JP2007051885A - Potential measurement device and potential measurement method - Google Patents

Potential measurement device and potential measurement method Download PDF

Info

Publication number
JP2007051885A
JP2007051885A JP2005235587A JP2005235587A JP2007051885A JP 2007051885 A JP2007051885 A JP 2007051885A JP 2005235587 A JP2005235587 A JP 2005235587A JP 2005235587 A JP2005235587 A JP 2005235587A JP 2007051885 A JP2007051885 A JP 2007051885A
Authority
JP
Japan
Prior art keywords
detection electrode
detection
potential
shielding
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005235587A
Other languages
Japanese (ja)
Inventor
Atsushi Katori
篤史 香取
Yoshikatsu Ichimura
好克 市村
Takashi Ushijima
隆志 牛島
Yoshitaka Zaitsu
義貴 財津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005235587A priority Critical patent/JP2007051885A/en
Publication of JP2007051885A publication Critical patent/JP2007051885A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a potential measurement device and potential measurement method, capable of correcting the error components of detection signal for potential measurement of a measuring object surface. <P>SOLUTION: The potential measurement device comprises a capacitance-varying means 103 for varying the capacitance between the surface of a measuring object 101 and a detection electrode 102; the detection means 104 for detecting the charge amount, statically introduced to the detection electrode 102; and a shielding means 105 for selectively making the shielding state of the detection electrode 102 generated from the electric lines of force generated from the surface of the measuring object 101 to the detection electrode 102, for making the incident electric lines of force to the detection electrode 102 fixed for longer than a certain interval, and not shielding state of the detection electrode 102 from the electric lines of force generated from the surface of the measurement object 101 to the detection electrode 102. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電位測定装置、それを用いた画像形成装置、及び電位測定方法などに関する。 The present invention relates to a potential measuring device, an image forming apparatus using the same, a potential measuring method, and the like.

感光体を用いた電子写真式の画像形成装置において、高画質な画像を形成する場合には、電位測定装置により、感光体の電位を測定しながら画像形成装置を制御する必要がある。電位測定装置としては、帯電している感光体(測定対象)に検知電極を近接させ、機械的に感光体と検知電極間の容量を変化させ、静電誘導により検知電極に誘導される微小な電荷を測定する例がある。 In an electrophotographic image forming apparatus using a photoreceptor, when forming a high-quality image, it is necessary to control the image forming apparatus while measuring the potential of the photoreceptor with a potential measuring device. As a potential measuring device, a detection electrode is brought close to a charged photoconductor (measurement object), a capacitance between the photoconductor and the detection electrode is mechanically changed, and a minute electrode guided to the detection electrode by electrostatic induction. There is an example of measuring the charge.

図11に、電位測定装置の概念的な構成図を示す。図11において、601は測定対象、602は検知電極、603は電荷検出手段であり、測定対象601の表面電位はVD、容量変化手段により変化する容量はC1、電荷検出手段603から出力される信号はVOUTで表している。ここにおいて、機械的に容量C1を変化させるには、測定対象601から検知電極602に入射する電気力線を周期的に変化させる方法を採用するものや、検知電極602を周期的に移動させる方法を採用するものがある。 FIG. 11 shows a conceptual configuration diagram of the potential measuring device. In FIG. 11, reference numeral 601 denotes a measurement object, 602 denotes a detection electrode, and 603 denotes charge detection means. The surface potential of the measurement object 601 is VD, the capacitance changed by the capacitance change means is C1, and the signal output from the charge detection means 603 Is represented by VOUT. Here, in order to change the capacitance C1 mechanically, a method of periodically changing the lines of electric force incident on the detection electrode 602 from the measurement object 601 or a method of moving the detection electrode 602 periodically. There is something that adopts.

前者の一例としては、測定対象(感光体)と検知電極間にフォーク形状のシャッタを挿入し、シャッタを測定対象の表面と平行な方向に周期的に動かすことで、測定対象から検知電極上に到達する電気力線を周期的に遮る構成が挙げられる。これにより測定面から見た実効的な検知電極の面積を変化させて、測定対象と検知電極間の静電容量を変化させることができる(特許文献1参照)。 As an example of the former, by inserting a fork-shaped shutter between the measurement object (photosensitive member) and the detection electrode and periodically moving the shutter in a direction parallel to the surface of the measurement object, the measurement object is placed on the detection electrode. The structure which interrupts | blocks the electric force line which arrives periodically is mentioned. Thereby, the area of the effective detection electrode seen from the measurement surface can be changed, and the electrostatic capacitance between a measuring object and a detection electrode can be changed (refer patent document 1).

また、測定対象と対向する位置に開口部を有した金属のシールド材を配置し、フォークの形状をした振動素子の先端に検知電極を設ける構成もある。そして検知電極の位置を開口部直下で平行に移動させることで、検知電極に達する電気力線の数を変化させ、静電容量を変化させる(特許文献2参照)。 There is also a configuration in which a metal shield material having an opening is disposed at a position facing the measurement object, and a detection electrode is provided at the tip of a fork-shaped vibration element. Then, by moving the position of the detection electrode in parallel under the opening, the number of lines of electric force reaching the detection electrode is changed, and the capacitance is changed (see Patent Document 2).

後者の一例としては、検知電極を片持ち梁状の振動子の先端に配置し、片持ち梁を振動させることで、測定対象と検知電極間の距離を周期的に変化させ、静電容量を変化させる構成がある(特許文献3参照)。
米国特許第4,720,682号公報 米国特許第3,852,667号公報 米国特許第4,763,078号公報
As an example of the latter, the sensing electrode is arranged at the tip of a cantilever-like vibrator, and the cantilever is vibrated, thereby periodically changing the distance between the measurement target and the sensing electrode, thereby increasing the capacitance. There is a configuration to change (see Patent Document 3).
U.S. Pat.No. 4,720,682 U.S. Pat.No. 3,852,667 U.S. Pat.No. 4,763,078

検知電極に静電誘導される電荷量は、電荷量を検知する検出手段により、検出信号として取り出される。しかし、この検出信号には、機械的な振動や、振動を発生させるための駆動信号によるノイズ成分が含まれている。これは、測定対象の面と検知電極間の電位差と検出信号の関係において、誤差成分となり得る。これにより、電位測定装置の検出分解能が低下する。 The amount of charge electrostatically induced in the detection electrode is taken out as a detection signal by the detection means for detecting the amount of charge. However, this detection signal includes mechanical vibrations and noise components due to drive signals for generating vibrations. This can be an error component in the relationship between the potential difference between the surface to be measured and the detection electrode and the detection signal. As a result, the detection resolution of the potential measuring device decreases.

したがって、本発明の目的は、測定対象と検知電極間の容量を変化させる為の手段の機械的な振動などの状態の変化や駆動信号によって発生する、検出信号の誤差成分を補正するための技術を提供することにある。 Therefore, an object of the present invention is to correct a detection signal error component generated by a change in state such as mechanical vibration of a means for changing a capacitance between a measurement object and a detection electrode or a drive signal. Is to provide.

上記課題に鑑み、本発明の電位測定装置は、検知電極と、
測定対象物と検知電極との間の静電容量を変化させる容量変化手段と、
検知電極に静電誘導される電荷量を検出する検出手段と、
測定対象物と検知電極との間に生じうる電気力線から検知電極を遮蔽する遮蔽手段と、
を有し、
前記遮蔽手段は、検知電極を遮蔽した遮蔽状態で前記検出手段から信号を得るとともに、検知電極を遮蔽しない非遮蔽状態で検出手段から信号を得るべく、遮蔽状態と非遮蔽状態を切り替える手段を有することを特徴とする。
上記構成において、検知電極に静電誘導される電荷は、上記遮蔽手段の非遮蔽時において容量変化手段により生起される場合もある。また、測定対象からの電気力線の検知電極への影響が遮蔽された上記遮蔽時において生起される場合もある。また、上記遮蔽時は、容量変化手段を駆動させた状態において検知電極に静電誘導される電荷量を検出できるように、少なくとも一定期間は遮蔽状態が持続される必要がある。
In view of the above problems, the potential measuring device of the present invention includes a detection electrode,
Capacitance changing means for changing the capacitance between the measurement object and the detection electrode;
Detection means for detecting the amount of charge electrostatically induced in the detection electrode;
Shielding means for shielding the detection electrode from electric lines of force that can occur between the measurement object and the detection electrode;
Have
The shielding means has a means for switching between a shielding state and a non-shielding state so as to obtain a signal from the detection means in a shielding state where the detection electrode is shielded and to obtain a signal from the detection means in a non-shielding state where the sensing electrode is not shielded. It is characterized by that.
In the above configuration, the charge that is electrostatically induced in the detection electrode may be generated by the capacitance changing means when the shielding means is not shielded. In some cases, the influence of the lines of electric force from the measurement target on the detection electrode is generated at the time of shielding. Further, at the time of shielding, the shielding state needs to be maintained for at least a certain period so that the charge amount electrostatically induced in the detection electrode can be detected in a state where the capacitance changing means is driven.

