JP2009156628A - Nuclear fuel assembly - Google Patents

Nuclear fuel assembly Download PDF

Info

Publication number
JP2009156628A
JP2009156628A JP2007332600A JP2007332600A JP2009156628A JP 2009156628 A JP2009156628 A JP 2009156628A JP 2007332600 A JP2007332600 A JP 2007332600A JP 2007332600 A JP2007332600 A JP 2007332600A JP 2009156628 A JP2009156628 A JP 2009156628A
Authority
JP
Japan
Prior art keywords
fuel
fuel assembly
concentration
region
poison
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007332600A
Other languages
Japanese (ja)
Other versions
JP4975603B2 (en
Inventor
Jun Saeki
伯 潤 佐
Mamoru Nagano
野 護 永
Akiko Doishikawa
章 子 土石川
Tsugumi Tsuchida
田 嗣 美 土
Shingo Fujimaki
巻 真 吾 藤
Daisuke Goto
藤 大 輔 後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Nuclear Fuel Japan Co Ltd
Original Assignee
Global Nuclear Fuel Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Nuclear Fuel Japan Co Ltd filed Critical Global Nuclear Fuel Japan Co Ltd
Priority to JP2007332600A priority Critical patent/JP4975603B2/en
Publication of JP2009156628A publication Critical patent/JP2009156628A/en
Application granted granted Critical
Publication of JP4975603B2 publication Critical patent/JP4975603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel assembly which can improve reactor shutdown margins while curbing the degradation in reactivity over a late period of an operation cycle in a reactor core whose output is improved or which is geared to longer operation. <P>SOLUTION: Refueling nuclear fuel assemblies for a boiling water reactor where fuel rods and at least one water rod or water channel are bundled like a tetragonal lattice and the number of refueling assemblies to be replaced at once and to be loaded at the same time in refueling are more than 30% of that of assemblies loaded into the whole core have two or more kinds of fuel assemblies with different numbers of fuel rods (B) containing burnable poison in most domains of the central section except for blankets at the upper and lower ends in the axial direction. One or more of the fuel rods (B) in the fuel assemblies have low-concentration domains of the burnable poison in a domain (C) just under the blanket at the upper end in the axial direction and the average concentration of the burnable poison in the domain (C) of the fuel assemblies with the most number of the fuel rods (B) is set to exceed that of the burnable poison in the domain (C) of the fuel assemblies with the least number of the fuel rods (B). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、核燃料集合体に係り、特に、将来的に導入される出力が向上された原子炉の炉心、あるいは、現在の原子炉より運転サイクルが長期化された原子炉の炉心において、可燃性毒物の燃え残り増加によるサイクル末期での反応度の低下を防止でき、かつ、炉停止余裕を改善することができる燃料集合体に関する。   The present invention relates to a nuclear fuel assembly, and in particular, in a nuclear reactor core whose power to be introduced in the future is improved or in a nuclear reactor core whose operation cycle is longer than that of a current nuclear reactor. The present invention relates to a fuel assembly capable of preventing a decrease in reactivity at the end of a cycle due to an increase in unburned poisonous substances and improving a furnace shutdown margin.

一般に原子炉に用いられる燃料集合体は、燃料被覆管内に酸化ウランなどの燃料ペレットを多数充填した複数の燃料棒から構成されている。   Generally, a fuel assembly used in a nuclear reactor is composed of a plurality of fuel rods filled with a large number of fuel pellets such as uranium oxide in a fuel cladding tube.

この燃料集合体の一例を図15に示す。図15(a)は燃料集合体の縦断面図、図15(b)は図15(a)におけるB−B矢視断面図、図15(c)は図15(a)におけるC−C矢視断面図を示す。   An example of this fuel assembly is shown in FIG. 15 (a) is a longitudinal sectional view of the fuel assembly, FIG. 15 (b) is a sectional view taken along the line BB in FIG. 15 (a), and FIG. 15 (c) is a CC arrow in FIG. 15 (a). A cross-sectional view is shown.

燃料集合体1は、それぞれ複数本の長尺燃料棒2と短尺燃料棒3、および1本または2本のウォータロッド4を、軸方向に配置した複数のスペーサ5で正方格子状に束ねている。   In the fuel assembly 1, a plurality of long fuel rods 2, short fuel rods 3, and one or two water rods 4 are bundled in a square lattice pattern by a plurality of spacers 5 arranged in the axial direction. .

また、この束ねられた複数の燃料棒のうち、長尺燃料棒2は外部スプリング6と共に上部タイプレート7と下部タイプレート8で固定されている。短尺燃料棒3は下部タイプレート8に固定されている。この燃料棒の束は、周囲をチャンネルボックス9で包囲されている。   Among the plurality of bundled fuel rods, the long fuel rod 2 is fixed by the upper tie plate 7 and the lower tie plate 8 together with the external spring 6. The short fuel rod 3 is fixed to the lower tie plate 8. This bundle of fuel rods is surrounded by a channel box 9.

なお、前記チャンネルボックス9内における長尺燃料棒2と短尺燃料棒3、およびウォータロッド4の長さと本数、さらに形状や配置については、それぞれ原子炉によって異なるため、燃料棒やウォータロッドの配置や本数は図15に示す燃料集合体1に限定されるものではない。   Note that the length and number of the long fuel rods 2 and short fuel rods 3 and the water rods 4 in the channel box 9 and the number and shape and arrangement thereof differ depending on the reactor. The number is not limited to the fuel assembly 1 shown in FIG.

原子炉は、炉心周辺部や上下部近傍で中性子の漏洩が大きく、それらの領域では炉心中心部に比べて一般的に核分裂性物質や可燃性毒物の燃焼が遅れる。   In nuclear reactors, leakage of neutrons is large in the vicinity of the core and in the vicinity of the upper and lower parts, and in these regions, combustion of fissile materials and flammable poisons is generally delayed as compared with the core center.

特に、沸騰水型原子炉では、チャンネルボックス内を流れる冷却材中にはボイドが発生しており、ボイド率は炉心上部程大きく炉心下部程小さいので、炉心上部における中性子の漏洩が大きい。   In particular, in a boiling water reactor, voids are generated in the coolant flowing in the channel box, and the void ratio is larger at the upper part of the core and smaller at the lower part of the core, so that neutron leakage at the upper part of the core is large.

このため、炉心上部は炉心中心部に比べ出力が低く、核分裂性物質や可燃性毒物の燃焼が遅れる。   For this reason, the power of the upper part of the core is lower than that of the core, and the burning of fissile material and flammable poisons is delayed.

上記問題に対して従前から、燃料棒の上端部もしくは下端部もしくはその両方において、含有される核分裂性物質の濃縮度を中央部領域よりも低下させた領域を設け、該領域を低反応度領域とすることが提案されていた。   For the above problem, a region where the enrichment of the fissile material contained in the upper end portion or the lower end portion or both of the fuel rods is lower than the central region has been provided, and the region is a low-reactivity region. Has been proposed.

該方法によれば、燃料棒の上下端部からの中性子の漏れを低減させることができ、効率的に核分裂性物質を燃焼させることができる。   According to this method, the leakage of neutrons from the upper and lower ends of the fuel rod can be reduced, and the fissile material can be burned efficiently.

また同方法は同時に、燃料棒の上下端部での核分裂性物質の燃え残りを低減させることができ、燃料経済性を向上させることができる。   At the same time, the method can reduce the unburned residue of the fissile material at the upper and lower ends of the fuel rod, and improve the fuel economy.

しかし、前記燃料棒の上下端部に低反応度領域を設けても、特に上端部直下の領域では、中央部領域と比較し出力が低くて燃焼が進まないため、核分裂性物質や可燃性毒物が燃え残る傾向があった。   However, even if a low reactivity region is provided at the upper and lower ends of the fuel rods, especially in the region immediately below the upper end, the output is lower than that of the central region and combustion does not proceed, so fissile materials and flammable poisons. Tended to remain unburned.

このため、従来の燃料棒では、中央部領域の核分裂物資の濃縮度よりも低い濃縮度の新たな核分裂物資の濃縮度領域を上端領域と中央部領域の間に設け、軸方向の核分裂物資の濃縮度分布を最適化することも提案されていた。   For this reason, in the conventional fuel rod, a new fission material enrichment region having a lower concentration than the fission product enrichment in the central region is provided between the upper end region and the central region, and the axial fission product concentration is reduced. It has also been proposed to optimize the concentration distribution.

