JP2009156594A - Surface potential measuring device - Google Patents

Surface potential measuring device Download PDF

Info

Publication number
JP2009156594A
JP2009156594A JP2007331826A JP2007331826A JP2009156594A JP 2009156594 A JP2009156594 A JP 2009156594A JP 2007331826 A JP2007331826 A JP 2007331826A JP 2007331826 A JP2007331826 A JP 2007331826A JP 2009156594 A JP2009156594 A JP 2009156594A
Authority
JP
Japan
Prior art keywords
measurement
signal
potential
surface potential
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007331826A
Other languages
Japanese (ja)
Inventor
Hideaki Miyagawa
英明 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007331826A priority Critical patent/JP2009156594A/en
Publication of JP2009156594A publication Critical patent/JP2009156594A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface potential measuring device for improving response speed. <P>SOLUTION: By utilizing the relationship between a measurement target and the surface potential measuring device, potential is measured by performing an operation from two points, thus reducing response time. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、測定対象の表面電位を測定する表面電位測定装置に関する。   The present invention relates to a surface potential measuring apparatus for measuring a surface potential of a measurement target.

従来より感光体を用いた電子写真方式による画像形成装置が知られているが、常に安定した高画質を得る為には、どのような環境下にあっても感光体表面の帯電電位を均一にする必要がある。感光体表面の帯電電位を均一にする為、感光体表面の電位を表面電位測定装置により測定し、その測定結果を元に感光体を帯電させる装置の出力の制御を行う。   Conventionally, an electrophotographic image forming apparatus using a photoconductor is known, but in order to always obtain a stable high image quality, the charged potential on the surface of the photoconductor is made uniform in any environment. There is a need to. In order to make the charging potential on the surface of the photoreceptor uniform, the potential on the surface of the photoreceptor is measured by a surface potential measuring device, and the output of the device for charging the photoreceptor is controlled based on the measurement result.

従来の表面電位測定装置の測定原理を図6に示す。測定対象601に対向して測定電極603が配置され、その間に開口部を持った遮蔽電極602が配置される。遮蔽電極602が図中左の矢印の方向に交互に振動すると測定電極603から見える測定対象601の面積が変化し、両者の間に生じている容量分C(t)が変化する。この容量C(t)の変化分に応じて測定電極603に流れる交流電流I(t)を、検出抵抗RSと、2段接続されたトランジスタ(MOS型、またはNPN型)の増幅回路で構成される測定回路604によりVOとして検出する。この交流電流I(t)がゼロになるように(VOがゼロになるように)遮蔽電極602の電圧VMを制御する事で測定対象601の電位V(x)を得るという原理を用いる。今日では、遮蔽電極602を音叉とし、音叉の共振により駆動周波数を安定させる音叉型振動子を用いた表面電位測定装置が用いられている。 The measurement principle of a conventional surface potential measuring device is shown in FIG. A measurement electrode 603 is disposed facing the measurement object 601, and a shielding electrode 602 having an opening is disposed therebetween. When the shield electrode 602 vibrates alternately in the direction of the left arrow in the figure, the area of the measurement object 601 seen from the measurement electrode 603 changes, and the capacitance C (t) generated between the two changes. Constituting an alternating current flowing through the measuring electrode 603 in accordance with a change in the capacitance C (t) I (t) , in the amplifier circuit of the detection resistor R S, 2-stage-connected transistor (MOS-type or NPN-type) Is detected as V O by the measurement circuit 604. Using the principle of the alternating current I (t) to obtain a (V O is to be zero) potential V of the measuring object 601 by controlling the voltage V M of the shield electrode 602 (x) to be zero . Nowadays, a surface potential measuring apparatus using a tuning fork vibrator that uses the shielding electrode 602 as a tuning fork and stabilizes the driving frequency by resonance of the tuning fork is used.