上記電位測定装置は、更に補正手段を有し、該補正手段が、遮蔽手段による上記遮蔽時において検出手段で検出される検出信号を記憶する手段と、遮蔽手段による上記非遮蔽時において検出手段で検出される検出信号に対して、前記記憶した検出信号に基づく減算処理を施して出力する手段を有するようにもできる。 The potential measuring device further includes a correcting unit, and the correcting unit includes a unit for storing a detection signal detected by the detecting unit at the time of the shielding by the shielding unit, and a detecting unit at the time of the non-shielding by the shielding unit. The detection signal to be detected may be provided with means for performing a subtraction process based on the stored detection signal and outputting the result.

また、上記課題に鑑み、本発明の電位測定装置は、上記の電位測定装置と画像形成手段を備え、電位測定装置の検知電極の面が画像形成手段の電位測定の対象となる感光体と対向して配置され、画像形成手段が電位測定装置の信号検出結果を用いて画像形成の制御を行うことを特徴とする。 Further, in view of the above problems, a potential measuring device of the present invention includes the above-described potential measuring device and an image forming unit, and the surface of the detection electrode of the potential measuring device is opposed to a photoconductor to be subjected to potential measurement of the image forming unit. And the image forming means controls image formation using the signal detection result of the potential measuring device.

また、上記課題に鑑み、本発明の電位測定方法は、測定対象物と検知電極との間に生じうる電気力線から前記検知電極を遮蔽手段により遮蔽した状態で、測定対象物と、前記検知電極との間の静電容量を変化させる容量変化手段を駆動し、前記検知電極に静電誘導される電荷量を検出する工程と、
測定対象物と前記検知電極の間に生じる電気力線から前記検知電極を遮蔽しない状態で前記容量変化手段を駆動させ、前記検知電極に静電誘導される電荷量を検出する工程と、
前記各工程で検出された検出値に基づいて、測定対象物の電位を測定する工程と、を有することを特徴とする。
In addition, in view of the above problems, the potential measurement method of the present invention includes the measurement object and the detection in a state where the detection electrode is shielded by a shielding means from electric lines of force that may be generated between the measurement object and the detection electrode. Driving a capacitance changing means for changing capacitance between the electrodes and detecting the amount of charge electrostatically induced in the detection electrodes;
Driving the capacitance changing means in a state where the detection electrode is not shielded from electric lines of force generated between a measurement object and the detection electrode, and detecting a charge amount electrostatically induced in the detection electrode;
And measuring the potential of the measurement object based on the detection value detected in each step.

また、上記課題に鑑み、本発明の電位測定方法は、上記の電位測定方法を用いて測定した結果に基づき測定対象の面と検知電極との間の電位差を検出し、この電位差の絶対値が最小値(典型的には0)に近づくように検知電極の電位を変化させ、この結果到達した検知電極の電位を測定対象の面の電位として得ることを特徴とする。 In view of the above problems, the potential measurement method of the present invention detects a potential difference between the surface to be measured and the detection electrode based on the result of measurement using the above-described potential measurement method, and the absolute value of this potential difference is The potential of the detection electrode is changed so as to approach the minimum value (typically 0), and the potential of the detection electrode reached as a result is obtained as the potential of the surface to be measured.

本発明によれば、遮蔽手段により測定対象からの電気力線の検知電極への影響を排除して検知電極に入射する電気力線の数を一定にする(固定的にする)状態を実現できるので、これを利用して検出信号の誤差成分を補正することができる。そのため、比較的高精度な電位測定装置、電位測定方法を提供できる。本発明における上記電気力線の数を一定にする(固定的にする)とは、電気力線の数を0にすることも含む。 According to the present invention, it is possible to realize a state in which the number of the electric force lines incident on the detection electrode is made constant (fixed) by eliminating the influence of the electric force lines from the measurement target on the detection electrode by the shielding means. Therefore, the error component of the detection signal can be corrected using this. Therefore, it is possible to provide a relatively high precision potential measuring device and potential measuring method. Making the number of electric lines of force constant (fixed) in the present invention includes making the number of lines of electric force zero.

以下に、本発明の実施の形態を説明する。本発明の一実施形態は、機械的な振動等や駆動信号によって発生する、検出信号の誤差成分を補正することができる電位測定装置を提供するものである。そしてその際に検知電極へ入射する電気力線を切替えて、測定用の検出信号と補正用の検出信号それぞれを検出する様に構成されている。 Hereinafter, embodiments of the present invention will be described. One embodiment of the present invention provides a potential measuring device capable of correcting an error component of a detection signal generated by mechanical vibration or a drive signal. At that time, the lines of electric force incident on the detection electrodes are switched to detect the detection signal for measurement and the detection signal for correction.

具体的に、本発明の電位測定装置の一実施形態に沿って、検出信号を補正する手順を説明する。まず、測定対象物(ここでは測定対象面)と検知電極間に、測定対象の面からの電気力線を遮蔽する遮蔽手段を挿入し、遮蔽手段から検知電極に入射する電気力線を制御して発生させるようにする。(すなわち、遮蔽手段により測定対象からの電気力線の検知電極への影響を排除して遮蔽手段から検知電極に入射する電気力線の数を一定にする(固定的にする))そして、この際に、容量変化手段を駆動状態にし、この時の検出信号S1を測定する。ここで、本発明における上記「検知電極に入射する電気力線の量を一定期間以上一定にする(固定的にする)」とは以下の状態を示す。即ち、前記遮蔽手段によって測定対象から検知電極に入射する電気力線の一部又は全部を一定期間以上遮蔽することで、検知電極に入射する電気力線の量を、当該一定期間実質的に同一量に維持する状態である。次に、測定対象の面と検知電極間から遮蔽手段を取り除き、容量変化手段を駆動状態にして測定対象の面から検知電極に電気力線を入射させ、この時の検知信号S2を測定する。最後に、検知信号S1を基にして、検知信号S2を補正することによって、検出信号S3を算出し、測定面の電位とする。このように遮蔽状態で得られる信号と非遮蔽状態で得られる信号とを基に、より正確に測定面の電位を測定することができる。 Specifically, the procedure for correcting the detection signal will be described along one embodiment of the potential measuring apparatus of the present invention. First, a shielding means for shielding the lines of electric force from the surface of the measurement object is inserted between the measurement object (here, the measurement object surface) and the detection electrode, and the electric force lines incident on the detection electrode from the shielding means are controlled. To generate. (That is, the influence of the electric force lines from the measurement object on the detection electrode is eliminated by the shielding means, and the number of electric force lines incident on the detection electrode from the shielding means is made constant (fixed)). At this time, the capacitance changing means is set in the driving state, and the detection signal S1 at this time is measured. Here, in the present invention, “the amount of electric lines of force incident on the detection electrode is made constant (fixed) for a certain period or longer” indicates the following state. That is, by shielding a part or all of the lines of electric force incident on the detection electrode from the measurement object by the shielding means for a certain period or more, the amount of electric lines of force incident on the detection electrode is substantially the same for the certain period. It is a state to maintain the quantity. Next, the shielding means is removed from between the surface to be measured and the detection electrode, the capacitance changing means is driven, electric lines of force are made incident on the detection electrode from the surface to be measured, and the detection signal S2 at this time is measured. Finally, the detection signal S3 is corrected by correcting the detection signal S2 based on the detection signal S1, and is set as the potential of the measurement surface. Thus, based on the signal obtained in the shielding state and the signal obtained in the non-shielding state, the potential of the measurement surface can be measured more accurately.

以下、図面を用いて本発明の実施の形態を詳細に説明する。
(第1の実施の形態)
図1、図5−a、図5−bは、第1の実施の形態に係る電位測定装置の構成及び動作を説明する模式図である。図1、図5−aにおいて、101は測定対象の面、102は検知電極、103は容量変化手段、104は検出手段、105は遮蔽手段、106は補正手段である。また、201は測定対象の面101から検知電極102に向かって発生する電気力線、202は測定対象の面101から遮蔽手段105に入射する電気力線、203は遮蔽手段105から検知電極102に入射する電気力線である。測定対象の面101は、所定の電位を有した面である。例えば、帯電した感光体の一部の面である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
1, FIG. 5-a, and FIG. 5-b are schematic diagrams for explaining the configuration and operation of the potential measuring apparatus according to the first embodiment. In FIGS. 1 and 5-a, reference numeral 101 denotes a surface to be measured, 102 is a sensing electrode, 103 is a capacitance changing means, 104 is a detecting means, 105 is a shielding means, and 106 is a correcting means. Reference numeral 201 denotes an electric force line generated from the surface 101 to be measured toward the detection electrode 102, 202 denotes an electric force line incident on the shielding unit 105 from the measurement target surface 101, and 203 denotes the detection electrode 102 from the shielding unit 105. Incident electric field lines. The surface 101 to be measured is a surface having a predetermined potential. For example, it is a part of a charged photoreceptor.