また、可燃性毒物についても同様に、燃料棒の上端領域と中央部領域の間に、可燃性毒物濃度を低下させた領域を設け、軸方向の可燃性毒物濃度を最適化していた。
特公平3−78954号公報 特公平7−101237号公報 特開平7−234293号公報 特開平8−248162号公報 特開平11−211870号公報 特許公報第2966877号
Similarly, for the flammable poison, a region where the concentration of the flammable poison is lowered is provided between the upper end region and the central region of the fuel rod to optimize the axially flammable poison concentration.
Japanese Examined Patent Publication No. 3-78954 Japanese Patent Publication No. 7-101237 JP 7-234293 A JP-A-8-248162 Japanese Patent Laid-Open No. 11-2111870 Japanese Patent No. 2996677

しかし、上記従来の燃料集合体では、将来的に沸騰水型原子炉で出力が向上された場合、あるいは、現在の沸騰水型原子炉より運転サイクルが長期化された場合に、運転サイクルの末期で炉停止余裕が低下し、あるいは、運転サイクルの末期で可燃性毒物が燃え残り、経済性を悪化させることが予想される。   However, in the case of the above conventional fuel assemblies, when the output is improved in the boiling water reactor in the future, or when the operation cycle is longer than that of the current boiling water reactor, the end of the operation cycle Therefore, it is expected that the furnace shutdown margin will decrease, or that the flammable poison will remain unburned at the end of the operation cycle, which will worsen the economy.

一般に、原子炉停止時には全ての制御棒が炉心に挿入されて未臨界状態になるが、仮に1本の制御棒が挿入されていなくても未臨界状態を達成できることが設計上の条件となっており、指標として最も反応度価値の高い制御棒が挿入されなかった場合の未臨界度を炉停止余裕という。   In general, all control rods are inserted into the reactor core when the reactor is shut down, resulting in a subcritical state. However, a design condition is that a subcritical state can be achieved even if one control rod is not inserted. The subcriticality when the control rod with the highest reactivity value is not inserted as an index is called the furnace shutdown margin.

近年、ますます原子力発電の経済性の向上が求められており、プラントあたりの出力を増加した出力向上や運転サイクルの長期化などの施策の実施が予定されている。これらの施策のためには、燃料棒の核分裂性物質の濃縮度を高める必要がある。   In recent years, there has been an increasing demand for improving the economic efficiency of nuclear power generation, and it is planned to implement measures such as increasing the output per plant and extending the operating cycle. For these measures, it is necessary to increase the enrichment of fissile material in the fuel rods.

しかし、核分裂性物質の濃縮度の増加は、原子炉運転時と停止時との反応度差を拡大させ、原子炉停止時の実効増倍率が増大し、結果としては炉停止余裕の低下に繋がる。   However, increasing the concentration of fissile material increases the difference in reactivity between reactor operation and shutdown, increasing the effective multiplication factor when the reactor is shut down, resulting in a decrease in reactor shutdown margin. .

また、長期サイクルや出力向上の施策は、一度の燃料集合体の取替体数を増加させ、新燃料を炉心の外周部にまで装荷せざるを得なくなり、そのような位置に装荷された新燃料では、上端部直下の領域において可燃性毒物が燃え残り、経済性を悪化させる原因ともなる。   In addition, long-term cycles and measures to improve power output increase the number of replacements of fuel assemblies at one time and have to load new fuel to the outer periphery of the core. In the case of fuel, combustible poisons remain unburned in the region immediately below the upper end portion, which causes the economy to deteriorate.

そこで、本発明が解決しようとする課題は、将来的に導入されることが予想される出力向上あるいは長期運転化された原子炉炉心において、可燃性毒物の燃え残り増加によるサイクル末期での反応度低下を抑制しつつ、炉停止余裕を改善する燃料集合体を提供することにある。   Therefore, the problem to be solved by the present invention is that the reactivity at the end of the cycle due to an increase in the remaining amount of flammable poisons in a reactor core that is expected to be introduced in the future or has been operated for a long time. An object of the present invention is to provide a fuel assembly that improves a furnace shutdown margin while suppressing a decrease.

本発明による沸騰水型原子炉用の取替用燃料集合体は、
複数の燃料棒と少なくとも1本のウォータロッドあるいはウォータチャンネルを正方格子状に束ね、燃料交換時に一度に交換され同時に装荷される取替体数が全炉心の装荷体数の30%より大きい沸騰水型原子炉用の取替用核燃料集合体において、
軸方向上下端のブランケットを除く中央部の大部分の領域に可燃性毒物を含有する燃料棒(B)を異なる本数有する2種類以上の燃料集合体を有し、前記燃料集合体の前記可燃性毒物を含有する燃料棒(B)のうち少なくとも1本は軸方向上端ブランケット直下の領域(C)に可燃性毒物の低濃度領域を有し、前記燃料棒(B)の本数が最も多い燃料集合体の前記軸方向領域(C)の可燃性毒物平均濃度が、前記燃料棒(B)の本数が最も少ない燃料集合体の前記軸方向領域(C)の可燃性毒物平均濃度より高いことを特徴とする。
A replacement fuel assembly for a boiling water reactor according to the present invention is:
Boiling water in which a plurality of fuel rods and at least one water rod or water channel are bundled in a square lattice pattern, and the number of replacement bodies that are exchanged at the same time during fuel exchange and loaded at the same time is greater than 30% of the number of all core bodies. In replacement nuclear fuel assemblies for nuclear reactors,
Two or more types of fuel assemblies having different numbers of fuel rods (B) containing a flammable poison in the central region excluding the blanket at the upper and lower ends in the axial direction, and the flammability of the fuel assemblies At least one of the fuel rods (B) containing poisons has a low concentration region of combustible poisons in the region (C) immediately below the axial upper end blanket, and the fuel assembly having the largest number of fuel rods (B). An average flammable poison concentration in the axial region (C) of the body is higher than an average flammable poison concentration in the axial region (C) of the fuel assembly having the smallest number of fuel rods (B). And

前記軸方向領域(C)の軸方向の長さは、燃料棒の燃料ペレットが充填されている有効長の4/24以下であるようにすることができる。   The axial length of the axial region (C) may be 4/24 or less of the effective length filled with fuel pellets of fuel rods.

また、前記燃料棒(B)の本数が最も多い燃料集合体の軸方向上下端のブランケットを除く中央部の可燃性毒物平均濃度が、前記燃料棒(B)の本数が最も少ない燃料集合体の軸方向上下端のブランケットを除く中央部の可燃性毒物平均濃度よりも低いようにすることができる。   Further, the average concentration of the flammable poison in the central portion excluding the blanket at the upper and lower ends in the axial direction of the fuel assembly having the largest number of fuel rods (B) has the smallest number of fuel rods (B). It can be made to be lower than the average concentration of the flammable poison in the central portion excluding the blanket at the upper and lower ends in the axial direction.

前記軸方向上端ブランケット直下の領域(C)における可燃性毒物濃度が最も高い前記燃料棒(B)が、前記燃料集合体中の(2,2)の格子位置あるいはその対称位置あるいは前記ウォータロッドあるいはウォータチャンネルに接する位置に配置されているようにすることができる。   The fuel rod (B) having the highest flammable poison concentration in the region (C) immediately below the axial upper end blanket is the lattice position of (2, 2) in the fuel assembly, its symmetrical position, the water rod or It can be arranged at a position in contact with the water channel.

一般的に沸騰水型原子炉では、可燃性毒物を含有する燃料ペレットを充填した燃料棒の本数(以下、可燃性毒物入り燃料棒)が異なる通常2種類の取替用燃料集合体を装荷することにより、運転サイクル初期から中期までの余剰反応度特性や原子炉停止余裕を適切に制御し、柔軟に設計を行えるよう工夫がなされている。   In general, boiling water reactors are loaded with two types of replacement fuel assemblies that differ in the number of fuel rods filled with fuel pellets containing combustible poisons (hereinafter referred to as fuel rods containing combustible poisons). Therefore, the invention has been devised so that the surplus reactivity characteristics and the reactor shutdown margin from the beginning to the middle of the operation cycle can be appropriately controlled and designed flexibly.

しかし、プラントあたりの出力を増加した出力向上や運転サイクルの長期化などの施策を実施した場合は、一度に交換され装荷される取替用核燃料集合体の体数が大きくなり、炉心の外周部に新燃料が装荷される場合が生じてくる。   However, when measures such as increased output per plant and longer operating cycles are implemented, the number of replacement nuclear fuel assemblies that are replaced and loaded at one time increases, and the outer periphery of the core In some cases, new fuel is loaded.

このような装荷位置ではサイクル末期においても燃料集合体の上端部直下の領域Cにおける可燃性毒物の残留する量が多くなる。   In such a loading position, even in the end of the cycle, the amount of flammable poisons remaining in the region C immediately below the upper end of the fuel assembly increases.