従来の音叉型振動子703を用いた表面電位測定装置の構成を図7に示す。駆動部701は駆動側の圧電素子702aに駆動信号を印加し、検出側の圧電素子702bより受信した検出信号に応じて音叉型振動子703の駆動周波数を制御している。タイミング回路704は駆動信号の所定のタイミングでタイミング信号を生成している。駆動部701による駆動側の圧電素子702aへの信号印加が始まると、音叉型振動子703が振動を開始し、測定対象705と測定電極706の間の電位差に応じた交流信号が得られる。測定回路707より出力される交流信号より、所望の周波数成分のみを抽出する為、バンドパスフィルタ709を通すが、その結果得られる信号は微弱であるので増幅回路710を通して増幅する。増幅回路710で増幅された信号は、タイミング回路704によって生成されたタイミング信号に基いてクランプ回路711で基準電位712にクランプされる。図8に駆動信号、タイミング信号、増幅回路の出力、基準電位、クランプ回路711の出力の関係を示す。図中、(a)が駆動信号、(b1)が測定電極706よりも測定対象705の方が電位が高い場合の増幅回路710の出力、(b2)は測定電極706よりも測定対象705の方が電位が低い場合の増幅回路710の出力である。増幅回路710の出力のピークタイミングはは駆動信号(a)の立ち上がり、立ち下がりと同期している。(c)はタイミング信号であり、駆動信号の立ち下がりと同期した信号である。(d)は基準電位712である。(e1)は測定電極706よりも測定対象705の方が電位が高い場合のクランプ回路711の出力であり、タイミング信号に同期して増幅回路710の出力(b1)が基準電位712(d)にクランプされている。また、(e2)は測定電極706よりも測定対象705の方が電位が低い場合のクランプ回路711の出力であり、タイミング信号に同期して増幅回路710の出力(b2)が基準電位712(d)にクランプされている。積分回路713はクランプ回路711の出力を積分しDC化している。つまり、測定電極706よりも測定対象705の方が電位が高い場合は積分回路713の出力は基準電位712よりも大きくなり、さらに測定電極706と測定対象705の電位差が大きければ大きいほど積分回路713の出力は大きくなる。逆に、測定電極706よりも測定対象705の方が電位が低い場合は積分回路713の出力は基準電位712よりも低くなり、さらに測定電極706と測定対象705の電位差が大きければ大きいほど積分回路713の出力は小さくなる。つまり、積分回路713の出力と基準電位712との差分がゼロになった時が測定電極706の電位=測定対象705の電位となる。誤差増幅回路714は、積分回路713の出力と基準電位712との差分信号を出力する。積分回路713の出力が基準電位712よりも大きい場合は誤差増幅回路714の出力が上昇し、積分回路713の出力が基準電位712よりも小さい場合は誤差増幅回路714の出力が下降する。可変電源回路715は誤差増幅回路714の出力に対応した電圧を出力し、常に積分回路713の出力が基準電位712と等しくなるようフィードバック制御が行われ、結果的に抵抗RSに流れる電流がゼロとなり、可変電源回路715の出力が測定対象705の電圧となる。さらに、分圧回路716で可変電源回路715の出力を所定の分圧比で分圧し出力する。VOUTには対象電位の分圧比に相当する電位が出力される。この場合の応答波形の例を図9に示す。(9-a)は測定対象の電位であり、(9-b)は測定対象705と測定電極706の間の容量変化により流れる交流電流を増幅回路710で増幅した検出交流信号、(9-c)は表面電位測定装置の電位である可変電源回路715の出力である。測定開始から検出信号に応じて電圧を可変し、測定対象705の電位に近付いていく事で検出信号の信号量は減少していく。検出信号がゼロになった時点の電圧が測定対象705の電位となり、応答時間は検出信号がゼロになるまで待たねばならない。
特開2004-61282号公報
A configuration of a surface potential measuring apparatus using a conventional tuning fork type vibrator 703 is shown in FIG. The drive unit 701 applies a drive signal to the drive-side piezoelectric element 702a, and controls the drive frequency of the tuning fork vibrator 703 according to the detection signal received from the detection-side piezoelectric element 702b. The timing circuit 704 generates a timing signal at a predetermined timing of the drive signal. When signal application to the drive side piezoelectric element 702a by the drive unit 701 starts, the tuning fork vibrator 703 starts to vibrate, and an AC signal corresponding to the potential difference between the measurement object 705 and the measurement electrode 706 is obtained. In order to extract only a desired frequency component from the AC signal output from the measurement circuit 707, it passes through the bandpass filter 709, but the signal obtained as a result is weak and is amplified through the amplification circuit 710. The signal amplified by the amplifier circuit 710 is clamped to the reference potential 712 by the clamp circuit 711 based on the timing signal generated by the timing circuit 704. FIG. 8 shows the relationship among the drive signal, timing signal, amplifier circuit output, reference potential, and clamp circuit 711 output. In the figure, (a) is the drive signal, (b 1 ) is the output of the amplifier circuit 710 when the potential of the measuring object 705 is higher than that of the measuring electrode 706, and (b 2 ) is the measuring object 705 than the measuring electrode 706. This is the output of the amplifier circuit 710 when the potential is lower. The peak timing of the output of the amplifier circuit 710 is synchronized with the rise and fall of the drive signal (a). (c) is a timing signal, which is a signal synchronized with the fall of the drive signal. (d) is the reference potential 712. (e 1 ) is the output of the clamp circuit 711 when the potential of the measurement object 705 is higher than that of the measurement electrode 706, and the output (b 1 ) of the amplifier circuit 710 is synchronized with the timing signal and the reference potential 712 (d ). Further, (e 2 ) is the output of the clamp circuit 711 when the potential of the measurement object 705 is lower than that of the measurement electrode 706, and the output (b 2 ) of the amplifier circuit 710 is synchronized with the timing signal and the reference potential 712. It is clamped to (d). The integrating circuit 713 integrates the output of the clamp circuit 711 and converts it to DC. That is, when the potential of the measurement object 705 is higher than that of the measurement electrode 706, the output of the integration circuit 713 is larger than the reference potential 712, and the integration circuit 713 is larger as the potential difference between the measurement electrode 706 and the measurement object 705 is larger. The output of increases. Conversely, when the potential of the measuring object 705 is lower than that of the measuring electrode 706, the output of the integrating circuit 713 is lower than the reference potential 712. Further, the larger the potential difference between the measuring electrode 706 and the measuring object 705, the larger the integrating circuit. The output of 713 is small. That is, when the difference between the output of the integration circuit 713 and the reference potential 712 becomes zero, the potential of the measurement electrode 706 = the potential of the measurement target 705. The error amplifier circuit 714 outputs a difference signal between the output of the integrating circuit 713 and the reference potential 712. When the output of the integrating circuit 713 is larger than the reference potential 712, the output of the error amplifying circuit 714 increases. When the output of the integrating circuit 713 is smaller than the reference potential 712, the output of the error amplifying circuit 714 decreases. The variable power supply circuit 715 outputs a voltage corresponding to the output of the error amplification circuit 714, and feedback control is performed so that the output of the integration circuit 713 is always equal to the reference potential 712. As a result, the current flowing through the resistor R S is zero. Thus, the output of the variable power supply circuit 715 becomes the voltage of the measurement target 705. Furthermore, the voltage dividing circuit 716 divides the output of the variable power supply circuit 715 at a predetermined voltage dividing ratio and outputs it. A potential corresponding to the voltage division ratio of the target potential is output to V OUT . An example of the response waveform in this case is shown in FIG. (9-a) is the potential of the measurement object, (9-b) is a detected AC signal obtained by amplifying the alternating current flowing due to the capacitance change between the measurement object 705 and the measurement electrode 706 by the amplification circuit 710, (9-c ) Is the output of the variable power supply circuit 715, which is the potential of the surface potential measuring device. By varying the voltage according to the detection signal from the start of measurement and approaching the potential of the measurement object 705, the signal amount of the detection signal decreases. The voltage at the time when the detection signal becomes zero becomes the potential of the measuring object 705, and the response time must wait until the detection signal becomes zero.
JP 2004-61282 A

近年、画像形成装置の高速性が求められており、それに伴いプロセススピードも上昇傾向にある。その為、その速度に追随可能な表面電位測定装置が必要となる。   In recent years, high-speed image forming apparatuses have been demanded, and along with this, process speed has been increasing. Therefore, a surface potential measuring device that can follow the speed is required.

