode. In the embodiment of the present invention, The AC component is monitored so that the AC component does not exceed the reference value. When the Mg anode is used and AC induction occurs at a commercial frequency of 50 Hz, the function of the Mg anode is empirically maintained by setting the above-described AC current density I AC to less than 1 A / m 2. Is confirmed.

図4は、本発明の実施形態に係るカソード防食状況の計測評価方法を示すフロー図である。以下の方法は、前述したシステム構成によって実現することが可能である。   FIG. 4 is a flowchart showing a method for measuring and evaluating the cathodic protection situation according to the embodiment of the present invention. The following method can be realized by the system configuration described above.

計測が開始されると、電流計測手段11によって電線L1,L2を流れる電流(I(t):流電陽極発生電流)が計測され、更に、必要に応じて、直流電圧計5によって管対地電位が、直流電流計6によってプローブ直流電流が計測される(S1)。計測は所定の計測期間まで実行され、計測期間が終了すると(S2)、次の演算処理ステップに移行する。   When the measurement is started, the current flowing through the electric wires L1 and L2 (I (t): galvanic anode generation current) is measured by the current measuring means 11, and the tube-to-ground potential is further measured by the DC voltmeter 5 as necessary. The probe direct current is measured by the direct current ammeter 6 (S1). The measurement is executed until a predetermined measurement period, and when the measurement period ends (S2), the process proceeds to the next arithmetic processing step.

電線L1,L2を流れる電流I(t)が計測されると、計測値抽出手段12Aが、その計測値を所定のサンプリング間隔(例えば、0.1msec)で前述した単位計測時間(例えば、20msec)毎に順次抽出する(S3)。そして、直流電流密度算出手段12Bが、前述した式(1)によって、単位計測時間毎に直流電流密度IDCを算出し(S4)、交流電流密度算出手段12Cが、前述した式(2)によって、単位計測時間毎に交流電流密度IACを算出する(S5)。 When the current I (t) flowing through the electric wires L1 and L2 is measured, the measurement value extracting unit 12A uses the unit measurement time (for example, 20 msec) described above at a predetermined sampling interval (for example, 0.1 msec). Each is sequentially extracted (S3). Then, the DC current density calculating unit 12B is, by equation (1) described above, calculates the direct current density I DC per unit measurement time (S4), the alternating current density calculating unit 12C is, by the aforementioned equations (2) The AC current density I AC is calculated every unit measurement time (S5).

計測期間が終了した段階で、演算処理手段12は、商用周波数同定手段12D,カソード防食状況評価手段12E及びそれに付随する処理手段によって、以下の処理を実行する。   At the stage where the measurement period ends, the arithmetic processing means 12 performs the following processing by the commercial frequency identification means 12D, the cathodic protection status evaluation means 12E, and the processing means associated therewith.

先ず、計測期間内での直流電流密度IDCの最大値IDC maxと交流電流密度IACの最大値IAC maxを抽出する(S6)。ここでの、最大値IDC max,IAC maxの抽出は、算出したIDC,IAC及び計測値I(t)を全て記憶手段に記憶しておき、全てのIDC,IACの中からそれぞれ最大値IDC max,IAC maxとそれに対応した計測値I(t)を抽出することで実行することができる。 First, it extracts the maximum value I DC max the maximum value I AC max of the AC current density I AC DC current density I DC in the measurement period (S6). Here, the extraction of the maximum values I DC max and I AC max is performed by storing all of the calculated I DC and I AC and the measured value I (t) in the storage means, and all the I DC and I AC are stored in the storage unit. Can be executed by extracting the maximum values I DC max and I AC max and the corresponding measured value I (t).