本発明は、軸方向中央部の可燃性毒物濃度に係わらず、一般的に出力の高い炉心中心部に装荷される可燃性毒物入り燃料棒の多い燃料集合体の上端部直下領域Cの可燃性毒物濃度を濃く、逆に出力の低い炉心外周部に装荷される可燃性毒物入り燃料棒の少ない燃料集合体では薄く設定することにより、運転サイクル末期においても、余剰反応度を低下させることなく、効果的に冷温時の炉停止余裕を確保することができる。   In the present invention, the flammability of the region C immediately below the upper end portion of the fuel assembly with many fuel rods containing flammable poisons loaded in the central portion of the core having a high output is generally obtained regardless of the concentration of the flammable poison in the axially central portion. By setting the fuel assembly with a low toxic concentration and a low fuel output containing flammable poisons loaded on the outer periphery of the core, which has a low output, without reducing the excess reactivity even at the end of the operation cycle, It is possible to effectively secure a furnace shutdown margin during cold temperatures.

また、前記軸方向領域(C)の軸方向の長さが、燃料棒の燃料ペレットが充填されている有効長の4/24以下である本発明によれば、以下の通り、効果的に冷温時の炉停止余裕を確保することができる。   Further, according to the present invention in which the axial length of the axial region (C) is 4/24 or less of the effective length filled with fuel pellets of the fuel rods, It is possible to ensure a sufficient furnace shutdown time.

一般的に沸騰水型原子炉では、出力運転中に炉心において冷却材中にボイドが形成されるが、上部ほどボイド率が大きく、従って、形成されたボイドによる負の反応度効果により、相対的に上部より下部の出力が大きくなる傾向がある。そこで、出力運転中の軸方向出力分布を平坦化するように、軸方向の濃縮度および可燃性毒物濃度分布を最適化した設計がされている。   In general, in boiling water reactors, voids are formed in the coolant in the core during power operation, but the void ratio is higher in the upper part, and therefore the relative reactivity effect due to the negative reactivity effect due to the formed voids. There is a tendency that the output of the lower part is larger than that of the upper part. In view of this, the design is such that the axial concentration and the flammable poison concentration distribution are optimized so as to flatten the axial output distribution during the output operation.

しかし、このことは逆にボイドがなくなる冷温時には、上部において出力分布が大きくなることを招くことになる。   However, this conversely causes the output distribution to increase in the upper part at the time of the cold temperature where the void disappears.

さらに近年、サイクル初期から中期にかけては軸方向出力分布を下方ピークとしてボイド率を高い軸方向上部におけるプルトニウムの生成を促進し、サイクル末期では逆に上方ピークとし、生成したプルトニウムを効率的に燃焼させ、またボイド率を低くすることにより反応度を高めるいわゆるスペクトルシフト運転を実施しているため、サイクル末期において冷温時の軸方向出力分布が上方ピークになる傾向が顕著である。   In recent years, the axial power distribution has a lower peak from the beginning to the middle of the cycle to promote the generation of plutonium in the upper axial direction with a high void fraction, and the upper peak is reversed at the end of the cycle to efficiently burn the generated plutonium. In addition, since the so-called spectrum shift operation is performed to increase the reactivity by lowering the void ratio, the axial output distribution at the time of cold temperature tends to be an upper peak at the end of the cycle.

本発明は、燃性毒物濃度を高めた軸方向領域(C)の軸方向の長さが、燃料棒の燃料ペレットが充填されている有効長の4/24以下であることにより、このような冷温時に上方ピークが顕著な領域で可燃性毒物濃度が有効に作用し、効果的に冷温時の炉停止余裕を確保することができる。   In the present invention, the axial length of the axial region (C) in which the concentration of the flammable poison is increased is 4/24 or less of the effective length in which the fuel pellets of the fuel rods are filled. The flammable poison concentration acts effectively in a region where the upper peak is noticeable when the temperature is low, and it is possible to effectively secure a furnace shutdown margin when the temperature is low.

また、前記燃料棒(B)の本数が最も多い燃料集合体の軸方向上下端のブランケットを除く中央部の可燃性毒物平均濃度が、前記燃料棒(B)の本数が最も少ない燃料集合体の軸方向上下端のブランケットを除く中央部の可燃性毒物平均濃度よりも低い本発明によれば、以下の通り、効果的に冷温時の炉停止余裕を確保することができる。   Further, the average concentration of the flammable poison in the central portion excluding the blanket at the upper and lower ends in the axial direction of the fuel assembly having the largest number of fuel rods (B) has the smallest number of fuel rods (B). According to the present invention, which is lower than the average flammable poison concentration in the central portion excluding the blanket at the upper and lower ends in the axial direction, it is possible to effectively ensure a furnace stop margin during cold as follows.

一般的に、可燃性毒物入り燃料棒本数が異なる通常2種類の取替用燃料集合体は、軸方向中央部に含有する可燃性毒物の濃度は、ほぼ同じか、あるいは運転サイクル期間が変化した場合においてもサイクルを通じて適切に余剰反応度を制御するため、可燃性毒物入り燃料棒本数の少ない燃料集合体の可燃性毒物濃度を濃く、逆に可燃性毒物入り燃料棒の多い燃料集合体の可燃性毒物濃度を薄く設定している。   In general, the two types of replacement fuel assemblies with different numbers of fuel rods containing flammable poisons have almost the same concentration of the flammable poison contained in the central portion in the axial direction, or the operation cycle period has changed. Even in some cases, in order to control the excess reactivity appropriately throughout the cycle, the concentration of the flammable poison in the fuel assembly with a small number of fuel rods with flammable poisons is high, and conversely the flammability of the fuel assembly with many fuel rods with flammable poisons The toxic substance concentration is set thin.

これに対して、本発明は、運転サイクル期間が変わった場合においても柔軟に余剰反応度や炉停止余裕を制御できる一方、燃焼が促進されサイクル末期での可燃性毒物の燃え残り量が少ない位置に装荷される可燃性毒物入り燃料棒の多い燃料集合体の上端部直下領域Cの可燃性毒物濃度を高めることにより、効果的に冷温時の炉停止余裕を確保することができる。   On the other hand, the present invention can flexibly control the surplus reactivity and the furnace shutdown margin even when the operation cycle period changes, while the combustion is promoted and the amount of unburned poisonous burnout at the end of the cycle is small. By increasing the concentration of the flammable poison in the region C immediately below the upper end portion of the fuel assembly having many flammable poison-loaded fuel rods, it is possible to effectively secure the furnace shutdown margin at the cold temperature.

前記軸方向上端ブランケット直下の領域(C)における可燃性毒物濃度が最も高い前記燃料棒(B)が、前記燃料集合体中の(2,2)の格子位置あるいはその対称位置あるいは前記ウォータロッドあるいはウォータチャンネルに接する位置に配置されている本発明によれば、サイクル末期において効果的に冷温時の炉停止余裕を確保することができる。   The fuel rod (B) having the highest flammable poison concentration in the region (C) immediately below the axial upper end blanket is the lattice position of (2, 2) in the fuel assembly, its symmetrical position, the water rod or According to the present invention arranged at a position in contact with the water channel, it is possible to effectively secure a furnace stop margin at the time of cold temperature at the end of the cycle.

すなわち一般的に、可燃性毒物入り燃料棒は、(2,2)あるいはその対称位置あるいはウォータロッドあるいはウォータチャンネルに接する位置に配置されたときに、可燃性毒物の燃焼が促進される。   That is, generally, when the fuel rod containing the combustible poison is disposed at (2, 2) or a symmetrical position thereof or a position in contact with the water rod or the water channel, combustion of the combustible poison is promoted.

本発明は、上記位置に可燃性毒物濃度が最も高い燃料棒を配置することにより、サイクル末期においても可燃性毒物が適切に残存し、これにより、サイクル末期においても効果的に冷温時の炉停止余裕を確保することができる。   In the present invention, the fuel rod having the highest concentration of the combustible poison is disposed at the above position so that the combustible poison remains appropriately even at the end of the cycle, thereby effectively shutting down the furnace at the cold temperature even at the end of the cycle. A margin can be secured.

このように、本発明によれば、燃料交換時に沸騰水型原子炉に同時に装荷される複数の取替用核燃料集合体において、将来的に導入されることが予想される出力向上されあるいは長期運転化された炉心において、可燃性毒物の燃え残り増加によるサイクル末期での反応度低下を抑制しつつ、炉停止余裕を改善することができる。   As described above, according to the present invention, in a plurality of replacement nuclear fuel assemblies that are simultaneously loaded into the boiling water nuclear reactor at the time of fuel replacement, the output that is expected to be introduced in the future is improved or long-term operation is performed. In the converted core, it is possible to improve the reactor shutdown margin while suppressing a decrease in reactivity at the end of the cycle due to an increase in unburned poisonous burnout.