画像形成装置について図10を用いて簡便に説明する。像担持体たる感光ドラム1001a〜1001dを帯電器1002a〜1002dにより帯電させ、露光装置1004a〜1004dにより潜像を形成し、その潜像を現像器1006a〜1006dにより顕像化して可視画像を得る複数の画像形成部と、上記各画像形成部から中間転写体へ、順次可視画像を転写する一次転写手段と、前記可視画像基づいて複数色画像を形成する中間転写体1010と、中間転写体1010上の複数色画像を記録材に転写する二次転写手段1012と、記録材上に転写された複数色画像を記録材上に定着するための定着装置1014とを有している装置である。中間転写体1010には、複数のローラに張架され無端回動するベルト状の中間転写ベルト、若しくはドラム軸を中心に回動する円筒状の中間転写ドラムなどが使用される。画像形成のプロセスにおいて、中間転写体1010が複数の前記画像形成部に近接することにより、感光ドラム上に形成された可視画像が、画像形成部と中間転写体に対して対向する位置に配設され、高電圧基板1009a〜1009dによって帯電された一次転写装置1008a〜1008dによって中間転写体1010上に一次転写される。複数の感光ドラムより一次転写された可視画像は、中間転写体上において重ね合わされ、中間転写体が回転することによって記録材に転写される位置まで搬送される。中間転写体1010上の可視画像は、ポスト帯電器1011により電荷を慣らされ、給紙された記録材に転写位置において高電圧基板1013によって帯電された二次転写装置1012によって二次転写され、さらに前記定着手段1014において定着される事でフルカラー画像が得られる。また、単色画像を得る場合、特定の画像形成部より中間転写体上に単色の可視画像が一次転写され、その後フルカラー画像を形成する場合と同様のプロセスを経て、単色画像が得られる。露光装置1004a〜1004dによって感光体上には、所謂潜像が形成されるが、その潜像は、粉体状のトナーによって現像される。トナーは、各感光体に近接して配置された現像装置1006a〜1006d内に収納されおり、この現像装置に高圧基板1007a〜1007dによって高圧を印加する事により感光体上の潜像を現像することになる。感光体や、現像装置、または中間転写ベルトなどは、DCコントローラ1016により制御されるモーターなどの駆動源により回転駆動されている。定着装置1014は、ヒータをその内部に収納した定着ローラと、前記定着ローラに対して加圧する加圧ローラとで構成され、また、前記ヒータはDCコントローラ1016により温調される。この定着装置を、転写材である用紙(記録材)が搬送されることで、用紙はヒータにより加熱され、ローラ対により加圧され、用紙上のトナー像は溶融し、用紙に定着される事で画像が形成され、排出される。   The image forming apparatus will be briefly described with reference to FIG. A plurality of photosensitive drums 1001a to 1001d as image carriers are charged by charging units 1002a to 1002d, latent images are formed by exposure devices 1004a to 1004d, and the latent images are visualized by developing units 1006a to 1006d to obtain visible images. An image forming unit, a primary transfer unit that sequentially transfers a visible image from each of the image forming units to the intermediate transfer member, an intermediate transfer member 1010 that forms a multicolor image based on the visible image, and an intermediate transfer member 1010 The image forming apparatus includes a secondary transfer unit 1012 for transferring the multi-color image onto the recording material, and a fixing device 1014 for fixing the multi-color image transferred onto the recording material onto the recording material. As the intermediate transfer member 1010, a belt-like intermediate transfer belt that is stretched around a plurality of rollers and rotates endlessly, or a cylindrical intermediate transfer drum that rotates about a drum shaft is used. In the image forming process, when the intermediate transfer member 1010 comes close to the plurality of image forming units, a visible image formed on the photosensitive drum is disposed at a position facing the image forming unit and the intermediate transfer member. Then, primary transfer is performed on the intermediate transfer body 1010 by the primary transfer devices 1008a to 1008d charged by the high voltage substrates 1009a to 1009d. The visible images primarily transferred from the plurality of photosensitive drums are superimposed on the intermediate transfer member, and conveyed to a position where the intermediate transfer member is transferred to the recording material as the intermediate transfer member rotates. The visible image on the intermediate transfer body 1010 is acclimatized by the post charger 1011 and secondarily transferred to the fed recording material by the secondary transfer device 1012 charged by the high voltage substrate 1013 at the transfer position. A full-color image is obtained by being fixed by the fixing means 1014. Further, when obtaining a monochromatic image, a monochromatic visible image is primarily transferred onto the intermediate transfer member from a specific image forming unit, and then a monochromatic image is obtained through a process similar to that for forming a full color image. A so-called latent image is formed on the photoreceptor by the exposure apparatuses 1004a to 1004d, and the latent image is developed with powdered toner. The toner is accommodated in developing devices 1006a to 1006d arranged in close proximity to the respective photosensitive members, and a latent image on the photosensitive member is developed by applying a high pressure to the developing devices by high-pressure substrates 1007a to 1007d. become. The photoreceptor, the developing device, the intermediate transfer belt, and the like are driven to rotate by a driving source such as a motor controlled by a DC controller 1016. The fixing device 1014 includes a fixing roller that houses a heater therein, and a pressure roller that presses the fixing roller. The heater is temperature-controlled by a DC controller 1016. When a sheet (recording material) as a transfer material is conveyed through this fixing device, the sheet is heated by a heater and pressurized by a pair of rollers, and the toner image on the sheet is melted and fixed on the sheet. The image is formed and discharged.

次に図11を用いて作像プロセスをより具体的に説明する。図10では図示及び説明を省略していた、一次帯電グリッド1101a〜1101d及び表面電位測定装置1102a〜1102dを図示している。a〜dというのは、4ステーションある場合を考慮したものである。ここで、一次帯電グリッド1101a〜1101dは、一次帯電器と感光ドラム1001a〜1001dとの間に、一次帯電器1002a〜1002dと平行に配設された、所定電圧に調整される電極である。一次帯電グリッド1101a〜1101dは、一次帯電器から感光ドラム1001a〜1001dに流れ込む電流量を調整して、感光ドラム1001a〜1001d表面の帯電量を制御可能にするものである。次に、表面電位測定装置1102a〜1102dは、感光ドラム1001a〜1001dの回転方向に沿っての露光位置(露光装置1004a〜1004dからのレーザーが照射される位置)の下流側で、かつ現像装置1006a〜1006dの上流側に配設されている。表面電位測定装置1102a〜1102dは、感光ドラム1001a〜1001d表面の帯電電位を測定することで、画像濃度の安定化や画質などを制御可能にするものである。所定の時間毎にこのような調整を行う事で画質を一定に保とうとするが、画像形成中に調整が入る等、生産性に影響が出る事の無いように紙間(2つの静電潜像間)において電位測定を行う事が望ましい。   Next, the image forming process will be described more specifically with reference to FIG. In FIG. 10, primary charging grids 1101a to 1101d and surface potential measuring devices 1102a to 1102d, which are not shown and described, are shown. “a” to “d” are taken into consideration when there are four stations. Here, the primary charging grids 1101a to 1101d are electrodes that are arranged between the primary charger and the photosensitive drums 1001a to 1001d in parallel with the primary chargers 1002a to 1002d and are adjusted to a predetermined voltage. The primary charging grids 1101a to 1101d adjust the amount of current flowing from the primary charger to the photosensitive drums 1001a to 1001d so that the charge amounts on the surfaces of the photosensitive drums 1001a to 1001d can be controlled. Next, the surface potential measuring devices 1102a to 1102d are downstream of the exposure position (position irradiated with the laser from the exposure devices 1004a to 1004d) along the rotation direction of the photosensitive drums 1001a to 1001d, and the developing device 1006a. Arranged upstream of ~ 1006d. The surface potential measuring devices 1102a to 1102d measure the charged potentials on the surfaces of the photosensitive drums 1001a to 1001d, thereby making it possible to control image density stabilization and image quality. By making such adjustments every predetermined time, the image quality is kept constant, but adjustments are made during image formation, so that there is no impact on productivity (such as two electrostatic latent It is desirable to measure the potential between images).