容量変化手段103は、機械的な周期振動子を用いて検知電極102に入射する電気力線の数を変化させ、測定対象の面101と検知電極102間の容量を周期的に変化させるものである。この容量変化手段103には、共振現象を利用したものが一般に用いられる。振動子の駆動には、圧電、静電、電磁等のアクチュエータを用いることができる。 The capacity changing means 103 changes the number of electric lines of force incident on the detection electrode 102 using a mechanical periodic vibrator, and periodically changes the capacity between the surface 101 to be measured and the detection electrode 102. is there. As this capacity changing means 103, one utilizing a resonance phenomenon is generally used. For driving the vibrator, an actuator such as piezoelectric, electrostatic or electromagnetic can be used.

本実施形態で用いられ得る容量変化手段103を説明する模式図を図2−a、図2−b、図2−cに示す。図2−aの容量変化手段では、測定対象の面101と検知電極102間において、振動子301を矢印C方向(検知電極102の面に対して水平方向)に周期的に振動させている。これにより、電気力線201を周期的に遮り、その間の結合容量を変化させている。図2−aのように振動子が複数ある場合は、振動子301の対がそれぞれ同時に内側及び外側に振動することで開閉するように振動させている。 Schematic diagrams for explaining the capacity changing means 103 that can be used in the present embodiment are shown in FIGS. 2-a, 2-b, and 2-c. 2A, the vibrator 301 is periodically vibrated in the direction of arrow C (horizontal with respect to the surface of the detection electrode 102) between the surface 101 to be measured and the detection electrode 102. Thereby, the electric lines of force 201 are periodically interrupted, and the coupling capacity therebetween is changed. When there are a plurality of vibrators as shown in FIG. 2A, the pair of vibrators 301 are vibrated so as to open and close by simultaneously vibrating inward and outward respectively.

図2−bの容量変化手段では、検知電極102が振動子302上に配置されており、振動子302を矢印D方向(検知電極102の面に対して垂直方向)に周期的に振動させている。これにより、測定対象の面101から検知電極102に入射する電気力線201の数を変化させて、その間の結合容量を変化させている。図2−cでは、複数の検知電極102を配置し、その検知電極102と対応させた開口部304を有する振動子303を周期的に矢印E方向(検知電極102の面に対して水平方向)に振動させている。これにより、測定対象の面101と検知電極102間の結合容量を変化させる構成である。 In the capacity changing means of FIG. 2B, the detection electrode 102 is disposed on the vibrator 302, and the vibrator 302 is periodically vibrated in the direction of arrow D (perpendicular to the surface of the detection electrode 102). Yes. Thereby, the number of electric lines of force 201 incident on the detection electrode 102 from the surface 101 to be measured is changed, and the coupling capacitance therebetween is changed. In FIG. 2-c, a plurality of detection electrodes 102 are arranged, and a vibrator 303 having an opening 304 corresponding to the detection electrodes 102 is periodically arranged in the direction of arrow E (horizontal with respect to the surface of the detection electrodes 102). Vibrate. Thus, the coupling capacitance between the surface 101 to be measured and the detection electrode 102 is changed.

本発明の容量変化手段103は、図2の構成に限るものではなく、測定対象の面101と検知電極102間の容量を周期的に変化させるものであれば、どの様なものも用いることができる。 The capacitance changing means 103 of the present invention is not limited to the configuration shown in FIG. 2, and any device can be used as long as it periodically changes the capacitance between the surface 101 to be measured and the detection electrode 102. it can.

上記構成において、容量変化手段103による測定対象の面101と検知電極102間の容量変化時には、測定対象の面101と検知電極102間の電位差に対応した電荷が検知電極102上に誘導される。検出手段104は、検知電極102に誘導されたこの電荷を、検出信号として取り出すものである。 In the above configuration, when the capacitance between the measurement target surface 101 and the detection electrode 102 is changed by the capacitance changing means 103, a charge corresponding to the potential difference between the measurement target surface 101 and the detection electrode 102 is induced on the detection electrode 102. The detection means 104 takes out this electric charge induced | guided | derived to the detection electrode 102 as a detection signal.

図3−aと図3−bの模式図を用いて、検出手段104の例を説明する。図3−aの検出手段104は、誘導電荷により高抵抗RINに流れる微少電流を高抵抗RIN両端での電圧に変換し、FETのソースフォロワ回路から検出信号を出力する(VOUT)構成を有する。ここで、VCCは電源電圧、R1とR2は抵抗である。図3−bの検出手段104は、オペアンプOP−AMPの負帰還の機構を利用して電流-電圧変化を行い、検出信号VOUTを出力する構成を有する。ここで、Rfは帰還抵抗、Cfは位相補償コンデンサである。検出手段104ではグランド電位を基準に信号を検出している。本発明においては、この検出手段104のグランド電位を基準電位と呼ぶ。 An example of the detection unit 104 will be described with reference to the schematic diagrams of FIGS. The detection unit 104 in FIG. 3A has a configuration in which a minute current flowing through the high resistance RIN is converted into a voltage at both ends of the high resistance RIN by the induced charge, and a detection signal is output (VOUT) from the source follower circuit of the FET. Here, VCC is a power supply voltage, and R1 and R2 are resistors. The detection unit 104 in FIG. 3B has a configuration that performs a current-voltage change using a negative feedback mechanism of the operational amplifier OP-AMP and outputs a detection signal VOUT. Here, Rf is a feedback resistor, and Cf is a phase compensation capacitor. The detecting means 104 detects a signal based on the ground potential. In the present invention, the ground potential of the detection means 104 is referred to as a reference potential.

図4に、本実施形態の検出信号について説明する概念図を示す。この概念図から分かるように、測定対象の面101と検知電極102間の電位差ΔVdに対応した信号として、検出手段104から検出信号VOUTを取り出すことができる。図4(a)から分かるように、検知電極102がグランド電位に固定されているとして、測定対象の面101の電位VDがα(V)の整数倍に変化すると、検出信号VOUTの振幅もそれに比例して大きくなる。 FIG. 4 is a conceptual diagram illustrating the detection signal of this embodiment. As can be seen from this conceptual diagram, the detection signal VOUT can be extracted from the detection means 104 as a signal corresponding to the potential difference ΔVd between the surface 101 to be measured and the detection electrode 102. As can be seen from FIG. 4A, assuming that the detection electrode 102 is fixed to the ground potential, when the potential VD of the surface 101 to be measured changes to an integral multiple of α (V), the amplitude of the detection signal VOUT also changes to that. Increase proportionally.

但し、検出信号中には、上記電位差ΔVdと相関を持たないノイズ成分(Vn)が存在する。これは、容量変化手段103が有する機械的な振動子の振動等や、振動子への印加信号に由来して発生するものである。図4(b)は、測定対象の面101の電位VD=0Vでの検出信号VOUTの出力を表し、これがノイズ成分(Vn)に関係する。このように、検出信号VOUTの振動周波数と同じ、または整数倍のノイズが観測される。このノイズの位相は、図4(b)の限りではなく、様々な位相をとり得る。 However, a noise component (Vn) having no correlation with the potential difference ΔVd exists in the detection signal. This occurs due to mechanical vibration of the capacitance changing means 103 or the signal applied to the vibrator. FIG. 4B shows the output of the detection signal VOUT at the potential VD = 0 V of the surface 101 to be measured, which is related to the noise component (Vn). In this way, noise that is the same as or an integral multiple of the vibration frequency of the detection signal VOUT is observed. The phase of the noise is not limited to that shown in FIG.

実際の測定時には、図4(a)の信号に図4(b)の信号が加算された検出信号が、VOUTとして得られる。以後、この時(測定対象の面101の電位VD=0V)のVOUTをノイズ成分Vnと呼ぶ。そのため、このノイズ成分Vnは、電位差ΔVdに対応した検出信号の誤差要因となる。 During actual measurement, a detection signal obtained by adding the signal of FIG. 4B to the signal of FIG. 4A is obtained as VOUT. Hereinafter, VOUT at this time (the potential VD = 0 V of the surface 101 to be measured) is referred to as a noise component Vn. Therefore, the noise component Vn becomes an error factor of the detection signal corresponding to the potential difference ΔVd.

図4(c)において、横軸は測定対象の面101の電位VDを表し、縦軸は検出信号VOUTの振幅を表し、両者の関係が示されている。図4(c)で直線は、原点を通過せず、オフセットを有している。そのため、このオフセット分は誤差となり、これは電位測定装置の検出分解能を決める重要な要素である。この図4(c)における縦軸との切片が前記ノイズ成分Vnとなる。 In FIG. 4C, the horizontal axis represents the potential VD of the measurement target surface 101, the vertical axis represents the amplitude of the detection signal VOUT, and the relationship between the two is shown. In FIG. 4C, the straight line does not pass through the origin and has an offset. Therefore, this offset becomes an error, and this is an important factor that determines the detection resolution of the potential measuring device. The intercept with the vertical axis in FIG. 4C is the noise component Vn.

本発明では、上記の機械的な振動等や駆動信号のノイズ成分Vnを測定することにより、検出信号の誤差の補正量を検出し、電位測定装置の分解能を向上させる。 In the present invention, the amount of correction of the detection signal error is detected by measuring the mechanical vibration or the like and the noise component Vn of the drive signal, thereby improving the resolution of the potential measuring device.