また、別の抽出方法としては、先ず、最初の単位計測時間で抽出された200個の計測値I(t)を記憶手段に記憶して、その計測値からIDC,IACを算出し、これらを記憶手段に記憶する。次に、次の単位計測時間で抽出された200個の計測値I(t)を別の記憶手段に記憶し、その計測値からIDC,IACを算出して、前回算出したIDC,IACと今回算出したIDC,IACをそれぞれ比較し、大きい方のIDC,IACを記憶して、それに対応する計測値I(t)は記憶を保持し、小さい方のIDC,IACとそれに対応する計測値I(t)はデータを消去する。更に、次の単位計測時間で抽出された200個の計測値I(t)は前回データが消去された記憶手段に記憶し、その計測値からIDC,IACを算出して、前回算出したIDC,IACと今回算出したIDC,IACをそれぞれ比較し、大きい方のIDC,IACを記憶して、それに対応する計測値I(t)は記憶を保持し、小さい方のIDC,IACとそれに対応する計測値I(t)はデータを消去する。この処理を繰り返すことで、計測期間終了時点では記憶手段に最大値IDC max,IAC max及びそれに対応した計測値I(t)が記憶手段に記憶されていることになる。 As another extraction method, first, 200 measurement values I (t) extracted in the first unit measurement time are stored in the storage means, and I DC and I AC are calculated from the measurement values. These are stored in the storage means. Next, 200 measurement values I (t) extracted in the next unit measurement time are stored in another storage means, I DC and I AC are calculated from the measurement values, and I DC , I AC and the current calculated I DC, the I AC respectively compared, larger I DC, and stores the I AC, measured value I and the corresponding (t) will retain stored, smaller I DC, IAC and the corresponding measurement value I (t) erase the data. Furthermore, 200 measurement values I (t) extracted in the next unit measurement time are stored in the storage means from which the previous data has been erased, and I DC and I AC are calculated from the measurement values, and the previous calculation is performed. The I DC and I AC are compared with the I DC and I AC calculated this time, respectively, the larger I DC and I AC are stored, and the corresponding measured value I (t) is stored, and the smaller one is stored. I DC and I AC and the corresponding measured value I (t) erase data. By repeating this process, the maximum values I DC max and I AC max and the corresponding measurement value I (t) are stored in the storage unit at the end of the measurement period.

そして、最大値IDC maxが基準値未満であることを確認する(S7)。ここでの基準値は、流電陽極が設計された寿命まで所要防食電流を流し続けることができるか否かを確認する基準値であり、これが満たされていることを前提にして、以下の処理を行う。 Then, it is confirmed that the maximum value I DC max is less than the reference value (S7). The reference value here is a reference value for confirming whether or not the required anticorrosion current can continue to flow until the life of the galvanic anode is designed. On the assumption that this is satisfied, the following processing is performed. I do.

そして、次の処理では、前述した商用周波数同定手段12DによってIAC maxに対応する計測値I(t)が商用周波数の正弦波であるか否かの判断が行われる。これが商用周波数の正弦波でないと判断された場合には、対策不要であると判断し(S8A)、商用周波数の正弦波であると判断された場合には、前述したカソード防食状況評価手段12Eによる処理を実行する(S9)。 In the next process, the commercial frequency identification unit 12D described above determines whether or not the measured value I (t) corresponding to I AC max is a sine wave of the commercial frequency. If it is determined that this is not a commercial frequency sine wave, it is determined that no countermeasure is required (S8A). If it is determined that this is a commercial frequency sine wave, the above-described cathodic protection status evaluation means 12E The process is executed (S9).

カソード防食状況評価手段12Eは、前述したように最大値IAC maxが基準値未満であるか否かでカソード防食状況の評価を行う。ここでの基準値は、前述したように、流電陽極の機能低下に基づく基準値であり、基準値を超えている場合には、流電陽極の機能低下の虞があるので、カソード防食状況は不良であると判断して、流電陽極(例えば、Mg陽極)の増設による低接地措置の対策指示を行う(S10)。また、基準値未満である場合は、交流誘導による流電陽極の機能低下は無視できると判断して、通常のパイプライン1に対するカソード防食状況の確認を行う。すなわち、管対地電位又はプローブ電流密度の計測値が管対地電位又はプローブ電流密度を指標としたカソード防食基準に合格しているか否かの確認を行う(S9A)。 As described above, the cathodic protection status evaluation unit 12E evaluates the cathodic protection status depending on whether or not the maximum value I AC max is less than the reference value. As described above, the reference value here is a reference value based on the function deterioration of the galvanic anode. If the reference value is exceeded, the function of the galvanic anode may be deteriorated. Is determined to be defective, and a countermeasure instruction for a low grounding measure is added by adding an electroplated anode (for example, Mg anode) (S10). If it is less than the reference value, it is determined that the function degradation of the galvanic anode due to AC induction can be ignored, and the cathodic protection status for the normal pipeline 1 is confirmed. That is, it is confirmed whether or not the measured value of the tube ground potential or the probe current density passes the cathodic protection standard using the tube ground potential or the probe current density as an index (S9A).