図12に、感光ドラム1001a〜1001dの帯電特性を示す。帯電特性は、画像品位を決定する、感光ドラム1001a〜1001dの表面電位と現像装置1004a〜1004dに印加される現像バイアスとの関係を表すものである。同図中の横軸は前述の一次帯電グリッド1101a〜1101dが設定された設定電位(グリッド電位)Vgであり、縦軸は感光ドラム1001a〜1001dの表面電位(電位量)Vである。また、同図中の符号VDは暗部電位(感光ドラム表面の帯電後、露光しない時の感光ドラム1001a〜1001dの表面電位)、VLは明部電位(最大に露光した場合の感光ドラム1001a〜1001dの表面電位)、Vdcは現像バイアスの設定電位をそれぞれ示している。VLは上述の暗部電位VDの増大に従って上昇する傾向を有しており、明部電位VLの上昇カーブはこの特性を表している。現像バイアスの設定値は、画像形成しない部分の地かぶり量の許容値で決定されるが、この地かぶりの発生は、現像装置1006a〜1006d中に例外的に存在する帯電量の異なるトナー(例えば、例外的に帯電量が高いトナー)が、明部電位VDに対して現像するのに十分な電位をもってしまうことで発生する。したがって、現像バイアスVdcの設定は、前述のような例外的なトナーによる地かぶりが発生しないように、暗部電位VDに対して、前述の例外的なトナーをやや引き付けるレベルに設定される。また、この引き付けないための現像バイアスVdcからの電位をかぶり取り電位Vbackと称し、通常100〜200V程度で設定される。以上のようにして現像バイアスVdcは決定されるが、これによって、明部電位VLと前述の現像バイアスVdcとの間のコントラスト電位Vcontによって明暗の階調(コントラスト)表現が行われることになる。 FIG. 12 shows the charging characteristics of the photosensitive drums 1001a to 1001d. The charging characteristic represents the relationship between the surface potential of the photosensitive drums 1001a to 1001d and the developing bias applied to the developing devices 1004a to 1004d, which determines the image quality. In the figure, the horizontal axis represents the set potential (grid potential) V g where the primary charging grids 1101a to 1101d are set, and the vertical axis represents the surface potential (potential amount) V of the photosensitive drums 1001a to 1001d. Further, reference numeral V D is the dark potential in the figure (the charged surface of the photosensitive drum, the surface potential of the photosensitive drum 1001a~1001d when not exposed), the photosensitive drum when V L is exposure to light potential (maximum 1001a (Surface potential of ˜1001d), V dc indicates the set potential of the developing bias. V L has a tendency to increase as the dark portion potential V D increases, and the rising curve of the bright portion potential V L represents this characteristic. The setting value of the developing bias is determined by the allowable value of the ground cover amount of the portion where no image is formed. The occurrence of this ground cover is exceptionally present in toners having different charge amounts (for example, in the developing devices 1006a to 1006d). , exceptionally charge high toner), generated by would have sufficient potential to developing the light-area potential V D. Accordingly, the development bias V dc is set to a level that slightly attracts the above-described exceptional toner with respect to the dark portion potential V D so that the above-described background fogging by the exceptional toner does not occur. Further, the potential from the developing bias V dc for preventing this attraction is referred to as fogging potential V back and is usually set at about 100 to 200V. As described above, the development bias V dc is determined, and as a result, light and dark gradations (contrast) are expressed by the contrast potential V cont between the light portion potential V L and the development bias V dc described above. It will be.

画像階調を保つ為に紙間において上記VD及びVLの値を表面電位測定装置1102a〜1102dにより測定するが、プロセススピード・紙間距離により、表面電位測定装置1102a〜1102dの応答時間の必要条件が導き出せる。プロセススピードをvPS、紙間距離をLblankとすると、紙間時間tblankは概略として In order to maintain the image gradation, the values of V D and V L are measured by the surface potential measuring devices 1102a to 1102d between the papers. The response time of the surface potential measuring devices 1102a to 1102d depends on the process speed and the distance between the papers. Necessary conditions can be derived. If the process speed is v PS and the distance between papers is L blank , the paper spacing time t blank is roughly

Figure 2009156594
と表せる。例えば、プロセススピード500[mm/s]、紙間距離25[mm]とすれば、紙間時間は50[ms]である。つまり、50[ms]以内で応答せねばならない。つまり、表面電位測定装置1102a〜1102dの応答時間は最低でも50[ms]以下でなくてはならない。この時VLは最大露光電位の為、紙の後端直後に電位の変更が可能であるのでほぼ50[ms]と言えるが、VDにおいては帯電電位である為に後端余白後にVDになるまでの応答時間があるので、その応答時間を7.5[ms]とすれば両端を考えると表面電位測定装置の応答時間としては35[ms]が必要となる。また、本発明において応答というのは電位が完全に安定した時間を指し、半導体などの応答時間のように出力の10%-90%で規定した時間ではない。
Figure 2009156594
It can be expressed. For example, if the process speed is 500 [mm / s] and the distance between papers is 25 [mm], the time between papers is 50 [ms]. In other words, it must respond within 50 [ms]. That is, the response time of the surface potential measuring devices 1102a to 1102d must be at least 50 [ms] or less. In this case V L because the maximum exposure potential, but it can be said that almost 50 [ms] since immediately after the rear end of the paper can be changed in potential, V after trailing edge margin for a charging potential in V D D Therefore, if the response time is 7.5 [ms], considering both ends, the response time of the surface potential measuring device needs to be 35 [ms]. In the present invention, the response means a time when the potential is completely stabilized, and is not a time defined by 10% -90% of the output like the response time of a semiconductor or the like.