本発明の一実施の形態について図面を参照して説明する。   An embodiment of the present invention will be described with reference to the drawings.

(第1の実施の形態)
図1は本発明の第1の実施の形態を示す図であって、燃料棒の燃料および可燃性毒物の軸方向分布図である。
(First embodiment)
FIG. 1 is a diagram showing a first embodiment of the present invention, and is an axial distribution diagram of fuel and combustible poisons in a fuel rod.

本実施形態では、図1に示すように、燃料交換時に沸騰水型原子炉に同時に装荷される2種類の取替用核燃料集合体(第1の燃料集合体と第2の燃料集合体)を有している。   In this embodiment, as shown in FIG. 1, two types of replacement nuclear fuel assemblies (a first fuel assembly and a second fuel assembly) that are simultaneously loaded into a boiling water reactor at the time of fuel replacement are provided. Have.

第1の燃料集合体は5種類の燃料棒U1,U2,U3,G1,G2を有し、第2の燃料集合体は4種類の燃料棒U1,U2,U3,G2を有している。   The first fuel assembly has five types of fuel rods U1, U2, U3, G1, and G2, and the second fuel assembly has four types of fuel rods U1, U2, U3, and G2.

燃料棒G1,G2は、軸方向上下端のブランケットを除く中央部の大部分の領域に可燃性毒物を含有しており、軸方向上端ブランケット直下の領域Cに、可燃性毒物の低濃度領域を有している。   The fuel rods G1 and G2 contain a flammable poison in the most area of the central portion except the blanket at the upper and lower ends in the axial direction, and a low concentration area of the flammable poison is provided in the area C immediately below the upper blanket in the axial direction. Have.

2種類の取替用核燃料集合体(第1の燃料集合体と第2の燃料集合体)は、可燃性毒物を含む燃料棒の本数が多い第1の燃料集合体の軸方向領域Cの可燃性毒物平均濃度(g3×4+g4×10)÷14が、可燃性毒物を含む燃料棒の本数が少ない第2の燃料集合体の軸方向領域Cの可燃性毒物平均濃度g4よりも高いことを特徴としている。   The two types of replacement nuclear fuel assemblies (the first fuel assembly and the second fuel assembly) are combustible in the axial region C of the first fuel assembly having a large number of fuel rods containing combustible poisons. The average concentration of toxic poison (g3 x 4 + g4 x 10) ÷ 14 is higher than the average flammable poison concentration g4 in the axial region C of the second fuel assembly with a small number of fuel rods containing flammable poisons. It is characterized by.

また、本実施形態は、燃料交換時に一度に交換され同時に装荷される燃料集合体の取替体数は、全炉心装荷体数の30%より大きくなっている。   Further, in the present embodiment, the number of replacement assemblies of fuel assemblies that are replaced at the same time during fuel replacement and loaded simultaneously is greater than 30% of the total number of core loads.

図2に本発明による燃料集合体の装荷パターンの例を示す。   FIG. 2 shows an example of the loading pattern of the fuel assembly according to the present invention.

本発明による燃料集合体の装荷は、特公平3−78954号公報の本文およびその第12図に示される炉心外周部に高Gdの燃料集合体を装荷し、炉心中央部に低Gdの燃料集合体を装荷し、また、たとえば第4サイクルまで燃料集合体を使用する炉心ならば、定検時に第4サイクルの燃料集合体が取り出され、第3サイクルの燃料集合体が第4サイクル用のマス目に移され、その他の燃料集合体は移動しないというようにして定検時の燃料取替体数を最少にするミニマムシャッフリングという概念の装荷パターンと相違する。本発明による燃料集合体の装荷は、高Gd燃料集合体を炉心中央部に装荷し、低Gd燃料集合体は炉心外周部に装荷する。   The fuel assembly according to the present invention is loaded with a high Gd fuel assembly on the outer periphery of the core shown in the text of Japanese Patent Publication No. 3-78954 and FIG. 12 and a low Gd fuel assembly in the center of the core. For example, if the core uses a fuel assembly until the fourth cycle, the fuel assembly of the fourth cycle is taken out at the regular inspection, and the fuel assembly of the third cycle becomes the mass for the fourth cycle. This is different from the loading pattern of the concept of minimum shuffling which is transferred to the eyes and minimizes the number of fuel replacement bodies at the time of regular inspection so that other fuel assemblies do not move. In the loading of the fuel assembly according to the present invention, the high Gd fuel assembly is loaded in the center of the core, and the low Gd fuel assembly is loaded in the outer periphery of the core.

ミニマムシャッフリングの装荷パターンは、一般に炉心外周部まで新燃料が装荷されるため、サイクル末期の反応度が低下することになり、燃料経済性が低下しやすい傾向がある。   In the loading pattern of the minimum shuffling, since the new fuel is generally loaded to the outer periphery of the core, the reactivity at the end of the cycle is lowered and the fuel economy tends to be lowered.

これに対して、本発明による燃料集合体は、炉心中央部に高Gdの燃料集合体を装荷し、かつ、運転サイクルの長期化に応えて燃料集合体の取替体数を多くし、より炉心中央部に新燃料が来るようにするために、図2に示すように、第1サイクルと第2サイクルの燃料集合体を炉心中央部に市松模様に装荷する。むろん、炉心中央部の装荷パターンは市松模様には限られず、市松模様の装荷パターンを含む混合配置であればよいが、本発明の装荷パターンによれば燃料取替体数が全炉心装荷体数の30%を超える場合にも、サイクル末期の反応度の低下を適度に制御することができる。   On the other hand, the fuel assembly according to the present invention is loaded with a high Gd fuel assembly at the center of the core and increases the number of replacements of the fuel assembly in response to the longer operating cycle. In order to make the new fuel come to the central part of the core, as shown in FIG. 2, the fuel assemblies of the first cycle and the second cycle are loaded in the central part of the core in a checkered pattern. Of course, the loading pattern in the center of the core is not limited to the checkered pattern, and any mixed arrangement including the checkered loading pattern may be used. However, according to the loading pattern of the present invention, the number of fuel replacement bodies is the number of all core loads. Even when it exceeds 30%, the decrease in reactivity at the end of the cycle can be appropriately controlled.

以下、従来の燃料集合体と本発明の燃料集合体の効果を比較するために、図3,4に従来の燃料集合体の設計例1,2を示す。   Hereinafter, in order to compare the effects of the conventional fuel assembly and the fuel assembly of the present invention, FIGS. 3 and 4 show design examples 1 and 2 of the conventional fuel assembly.

図3,4に示した従来の燃料集合体の設計例1,2は、燃料交換時に沸騰水型原子炉に同時に装荷される2種類の取替用核燃料集合体(第1の燃料集合体と第2の燃料集合体)を有し、第1の燃料集合体と第2の燃料集合体はそれぞれ軸方向上下端のブランケットを除く中央部の大部分の領域に可燃性毒物を含有する燃料棒G1と燃料棒G2を有し、燃料棒G1,G2は軸方向上端ブランケット直下の領域Cに可燃性毒物の低濃度領域を有している。   The design examples 1 and 2 of the conventional fuel assemblies shown in FIGS. 3 and 4 include two types of replacement nuclear fuel assemblies (the first fuel assembly and the first fuel assembly) that are simultaneously loaded into the boiling water reactor during fuel replacement. A fuel rod containing a flammable poison in a central region excluding a blanket at the upper and lower ends in the axial direction, each of the first fuel assembly and the second fuel assembly. G1 and a fuel rod G2, and the fuel rods G1 and G2 have a low concentration region of a flammable poison in a region C immediately below the axial upper end blanket.

図3に示した従来設計例1は、第1燃料集合体と第2燃料集合体の軸方向上端ブランケット直下の領域Cに設けられた可燃性毒物の濃度は同一であることを特徴とする。   The conventional design example 1 shown in FIG. 3 is characterized in that the concentrations of combustible poisons provided in the region C immediately below the axial upper end blanket of the first fuel assembly and the second fuel assembly are the same.

図4に示した従来設計例2は、可燃性毒物を含む燃料棒の本数が多い第1燃料集合体の軸方向領域Cの可燃性毒物の平均濃度g5が、可燃性毒物を含む燃料棒の本数が少ない第2燃料集合体の軸方向領域Cの可燃性毒物平均濃度g4よりも低いことを特徴とする。   In the conventional design example 2 shown in FIG. 4, the average concentration g5 of the flammable poison in the axial region C of the first fuel assembly having a large number of fuel rods containing the flammable poison is the same as that of the fuel rod containing the flammable poison. It is characterized by being lower than the average flammable poison concentration g4 in the axial direction region C of the second fuel assembly with a small number.

図5,6に、本発明による第1実施形態と上記従来設計例1,2を、同一炉心装荷パターンおよび制御棒パターンで装荷した場合の余剰反応度および炉停止余裕の燃焼変化を示す。   FIGS. 5 and 6 show the surplus reactivity and the change in combustion of the reactor shutdown margin when the first embodiment according to the present invention and the conventional design examples 1 and 2 are loaded with the same core loading pattern and control rod pattern.

また図7に、ある炉心を例として、サイクル末期の燃料集合体相対出力を炉心径方向層別に平均化した値と、新燃料を炉心の中心から市松模様に装荷していった場合の前記炉心径方向層の各層に、はじめて新燃料が装荷される炉心装荷体数に対する新燃料割合を評価した結果を示す。炉心の大きさを135万kWe級と110万kWe級と80万kWe級とした3例を示している。炉心径方向の層とは、炉心を上方向から見て、中心から所定距離ごとに仮想の層を想定した場合の、それらの層をいう。   FIG. 7 shows, for example, a core, the average value of the fuel assembly relative output at the end of the cycle for each core radial layer, and the core when the new fuel is loaded in a checkered pattern from the center of the core. The results of evaluating the ratio of new fuel to the number of cores loaded with new fuel for the first time in each radial layer are shown. Three examples are shown with the core size of 1.35 million kWe class, 1.1 million kWe class and 800,000 kWe class. The layers in the core radial direction refer to those layers when virtual layers are assumed every predetermined distance from the center when the core is viewed from above.

余剰反応度は運転期間を通して適切な量に制御される必要があるが、特に運転サイクル末期では一般的にゼロより大きくなるように設定する必要がある。   The excess reactivity needs to be controlled to an appropriate amount throughout the operation period, but it is generally necessary to set it to be greater than zero, particularly at the end of the operation cycle.

図5からわかるように、本発明の第1実施形態の余剰反応度は、運転サイクルの全般にわたって従来設計例1よりわずかに小さいものの従来設計例2とほぼ同等の余剰反応度を有し、運転サイクルの末期においては、従来設計例1とほぼ同等になり、従来設計例2と比較すれば余裕がある。   As can be seen from FIG. 5, the surplus reactivity of the first embodiment of the present invention is slightly smaller than the conventional design example 1 over the entire operation cycle, but has a surplus reactivity substantially equal to that of the conventional design example 2, At the end of the cycle, it is almost the same as the conventional design example 1, and there is a margin compared to the conventional design example 2.

従来設計例2では、一般的に出力の低い炉心外周部に装荷される可燃性毒物を含む燃料棒の本数が少ない第2の燃料集合体の、上端部直下領域Cの可燃性毒物濃度を濃くなっているため、サイクル末期においては可燃性毒物の燃え残り量が増加し余剰反応度が低下する。すなわち、従来設計例2では、取替体数が全炉心装荷体数の30%よりも大きいため、図7で示すところの平均相対出力が0.75より小さい炉心径方向出力の層にこのような第2の燃料集合体の新燃料が装荷され、可燃性毒物の燃え残り量が多くなり余剰反応度が低下したと考えられる。   In the conventional design example 2, the concentration of the flammable poison in the region C immediately below the upper end portion of the second fuel assembly in which the number of fuel rods containing the flammable poison loaded on the outer periphery of the core having a low output is generally high. Therefore, at the end of the cycle, the amount of flammable poison that remains unburned increases and the excess reactivity decreases. That is, in the conventional design example 2, since the number of replacement bodies is larger than 30% of the total number of cores loaded, the average relative output shown in FIG. It is thought that the new fuel of the second fuel assembly was loaded, and the amount of unburned poisonous burnout increased and the surplus reactivity decreased.

一方、本発明の第1実施形態では、従来設計例1と比較して可燃性毒物の炉心への持ち込み量が多く、サイクル初期から中期に至っては余剰反応度は低下するが、一般的に出力の高い炉心中心部に装荷される可燃性毒物を含む燃料棒の本数が多い第1の燃料集合体の、上端部直下領域Cの可燃性毒物濃度を濃くすることにより、サイクル末期においては可燃性毒物の燃え残り量の増加が最低限に抑えられ、余剰反応度が低下するまでには至らない。   On the other hand, in the first embodiment of the present invention, the amount of flammable poisons brought into the core is larger than in the conventional design example 1, and the surplus reactivity decreases from the beginning to the middle of the cycle. By increasing the concentration of the flammable poison in the region C immediately below the upper end of the first fuel assembly having a large number of fuel rods containing the flammable poison loaded in the center of the high core, it is flammable at the end of the cycle. The increase in the amount of unburned poison is minimized, and the surplus reactivity is not reduced.

図6から、本発明の第1実施形態のサイクル末期近傍の炉停止余裕は、大きく改善していることがわかる。   FIG. 6 shows that the furnace shutdown margin near the end of the cycle according to the first embodiment of the present invention is greatly improved.

本発明の第1実施形態では、一般的に出力の高い炉心中心部に装荷される可燃性毒物を含む燃料棒の本数が多い第1の燃料集合体の、上端部直下領域Cの可燃性毒物濃度を濃くすることにより、運転サイクル末期においても効果的に反応度を制御することができるため、十分な炉停止余裕を確保することができるためである。   In the first embodiment of the present invention, the flammable poison in the region C immediately below the upper end portion of the first fuel assembly having a large number of fuel rods containing the flammable poison generally loaded in the core portion having a high output. This is because by increasing the concentration, the reactivity can be controlled effectively even at the end of the operation cycle, so that a sufficient furnace shutdown margin can be secured.

(第2の実施の形態)
図8は本発明の第2の実施の形態を示す図であって、燃料棒の燃料および可燃性毒物の軸方向分布図を示している。
(Second Embodiment)
FIG. 8 is a diagram showing a second embodiment of the present invention, and shows an axial distribution diagram of fuel and combustible poison in the fuel rod.

本発明の第2実施形態は、燃料交換時に沸騰水型原子炉に同時に装荷される2種類の取替用核燃料集合体(第1の燃料集合体と第2の燃料集合体)を有し、第1の燃料集合体と第2の燃料集合体はそれぞれ可燃性毒物を含む燃料棒G1,G2と燃料棒G2を有している。燃料棒G1,G2は、軸方向上端ブランケット直下の軸方向領域Cの長さが、燃料ペレットが充填されている有効長の4/24以下であることを特徴とする。   The second embodiment of the present invention has two types of replacement nuclear fuel assemblies (a first fuel assembly and a second fuel assembly) that are simultaneously loaded into a boiling water reactor during fuel exchange. The first fuel assembly and the second fuel assembly each have fuel rods G1, G2 and a fuel rod G2 containing flammable poisons. The fuel rods G1 and G2 are characterized in that the length of the axial region C immediately below the axial upper end blanket is 4/24 or less of the effective length filled with fuel pellets.

近年、サイクル初期から中期にかけては軸方向出力分布を下方ピークとしてボイド率を高い軸方向上部におけるプルトニウムの生成を促進し、サイクル末期では逆に上方ピークとし、生成したプルトニウムを効率的に燃焼させ、またボイド率を低くすることにより反応度を高めるいわゆるスペクトルシフト運転を実施しているため、サイクル末期において冷温時の軸方向出力分布が上方ピークになる傾向は顕著である。   In recent years, from the beginning to the middle of the cycle, the axial output distribution is the lower peak, and the void ratio is increased to promote the production of plutonium in the upper axial direction, and at the end of the cycle, the upper peak is reversed, and the generated plutonium is efficiently burned. In addition, since a so-called spectrum shift operation is performed to increase the reactivity by lowering the void ratio, the tendency of the axial output distribution at the cold end to become an upper peak at the end of the cycle is remarkable.

図9に、上端部のブランケットを有効長の1/24とした、燃料棒本数が異なる2つの燃料集合体により構成された炉心におけるサイクル末期の冷温時炉心平均軸方向出力分布の例を示す。   FIG. 9 shows an example of the cold core average axial power distribution at the end of the cycle in a core constituted by two fuel assemblies with different numbers of fuel rods with the upper end blanket being 1/24 of the effective length.

いずれの例も、サイクル末期の出力分布は特に燃料の有効長の1/24から5/24の領域において高い出力分布を示していることがわかる。   In both examples, it can be seen that the power distribution at the end of the cycle shows a high power distribution, particularly in the region of 1/24 to 5/24 of the effective fuel length.

従って、本発明の第2実施形態のように、燃料有効長の4/24以下の領域の可燃性毒物の濃度を高めることにより、効果的に冷温時の炉停止余裕を確保することができる。   Therefore, as in the second embodiment of the present invention, by increasing the concentration of the combustible poison in the region of 4/24 or less of the effective fuel length, it is possible to effectively secure the furnace shutdown margin at the cold temperature.

(第3の実施の形態)
図10は本発明の第3の実施の形態を示す図であって、燃料棒の燃料および可燃性毒物の軸方向分布図を示す。
(Third embodiment)
FIG. 10 is a diagram showing a third embodiment of the present invention, and shows an axial distribution diagram of fuel and combustible poisons in a fuel rod.

本発明の第3実施形態は、燃料交換時に沸騰水型原子炉に同時に装荷される2種類の取替用核燃料集合体(第1の燃料集合体と第2の燃料集合体)を有し、第1の燃料集合体は可燃性毒物を含む燃料棒G1を有し、第2の燃料集合体は可燃性毒物を含む燃料棒G2を有している。   The third embodiment of the present invention has two types of replacement nuclear fuel assemblies (a first fuel assembly and a second fuel assembly) that are simultaneously loaded into a boiling water reactor during fuel exchange. The first fuel assembly has a fuel rod G1 containing a flammable poison, and the second fuel assembly has a fuel rod G2 containing a flammable poison.

燃料棒G1,G2は、可燃性毒物入り燃料棒本数が最も多い燃料集合体の軸方向上下端のブランケットを除く中央部の可燃性毒物平均濃度((g2×10)+(g3×9)+(g4×3))÷22が、可燃性毒物入り燃料棒本数が少ない燃料集合体の軸方向上下端のブランケットを除く中央部の可燃性毒物平均濃度((g1×10)+(g2×9)+(g5×3))÷22よりも低いことを特徴とする。   Fuel rods G1 and G2 are the average concentration of flammable poisons ((g2 × 10) + (g3 × 9) + in the center, excluding the upper and lower blankets in the axial direction of the fuel assembly with the largest number of fuel rods containing flammable poisons. (G4 × 3)) ÷ 22 is the average concentration of flammable poisons in the center ((g1 × 10) + (g2 × 9) excluding the blanket at the upper and lower ends in the axial direction of the fuel assembly with a small number of fuel rods containing flammable poisons ) + (G5 × 3)) ÷ 22.

なお、図10に示されるように、第1の燃料集合体のG1のg2,g3,g4はそれぞれ10,9,3個のノードを有し、第2の燃料集合体のG2のg1,g2,g5はそれぞれ10,9,3個のノードを有し、上記式はそれぞれ重み平均した燃料棒G1とG2の可燃性毒物の平均濃度である。   As shown in FIG. 10, G1, g3, and g4 of G1 of the first fuel assembly have 10, 9, and 3 nodes, respectively, and g1, g2 of G2 of the second fuel assembly. , g5 have 10, 9, 3 nodes, respectively, and the above equation is the average concentration of the flammable poisons of the fuel rods G1 and G2, which are weighted, respectively.

本発明の第3実施形態は、可燃性毒物を含む燃料棒の本数が多い第1の燃料集合体の軸方向領域Cの可燃性毒物平均濃度が、可燃性毒物を含む燃料棒の本数が少ない第2の燃料集合体の軸方向領域Cの可燃性毒物平均濃度よりも高く、かつ、上述したように、可燃性毒物入り燃料棒本数が最も多い燃料集合体の軸方向上下端のブランケットを除く中央部の可燃性毒物平均濃度が、可燃性毒物入り燃料棒本数が少ない燃料集合体の軸方向上下端のブランケットを除く中央部の可燃性毒物平均濃度よりも低くしたものである。 一般的に、可燃性毒物入り燃料棒本数が異なる通常2種類の取替用燃料集合体は、軸方向中央部に含有する可燃性毒物の濃度は、ほぼ同じか、あるいは運転サイクル期間が変化した場合においてもサイクルを通じて適切に余剰反応度を制御するため、可燃性毒物入り燃料棒本数の少ない燃料集合体の可燃性毒物濃度を濃く、逆に可燃性毒物入り燃料棒の多い燃料集合体の可燃性毒物濃度を薄く設定している。   In the third embodiment of the present invention, the average concentration of the flammable poison in the axial region C of the first fuel assembly having a large number of fuel rods containing the flammable poison is small. Excluding the blanket at the upper and lower ends in the axial direction of the fuel assembly that is higher than the average combustible poison concentration in the axial region C of the second fuel assembly and has the largest number of fuel rods containing the combustible poison as described above. The average flammable poison concentration in the center is lower than the average flammable poison concentration in the center except for the upper and lower blankets in the axial direction of the fuel assembly with a small number of fuel rods containing flammable poisons. In general, the two types of replacement fuel assemblies with different numbers of fuel rods containing flammable poisons have almost the same concentration of the flammable poison contained in the central portion in the axial direction, or the operation cycle period has changed. Even in some cases, in order to control the excess reactivity appropriately throughout the cycle, the concentration of the flammable poison in the fuel assembly with a small number of fuel rods with flammable poisons is high, and conversely the flammability of the fuel assembly with many fuel rods with flammable poisons The toxic substance concentration is set thin.

すなわち、運転サイクル期間が長くなった場合には取替体数が多くなるため、炉心の新燃料の割合が多くなる。この際、炉心全体に持ち込まれる可燃性毒物量の変化量を小さくするため、可燃性毒物入り燃料棒本数の少ない燃料集合体の割合を多く装荷することになるが、余剰反応度をより長くなった運転サイクル期間を通して適切に制御するために、可燃性毒物濃度を濃くすることが一般的である。   That is, when the operation cycle period becomes long, the number of replacement bodies increases, so the ratio of new fuel in the core increases. At this time, in order to reduce the amount of change in the amount of flammable poisons brought into the entire core, a large proportion of fuel assemblies with a small number of fuel rods containing flammable poisons will be loaded, but the excess reactivity will become longer. It is common to increase the concentration of flammable poisons in order to properly control over the life of the operating cycle.

図11,12に、本発明による第1実施形態と運転サイクル期間が長くなった場合に第1実施形態及び第3実施形態を、炉心に装荷した場合の余剰反応度および炉停止余裕の燃焼変化の例を示す。   11 and 12, the first embodiment and the third embodiment according to the first embodiment of the present invention and the combustion change of the surplus reactivity and the furnace stop margin when the core is loaded in the first embodiment and the third embodiment. An example of

図11,12から分かるように、第1実施形態において運転サイクル期間が長くなった場合、サイクル中期以降で余剰反応度が大きくなり、炉停止余裕を悪化させる。一方、第3実施形態を用いた場合には、長期サイクル運転において多く装荷される可燃性毒物入り燃料棒本数の少ない燃料集合体の軸方向上下端部のブランケットを除く中央部の可燃性毒物平均濃度は高く設定されているため、サイクル中期以降も余剰反応度を比較的小さく制御でき、結果として炉停止余裕を改善している。   As can be seen from FIGS. 11 and 12, when the operation cycle period is long in the first embodiment, the surplus reactivity increases after the middle of the cycle, and the furnace shutdown margin is deteriorated. On the other hand, when the third embodiment is used, the flammable poison average in the central portion excluding the blanket at the upper and lower ends in the axial direction of the fuel assembly with a small number of fuel rods containing the flammable poison loaded in the long-term cycle operation. Since the concentration is set high, the excess reactivity can be controlled to be relatively small even after the middle of the cycle, and as a result, the furnace shutdown margin is improved.

本発明は、運転サイクル期間が変わった場合においても柔軟に余剰反応度や炉停止余裕を制御できる一方、燃焼が促進されサイクル末期での可燃性毒物の燃え残り量が少ない位置に装荷される可燃性毒物入り燃料棒の多い燃料集合体の上端部直下領域Cの可燃性毒物濃度を高めることにより、効果的に冷温時の炉停止余裕を確保することができる。   The present invention can flexibly control the excess reactivity and the furnace shutdown margin even when the operation cycle period changes, while the combustion is promoted and the combustible loaded at the end of the cycle where the amount of unburned poison is small is loaded. By increasing the concentration of the flammable poison in the region C immediately below the upper end portion of the fuel assembly with many fuel rods containing the poisonous poison, it is possible to effectively secure a furnace stop margin at the cold temperature.

(第4の実施の形態)
図13は本発明の第4の実施の形態を示す図であって、(a)は燃料集合体における燃料棒配置を示す横断面図で、(b)は燃料棒の燃料および可燃性毒物の軸方向分布図を示す。
(Fourth embodiment)
13A and 13B are views showing a fourth embodiment of the present invention, in which FIG. 13A is a cross-sectional view showing the arrangement of fuel rods in a fuel assembly, and FIG. 13B is a diagram showing fuel rods and combustible poisons. An axial direction distribution diagram is shown.

本発明の第4実施形態は、燃料交換時に沸騰水型原子炉に同時に装荷される2種類の取替用核燃料集合体(第1の燃料集合体と第2の燃料集合体)を有し、第1の燃料集合体においては、軸方向上端ブランケット直下の領域Cにおける可燃性毒物濃度が最も高い燃料棒G1が(2,2)およびその対称位置およびウォータチャンネルに接する位置に配置され、第2の燃料集合体においては、該燃料集合体において領域Cにおける可燃性毒物濃度が最も高い燃料棒G2が(2,2)およびその対称位置およびウォータチャンネルに接する位置に配置されている。すなわち、本実施形態の燃料集合体は、領域Cにおける可燃性毒物濃度が最も高い燃料棒が(2,2)およびその対称位置およびウォータチャンネルに接する位置に配置されていることを特徴とする。   The fourth embodiment of the present invention has two types of replacement nuclear fuel assemblies (a first fuel assembly and a second fuel assembly) that are simultaneously loaded into a boiling water reactor during fuel exchange. In the first fuel assembly, the fuel rod G1 having the highest flammable poison concentration in the region C immediately below the axial upper end blanket is disposed at (2, 2), its symmetrical position, and the position in contact with the water channel. In the fuel assembly, the fuel rod G2 having the highest concentration of the flammable poison in the region C in the fuel assembly is disposed at (2, 2), its symmetrical position, and the position in contact with the water channel. That is, the fuel assembly of the present embodiment is characterized in that the fuel rods having the highest flammable poison concentration in the region C are arranged at (2, 2), the symmetrical position thereof, and the position in contact with the water channel.

一般的に、燃料集合体の最外周を除くと、(2,2)およびその対称位置およびウォータロッドあるいはウォータチャンネルに接する位置の燃料棒の出力が高くなる傾向にあり、燃焼が促進されるため、可燃性毒物の燃焼も早い。   In general, excluding the outermost periphery of the fuel assembly, the output of the fuel rods at the positions (2, 2) and their symmetrical positions and in contact with the water rod or the water channel tends to increase, and combustion is promoted. Combustible poisons burn quickly.

図14(a)に図11の燃料集合体を一例とし、全ての燃料棒に含まれる濃縮度を均一とした場合の局所出力ピーキング係数の燃焼変化の一例を示す。また同様に図14(b)に図15の燃料集合体を一例とした局所出力ピーキング係数の燃焼変化の一例を示す。   FIG. 14A shows an example of the combustion change in the local output peaking coefficient when the fuel assembly shown in FIG. 11 is taken as an example and the enrichment contained in all the fuel rods is made uniform. Similarly, FIG. 14 (b) shows an example of the combustion change of the local output peaking coefficient taking the fuel assembly of FIG. 15 as an example.

この結果から、(2,2)およびウォータロッドあるいはウォータチャンネルに接する位置の燃料棒の出力が、相対的に高いことが分かる。(2,2)の対称位置については、図14(a),14(b)に示されていないが、(2,2)と同様に局所出力ピーキング係数が高いことが知られている。   From this result, it can be seen that the output of the fuel rod at the position in contact with (2, 2) and the water rod or water channel is relatively high. The symmetrical position of (2, 2) is not shown in FIGS. 14 (a) and 14 (b), but it is known that the local output peaking coefficient is high as in (2, 2).

一般的に局所出力ピーキング係数は、濃縮度分布に依存するが、出力向上や運転サイクルの長期化などの施策を実施した場合、燃料集合体の外周部を除くほとんど全ての燃料棒の濃縮度を取り扱い規制の上限ぎりぎりまで増加する必要性が生じてくることが考えられ、図14(a),14(b)に示すような(2,2)およびウォータロッドあるいはウォータチャンネルに接する位置の燃料棒およびその対称位置の燃料棒の出力がますます高くなる傾向にあるといえる。   In general, the local output peaking coefficient depends on the enrichment distribution, but when measures such as improving the output or extending the operation cycle are implemented, the enrichment of almost all fuel rods except the outer periphery of the fuel assembly It is conceivable that there is a need to increase to the limit of the upper limit of handling regulations. (2, 2) as shown in FIGS. 14 (a) and 14 (b) and the fuel rod at the position in contact with the water rod or water channel It can be said that the output of the fuel rod at the symmetrical position tends to be higher.

本発明では、燃焼が促進されサイクル末期での可燃性毒物の燃え残り量が少なくなる位置の燃料棒の上端部直下の領域Cの可燃性毒物濃度を高めることにより、サイクル末期においても効果的に冷温時の炉停止余裕を確保することができる。   In the present invention, by increasing the concentration of the flammable poison in the region C immediately below the upper end portion of the fuel rod at the position where combustion is promoted and the amount of unburnable flammable poison at the end of the cycle is reduced, it is effective even at the end of the cycle. It is possible to secure a furnace shutdown margin when the temperature is cold.

本発明に係る第1実施の形態の燃料集合体を構成する燃料棒の燃料および可燃性毒物の軸方向分布図。The axial distribution map of the fuel of the fuel rod which comprises the fuel assembly of 1st Embodiment which concerns on this invention, and a combustible poison. 本発明に係る第1実施形態の燃料集合体の燃料棒の装荷パターンを示す図。The figure which shows the loading pattern of the fuel rod of the fuel assembly of 1st Embodiment which concerns on this invention. 従来技術の一例による燃料集合体の燃料棒の燃料および可燃性毒物の軸方向分布図(従来設計例1)。The axial distribution map of the fuel and the burnable poison of the fuel rod of the fuel assembly according to an example of the prior art (conventional design example 1). 従来技術の一例による燃料集合体の燃料棒の燃料および可燃性毒物の軸方向分布図(従来設計例2)。The axial distribution map of the fuel rod fuel and combustible poison in the fuel assembly according to an example of the prior art (conventional design example 2). 本発明の第1実施形態と従来設計例の余剰反応度の燃焼変化を示したグラフ。The graph which showed the combustion change of the excess reactivity of 1st Embodiment of this invention and the conventional design example. 本発明の第1実施形態と従来設計例の炉停止余裕の燃焼変化を示したグラフ。The graph which showed the combustion change of the furnace stop margin of 1st Embodiment of this invention and the conventional design example. 燃料集合体相対出力と新燃料割合の関係を示したグラフ。The graph which showed the relationship between a fuel assembly relative output and a new fuel ratio. 本発明に係る第2実施の形態の燃料集合体を構成する燃料棒の燃料および可燃性毒物の軸方向分布図。The axial distribution map of the fuel of the fuel rod and combustible poison which constitute the fuel assembly of the second embodiment according to the present invention. 燃料棒本数が異なる2つの燃料集合体により構成された炉心におけるサイクル末期の冷温時炉心平均軸方向の出力分布の例を示すグラフ。The graph which shows the example of the power distribution of the core average axial direction at the time of the cold end of the cycle in the core comprised by the two fuel assemblies from which the number of fuel rods differs. 本発明に係る第3実施の形態の燃料集合体を構成する燃料棒の燃料および可燃性毒物の軸方向分布図。An axial distribution diagram of fuel and combustible poisons of fuel rods constituting the fuel assembly of the third embodiment according to the present invention. 本発明の第1実施形態と長期サイクル運転時の第1実施形態と第3実施形態の余剰反応度の燃焼変化を示したグラフ。The graph which showed the combustion change of the excess reactivity of 1st Embodiment and 1st Embodiment at the time of long-term cycle driving | operation of this invention, and 3rd Embodiment. 本発明の第1実施形態と長期サイクル運転時の第1実施形態と第3実施形態の炉停止余裕の燃焼変化を示したグラフ。The graph which showed the combustion change of the furnace stop margin of 1st Embodiment and 3rd Embodiment at the time of 1st Embodiment and long-term cycle driving | operation of this invention. 本発明に係る第4実施の形態の燃料集合体を構成する燃料棒の燃料および可燃性毒物の軸方向分布図。The axial direction distribution map of the fuel of the fuel rod which comprises the fuel assembly of 4th Embodiment which concerns on this invention, and a combustible poison. 図11の燃料集合体を例とした全ての燃料棒に含まれる濃縮度を均一とした場合の局所出力ピーキング係数の燃焼変化の例を示すグラフ。The graph which shows the example of the combustion change of a local output peaking coefficient at the time of making the enrichment contained in all the fuel rods which made the fuel assembly of FIG. 11 an example uniform. 図15の燃料集合体を例とした全ての燃料棒に含まれる濃縮度を均一とした場合の局所出力ピーキング係数の燃焼変化の例を示すグラフ。The graph which shows the example of the combustion change of a local output peaking coefficient at the time of making the enrichment contained in all the fuel rods which made the fuel assembly of FIG. 15 an example uniform. 燃料集合体の縦断面図(a)、縦断面図(a)におけるB−B矢視断面図(b)、および、縦断面図(a)におけるC−C矢視断面図(c)。The longitudinal cross-sectional view (a) of a fuel assembly, the BB arrow directional cross-sectional view (b) in a vertical cross-sectional view (a), and CC cross-sectional view (c) in a vertical cross-sectional view (a).

符号の説明Explanation of symbols

1 燃料集合体
2 長尺燃料棒
3 短尺燃料棒
4 ウォータロッド
5 スペーサ
6 外部スプリング
7 上部タイプレート
8 下部タイプレート
9 チャンネルボックス
DESCRIPTION OF SYMBOLS 1 Fuel assembly 2 Long fuel rod 3 Short fuel rod 4 Water rod 5 Spacer 6 External spring 7 Upper tie plate 8 Lower tie plate 9 Channel box

Claims (4)

複数の燃料棒と少なくとも1本のウォータロッドあるいはウォータチャンネルを正方格子状に束ね、燃料交換時に一度に交換され同時に装荷される取替体数が全炉心の装荷体数の30%より大きい沸騰水型原子炉用の取替用核燃料集合体において、
軸方向上下端のブランケットを除く中央部の大部分の領域に可燃性毒物を含有する燃料棒(B)を異なる本数有する2種類以上の燃料集合体を有し、前記燃料集合体の前記可燃性毒物を含有する燃料棒(B)のうち少なくとも1本は軸方向上端ブランケット直下の領域(C)に可燃性毒物の低濃度領域を有し、前記燃料棒(B)の本数が最も多い燃料集合体の前記軸方向領域(C)の可燃性毒物平均濃度が、前記燃料棒(B)の本数が最も少ない燃料集合体の前記軸方向領域(C)の可燃性毒物平均濃度より高いことを特徴とする沸騰水型原子炉用の取替用燃料集合体。
Boiling water in which a plurality of fuel rods and at least one water rod or water channel are bundled in a square lattice pattern, and the number of replacement bodies that are exchanged at the same time and are loaded at the same time when the fuel is changed is greater than 30% of the number of all core bodies. In replacement nuclear fuel assemblies for nuclear reactors,
Two or more types of fuel assemblies having different numbers of fuel rods (B) containing flammable poisons in most of the central region excluding the blanket at the upper and lower ends in the axial direction, and the flammability of the fuel assemblies At least one of the fuel rods (B) containing the poison has a low concentration region of the combustible poison in the region (C) immediately below the axial upper end blanket, and the fuel assembly having the largest number of the fuel rods (B). The average combustible poison concentration in the axial region (C) of the body is higher than the average combustible poison concentration in the axial region (C) of the fuel assembly having the least number of fuel rods (B). A replacement fuel assembly for a boiling water reactor.
前記軸方向領域(C)の軸方向の長さが、燃料棒の燃料ペレットが充填されている有効長の4/24以下であることを特徴とする請求項1記載の燃料集合体。   2. The fuel assembly according to claim 1, wherein the axial length of the axial region (C) is not more than 4/24 of an effective length filled with fuel pellets of fuel rods. 前記燃料棒(B)の本数が最も多い燃料集合体の軸方向上下端のブランケットを除く中央部の可燃性毒物平均濃度が、前記燃料棒(B)の本数が最も少ない燃料集合体の軸方向上下端のブランケットを除く中央部の可燃性毒物平均濃度よりも低いことを特徴とする請求項1または2記載の燃料集合体。   The fuel assembly with the largest number of fuel rods (B) has a combustible poison average concentration in the central portion excluding the blanket at the upper and lower ends in the axial direction of the fuel assembly. The fuel assembly according to claim 1 or 2, wherein the fuel assembly is lower than the average concentration of the flammable poison in the central portion excluding the upper and lower end blankets. 前記軸方向上端ブランケット直下の領域(C)における可燃性毒物濃度が最も高い前記燃料棒(B)が、前記燃料集合体中の(2,2)の格子位置あるいはその対称位置あるいは前記ウォータロッドあるいはウォータチャンネルに接する位置に配置されていることを特徴とする請求項1〜3のいずれかに記載の燃料集合体。   The fuel rod (B) having the highest flammable poison concentration in the region (C) immediately below the upper end blanket in the axial direction is the lattice position of (2, 2) in the fuel assembly or its symmetrical position, the water rod or The fuel assembly according to any one of claims 1 to 3, wherein the fuel assembly is disposed at a position in contact with the water channel.
JP2007332600A 2007-12-25 2007-12-25 Replacement fuel assemblies for boiling water reactors Active JP4975603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007332600A JP4975603B2 (en) 2007-12-25 2007-12-25 Replacement fuel assemblies for boiling water reactors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332600A JP4975603B2 (en) 2007-12-25 2007-12-25 Replacement fuel assemblies for boiling water reactors

Publications (2)

Publication Number Publication Date
JP2009156628A true JP2009156628A (en) 2009-07-16
JP4975603B2 JP4975603B2 (en) 2012-07-11

Family

ID=40960823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332600A Active JP4975603B2 (en) 2007-12-25 2007-12-25 Replacement fuel assemblies for boiling water reactors

Country Status (1)

Country Link
JP (1) JP4975603B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138767A (en) * 2015-01-26 2016-08-04 原子燃料工業株式会社 Fuel assembly and reactor core
JP2018054601A (en) * 2016-09-26 2018-04-05 株式会社東芝 Fuel assembly for light water reactor, light water reactor core, method for manufacturing fuel assembly for light water reactor, and method for manufacturing mox fuel assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261988A (en) * 1986-05-08 1987-11-14 株式会社東芝 Boilint water type reactor
JPH07209465A (en) * 1994-01-24 1995-08-11 Nuclear Fuel Ind Ltd Fuel charging method for refill core of boiling water reactor, and refill core of boiling water reactor
JP2006184293A (en) * 2006-03-31 2006-07-13 Hitachi Ltd Dual stream core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261988A (en) * 1986-05-08 1987-11-14 株式会社東芝 Boilint water type reactor
JPH07209465A (en) * 1994-01-24 1995-08-11 Nuclear Fuel Ind Ltd Fuel charging method for refill core of boiling water reactor, and refill core of boiling water reactor
JP2006184293A (en) * 2006-03-31 2006-07-13 Hitachi Ltd Dual stream core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138767A (en) * 2015-01-26 2016-08-04 原子燃料工業株式会社 Fuel assembly and reactor core
JP2018054601A (en) * 2016-09-26 2018-04-05 株式会社東芝 Fuel assembly for light water reactor, light water reactor core, method for manufacturing fuel assembly for light water reactor, and method for manufacturing mox fuel assembly

Also Published As

Publication number Publication date
JP4975603B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
EP1093129A1 (en) Fuel assembly and nuclear reactor
JP2010237223A (en) Fuel assembly
JPH02296192A (en) Fuel assembly and nuclear reactor
JP4975603B2 (en) Replacement fuel assemblies for boiling water reactors
JP5752349B2 (en) Boiling water reactor core
JP4496272B2 (en) Fuel assembly
JP4098002B2 (en) Fuel assemblies and reactor cores
JP3340818B2 (en) Reactor core
JP3792735B2 (en) Boiling water reactor fuel assembly and its core
JP2006208391A (en) Fuel assembly and core of reactor
JP5355870B2 (en) Nuclear reactor core
JP5502259B2 (en) Boiling water reactor core and method of operation
JP2007093272A (en) Fuel assembly
JPH07244184A (en) Reactor core, its operation method and fuel assembly
JP3692136B2 (en) Nuclear reactor core
JP5085522B2 (en) Reactor core for long-term continuous operation
JP2011075294A (en) Initial core of boiling water reactor
JP4351798B2 (en) Fuel assemblies and reactors
JP2012137378A (en) Initial loading core, fuel assembly used for the same, and operation method of boiling-water reactor
JP3894784B2 (en) Fuel loading method for boiling water reactor
JP4308940B2 (en) Fuel assembly
JPH102982A (en) Core for nuclear reactor and its operating method
JP2000009870A (en) Fuel assembly and core of reactor
JP2006329867A (en) Fuel assembly for boiling water reactor, group of fuel assembly and reactor core
JP2002090487A (en) Reactor core and its operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent or registration of utility model

Ref document number: 4975603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250