このノイズ成分Vnは、測定対象の面101と検知電極102間の電位差ΔVdを0にした場合、検出手段104からの検出信号として測定することができる。しかし、電位測定装置では、感光体の表面などの測定対象の面101を、任意の電位に固定することは困難である。 This noise component Vn can be measured as a detection signal from the detection means 104 when the potential difference ΔVd between the surface 101 to be measured and the detection electrode 102 is zero. However, in the potential measuring device, it is difficult to fix the surface 101 to be measured such as the surface of the photosensitive member to an arbitrary potential.

図5−aと図5−bは、本実施形態のノイズ成分Vnを測定する方法を説明する図である。本実施形態では、補正用にノイズVnを測定する時には、遮蔽手段105を、測定対象の面101と検知電極102間に挿入する(図5−a参照)。遮蔽手段105は、所定の電位(例えば、電位測定装置のグランド電位)に固定されている。そのため、遮蔽手段105は、測定対象の面101から発生する電気力線202を遮蔽し、検知電極102に入射させ難くする。つまり、測定対象の面101と検知電極102間の静電容量は微小な値になる。容量変化手段103に機械的な振動を発生させても、測定対象の面101と検知電極102間の電位差ΔVdに対応する検出信号は出力されない。また、204は遮蔽手段から容量変化手段に向かって発生する電気力線を表す。 5A and 5B are diagrams illustrating a method for measuring the noise component Vn according to the present embodiment. In this embodiment, when the noise Vn is measured for correction, the shielding means 105 is inserted between the surface 101 to be measured and the detection electrode 102 (see FIG. 5-a). The shielding means 105 is fixed at a predetermined potential (for example, the ground potential of the potential measuring device). Therefore, the shielding unit 105 shields the electric force lines 202 generated from the surface 101 to be measured, and makes it difficult to enter the detection electrode 102. That is, the capacitance between the surface 101 to be measured and the detection electrode 102 is a minute value. Even if a mechanical vibration is generated in the capacitance changing unit 103, a detection signal corresponding to the potential difference ΔVd between the surface 101 to be measured and the detection electrode 102 is not output. Reference numeral 204 denotes an electric force line generated from the shielding means toward the capacity changing means.

一方、遮蔽手段105の固定電位と検知電極102間の電位差ΔVcを変化させることにより、遮蔽手段105から検知電極102に入射する電気力線203の数を制御することができる。ここで、電位差ΔVcが0Vの場合、遮蔽手段105から検知電極102に入射する電気力線の数は0となり、電位差ΔVcに対応する検出信号は出力されない。そのため、検出信号からはノイズVnのみが出力される。ただし、電位差ΔVcは0V以外の所定値にしてもよい場合(例えば、後記の第2の実施の形態の場合を参照)もあり、下記の電位差ΔVdに対応した検出信号の測定がより正確に行えるように、適宜、装置の設計に応じて設定すればよい。 On the other hand, by changing the potential difference ΔVc between the fixed potential of the shielding means 105 and the detection electrode 102, the number of electric lines of force 203 incident on the detection electrode 102 from the shielding means 105 can be controlled. Here, when the potential difference ΔVc is 0 V, the number of lines of electric force that enter the detection electrode 102 from the shielding unit 105 is 0, and no detection signal corresponding to the potential difference ΔVc is output. Therefore, only the noise Vn is output from the detection signal. However, the potential difference ΔVc may be set to a predetermined value other than 0 V (see the second embodiment described later), and the detection signal corresponding to the potential difference ΔVd described below can be measured more accurately. Thus, it may be set appropriately according to the design of the apparatus.

上記のように、本実施形態の電位測定装置を用いれば、検知電極102と同電位に固定された遮蔽手段105を、不図示の切り替え駆動手段により、測定対象の面101と検知電極102間に挿入する。この状態とすることにより、検出信号を補正するためのノイズVnを検出信号から測定することができる。 As described above, when the potential measuring apparatus of this embodiment is used, the shielding means 105 fixed to the same potential as the detection electrode 102 is connected between the surface 101 to be measured and the detection electrode 102 by a switching drive means (not shown). insert. In this state, the noise Vn for correcting the detection signal can be measured from the detection signal.

また、図5−bに示すように、遮蔽手段105は、不図示の切り替え駆動手段により、矢印Bの方向に移動可能な構成となっている。そのため、感光体ドラムなど(測定対象の面101と検知電極102間の電位差ΔVd)の測定時には、次のような測定を行うことができる。即ち、測定対象の面101と検知電極102間から、遮蔽手段105を抜き取ることにより(図5−b参照)、電位差ΔVdに対応した検出信号の測定を行うことができる。 Further, as shown in FIG. 5B, the shielding unit 105 is configured to be movable in the direction of the arrow B by a switching drive unit (not shown). Therefore, at the time of measuring a photosensitive drum or the like (the potential difference ΔVd between the measurement target surface 101 and the detection electrode 102), the following measurement can be performed. That is, the detection signal corresponding to the potential difference ΔVd can be measured by extracting the shielding means 105 between the surface 101 to be measured and the detection electrode 102 (see FIG. 5B).

以上のような構成において、補正手段106は、補正用の検出信号(ノイズVn)が入力された時に、その信号を記憶する手段を有している。さらに補正手段106は、検出用の検出信号(電位差ΔVdに対応した検出信号)が入力された時に、その検出信号から記憶していた補正用の検出信号を減算する手段と、減算した結果の信号を出力する手段を有している。減算は、そのまま減算する場合もあるが、所定の係数を掛けて減算する場合もあり、適宜、装置の設計に応じて設定すればよい。 In the configuration as described above, the correction means 106 has means for storing a signal when a correction detection signal (noise Vn) is input. Further, when the detection signal for detection (detection signal corresponding to the potential difference ΔVd) is input, the correction means 106 subtracts the correction detection signal stored from the detection signal, and the signal resulting from the subtraction Means for outputting. The subtraction may be subtracted as it is or may be subtracted by multiplying by a predetermined coefficient, and may be set according to the design of the apparatus as appropriate.

このような方法で、遮蔽手段105の挿入時に測定したノイズVnの情報をもとにして補正を行って、検出信号に含まれていたノイズVnを除去することができる。その結果、電位差ΔVdに、より正確に対応した検出信号だけを、ノイズから分離して得ることができる。 By such a method, the noise Vn included in the detection signal can be removed by performing correction based on the information of the noise Vn measured when the shielding unit 105 is inserted. As a result, only the detection signal corresponding more accurately to the potential difference ΔVd can be obtained separately from the noise.

図6は、本実施形態に係る電位測定装置の上記した測定方法のフローを表す図である。まず、ステップ401で、測定対象の面101から検知電極102に入力される電気力線を遮蔽する位置に遮蔽手段105を移動させる。次いでステップ402で、容量変化手段103を駆動させた状態において検出手段104から出力される信号を補正信号として測定する。そして、ステップ403で、この補正信号を補正手段106内に記憶する。次に、ステップ404で、測定対象の面101から検知電極102に入力される電気力線を遮蔽しない位置に遮蔽手段105を移動させる。その後ステップ405で、容量変化手段103を駆動させた状態において、補正手段106により、検出手段104から出力される検出用の検出信号から上記補正信号を減算し、これを測定値として出力する。ここで、ステップ406で、補正信号の再測定を行う必要がないと判断され、ステップ407で、測定を終了してもよいと判断されれば、これで終了する。ステップ406で、補正信号の再測定を行う必要があると判断されれば(例えば、容量変化手段103を駆動させる駆動信号が変化したような場合、再測定の必要がある)、ステップ401に戻って補正信号の再測定から再び始める。また、ステップ407で、測定を終了しないと判断されれば(例えば、測定値が不確かであるような場合、再測定の必要がある)、ステップ405に戻って再び測定値を出力するようにする。 FIG. 6 is a diagram illustrating a flow of the above-described measurement method of the potential measurement device according to the present embodiment. First, in step 401, the shielding means 105 is moved to a position where the lines of electric force input to the detection electrode 102 from the surface 101 to be measured are shielded. Next, at step 402, the signal output from the detection means 104 in a state where the capacitance changing means 103 is driven is measured as a correction signal. In step 403, the correction signal is stored in the correction means 106. Next, in step 404, the shielding means 105 is moved to a position where the lines of electric force input from the surface 101 to be measured to the detection electrode 102 are not shielded. Thereafter, in step 405, in a state where the capacity changing means 103 is driven, the correction means 106 subtracts the correction signal from the detection signal for detection output from the detection means 104, and outputs this as a measurement value. Here, if it is determined in step 406 that it is not necessary to remeasure the correction signal, and if it is determined in step 407 that the measurement may be ended, the process ends here. If it is determined in step 406 that the correction signal needs to be remeasured (for example, if the drive signal for driving the capacitance changing means 103 has changed, remeasurement is necessary), the process returns to step 401. Then start again with the remeasurement of the correction signal. If it is determined in step 407 that the measurement is not finished (for example, if the measurement value is uncertain, remeasurement is necessary), the process returns to step 405 and the measurement value is output again. .