このような本発明の実施形態によると、流電陽極方式によってカソード防食されているパイプライン1が交流誘導の影響を受けている場合のカソード防食状況を、交流誘導によって生じる流電陽極2の機能低下を基準にして計測評価することが可能になる。これによると、従来技術のような流電陽極2の寿命予測とは全く異なる観点で、周辺状況の変化に対応した流電陽極2の管理を行うことが可能になる。すなわち、流電陽極2が設置されている箇所の周辺に新たに高圧交流送電線が敷設又は増設された場合や、新たに交流電気鉄道が敷設又は増設された場合等に、周辺状況の変化が流電陽極2に与える悪影響を定量的に把握することができ、これに基づいて適切な措置対策を講じることが可能になる。   According to such an embodiment of the present invention, the cathodic protection situation when the pipeline 1 that is cathodic protected by the galvanic anode method is affected by alternating current induction is the function of the galvanic anode 2 generated by alternating current induction. Measurement and evaluation can be performed based on the decrease. According to this, it becomes possible to perform management of the galvanic anode 2 corresponding to changes in the surrounding situation from a viewpoint completely different from the life prediction of the galvanic anode 2 as in the prior art. That is, when a high-voltage AC transmission line is newly laid or added around the location where the current-carrying anode 2 is installed, or when an AC electric railway is newly laid or added, the surrounding situation changes. The adverse effect on the galvanic anode 2 can be grasped quantitatively, and appropriate measures can be taken based on this.

従来技術の説明図である。It is explanatory drawing of a prior art. 本発明の実施形態に係るシステム構成を示す説明図である。It is explanatory drawing which shows the system configuration | structure which concerns on embodiment of this invention. 単位計測時間t:20msecでサンプリング間隔t:0.1msecでの200個の計測値I(t)の時間変化を示す説明図である。Unit measurement time t s: sampling interval at 20 msec t 0: is an explanatory view showing a time variation of 200 measured values I (t) at 0.1 msec. 本発明の実施形態に係るカソード防食状況の計測評価方法を示すフロー図である。It is a flowchart which shows the measurement evaluation method of the cathodic protection condition which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1:パイプライン(金属構造物),2:流電陽極(Mg陽極),3:照合電極(飽和硫酸銅電極),4:プローブ,5:直流電圧計,6:直流電流計,
10:カソード防食状況計測評価装置,11:電流計測手段,
12:演算処理手段,
12A:計測値抽出手段,
12B:直流電流密度算出手段,
12C:交流電流密度抽出手段,
12D:商用周波数同定手段,
12E:カソード防食状況評価手段,
L1〜L6:電線,TB:ターミナルボックス
1: pipeline (metal structure), 2: galvanic anode (Mg anode), 3: reference electrode (saturated copper sulfate electrode), 4: probe, 5: DC voltmeter, 6: DC ammeter,
10: Cathodic protection status measurement and evaluation device, 11: Current measurement means,
12: arithmetic processing means,
12A: Measurement value extraction means,
12B: DC current density calculating means,
12C: AC current density extraction means,
12D: commercial frequency identification means,
12E: Cathodic protection status evaluation means,
L1 to L6: Electric wire, TB: Terminal box

Claims (6)