従来の表面電位測定装置では音叉型振動子の共振周期及び回路中ゲインにより応答が決定されてしまうが、音叉型振動子を変えるには共振周波数を速くする必要があるので振幅を大きくすることが困難な事や、ゲインを上げすぎると不安定になるというデメリットが内在する。本発明では、それらのデメリットを抑えつつ、感光体表面の電位を測定する表面電位測定装置の応答速度を向上させる事を目的とする。   In the conventional surface potential measuring device, the response is determined by the resonance period of the tuning fork vibrator and the gain in the circuit. However, in order to change the tuning fork vibrator, it is necessary to increase the resonance frequency. There are inherent disadvantages that are difficult and become unstable if the gain is increased too much. An object of the present invention is to improve the response speed of a surface potential measuring device that measures the potential of the surface of the photoreceptor while suppressing these disadvantages.

上記の課題を解決するために、請求項1に記載の表面電位測定装置は、電位測定対象となる測定面に対向配置される測定電極と、前記測定電極に現れる信号を測定する測定手段と、駆動信号により機械的振動を発生し前記測定面と前記測定電極間の容量を変動させる容量変動手段と、前記容量変動手段を駆動する駆動信号を生成する駆動信号生成手段と、前記測定手段により測定された信号の信号量を検知する測定信号量検知手段と、前記駆動信号生成手段から同期用の信号を生成する同期信号生成手段と、一定値を出力可能な第一の電源装置と、前記第一の電源装置とは異なる定値を出力可能な第二の電源装置と、前記第一の電源と前記第二の電源を切り替え可能な切替手段と、前記信号量検知手段から演算で前記測定対象の電位を割り出す演算装置とで構成されることを特徴とする。   In order to solve the above-mentioned problem, the surface potential measuring device according to claim 1, a measuring electrode disposed opposite to a measuring surface to be a potential measuring object, a measuring means for measuring a signal appearing on the measuring electrode, Measured by a capacitance fluctuation means for generating a mechanical vibration by a drive signal to change the capacitance between the measurement surface and the measurement electrode, a drive signal generation means for generating a drive signal for driving the capacitance fluctuation means, and the measurement means A measurement signal amount detection means for detecting the signal amount of the generated signal, a synchronization signal generation means for generating a synchronization signal from the drive signal generation means, a first power supply device capable of outputting a constant value, and the first A second power supply device capable of outputting a constant value different from that of the one power supply device, a switching means capable of switching between the first power supply and the second power supply, and a signal amount detection means for calculating the measurement target. Determine potential Characterized in that it is constituted by an arithmetic unit.

請求項2に記載の表面電位測定装置は、請求項1に記載の表面電位測定装置において、前記第一の電源装置及び前記第二の電源装置及び前記切替手段は一つの可変電源装置である事を特徴とする。   The surface potential measuring device according to claim 2 is the surface potential measuring device according to claim 1, wherein the first power supply device, the second power supply device, and the switching means are one variable power supply device. It is characterized by.

請求項3に記載の表面電位測定装置は、請求項1又は請求項2に記載の表面電位測定装置において、前記測定信号量検知手段により複数の検知を行い、前記演算装置で演算された演算結果の平均を測定対象の電位とする制御を行う事を特徴とする。   The surface potential measuring device according to claim 3 is the surface potential measuring device according to claim 1 or 2, wherein the measurement signal amount detection means performs a plurality of detections, and the calculation result calculated by the calculation device. It is characterized in that control is performed so that the average of the potential of the object to be measured is used.

請求項4に記載の発明は、請求項3に記載の表面電位測定装置において、前記複数の検知により演算された値のうち、かけ離れたものを除外する制御を行う事を特徴とする。   According to a fourth aspect of the present invention, in the surface potential measuring device according to the third aspect of the present invention, control is performed to exclude outliers from the values calculated by the plurality of detections.

応答速度を向上させた表面電位測定装置を提供出来る。   A surface potential measuring device with improved response speed can be provided.

次に、本発明の詳細を実施例の記述に従って説明する。   Next, details of the present invention will be described in accordance with the description of the embodiments.

以下、本発明の実施形態を、図を参照し詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第一の実施例を示す。   The 1st Example of this invention is shown.

図1は本発明の第一の実施例における構成図、図2はその動作フローである。   FIG. 1 is a block diagram of the first embodiment of the present invention, and FIG. 2 is an operation flow thereof.

音叉型振動子の駆動部101は駆動用圧電素子102aに駆動信号を印加し、検出用圧電素子102bより受信した検出信号に応じて音叉型振動子103の駆動周波数を制御している。タイミング回路104は駆動信号の所定のタイミングでタイミング信号を生成している。音叉型振動子の駆動部101による駆動用圧電素子102aへの信号印加が始まると、音叉型振動子103が振動を開始し、測定対象105と測定電極106の間の電位差に応じた交流信号が得られる。この時、測定電極106は電源A115または電源B 116により電力が供給されており、電源A 115及び電源B 116は定値を出力するものであるので、既知の電位になっている。測定回路107はフロート電圧生成部108によって電圧が供給されており、測定回路107より出力される交流信号から所望の周波数成分のみを抽出する為、バンドパスフィルタ109を通すが、その結果得られる信号は微弱であるので増幅回路110を通して増幅する。増幅回路110で増幅された信号は、タイミング回路104によって生成されたタイミング信号に同期してクランプ回路111で基準電圧に対しクランプされ、A/D変換によりデジタルサンプリング112され、演算部113に入力される。ここでクランプ回路のクランプは図8に示した従来例と同様の動きをする。演算部113は値を受け取ると、その値と基準との差分値を交流信号の信号値として内部に格納しておき、選択部114により、現在測定電極106に電力を供給している電源と異なる側の電源(現在が電源A115ならば電源B116、現在が電源B116ならば電源A115)を切り換え、完全に測定電極106の電位が安定するまで待ってからその電位での信号量を同様の流れで得、その二つの値により測定対象105の電位を演算する。   The tuning fork vibrator drive unit 101 applies a drive signal to the drive piezoelectric element 102a, and controls the drive frequency of the tuning fork vibrator 103 according to the detection signal received from the detection piezoelectric element 102b. The timing circuit 104 generates a timing signal at a predetermined timing of the drive signal. When signal application to the driving piezoelectric element 102a by the tuning fork vibrator drive unit 101 starts, the tuning fork vibrator 103 starts to vibrate, and an AC signal corresponding to the potential difference between the measurement target 105 and the measurement electrode 106 is generated. can get. At this time, power is supplied to the measurement electrode 106 by the power source A 115 or the power source B 116, and the power source A 115 and the power source B 116 output constant values, and thus have a known potential. The measurement circuit 107 is supplied with a voltage by the float voltage generation unit 108, and passes through the band-pass filter 109 to extract only a desired frequency component from the AC signal output from the measurement circuit 107. Is weak, and is amplified through the amplifier circuit 110. The signal amplified by the amplifier circuit 110 is clamped to the reference voltage by the clamp circuit 111 in synchronization with the timing signal generated by the timing circuit 104, is digitally sampled 112 by A / D conversion, and is input to the arithmetic unit 113. The Here, the clamp of the clamp circuit operates in the same manner as the conventional example shown in FIG. When the calculation unit 113 receives the value, the difference value between the value and the reference is stored internally as a signal value of the AC signal, and the selection unit 114 is different from the power source currently supplying power to the measurement electrode 106. Switch the power supply on the side (power supply B116 if current is power supply A115, power supply A115 if current is power supply B116), wait until the potential of measuring electrode 106 is completely stabilized, Then, the potential of the measuring object 105 is calculated from the two values.