このように、本実施形態を用いれば、機械的な振動等や駆動信号によって発生する、検出信号の誤差成分を補正することができる。そのため、本実施形態によれば、高精度な電位測定装置を提供できる。 As described above, by using this embodiment, it is possible to correct an error component of a detection signal generated by mechanical vibration or a drive signal. Therefore, according to the present embodiment, a highly accurate potential measuring device can be provided.

尚、検出手段104は、振動周波数と同じ周波数を出力するものでなくてもよい。例えば、図3−cに示すように、同期検波回路104’を有しており、VOUTの後段にローパスフィルタを有している構成でもよい。ここで、SYNCは振動の同期信号、FETはFET素子、R4、R5、R6、R7は抵抗である。これにより、ローパスフィルタ透過後の検出信号が変化する時定数が長くなって検出信号の誤差が小さくなり、補正用の検出信号と検出用の信号をより正確に減算することができる。 Note that the detection unit 104 may not output the same frequency as the vibration frequency. For example, as shown in FIG. 3C, the synchronous detection circuit 104 ′ may be included, and a low-pass filter may be provided after VOUT. Here, SYNC is a vibration synchronization signal, FET is an FET element, and R4, R5, R6, and R7 are resistors. As a result, the time constant at which the detection signal after passing through the low-pass filter changes becomes longer and the error of the detection signal becomes smaller, and the correction detection signal and the detection signal can be subtracted more accurately.

尚、本実施形態に係る電位測定装置は、補正手段106を必ずしも構成要素とする必要はなく、補正手段106は外部の制御用装置などが有するものであってもよい。 Note that the potential measuring apparatus according to the present embodiment does not necessarily include the correcting unit 106, and the correcting unit 106 may be included in an external control device or the like.

(第2の実施の形態)
本発明の第2の実施の形態は、電位測定装置の制御方法に特徴を持つ実施形態に関する。その他は、第1の実施の形態と同じである。
(Second Embodiment)
The second embodiment of the present invention relates to an embodiment characterized by the control method of the potential measuring device. Others are the same as those in the first embodiment.

第1の実施の形態では、測定対象の面と検知電極間の静電容量を変化させることにより、測定対象の面と検知電極間の電位差ΔVdを、検出信号として測定する電位測定装置について述べた。この装置においては、検出信号が一番小さくなるように、検知電極の電位を増減させることにより、測定対象の面の電位と検知電極の電位をほぼ一致させるという方式を取ることができる。この方式では、2つの電位を一致させるようにフィードバックして、測定対象の面101の電位を測ることができるため、測定対象の面101と検知電極102間の距離による検出信号の出力の変化を抑制できる。そのため、測定対象の面と電位測定装置の配置精度が低い場合でも、高精度な電位測定を行うことができるという特徴を持っている。 In the first embodiment, the potential measuring device that measures the potential difference ΔVd between the measurement target surface and the detection electrode as a detection signal by changing the capacitance between the measurement target surface and the detection electrode has been described. . In this apparatus, by increasing or decreasing the potential of the detection electrode so that the detection signal becomes the smallest, it is possible to adopt a method in which the potential of the surface to be measured and the potential of the detection electrode are substantially matched. In this method, since the potential of the surface 101 to be measured can be measured by feeding back the two potentials to coincide with each other, the change in the output of the detection signal due to the distance between the surface 101 to be measured and the detection electrode 102 can be measured. Can be suppressed. For this reason, even when the arrangement accuracy of the surface to be measured and the potential measuring device is low, it has a feature that highly accurate potential measurement can be performed.

ここで、検知電極の電位を変化させる方法としては、図3−aの検出手段の場合、検出手段104をフローティング電源(VCC)で駆動して、フローティング電源のGNDレベルを変化させることで検知電極102の電位を変化させる方法を採ることができる。また図3−bの検出手段104の場合、非反転入力端子(OP−AMPの+端子)に電圧を印加することで検知電極102の電位を変化させる方式などを採ることができる。 Here, as a method of changing the potential of the detection electrode, in the case of the detection means of FIG. 3A, the detection means 104 is driven by a floating power supply (VCC), and the detection electrode is changed by changing the GND level of the floating power supply. A method of changing the potential of 102 can be adopted. In the case of the detection means 104 in FIG. 3B, a method of changing the potential of the detection electrode 102 by applying a voltage to the non-inverting input terminal (+ terminal of OP-AMP) can be employed.

図7に、第2の実施の形態に係る電位測定装置の制御方法のフロー図を示す。まず、ステップ411で、測定対象の面101から検知電極102に入力される電気力線を遮蔽する位置に遮蔽手段105を移動させる。次いで容量変化手段103を駆動させた状態において検出手段104から出力される信号を補正信号として測定して、この補正信号を補正手段106内に記憶する。次に、ステップ412で、測定対象の面101から検知電極102に入力される電気力線を遮蔽しない位置に遮蔽手段105を移動させる。その後、容量変化手段103を駆動させた状態において、補正手段106により、検出手段104から出力される検出信号から上記補正信号を減算する。そしてこれを測定値として出力する。これらのステップは第1の実施の形態のところで述べた制御方法と同じである。 FIG. 7 shows a flow chart of the control method of the potential measuring apparatus according to the second embodiment. First, in step 411, the shielding means 105 is moved to a position where the lines of electric force input from the surface 101 to be measured to the detection electrode 102 are shielded. Next, the signal output from the detection unit 104 in a state where the capacitance changing unit 103 is driven is measured as a correction signal, and the correction signal is stored in the correction unit 106. Next, in step 412, the shielding means 105 is moved to a position where the lines of electric force input from the surface 101 to be measured to the detection electrode 102 are not shielded. Thereafter, in a state in which the capacity changing unit 103 is driven, the correction unit 106 subtracts the correction signal from the detection signal output from the detection unit 104. And this is output as a measured value. These steps are the same as the control method described in the first embodiment.

ここで、ステップ413で、この測定値が0かどうかを判断し、0であれば、ステップ414で、検知電極102の電位を測定対象の面101の電位として読み取る。そして、ステップ415で、測定を終了してよいと判断されれば、終了する。 Here, in step 413, it is determined whether or not this measurement value is 0. If it is 0, the potential of the detection electrode 102 is read as the potential of the surface 101 to be measured in step 414. If it is determined in step 415 that the measurement can be terminated, the process ends.

上記ステップ413で、上記測定値が0でない場合は、ステップ416で、これが正かどうかを判断し、正であるときは、ステップ417で、検知電極102の電位を高くする。そして、ステップ419で、補正信号の再測定の要否を判断する。再測定を行う必要がないと判断されれば、ステップ412に戻ってそれ以下のステップを繰り返す。ステップ419で、補正信号の再測定を行う必要があると判断されれば、ステップ411に戻って補正信号の再測定と記憶から再び始める。一方、ステップ416で、上記測定値が負であると判断されたときは、ステップ418で、検知電極102の電位を低くする。そして、ステップ419で、上記と同様な手順に進む。上記ステップ415で、測定を終了しないと判断されるときも、ステップ419に進む。 If the measured value is not 0 in step 413, it is determined in step 416 whether this is positive. If it is positive, the potential of the detection electrode 102 is increased in step 417. In step 419, it is determined whether the correction signal needs to be measured again. If it is determined that it is not necessary to perform remeasurement, the process returns to step 412 to repeat the following steps. If it is determined in step 419 that the correction signal needs to be remeasured, the process returns to step 411 and the correction signal is remeasured and stored again. On the other hand, when it is determined in step 416 that the measured value is negative, the potential of the detection electrode 102 is lowered in step 418. In step 419, the procedure proceeds to the same procedure as described above. If it is determined in step 415 that the measurement is not terminated, the process also proceeds to step 419.

この制御方法により、測定対象の面101の電位と検知電極102の電位のズレをより小さくできて、より正確な測定を実現できる。そのため、配置の距離による誤差が小さく且つ高精度な電位測定装置を提供することができる。 By this control method, the difference between the potential of the surface 101 to be measured and the potential of the detection electrode 102 can be made smaller, and more accurate measurement can be realized. Therefore, it is possible to provide a highly accurate potential measuring device with a small error due to the arrangement distance.

(第3の実施の形態)
本発明の第3の実施の形態は、遮蔽手段に特徴を持つ形態に関し、具体的には整形手段を構成要素として有する形態を示す。その他は、第1の実施の形態または第2の実施の形態と同じである。ここで本発明の整形手段とは、測定対象の面から検知電極に入射する電気力線の乱れを抑制し、当該検知電極面に対して実質的に垂直に入射するように電気力線を制御する手段をいう。
(Third embodiment)
The third embodiment of the present invention relates to a form having the characteristic of the shielding means, and specifically shows a form having the shaping means as a component. Others are the same as those in the first embodiment or the second embodiment. Here, the shaping means of the present invention controls the electric lines of force so as to suppress the disturbance of the electric lines of force that are incident on the detection electrode from the surface to be measured, and to be incident substantially perpendicular to the surface of the detection electrode. Means to do.

図8−a、図8−b、図8−cに、本実施形態に係る電位測定装置を説明する模式図を示す。図8−aは構成説明のための模式図であり、図8−b、図8−cは電位測定装置の断面の模式図を示している。 FIG. 8A, FIG. 8-B, and FIG. 8-C are schematic diagrams illustrating the potential measuring device according to the present embodiment. 8A is a schematic diagram for explaining the configuration, and FIGS. 8B and 8C are schematic diagrams of cross sections of the potential measuring device.

本実施形態において、開口部306を持つ整形手段305は、測定対象の面101から検知電極102に入射される電気力線201を整形するためのものである。整形手段305は、検知電極102と同等のサイズの開口部306を有する導電体で、整形手段自体は所定の電位(一般的には、検知電極102と同電位)に固定されている。この整形手段がない場合、検知電極102付近での電気力線は乱れを生じる(図8−aに整形された電気力線の一例を示す。但し、電気力線の分布は、この限りではない。)。整形手段305により、多くの電気力線は、検知電極102面に対して垂直に近く入射されるように整形される。結果的に、検知電極102に入射される電気力線の数を増やすことができるため、検出される信号が大きくなる。 In the present embodiment, the shaping means 305 having the opening 306 is for shaping the electric lines of force 201 incident on the detection electrode 102 from the surface 101 to be measured. The shaping unit 305 is a conductor having an opening 306 having the same size as the detection electrode 102, and the shaping unit itself is fixed to a predetermined potential (generally, the same potential as the detection electrode 102). In the absence of this shaping means, the electric force lines in the vicinity of the detection electrode 102 are disturbed (an example of the electric force lines shaped in FIG. 8A is shown. However, the distribution of the electric force lines is not limited to this. .) By the shaping unit 305, many electric lines of force are shaped so as to be incident almost perpendicular to the surface of the detection electrode 102. As a result, since the number of lines of electric force incident on the detection electrode 102 can be increased, the detected signal becomes large.

本実施形態では、整形手段305全体が図8−a、図8−b、図8−cのF方向に可動であり、遮蔽手段の機能も有している。整形手段305が図8−bに示すように位置している時は、整形手段305は検知電極102に入射される電気力線201を整形する働きをする。一方、整形手段305を図8−cの位置に移動させた場合は、検知電極102に入射されるべき電気力線201は整形手段305により遮蔽される。この時は、整形手段305は遮蔽手段としての働きをする。このように、整形手段と遮蔽手段が同一のものであり、場合によりその働きを変化させることが、本実施形態での特徴である。 In the present embodiment, the entire shaping unit 305 is movable in the F direction in FIGS. 8-a, 8-b, and 8-c, and also has a function of a shielding unit. When the shaping unit 305 is positioned as shown in FIG. 8B, the shaping unit 305 functions to shape the electric force lines 201 incident on the detection electrode 102. On the other hand, when the shaping unit 305 is moved to the position of FIG. 8C, the electric lines of force 201 to be incident on the detection electrode 102 are shielded by the shaping unit 305. At this time, the shaping means 305 functions as a shielding means. As described above, the shaping unit and the shielding unit are the same, and the function of the shaping unit and the shielding unit is changed according to circumstances.

整形手段305を移動させる手段としては、圧電、電磁、静電等のアクチュエータを用いることができる。 As a means for moving the shaping means 305, an actuator such as piezoelectric, electromagnetic or electrostatic can be used.

本実施形態によると、整形手段305が可動である構成にすることにより、遮蔽手段の機能も兼ね備えられ、そのため、電位測定装置を構成する要素を減らし、構成を簡略化することができ、小型で且つ高精度な電位測定装置を提供できる。 According to the present embodiment, the configuration of the shaping means 305 is movable, so that it also functions as a shielding means. Therefore, the elements constituting the potential measuring device can be reduced, the configuration can be simplified, and the size can be reduced. In addition, a highly accurate potential measuring device can be provided.

尚、本実施形態では、整形手段305が固定される電位を検知電極102とほぼ同電位としたが(こうすれば構成をシンプルにできる)、この電位は可動するものであってもよい。 In this embodiment, the potential at which the shaping unit 305 is fixed is set to be substantially the same as that of the detection electrode 102 (this can simplify the configuration), but this potential may be movable.

(第4の実施の形態)
第4の実施の形態は、容量変化手段に特徴を持つ形態に関する。その他は、第1の実施の形態または第2の実施の形態と同じである。
(Fourth embodiment)
The fourth embodiment relates to a form having a feature in capacity changing means. Others are the same as those in the first embodiment or the second embodiment.

本実施形態の電位測定装置の容量変化手段は、図2−cの容量変化手段に整形手段を加えた構成のものである。図9に、本実施形態に係る電位測定装置を示し、図9−aは構成を説明するための模式図であり、図9−b、図9−cは電位測定装置の断面の模式図を示している。 The capacity changing means of the potential measuring device of the present embodiment has a configuration in which a shaping means is added to the capacity changing means of FIG. FIG. 9 shows a potential measuring apparatus according to the present embodiment, FIG. 9A is a schematic diagram for explaining the configuration, and FIGS. 9B and 9C are schematic diagrams of cross sections of the potential measuring apparatus. Show.

本実施形態において、複数の検知電極102がライン状に配置され、検知電極102と同等の大きさの開口部304を有した容量変化手段303があり、容量変化手段303と同じ形状の整形手段305が配置されている。ここで、検知電極102と整形手段305は、所定の位置に固定されている(図9−b、図9−c参照)。また、検知電極102と整形手段305と容量変化手段303は、同電位に固定されているとする。 In this embodiment, a plurality of detection electrodes 102 are arranged in a line, and there is capacitance changing means 303 having an opening 304 having the same size as the detection electrodes 102, and shaping means 305 having the same shape as the capacitance changing means 303. Is arranged. Here, the detection electrode 102 and the shaping means 305 are fixed at predetermined positions (see FIGS. 9B and 9C). Further, it is assumed that the detection electrode 102, the shaping unit 305, and the capacitance changing unit 303 are fixed at the same potential.

図9−bを用いて、補正信号を検出する過程を説明する。ここで、容量変化手段の振動子303のアクチュエータが共振現象を用いているとする。振動子303には、共振状態となる周波数からずらした周波数の交流(AC)信号を、直流(DC)信号に重畳して印加する。この時、振動子303には共振周波数が印加されていないので、振動子303は共振状態にはならない。つまり、この状態では、振動子303は実質的に振動してはいないとみなせるが、振動子303には駆動時と同等の駆動の信号(AC信号)を入力していることになり、ノイズについては駆動時と同等の駆動ノイズが発生していることになる。 A process of detecting the correction signal will be described with reference to FIG. Here, it is assumed that the actuator of the vibrator 303 of the capacity changing means uses a resonance phenomenon. An alternating current (AC) signal having a frequency shifted from the frequency at which resonance occurs is applied to the vibrator 303 so as to be superimposed on the direct current (DC) signal. At this time, since the resonance frequency is not applied to the vibrator 303, the vibrator 303 does not enter a resonance state. That is, in this state, the vibrator 303 can be regarded as not substantially vibrating, but a driving signal (AC signal) equivalent to that at the time of driving is input to the vibrator 303. This means that drive noise equivalent to that during driving occurs.

一方、この状態では、直流(DC)信号により、振動子303は静的に(例えば矢印Gの方向に)移動して、図9−bの位置に来る。この時、検知電極102に入射される電気力線201は振動子303により完全に遮蔽される。また、検知電極102に入射される電気力線の数は、ほぼ0になっている。つまり、容量変化手段(振動子303)は、検知電極102に対して遮蔽手段の機能を有している。そのため、検知電極102に入射する電気力線の数を0にできて、検出信号VOUTを駆動信号のノイズ成分Vnとして正確に測定することができる。 On the other hand, in this state, the vibrator 303 is moved statically (for example, in the direction of the arrow G) by the direct current (DC) signal and comes to the position of FIG. At this time, the electric force lines 201 incident on the detection electrode 102 are completely shielded by the vibrator 303. Further, the number of lines of electric force incident on the detection electrode 102 is almost zero. That is, the capacitance changing unit (vibrator 303) functions as a shielding unit with respect to the detection electrode 102. Therefore, the number of lines of electric force incident on the detection electrode 102 can be reduced to 0, and the detection signal VOUT can be accurately measured as the noise component Vn of the drive signal.

ここで、振動子303には直流(DC)成分の信号が印加されているため、検出信号VOUTにも直流のノイズが発生する可能性もある。しかし、検出手段104の後段の処理(不図示)で交流成分のみを取り出す処理を行うことで、この直流(DC)成分のノイズは容易に除去できる。 Here, since a signal of a direct current (DC) component is applied to the vibrator 303, there is a possibility that direct current noise also occurs in the detection signal VOUT. However, the noise of this direct current (DC) component can be easily removed by performing the process of extracting only the alternating current component in the subsequent process (not shown) of the detection means 104.

次に、図9−cを用いて、検出信号を検出する過程を説明する。この時、容量変化手段303には、交流(AC)信号のみが印加される。振動子303は、図9−cのように或る周期で機械的な振動(矢印Eの方向)をしている。それにより、検知電極102に入射される電気力線の数は周期的に変化し、検知電極102から検出信号を得ることができる。 Next, a process for detecting a detection signal will be described with reference to FIG. At this time, only an alternating current (AC) signal is applied to the capacity changing means 303. The vibrator 303 is mechanically vibrated (in the direction of arrow E) at a certain period as shown in FIG. Thereby, the number of lines of electric force incident on the detection electrode 102 changes periodically, and a detection signal can be obtained from the detection electrode 102.

本実施形態によると、単一のアクチュエータで、補正信号と検出信号を得ることができるため、装置構成の削減、小型化を行うのが容易になる。その結果、より小型で、且つ高精度な電位測定装置を提供することができる。 According to the present embodiment, the correction signal and the detection signal can be obtained with a single actuator, so that the device configuration can be easily reduced and downsized. As a result, a more compact and highly accurate potential measuring device can be provided.

(第5の実施の形態)
第5の実施の形態は、本発明の電位測定装置を用いた画像形成装置に関する。ここで用いる電位測定装置は、第1の実施の形態から第4の実施の形態の何れかと同じである。
(Fifth embodiment)
The fifth embodiment relates to an image forming apparatus using the potential measuring device of the present invention. The potential measuring device used here is the same as any one of the first to fourth embodiments.

図10に、本実施形態に係る画像形成装置を説明する模式図を示す。図10は、感光ドラム501の回転軸Hと垂直な平面上での配置を示した図である。図10において、501は感光ドラム、502は紙、503はクリーナ部、504は帯電手段、505は露光手段、506は本発明による電位測定装置、507は現像手段である。画像形成手段は、感光体としての感光ドラム501、帯電手段504、露光手段505などで構成される。 FIG. 10 is a schematic diagram illustrating the image forming apparatus according to the present embodiment. FIG. 10 is a diagram showing the arrangement of the photosensitive drum 501 on a plane perpendicular to the rotation axis H. FIG. In FIG. 10, reference numeral 501 denotes a photosensitive drum, 502 denotes paper, 503 denotes a cleaner, 504 denotes charging means, 505 denotes exposure means, 506 denotes a potential measuring device according to the present invention, and 507 denotes developing means. The image forming unit includes a photosensitive drum 501 as a photoconductor, a charging unit 504, an exposure unit 505, and the like.

感光ドラム501は、軸Hを中心に方向Iの向きに回転する。感光ドラム501は、帯電手段504により帯電され、露光手段505により露光され、帯電パターンが形成される。電位測定装置506は、感光ドラム501上での帯電パターンの電位を測定する。そして、現像手段507において、帯電パターン部のみ(または、帯電パターン部以外のみ)にトナー等を吸着させて現像し、方向Jに走査されている紙502上に画像が転写される。その後、感光ドラム501は、クリーナ部503により清掃される。 The photosensitive drum 501 rotates about the axis H in the direction I. The photosensitive drum 501 is charged by the charging unit 504 and exposed by the exposure unit 505 to form a charged pattern. The potential measuring device 506 measures the potential of the charging pattern on the photosensitive drum 501. Then, the developing unit 507 develops the toner by adsorbing toner or the like only on the charged pattern portion (or only on the charged pattern portion), and the image is transferred onto the paper 502 scanned in the direction J. Thereafter, the photosensitive drum 501 is cleaned by the cleaner unit 503.

上記構成において、電位測定装置506での測定結果を用いて、帯電手段504や露光手段505などの制御を行い、画像の調整を行う。上記の画像形成装置においては、感光ドラム501の偏芯度合い、帯電手段504の帯電レベルの差、感光ドラム501の個体の表面状態、及び経時変化などが存在する。そのため、感光ドラム501上に形成される帯電パターンの帯電された電位は、画像形成装置の個体や時間により大きさが異なる。この電位の違いは、画像形成装置が画像を形成した時の、紙502上での画像濃さの違いの原因となる。このように、感光ドラム501上での帯電量の差が、画像形成装置の画質に大きな影響を与える。 In the above configuration, the charging unit 504, the exposure unit 505, and the like are controlled using the measurement result of the potential measuring device 506 to adjust the image. In the above-described image forming apparatus, the degree of eccentricity of the photosensitive drum 501, the difference in the charging level of the charging unit 504, the surface state of the individual photosensitive drum 501, changes with time, and the like exist. Therefore, the charged potential of the charging pattern formed on the photosensitive drum 501 varies depending on the individual image forming apparatus and time. This difference in potential causes a difference in image density on the paper 502 when the image forming apparatus forms an image. As described above, the difference in the charge amount on the photosensitive drum 501 greatly affects the image quality of the image forming apparatus.

第1の実施の形態から第4の実施の形態の何れかに記載されている電位測定装置は、上記のような画像形成装置に用いることができる。本発明の電位測定装置は、機械的な振動等や駆動信号によって発生する、検出信号の誤差成分を補正できるため、高精度な電位測定を行うことができる。そのため、帯電手段504や露光手段505などの制御を、この電位測定結果を基に行うことで、高画質な画像を維持できる。ここで、帯電手段504や露光手段505などの制御は、帯電手段504の帯電電圧を変更することや、露光手段505の光量や発光時間を変化させることにより行い得る。 The potential measuring device described in any of the first to fourth embodiments can be used for the image forming apparatus as described above. Since the potential measuring device of the present invention can correct an error component of a detection signal generated by mechanical vibration or a drive signal, it can perform highly accurate potential measurement. Therefore, high-quality images can be maintained by controlling the charging unit 504, the exposure unit 505, and the like based on the potential measurement result. Here, the control of the charging unit 504, the exposure unit 505, and the like can be performed by changing the charging voltage of the charging unit 504, or changing the light amount and the light emission time of the exposure unit 505.

上記のように、本実施形態によると、高画質な画像形成装置を提供することができる。 As described above, according to this embodiment, an image forming apparatus with high image quality can be provided.

本発明の第1の実施の形態に係る電位測定装置の構成を説明する模式図。The schematic diagram explaining the structure of the electric potential measurement apparatus which concerns on the 1st Embodiment of this invention. 本発明で用いることができる容量変化手段の例を説明する模式的な斜視図。The typical perspective view explaining the example of the capacity | capacitance change means which can be used by this invention. 本発明で用いることができる容量変化手段の例を説明する模式的な斜視図。The typical perspective view explaining the example of the capacity | capacitance change means which can be used by this invention. 本発明で用いることができる容量変化手段の例を説明する模式的な斜視図。The typical perspective view explaining the example of the capacity | capacitance change means which can be used by this invention. 本発明で用いることができる検出手段の例を説明する模式図。The schematic diagram explaining the example of the detection means which can be used by this invention. 本発明で用いることができる検出手段の例を説明する模式図。The schematic diagram explaining the example of the detection means which can be used by this invention. 本発明で用いることができる検出手段の例を説明する模式図。The schematic diagram explaining the example of the detection means which can be used by this invention. 第1の実施の形態の検出信号について説明する概念的なグラフ図。The conceptual graph figure explaining the detection signal of 1st Embodiment. 第1の実施の形態のノイズ成分Vnを測定する方法を説明する模式図。The schematic diagram explaining the method to measure the noise component Vn of 1st Embodiment. 第1の実施の形態の検出信号を測定する方法を説明する模式図。The schematic diagram explaining the method to measure the detection signal of 1st Embodiment. 第1の実施の形態に係る電位測定装置の測定方法のフローを表す図。The figure showing the flow of the measuring method of the electric potential measuring device which concerns on 1st Embodiment. 本発明の第2の実施の形態に係る電位測定装置の測定方法のフローを表す図。The figure showing the flow of the measuring method of the electric potential measuring device which concerns on the 2nd Embodiment of this invention. 第3の実施の形態に係る電位測定装置を説明する模式的な斜視図。The typical perspective view explaining the electric potential measuring device concerning a 3rd embodiment. 第3の実施の形態の検出信号を測定する方法を説明する模式図。The schematic diagram explaining the method to measure the detection signal of 3rd Embodiment. 第3の実施の形態のノイズ成分Vnを測定する方法を説明する模式図。The schematic diagram explaining the method of measuring the noise component Vn of 3rd Embodiment. 第4の実施の形態に係る電位測定装置を説明する模式的な斜視図。The typical perspective view explaining the electric potential measuring device concerning a 4th embodiment. 第4の実施の形態のノイズ成分Vnを測定する方法を説明する模式図。The schematic diagram explaining the method of measuring the noise component Vn of 4th Embodiment. 第3の実施の形態の検出信号を測定する方法を説明する模式図。The schematic diagram explaining the method to measure the detection signal of 3rd Embodiment. 本発明の第5の実施の形態に係る画像形成装置を説明する模式図。FIG. 9 is a schematic diagram illustrating an image forming apparatus according to a fifth embodiment of the present invention. 一般的な非接触型の電位測定装置の構成図。1 is a configuration diagram of a general non-contact type potential measuring device.