流電陽極方式によってカソード防食されている金属構造物のカソード防食状況を計測評価する方法であって、
商用周波数の周期に当たる単位計測時間を設定して、流電陽極と金属構造物間に接続された電線に流れる電流を計測する工程と、
前記電流の計測値から、前記単位計測時間毎に前記流電陽極から発生する電流の直流電流密度を求める工程と、
前記電流の計測値と前記直流電流密度とから、前記単位計測時間毎に前記流電陽極から発生する電流の交流電流密度を求める工程と、
前記計測値の時間的な変化が前記単位計測時間を周期とする正弦波であることを確認する工程と、
前記工程で前記単位計測時間を周期とする正弦波であることが確認された場合に、前記交流電流密度の計測期間内最大値が、交流誘導によって前記流電陽極に機能低下が生じることを基準に設定された基準値を超えているか否かを判定する工程とを有し、
前記工程で前記基準値を超えている場合に、前記金属構造物のカソード防食状況が不良であると評価することを特徴とするカソード防食状況の計測評価方法。
A method of measuring and evaluating the cathodic protection status of a metal structure that is cathodic protected by a galvanic anode method,
Setting a unit measurement time corresponding to the cycle of the commercial frequency and measuring the current flowing in the electric wire connected between the galvanic anode and the metal structure;
From the measured value of the current, obtaining a direct current density of the current generated from the galvanic anode every unit measurement time,
From the measured current value and the direct current density, obtaining an alternating current density of current generated from the galvanic anode every unit measurement time;
Confirming that the temporal change of the measurement value is a sine wave with the unit measurement time as a cycle;
When it is confirmed that the step is a sine wave having the unit measurement time as a cycle, the maximum value within the measurement period of the alternating current density is based on the fact that the function deterioration occurs in the galvanic anode by alternating current induction. And determining whether or not the reference value set in is exceeded,
When the said reference value is exceeded at the said process, it evaluates that the cathodic protection condition of the said metal structure is unsatisfactory, The measurement evaluation method of the cathodic protection condition characterized by the above-mentioned.
商用周波数が50Hzで前記単位計測時間が20msecであって、データサンプリング間隔0.1msecで前記計測値の抽出を行った場合に、前記直流電流密度(IDC)を下記式(1)で求めると共に、前記交流電流密度(IAC)を下記式(2)で求めることを特徴とする請求項1に記載されたカソード防食状況の計測評価方法。
Figure 2009156707
When the measurement value is extracted at a commercial frequency of 50 Hz and the unit measurement time is 20 msec and the data sampling interval is 0.1 msec, the direct current density (I DC ) is obtained by the following equation (1). The method for measuring and evaluating the cathodic protection status according to claim 1, wherein the alternating current density (I AC ) is obtained by the following formula (2).
Figure 2009156707
前記計測値の時間的な変化が前記単位計測時間を周期とする正弦波であることを確認する工程は、前記単位計測時間内での前記計測値の最大値と最小値の出現時刻差が前記単位計測時間の1/2であり、且つ当該単位計測時間内での前記計測値の最大値と平均値との差と当該単位計測時間内での前記計測値の平均値と最小値との差が等しいことを確認することを特徴とする請求項1又は2に記載されたカソード防食状況の計測評価方法。   The step of confirming that the temporal change of the measurement value is a sine wave having the unit measurement time as a cycle is that the difference between the time when the maximum value and the minimum value of the measurement value appear within the unit measurement time is The difference between the maximum value and the average value of the measurement values within the unit measurement time and the difference between the average value and the minimum value of the measurement values within the unit measurement time that is 1/2 of the unit measurement time The method for measuring and evaluating the cathodic protection status according to claim 1 or 2, wherein the two are confirmed to be equal to each other. 流電陽極方式によってカソード防食されている金属構造物のカソード防食状況を計測評価するシステムであって、
流電陽極と金属構造物間に接続された電線に流れる電流を計測する電流計測手段と、
該電流計測手段で計測された計測値を演算処理する演算処理手段とを備え、
前記演算処理手段が、
設定されたサンプリング間隔で商用周波数の周期に当たる単位計測時間毎に前記計測値を抽出する計測値抽出手段と、
抽出された前記計測値から、前記単位計測時間毎に前記流電陽極から発生する電流の直流電流密度を求める直流電流密度算出手段と、
抽出された前記計測値と前記直流電流密度とから、前記単位計測時間毎に前記流電陽極から発生する電流の交流電流密度を求める交流電流密度算出手段と、
前記計測値の時間的な変化が前記単位計測時間を周期とする正弦波であることを確認する商用周波数同定手段と、
前記商用周波数同定手段で、前記単位計測時間を周期とする正弦波であることが確認された場合に、前記交流電流密度の計測期間内最大値が、交流誘導によって前記流電陽極に機能低下が生じることを基準に設定された基準値を超えているか否かを判定するカソード防食状況評価手段と、