上記構成の動作フローを図2を用いて簡便に説明する。測定開始信号を受け取ると測定が開始され、音叉駆動(S201)により得られるタイミング信号を検知し(S202)、同時に音叉を第一の既知の電位に遷移させ(S203)、測定対象105と測定電極106の間の容量変化により流れる交流信号及を検出し(S204)、交流信号の極性と信号量を検出し(S205)、演算部113のメモリ内に格納する(S206)。次に音叉を第二の既知の電位に遷移させ(S207)、測定対象105と測定電極106の間の容量変化により流れる交流信号及を検出し(S208)、交流信号の極性と信号量を検出し(S209)、演算部113のメモリ内に格納する(S210)。S206での値とS210での値とを用いて測定対象105の電位を演算により得る(S211)。また、演算部113はS207において遷移が完了するまでウェイト時間を設ける。   The operation flow of the above configuration will be briefly described with reference to FIG. When the measurement start signal is received, the measurement is started, the timing signal obtained by the tuning fork drive (S201) is detected (S202), and at the same time, the tuning fork is shifted to the first known potential (S203), and the measurement object 105 and the measurement electrode are detected. The AC signal flowing due to the capacitance change between 106 is detected (S204), the polarity and signal amount of the AC signal are detected (S205), and stored in the memory of the calculation unit 113 (S206). Next, the tuning fork is shifted to the second known potential (S207), and the AC signal flowing due to the capacitance change between the measuring object 105 and the measuring electrode 106 is detected (S208), and the polarity and signal amount of the AC signal are detected. Then, it is stored in the memory of the calculation unit 113 (S210). Using the value in S206 and the value in S210, the potential of the measuring object 105 is obtained by calculation (S211). In addition, the calculation unit 113 sets a wait time until the transition is completed in S207.

図13に本発明の概要図を示す。測定回路107からの交流信号は測定電極106と測定対象105の距離及び音叉型振動子103の劣化や環境変化等によりその振幅が経時変化するので、振幅をαという変数とする。交流信号を増幅してその極性・信号量を分析した値をVSIGとし、現在の出力をVOとすると測定対象となる電位をVXとの関係は次の式で表せる。 FIG. 13 shows a schematic diagram of the present invention. Since the amplitude of the AC signal from the measurement circuit 107 changes over time due to the distance between the measurement electrode 106 and the measurement target 105, the deterioration of the tuning fork vibrator 103, the environmental change, and the like, the amplitude is defined as a variable α. A value obtained by amplifying an AC signal and analyzing its polarity and signal amount is V SIG , and if the current output is V O , the relationship between the potential to be measured and V X can be expressed by the following equation.

Figure 2009156594
演算部が交流信号の増幅ピーク値をタイミング信号に同期して2点分取り込むとし、その値をそれぞれVSIG1及びVSIG2とし、その時点での可変電源の出力値をそれぞれVO1及びVO2とすると、上記の式より、
Figure 2009156594
Assume that the arithmetic unit captures the amplification peak value of the AC signal for two points in synchronization with the timing signal, the values are V SIG1 and V SIG2 , respectively, and the output values of the variable power supply at that time are V O1 and V O2 , respectively. Then, from the above formula,

Figure 2009156594
となり、αは次式で計算が可能である。
Figure 2009156594
And α can be calculated by the following equation.

Figure 2009156594
VXの値は計算したαを用いて
Figure 2009156594
V X value is calculated using α

Figure 2009156594
と表す事が可能となる。この演算がS211における演算の方法であり、検出の交流信号の検知にかかる時間(交流信号二波分)と電源回路切替の時間(電位差が在る方が良いが、電位差が少なくとも検出精度が良ければ演算可能であり、例えば100Vならば交流信号一波分で十分である)で検出が可能となる。
Figure 2009156594
Can be expressed. This calculation is the calculation method in S211. The time required for detection of the AC signal for detection (two AC signals) and the time for switching the power supply circuit (It is better that there is a potential difference, but the potential difference has at least good detection accuracy. For example, if it is 100V, one wave of AC signal is sufficient) and detection is possible.

本発明の第二の実施例を示す。   2 shows a second embodiment of the present invention.

本発明の第二の実施例における構成図は図1と同様であり、図3に本発明の第二の実施例における動作フロー、図4に第二の実施例におけるデータ取得形式、図5に第二の実施例における演算フローを示す。   The configuration diagram in the second embodiment of the present invention is the same as that in FIG. 1, FIG. 3 shows the operation flow in the second embodiment of the present invention, FIG. 4 shows the data acquisition format in the second embodiment, and FIG. The calculation flow in a 2nd Example is shown.

構成図の説明は実施例1と同様である為、省略する。   Since the description of the configuration diagram is the same as that of the first embodiment, a description thereof will be omitted.