符号の説明Explanation of symbols

101、501、601 測定対象の面(感光ドラム、被測定物)
102、602 検知電極
103、301、302、303 容量変化手段(振動子、遮蔽手段)
104、603 検出手段(電荷検出手段)
105 遮蔽手段
106 補正手段
305 整形手段(遮蔽手段)
501、504、505 画像形成手段
504 帯電手段
505 露光手段
506 電位測定装置
101, 501, 601 Surface to be measured (photosensitive drum, object to be measured)
102, 602 Detection electrodes 103, 301, 302, 303 Capacitance changing means (vibrator, shielding means)
104, 603 detection means (charge detection means)
105 Shielding means 106 Correction means 305 Shaping means (shielding means)
501, 504, 505 Image forming means 504 Charging means 505 Exposure means 506 Potential measuring device

Claims (8)

測定対象物の電位を測定する電位測定装置であって、
検知電極と、
測定対象物と検知電極との間の静電容量を変化させる容量変化手段と、
検知電極に静電誘導される電荷量を検出する検出手段と、
測定対象物と検知電極との間に生じうる電気力線から前記検知電極を遮蔽する遮蔽手段と、
を有し、
前記遮蔽手段は、前記検知電極を遮蔽した遮蔽状態で前記検出手段から信号を得るとともに、前記検知電極を遮蔽しない非遮蔽状態で前記検出手段から信号を得るべく、遮蔽状態と非遮蔽状態を切り替える手段を有することを特徴とする電位測定装置。
A potential measuring device that measures the potential of a measurement object,
A sensing electrode;
Capacitance changing means for changing the capacitance between the measurement object and the detection electrode;
Detection means for detecting the amount of charge electrostatically induced in the detection electrode;
Shielding means for shielding the detection electrode from electric lines of force that can occur between the measurement object and the detection electrode;
Have
The shielding means switches between a shielding state and a non-shielding state so as to obtain a signal from the detection means in a shielding state where the detection electrode is shielded and to obtain a signal from the detection means in a non-shielding state where the sensing electrode is not shielded. A potential measuring device comprising means.
更に補正手段を有し、
該補正手段は、遮蔽手段による前記遮蔽状態において検出手段で検出される検出信号を記憶する手段と、遮蔽手段による前記非遮蔽状態において検出手段で検出される検出信号に対して、前記記憶した検出信号に基づく減算処理を施して出力する手段を有する請求項1に記載の電位測定装置。
Furthermore, it has a correction means,
The correction means stores the detection signal detected by the detection means in the shielding state by the shielding means and the detection signal detected by the detection means in the non-shielding state by the shielding means. 2. The potential measuring device according to claim 1, further comprising means for performing a subtraction process based on the signal and outputting the result.
更に、測定対象物から検知電極に達する電気力線を整形するための整形手段を有する請求項1または2記載の電位測定装置。 The potential measuring device according to claim 1, further comprising shaping means for shaping electric lines of force reaching the detection electrode from the measurement object. 前記整形手段が前記遮蔽手段を兼ねるように構成されている請求項3記載の電位測定装置。 The potential measuring apparatus according to claim 3, wherein the shaping unit is configured to also serve as the shielding unit. 前記容量変化手段が前記遮蔽手段を兼ねるように構成されている請求項1から3の何れかに記載の電位測定装置。 The potential measuring apparatus according to claim 1, wherein the capacitance changing unit is configured to also serve as the shielding unit. 請求項1から5の何れかに記載の電位測定装置と画像形成手段を備え、電位測定装置の検知電極の面が画像形成手段の電位測定の対象となる感光体と対向して配置され、画像形成手段が電位測定装置の信号検出結果を用いて画像形成の制御を行うことを特徴とする画像形成装置。 An electric potential measuring device according to claim 1 and an image forming means, wherein the surface of the detection electrode of the electric potential measuring device is arranged to face a photoconductor to be subjected to electric potential measurement of the image forming means. An image forming apparatus, wherein the forming unit controls image formation using a signal detection result of the potential measuring device. 測定対象物の電位を測定する方法であって、該測定対象物と検知電極との間に生じうる電気力線から前記検知電極を遮蔽手段により遮蔽した状態で、前記測定対象物と前記検知電極との間の静電容量を変化させる容量変化手段を駆動し、前記検知電極に静電誘導される電荷量を検出する工程と、
前記測定対象物と前記検知電極の間に生じる電気力線から前記検知電極を遮蔽しない状態で前記容量変化手段を駆動させ、前記検知電極に静電誘導される電荷量を検出する工程と、
前記各工程で検出された検出値に基づいて、前記測定対象物の電位を測定する工程と、を有することを特徴とする電位測定方法。
A method for measuring a potential of a measurement object, wherein the measurement object and the detection electrode are in a state in which the detection electrode is shielded by shielding means from electric lines of force that may be generated between the measurement object and the detection electrode. Driving a capacitance changing means for changing the capacitance between and detecting the amount of charge electrostatically induced in the detection electrode;
Driving the capacitance changing means in a state where the detection electrode is not shielded from lines of electric force generated between the measurement object and the detection electrode, and detecting a charge amount electrostatically induced in the detection electrode;
And a step of measuring the potential of the measurement object based on the detection value detected in each step.
請求項7に記載の電位測定方法を用いて測定した結果に基づき測定対象の面と検知電極との間の電位差を検出し、この電位差の絶対値が最小値に近づくように検知電極の電位を変化させ、この結果到達した検知電極の電位を測定対象の面の電位として得ることを特徴とする電位測定方法。 A potential difference between the surface to be measured and the detection electrode is detected based on the measurement result using the potential measurement method according to claim 7, and the potential of the detection electrode is set so that the absolute value of the potential difference approaches a minimum value. A potential measuring method characterized in that the potential of the sensing electrode reached as a result of the change is obtained as the potential of the surface to be measured.
JP2005235587A 2005-08-16 2005-08-16 Potential measurement device and potential measurement method Pending JP2007051885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235587A JP2007051885A (en) 2005-08-16 2005-08-16 Potential measurement device and potential measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235587A JP2007051885A (en) 2005-08-16 2005-08-16 Potential measurement device and potential measurement method

Publications (1)

Publication Number Publication Date
JP2007051885A true JP2007051885A (en) 2007-03-01

Family

ID=37916438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235587A Pending JP2007051885A (en) 2005-08-16 2005-08-16 Potential measurement device and potential measurement method

Country Status (1)

Country Link
JP (1) JP2007051885A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157412A1 (en) * 2011-05-16 2012-11-22 株式会社コガネイ Potential measurement device
JP2013224904A (en) * 2012-04-23 2013-10-31 Koganei Corp Electrical potential measurement device
JP2013224905A (en) * 2012-04-23 2013-10-31 Koganei Corp Electrical potential measurement device
WO2014045406A1 (en) * 2012-09-21 2014-03-27 株式会社コガネイ Potential measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157412A1 (en) * 2011-05-16 2012-11-22 株式会社コガネイ Potential measurement device
JP2013224904A (en) * 2012-04-23 2013-10-31 Koganei Corp Electrical potential measurement device
JP2013224905A (en) * 2012-04-23 2013-10-31 Koganei Corp Electrical potential measurement device
US9121875B2 (en) 2012-04-23 2015-09-01 Koganei Corporation Potential measuring device
WO2014045406A1 (en) * 2012-09-21 2014-03-27 株式会社コガネイ Potential measuring device

Similar Documents

Publication Publication Date Title
US20070170925A1 (en) Electric potential measuring apparatus and image forming apparatus
US7548066B2 (en) Potential measuring device and image forming apparatus using the same
US6806717B2 (en) Spacing compensating electrostatic voltmeter
JP2007051885A (en) Potential measurement device and potential measurement method
US7372278B2 (en) Electric potential measuring apparatus electrostatic capacitance measuring apparatus, electric potential measuring method, electrostatic capacitance measuring method, and image forming apparatus
US10429787B2 (en) Image forming apparatus with detection of surface potential of photosensitive member and adjustment of slope of charge potential
JPS6333147B2 (en)
JP5087990B2 (en) Image forming apparatus
JP2009098038A (en) Electric potential measuring device and image forming apparatus using it
JP6206536B2 (en) Moving body displacement detection device, image forming apparatus, and moving body displacement detection method
JP2016126301A (en) Image forming apparatus
JPH06289717A (en) Magnetically detecting device
JP4950574B2 (en) Potential measuring apparatus and potential measuring method
JP2009098289A (en) Image forming device
JP3950887B2 (en) Potential profile measuring device
JP3529653B2 (en) Image forming device
JPS6359143B2 (en)
JP2007052125A (en) Potential measuring device
JP2005173123A (en) Image forming apparatus
JP2010066688A (en) Surface potential measurement system and image forming apparatus
JP3155326B2 (en) Surface potential and shape measuring instrument
JP2006214764A (en) Potential measurement apparatus and image forming apparatus
JPH0561304A (en) Image forming device and potential detecting method
JP4065541B2 (en) Image forming apparatus, potential profile measuring apparatus, and potential profile measuring method
JPS6327662B2 (en)