を備えることを特徴とするカソード防食状況の計測評価システム。
A system for measuring and evaluating the cathodic protection of metal structures that are cathodic protected by the galvanic anode method,
A current measuring means for measuring the current flowing in the electric wire connected between the galvanic anode and the metal structure;
An arithmetic processing means for arithmetically processing the measurement value measured by the current measuring means,
The arithmetic processing means is
A measurement value extracting means for extracting the measurement value every unit measurement time corresponding to a commercial frequency period at a set sampling interval;
DC current density calculating means for obtaining a DC current density of a current generated from the galvanic anode from the extracted measurement value every unit measurement time;
AC current density calculation means for obtaining an AC current density of current generated from the galvanic anode every unit measurement time from the extracted measurement value and the DC current density;
Commercial frequency identifying means for confirming that the temporal change in the measured value is a sine wave with the unit measurement time as a cycle;
When it is confirmed by the commercial frequency identification means that it is a sine wave having the unit measurement time as a cycle, the maximum value of the alternating current density within the measurement period is reduced in function of the galvanic anode by alternating current induction. A cathodic protection status evaluation means for determining whether or not a reference value set on the basis of occurrence is exceeded,
A cathodic protection situation measurement and evaluation system characterized by comprising:
商用周波数が50Hzで前記単位計測時間が20msecであって、データサンプリング間隔0.1msecで前記計測値の抽出を行った場合に、前記直流電流密度(IDC)を下記式(1)で求めると共に、前記交流電流密度(IAC)を下記式(2)で求め、
前記カソード防食状況評価手段は、当該交流電流密度(IAC)が前記基準値を超えた場合に、金属構造物のカソード防食状況が不良であると評価することを特徴とする請求項4に記載されたカソード防食状況の計測評価システム。
Figure 2009156707
When the measurement value is extracted at a commercial frequency of 50 Hz and the unit measurement time is 20 msec and the data sampling interval is 0.1 msec, the direct current density (I DC ) is obtained by the following equation (1). The alternating current density (I AC ) is obtained by the following formula (2),
The said cathodic protection status evaluation means evaluates that the cathodic protection status of a metal structure is bad when the said alternating current density ( IAC ) exceeds the said reference value. Measurement and evaluation system for cathodic protection.
Figure 2009156707
前記商用周波数同定手段は、
前記単位計測時間内での前記計測値の最大値と最小値の出現時刻差が前記単位計測時間の1/2であり、且つ当該単位計測時間内での前記計測値の最大値と平均値との差と当該単位計測時間内での前記計測値の平均値と最小値との差が等しいことを確認することを特徴とする請求項4又は5に記載されたカソード防食状況の計測評価システム。
The commercial frequency identification means includes
The difference in appearance time between the maximum value and the minimum value of the measurement value within the unit measurement time is ½ of the unit measurement time, and the maximum value and the average value of the measurement value within the unit measurement time 6. The measurement and evaluation system for a cathodic protection situation according to claim 4, wherein a difference between the difference between the average value and the minimum value of the measurement values within the unit measurement time is equal.
JP2007335068A 2007-12-26 2007-12-26 Measurement and evaluation method and measurement evaluation system for cathodic protection Expired - Fee Related JP4854653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007335068A JP4854653B2 (en) 2007-12-26 2007-12-26 Measurement and evaluation method and measurement evaluation system for cathodic protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007335068A JP4854653B2 (en) 2007-12-26 2007-12-26 Measurement and evaluation method and measurement evaluation system for cathodic protection