動作フローを図3を用いて簡便に説明する。測定開始信号を受け取ると測定が開始され、音叉駆動(S201)により得られるタイミング信号を検知し(S202)、同時に音叉を第一の既知の電位に遷移させ(S203)、タイミング信号から任意の時間間隔で測定対象105と測定電極106の間の容量変化により流れる交流信号を検出し(S204)、交流信号の極性と信号量を検出し(S205)、演算部113のメモリ内に複数の値をそれぞれ格納する(S301)。次に音叉を第二の既知の電位に遷移させ(S207)、タイミング信号から任意の時間間隔で測定対象105と測定電極106の間の容量変化により流れる交流信号及を検出し(S208)、交流信号の極性と信号量を検出し(S209)、演算部113のメモリ内に複数の値をそれぞれ格納する(S302)。S206での値とS210での値とを用いて測定対象105の電位を演算により得る(S211)。また、演算部113はS207において遷移が完了するまでウェイト時間を設ける。   The operation flow will be briefly described with reference to FIG. When the measurement start signal is received, the measurement is started, the timing signal obtained by tuning fork drive (S201) is detected (S202), and at the same time, the tuning fork is changed to the first known potential (S203), and any time from the timing signal is detected. The AC signal flowing due to the capacitance change between the measurement object 105 and the measurement electrode 106 at intervals is detected (S204), the polarity and signal amount of the AC signal are detected (S205), and a plurality of values are stored in the memory of the calculation unit 113. Each is stored (S301). Next, the tuning fork is shifted to the second known potential (S207), and the AC signal flowing due to the capacitance change between the measurement object 105 and the measurement electrode 106 is detected at an arbitrary time interval from the timing signal (S208). The signal polarity and signal amount are detected (S209), and a plurality of values are stored in the memory of the calculation unit 113 (S302). Using the value in S206 and the value in S210, the potential of the measuring object 105 is obtained by calculation (S211). In addition, the calculation unit 113 sets a wait time until the transition is completed in S207.

前記任意の時間間隔での検出より出力電位を求める方法を図4を用いて説明する。タイミング信号からn回検出を行うとする。この時検出の周波数をFDとすると、少なくとも一波分で値を出すならばサンプリング周期TSは次式が成り立つ。 A method for obtaining the output potential from the detection at the arbitrary time interval will be described with reference to FIG. It is assumed that detection is performed n times from the timing signal. When the frequency of the time detection and F D, sampling period T S if issuing a value of at least one wave component is following equation holds.

Figure 2009156594
また、電源A 115が供給源である場合のタイミング信号からn×TS時間経過した時点での検出値をVSIGAnとし、電源B 116が供給源である場合のタイミング信号からn×TS時間経過した時点での検出値をVSIGBnとして、これらの値からそれぞれ前記した式に基いて計算して各VXn値を得る。しかし、これらのVXnの中には検出時のノイズ等により値が大きく外れているものがある可能性がある為、それらを除外するよう制御を行う。除外する数をm個とすると、まずVXn値の合計から平均値を出し、それに最も値が離れているものを1個除外する。これでVXn値の数はn-1個となり、これをm回繰り返す事でm個の除外が出来、結果として残るn-m個のVXn値の平均を算出し、その結果を最終的なVX値とする。
Figure 2009156594
Also, the detected value at the time when n × T S time has elapsed from the timing signal when the power source A 115 is the supply source is V SIGAn, and n × T S time from the timing signal when the power source B 116 is the supply source The detected value at the time when it has passed is set to V SIGBn , and each V Xn value is obtained by calculating from these values based on the above-described formulas. However, since there is a possibility that some of these V Xn values are greatly deviated due to noise at the time of detection, control is performed so as to exclude them. If the number to be excluded is m, the average value is first calculated from the sum of the V Xn values, and the one that is farthest from it is excluded. The number of V Xn values is now n-1, and this can be repeated m times to eliminate m, and the average of the resulting nm V Xn values is calculated and the result is the final V X value.

動作フローを図5を用いて簡便に説明する。前記した動作フロー中のS301及びS302で格納した値を元に実施例1中の式から演算を行い(S501)、複数の演算結果であるVXn値をメモリに格納する(S502)。この時点で予め設定された除外数に対する大小を判断し(S503)、大きい場合は平均算出して(S506)その値をVX値として出力して演算を終了し、予め設定された除外数よりも小さい場合は、格納されたVXn値の平均値を算出し(S504)、差分が大きいデータを除外し(S505)、S503に戻る。また、残っているデータ数を変数とし、データの除外をゼロの書き込みとすれば、平均算出は常にVXn値を格納しているメモリの全データの合計を残データ数で割ったものとなり、演算がし易い。 The operation flow will be briefly described with reference to FIG. Based on the values stored in S301 and S302 in the operation flow described above, an operation is performed from the expression in the first embodiment (S501), and a plurality of operation results V Xn values are stored in the memory (S502). At this point, the size of the preset number of exclusions is determined (S503), and if it is large, the average is calculated (S506), and the value is output as a V X value to finish the calculation. From the preset number of exclusions If it is smaller, the average value of the stored V Xn values is calculated (S504), data having a large difference is excluded (S505), and the process returns to S503. If the number of remaining data is used as a variable and the data exclusion is written as zero, the average calculation is always the sum of all data in the memory storing the V Xn value divided by the number of remaining data. Easy to calculate.

本発明の第1の実施形における構成図である。It is a block diagram in the 1st Embodiment of this invention. 本発明の第1の実施例における動作フローチャートである。3 is an operation flowchart according to the first embodiment of the present invention. 本発明の第2の実施例における動作フローチャートである。It is an operation | movement flowchart in 2nd Example of this invention. 本発明の第2の実施例におけるデータ取得形式を示す図である。It is a figure which shows the data acquisition format in 2nd Example of this invention. 本発明の第2の実施例における演算フローチャートである。It is a calculation flowchart in the 2nd example of the present invention. 測定の原理を示す図である。It is a figure which shows the principle of a measurement. 従来例の構成図である。It is a block diagram of a prior art example. 出力の関係を示す図である。It is a figure which shows the relationship of an output. 従来例における応答波形を示す図である。It is a figure which shows the response waveform in a prior art example. 画像形成装置の概略構成を示す縦断面図である。1 is a longitudinal sectional view illustrating a schematic configuration of an image forming apparatus. 画像形成装置の作像部(画像形成部)の概略構成を模式的に示す図である。FIG. 2 is a diagram schematically illustrating a schematic configuration of an image forming unit (image forming unit) of the image forming apparatus. 一次帯電器のグリッド電位と感光ドラムの表面電位との関係を説明する図である。It is a figure explaining the relationship between the grid potential of a primary charger and the surface potential of a photosensitive drum. 本発明の概要を示す図である。It is a figure which shows the outline | summary of this invention.

符号の説明Explanation of symbols

101 音叉型振動子の駆動部
102a 駆動用圧電素子
102b 検出用圧電素子
103 音叉型振動子
104 タイミング回路
105 測定対象
106 測定電極
107 測定回路
108 フロート電圧生成部
109 アナログバンドパスフィルタ
110 アナログ増幅回路
111 クランプ回路
112 デジタルサンプリング(A/Dコンバータ)
113 演算部
114 選択部
115 第一の出力を出力する電源
116 第二の出力を出力する電源
601 測定対象
602 遮蔽電極
603 測定電極
604 測定回路
701 音叉型振動子の駆動部
702a 駆動用圧電素子
702b 検出用圧電素子
703 音叉型振動子
704 タイミング回路
705 測定対象
706 測定電極
707 測定回路
709 バンドパスフィルタ
710 増幅回路
711 クランプ回路
712 基準電位
713 積分回路
714 誤差増幅回路
715 可変電源回路
716 分圧回路
1001 感光ドラム
1002 一次帯電器
1101 一次帯電グリッド
1102 表面電位測定装置
101 Drive unit of tuning fork vibrator
102a Drive piezoelectric element
102b Piezoelectric element for detection
103 tuning fork type vibrator
104 Timing circuit
105 Measurement target
106 Measuring electrode
107 Test circuit
108 Float voltage generator
109 Analog bandpass filter
110 Analog amplifier circuit
111 Clamp circuit
112 Digital sampling (A / D converter)
113 Calculation unit
114 Selector
115 Power supply that outputs the first output
116 Power supply that outputs the second output
601 Measurement target
602 Shielding electrode
603 Measuring electrode
604 measurement circuit
701 Tuning fork vibrator drive unit
702a Drive piezoelectric element
702b Piezoelectric element for detection
703 tuning fork type vibrator
704 Timing circuit
705 Measurement target
706 Measuring electrode
707 Test circuit
709 band pass filter
710 amplifier circuit
711 Clamp circuit
712 Reference potential
713 Integration circuit
714 Error amplification circuit
715 Variable power circuit
716 voltage divider
1001 Photosensitive drum
1002 Primary charger
1101 Primary charging grid
1102 Surface potential measuring device

Claims (4)

電位測定対象となる測定面に対向配置される測定電極と、
前記測定電極に現れる信号を測定する測定手段と、
駆動信号により機械的振動を発生し前記測定面と前記測定電極間の容量を変動させる容量変動手段と、
前記容量変動手段を駆動する駆動信号を生成する駆動信号生成手段と、
前記測定手段により測定された信号の信号量を検知する測定信号量検知手段と、
前記駆動信号生成手段から同期用の信号を生成する同期信号生成手段と、
一定値を出力可能な第一の電源装置と、
前記第一の電源装置とは異なる一定値を出力可能な第二の電源装置と、
前記第一の電源と前記第二の電源を切り替え可能な切替手段と、
前記信号量検知手段から演算で前記測定対象の電位を割り出す演算装置とで構成されることを特徴とする表面電位測定装置。
A measurement electrode disposed opposite to a measurement surface to be a potential measurement object;
Measuring means for measuring a signal appearing on the measuring electrode;
Capacity changing means for generating mechanical vibration by a drive signal and changing the capacity between the measurement surface and the measurement electrode;
Drive signal generating means for generating a drive signal for driving the capacity varying means;
A measurement signal amount detection means for detecting the signal amount of the signal measured by the measurement means;
Synchronization signal generating means for generating a signal for synchronization from the drive signal generating means;
A first power supply capable of outputting a constant value;
A second power supply capable of outputting a constant value different from the first power supply;
Switching means capable of switching between the first power source and the second power source;
A surface potential measuring device comprising: an arithmetic device that calculates the potential of the measurement object by calculation from the signal amount detection means.
請求項1に記載の表面電位測定装置において、
前記第一の電源装置及び前記第二の電源装置及び前記切替手段は一つの可変電源装置である事を特徴とする表面電位測定装置。
The surface potential measuring device according to claim 1,
The surface potential measuring device, wherein the first power supply device, the second power supply device, and the switching means are one variable power supply device.
請求項1又は請求項2に記載の表面電位測定装置において、
前記測定信号量検知手段により複数の検知を行い、前記演算装置で演算された演算結果の平均を測定対象の電位とする制御を行う事を特徴とする表面電位測定装置。
In the surface potential measuring device according to claim 1 or 2,
A surface potential measuring apparatus, wherein a plurality of detections are performed by the measurement signal amount detection means, and an average of calculation results calculated by the calculation apparatus is controlled to be a potential of a measurement target.
請求項3に記載の表面電位測定装置において、
前記複数の検知により演算された値のうち、かけ離れたものを除外する制御を行う事を特徴とする表面電位測定装置。
In the surface potential measuring device according to claim 3,
A surface potential measuring device that performs control to exclude outlying values among the values calculated by the plurality of detections.
JP2007331826A 2007-12-25 2007-12-25 Surface potential measuring device Pending JP2009156594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007331826A JP2009156594A (en) 2007-12-25 2007-12-25 Surface potential measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007331826A JP2009156594A (en) 2007-12-25 2007-12-25 Surface potential measuring device

Publications (1)

Publication Number Publication Date
JP2009156594A true JP2009156594A (en) 2009-07-16

Family

ID=40960796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007331826A Pending JP2009156594A (en) 2007-12-25 2007-12-25 Surface potential measuring device

Country Status (1)

Country Link
JP (1) JP2009156594A (en)

Similar Documents

Publication Publication Date Title
CN104350433B (en) Image processing system
EP2787393A2 (en) Image forming apparatus
US9507286B2 (en) Image forming apparatus having charging member for charging photosensitive member
JP2012014149A (en) Image processor and control method of the same
CN103261973A (en) Color-image forming apparatus
JP2016057582A (en) Image forming apparatus
US10429787B2 (en) Image forming apparatus with detection of surface potential of photosensitive member and adjustment of slope of charge potential
US9904200B2 (en) Image forming apparatus
US20040071477A1 (en) Developing device having developing gap detecting function
CN102998936A (en) Image forming apparatus
JP5087990B2 (en) Image forming apparatus
JP2016018200A (en) Image forming apparatus
JP2003233225A (en) Image forming apparatus and method for compensating development quantity
JP2009156594A (en) Surface potential measuring device
JP2007051885A (en) Potential measurement device and potential measurement method
JP6311978B2 (en) Image forming apparatus
JP2009210810A (en) Image forming apparatus
WO2011125503A1 (en) Image forming apparatus and control method thereof
JP2010066688A (en) Surface potential measurement system and image forming apparatus
JP2009098289A (en) Image forming device
JP4886496B2 (en) Surface potential measuring device
JP4708231B2 (en) Image forming apparatus
JP2016018179A (en) Image forming device
US11467511B2 (en) Technique for adjusting development voltage in developing device provided in image forming apparatus
JP7180437B2 (en) Image forming apparatus and discharge control method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20100201

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630