Publications (2)

Publication Number Publication Date
JP2009156707A true JP2009156707A (en) 2009-07-16
JP4854653B2 JP4854653B2 (en) 2012-01-18

Family

ID=40960886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007335068A Expired - Fee Related JP4854653B2 (en) 2007-12-26 2007-12-26 Measurement and evaluation method and measurement evaluation system for cathodic protection

Country Status (1)

Country Link
JP (1) JP4854653B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846615A (en) * 2010-05-17 2010-09-29 许丽涛 Device and method for monitoring corrosion of buried steel pipelines
JP2012153918A (en) * 2011-01-24 2012-08-16 Tokyo Gas Co Ltd Cathode anticorrosive system for buried metal pipeline
WO2013080587A1 (en) * 2011-11-29 2013-06-06 東京瓦斯株式会社 Pipeline ac corrosion risk measurement and evaluation method and measurement and evaluation device
JP2016080446A (en) * 2014-10-14 2016-05-16 東京瓦斯株式会社 Ac corrosion risk measurement evaluation method for buried metal object
CN111324937A (en) * 2018-11-29 2020-06-23 深圳信息职业技术学院 Service life prediction method and device for sacrificial anode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294479A (en) * 1994-04-26 1995-11-10 Tokyo Gas Co Ltd Service life estimating device of mg electrode for electric anticorrosion
JPH10332622A (en) * 1997-06-03 1998-12-18 Tokyo Gas Co Ltd Method and apparatus for determining corrosive state of cathode using steel probe
JP2006145492A (en) * 2004-11-24 2006-06-08 Tokyo Gas Co Ltd Measurement evaluation method and device for stray current corrosion risk of cathode-protected burial metal
JP2007191733A (en) * 2006-01-17 2007-08-02 Tokyo Gas Co Ltd Anticorrosion management method for cathode protected buried metal body, anticorrosion management apparatus, anticorrosion management program, and information recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294479A (en) * 1994-04-26 1995-11-10 Tokyo Gas Co Ltd Service life estimating device of mg electrode for electric anticorrosion
JPH10332622A (en) * 1997-06-03 1998-12-18 Tokyo Gas Co Ltd Method and apparatus for determining corrosive state of cathode using steel probe
JP2006145492A (en) * 2004-11-24 2006-06-08 Tokyo Gas Co Ltd Measurement evaluation method and device for stray current corrosion risk of cathode-protected burial metal
JP2007191733A (en) * 2006-01-17 2007-08-02 Tokyo Gas Co Ltd Anticorrosion management method for cathode protected buried metal body, anticorrosion management apparatus, anticorrosion management program, and information recording medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846615A (en) * 2010-05-17 2010-09-29 许丽涛 Device and method for monitoring corrosion of buried steel pipelines
JP2012153918A (en) * 2011-01-24 2012-08-16 Tokyo Gas Co Ltd Cathode anticorrosive system for buried metal pipeline
WO2013080587A1 (en) * 2011-11-29 2013-06-06 東京瓦斯株式会社 Pipeline ac corrosion risk measurement and evaluation method and measurement and evaluation device
JP2013113742A (en) * 2011-11-29 2013-06-10 Tokyo Gas Co Ltd Measurement evaluation method and measurement evaluation device of alternating current corrosion risk in pipeline
EP2799850A1 (en) * 2011-11-29 2014-11-05 Tokyo Gas Co., Ltd. Pipeline ac corrosion risk measurement and evaluation method and measurement and evaluation device
EP2799850A4 (en) * 2011-11-29 2015-07-08 Tokyo Gas Co Ltd Pipeline ac corrosion risk measurement and evaluation method and measurement and evaluation device
US9568412B2 (en) 2011-11-29 2017-02-14 Tokyo Gas Co., Ltd. Method and instrumentation for measuring and assessing AC corrosion risk of pipeline
JP2016080446A (en) * 2014-10-14 2016-05-16 東京瓦斯株式会社 Ac corrosion risk measurement evaluation method for buried metal object
CN111324937A (en) * 2018-11-29 2020-06-23 深圳信息职业技术学院 Service life prediction method and device for sacrificial anode
CN111324937B (en) * 2018-11-29 2023-09-12 深圳信息职业技术学院 Service life prediction method and device for sacrificial anode

Also Published As

Publication number Publication date
JP4854653B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4767145B2 (en) Cathodic protection system and cathodic protection method by galvanic anode method, pipeline soundness evaluation system and soundness evaluation method
JP6770046B2 (en) Cathode anticorrosion monitoring probe
JP5060052B2 (en) Anticorrosion management method, anticorrosion management device, anticorrosion management program, information recording medium of buried metal body cathodically protected
JP4854653B2 (en) Measurement and evaluation method and measurement evaluation system for cathodic protection
JP4812687B2 (en) Method and apparatus for measuring and evaluating cathodic protection of buried pipelines
JP4343090B2 (en) Method and apparatus for measuring and evaluating stray current corrosion risk for buried metal body cathodic protected
EP2799850B1 (en) Pipeline ac corrosion risk measurement and evaluation method and measurement and evaluation device
JP4178021B2 (en) Electric corrosion countermeasure system for buried structure and electric corrosion countermeasure method
JP5231899B2 (en) Cathodic protection method for pipelines
Aylott et al. Impact and management of stray current on DC rail systems
JP6030518B2 (en) Method for measuring cathodic protection of buried pipelines
JP6338722B1 (en) Measurement and evaluation method for DC stray current corrosion risk
JP5345795B2 (en) Cathodic protection system, cathodic protection method, and galvanic anode generation current stabilizer
JP2013096958A (en) Method and apparatus for estimating potential of coating defect part of underground pipe, and method and apparatus for electric protection management
JP4747084B2 (en) Cathodic protection management method and cathode protection management system
JP2017179467A (en) Electrical protection structure for reinforced concrete structure and method for measuring effect of the same
JP4601155B2 (en) Anticorrosion monitoring method
JP4522289B2 (en) Corrosion estimation method
JP3177049B2 (en) Corrosion protection potential estimation method
SU723001A1 (en) Method of protecting elongated metallic structures in circulating current zone against corrosion
JP2015161610A (en) Ac corrosion risk measurement evaluation method of embedded metal body and measurement evaluation system
US20230366103A1 (en) Methods for controlling and monitoring the degree of cathodic protection for metal structures and buried pipelines using coupled multielectrode sensors
KR200343324Y1 (en) Stray current measurement sensor of subway and power line
JP3214778B2 (en) Life prediction device for Mg electrode for cathodic protection
JP2013224456A (en) Cathodic protection system and cathodic protection method of metal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees