JP2009155728A - Wear resistant cast iron - Google Patents

Wear resistant cast iron Download PDF

Info

Publication number
JP2009155728A
JP2009155728A JP2008310042A JP2008310042A JP2009155728A JP 2009155728 A JP2009155728 A JP 2009155728A JP 2008310042 A JP2008310042 A JP 2008310042A JP 2008310042 A JP2008310042 A JP 2008310042A JP 2009155728 A JP2009155728 A JP 2009155728A
Authority
JP
Japan
Prior art keywords
carbide
wear
cast iron
resistant cast
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008310042A
Other languages
Japanese (ja)
Other versions
JP5470825B2 (en
Inventor
Madoka Takahashi
円 高橋
Akihiro Sato
彰洋 佐藤
Isao Nakanowatari
功 中野渡
Hiroharu Yasutake
寛晴 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008310042A priority Critical patent/JP5470825B2/en
Publication of JP2009155728A publication Critical patent/JP2009155728A/en
Application granted granted Critical
Publication of JP5470825B2 publication Critical patent/JP5470825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide wear resistant cast iron which satisfies a balance between costs and various properties while maintaining excellent hardenability by controlling Mo content and incorporating at least one element among W, Nb and Ti in a well-balanced manner. <P>SOLUTION: This cast iron has a chemical composition which is composed of, by mass, 2.5 to 3.7% C, 0.2 to 1.0% Si, 0.4 to 0.8% Mn, 0.13 to 5.0% Ni, 10.0 to 23.0% Cr, 0.5 to 4.0% Mo, 0 to 3.9% W, 0 to 2.1% Nb, 0 to 1.0% Ti, 0 to 0.7% V and the balance Fe with inevitable impurities and in which, when P is represented by equation P=1.72[Mo%]+0.51[W%]+0.23[Nb%]+5.29[Ti%]+12.2[C%]-0.59[Cr%]+2.23[Ni%], P≥32 is satisfied. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、Moの含有量を抑制し、C、Si、Mn、Ni、Cr、W、Nb、Tiをバランス良く含有させることにより良好な焼入性を保持しながらコストと諸性能のバランスを両立した耐摩耗性鋳鉄に関する。   The present invention suppresses the Mo content and balances cost and performance while maintaining good hardenability by containing C, Si, Mn, Ni, Cr, W, Nb, and Ti in a balanced manner. The present invention relates to compatible wear-resistant cast iron.

ローラータイヤ、テーブルセグメント等の微粉炭機、砕石機械、採鉱機械、電力関連設備、建設機械などの設備や産業用機械においては、取り扱う原料、素材との接触などにより部材の損耗が著しく、構造物としての物理的な強度の他に、耐摩耗性が重要な条件となっている。この種の用途において、引っ掻き摩耗や耐エロージョンに強い汎用材料として炭化物を多量に分散させた耐摩耗性鋳鉄が知られている。
鋳鉄の一般的な強化法として浸炭や窒化などの表面処理技術が広く知られているが、表面処理を伴わない大型耐摩耗性鋳鉄として、Moを多く添加した組成系の鋳鉄が知られ、Moを多く添加した組成系の鋳鉄では、M7C3炭化物の析出機構を利用して鋳鉄の高硬度を保っている。
In equipment such as roller tires, pulverized coal machines such as table segments, crushed stone machines, mining machines, power-related equipment, construction machines, and industrial machines, the wear of members is significant due to contact with raw materials and materials handled, etc. In addition to the physical strength, wear resistance is an important condition. In this type of application, wear-resistant cast iron in which a large amount of carbide is dispersed is known as a general-purpose material that is resistant to scratch wear and erosion.
As a general strengthening method of cast iron, surface treatment techniques such as carburizing and nitriding are widely known, but as a large wear-resistant cast iron without surface treatment, a composition type cast iron with a large amount of Mo added is known. In the cast iron of the composition system to which a large amount of is added, the high hardness of the cast iron is maintained by utilizing the precipitation mechanism of M7C3 carbide.

この種の耐摩耗性鋳鉄の一従来例として、化学組成が、C:2.7〜3.5wt%、Cr:16〜22wt%、Mo:6〜12wt%、Si:0.4〜0.8wt%、Mn:0.4〜1.0wt%、Ni:0.5〜1.2wt%、V:0.2〜3.5wt%%、残部がFeおよび不可避不純物からなる耐摩耗性鋳鉄が知られている。(特許文献1参照)   As a conventional example of this type of wear-resistant cast iron, the chemical composition is C: 2.7 to 3.5 wt%, Cr: 16 to 22 wt%, Mo: 6 to 12 wt%, Si: 0.4 to 0.00. A wear-resistant cast iron comprising 8 wt%, Mn: 0.4 to 1.0 wt%, Ni: 0.5 to 1.2 wt%, V: 0.2 to 3.5 wt%, the balance being Fe and inevitable impurities Are known. (See Patent Document 1)

他の耐摩耗性鋳鉄の一従来例として、化学成分が重量比でC2.7〜3.5%、Si0.2〜1.0%、Mn0.5〜1.5%、Cr27〜34%、Mo0.5〜2.0%、W0.5〜2.0%、B0.1%以下、残部が実質的にFeおよび不可避不純物である高クロム鋳鉄を焼き入れ処理し、焼き戻すことにより得られた耐摩耗性合金鋳鉄が知られている。(特許文献2参照)   As one conventional example of other wear-resistant cast iron, the chemical component is C2.7 to 3.5% by weight, Si 0.2 to 1.0%, Mn 0.5 to 1.5%, Cr 27 to 34%, Mo 0.5-2.0%, W 0.5-2.0%, B 0.1% or less, obtained by quenching and tempering high chromium cast iron with the balance being substantially Fe and inevitable impurities Also known are wear-resistant alloy cast irons. (See Patent Document 2)

また、更に他の耐摩耗性鋳鉄の一例として、C,CrおよびMoを含む高Cr鋳鉄において、Nb:2〜5質量%を含有すると共に、下記(1)式を満足するものであることを特徴とする耐摩耗性高Cr鋳鉄が知られている。
7.5≦[Nb]/([C]−2.8)≦9 …(1)
但し、[Nb]および[C]は、夫々Nb,Cの含有量(質量%)を示す。 (特許文献3参照)
特開平11−199963号公報 特開平 3−150334号公報 特開平11−229070号公報
Further, as another example of the wear-resistant cast iron, the high Cr cast iron containing C, Cr and Mo contains Nb: 2 to 5% by mass and satisfies the following formula (1). A feature of wear-resistant high Cr cast iron is known.
7.5 ≦ [Nb] / ([C] −2.8) ≦ 9 (1)
However, [Nb] and [C] indicate the contents (% by mass) of Nb and C, respectively. (See Patent Document 3)
Japanese Patent Laid-Open No. 11-199963 Japanese Patent Laid-Open No. 3-150334 Japanese Patent Laid-Open No. 11-229070

前述の特許公報に開示されている各々の耐摩耗性鋳鉄及び他の公知の耐摩耗性鋳鉄においては、いずれも、オーステナイトの母相の中に、焼き入れ温度で高硬度のM7C3炭化物を析出させ、焼き戻し温度でM7C3炭化物を組織中に微細に分散させる構造を採用することにより、耐摩耗性を高めている。
このM7C3炭化物は、鉄鋼材料に析出する炭化物の類型の1つとして知られ、硬さ(Hv):1800〜2800であり、(Cr,Fe)7C3として表記することができ、高Crの鉄鋼材料において析出し易く、焼き入れ温度に加熱しても素地に固溶し難く、組織中に残留し易いので、耐摩耗性鋳鉄の強化に広く用いられている。
しかし、高硬度の耐摩耗性鋳鉄を製造する上でMoの存在は大きく、重要な添加元素であるが、現在、Moは北米地区、中南米地区、中国地区を中心とした地域からの輸入に頼っているのが現状であり、近年では世界規模の需要逼迫から、モリブデン価格の高騰が始まっている。このため本発明者は、耐摩耗性鋳鉄に必要な添加元素として、Moに代わる添加元素の研究を行い、今回良好な結果を得ることが出来たので本願発明に到達した。
In each of the wear-resistant cast irons disclosed in the above-mentioned patent publications and other known wear-resistant cast irons, M7C3 carbide having a high hardness at the quenching temperature is precipitated in the austenite matrix. The wear resistance is enhanced by adopting a structure in which M7C3 carbide is finely dispersed in the structure at the tempering temperature.
This M7C3 carbide is known as one of the types of carbides deposited on steel materials, has a hardness (Hv): 1800-2800, and can be expressed as (Cr, Fe) 7C3, and is a high Cr steel material It is easily used for strengthening wear-resistant cast iron because it is likely to precipitate in the steel, hardly dissolves in the substrate even when heated to the quenching temperature, and remains in the structure.
However, Mo is an important additive element in producing high-hardness wear-resistant cast iron. Currently, Mo relies on imports from regions such as North America, Latin America, and China. In recent years, the price of molybdenum has begun to rise due to tight demand on a global scale. For this reason, the present inventor conducted research on an additive element in place of Mo as an additive element necessary for wear-resistant cast iron, and obtained a good result this time, thus reaching the present invention.

本発明は前記課題を解決するために、Moの含有量を低減し、C、Si、Mn、Ni、Cr、W、Nb、Tiをバランス良く含有させることにより良好な焼入性を保持しながらコストと諸性能のバランスを両立した耐摩耗性鋳鉄を提供することを目的とする。   In order to solve the above-mentioned problems, the present invention reduces the Mo content and maintains good hardenability by containing C, Si, Mn, Ni, Cr, W, Nb, and Ti in a balanced manner. The object is to provide wear-resistant cast iron that balances cost and performance.

上記目的を達成するために、本発明者は、Moの代替元素として、周期律表の6A族であるMoの近傍の族元素のうち、Ti、V、Cr、Zr、Nb、Ta、Hf、Wに着目し、研究開発を行った。これらの元素の内、Hfは希少元素であり極端に単価が高いために研究対象から除外した。   In order to achieve the above object, the present inventor, as an alternative element of Mo, among the group elements in the vicinity of Mo that is Group 6A of the periodic table, Ti, V, Cr, Zr, Nb, Ta, Hf, Focusing on W, research and development were conducted. Among these elements, Hf was a rare element and was excluded from the study because it was extremely expensive.

次に、Zrを鋳鉄に添加すると極めて酸化し易くなり、合金を溶製する際に、のろとして、無駄になるので研究対象から除外し、Taを添加すると素地がフェライト組織になり易く、軟化し易くなるので研究対象から除外した。
残った元素において、Ti、V、Cr、Nb、Wの解析と、その他鋳鉄に含有させている元素としてSi、Mn、Niなどの元素との相関関係について各元素の含有量に応じて得られる鋳鉄が如何なる特性を具備するか種々試験研究を行った結果、本願発明に到達した。
Next, when Zr is added to cast iron, it becomes very easy to oxidize. When melting the alloy, it is wasted as it is wasted, so it is excluded from the research object, and when Ta is added, the base tends to become a ferrite structure and softens. It was excluded from the study because it was easy to do.
Among the remaining elements, the analysis of Ti, V, Cr, Nb, and W and the correlation with other elements such as Si, Mn, and Ni as elements contained in cast iron are obtained according to the content of each element. As a result of various test studies on what characteristics cast iron has, the present invention has been achieved.

(1)本発明の耐摩耗性鋳鉄は、化学組成として質量%で、C:2.5〜3.7%、Si:0.2〜1.0%、Mn:0.4〜0.8%、Ni:0.13〜5.0%、Cr:10.0〜23.0%、Mo:0.5〜4.0%、W:0〜3.9%、Nb:0〜2.1%、Ti:0〜1.0%、V:0〜0.7%を含み、残部Feおよび不可避不純物からなり、かつ、Pを以下の式としたとき、P=1.72[Mo%]+0.51[W%]+0.23[Nb%]+5.29[Ti%]+12.2[C%]−0.59[Cr%]+2.23[Ni%]、P≧32を満たす組成を有することを特徴とする。
(2)本発明の耐摩耗性鋳鉄は、化学組成として質量%で、C:2.5〜3.7%、Si:0.2〜1.0%、Mn:0.4〜0.8%、Ni:0.13〜5.0%、Cr:10.0〜23.0%、Mo:0.5〜4.0%、W:0〜3.9%、Nb:0〜2.1%、Ti:0〜1.0%、V:0〜0.7%を含み、残部Feおよび不可避不純物からなり、かつ、Pを以下の式としたとき、P*=1.72[Mo%]+0.51[W%]+0.23[Nb%]+2.23[V%]+5.29[Ti%]+12.2[C%]−0.59[Cr%]+2.23[Ni%]、
P≧32を満たす組成を有することを特徴とする。
(1) The wear-resistant cast iron of the present invention is in mass% as a chemical composition, C: 2.5-3.7%, Si: 0.2-1.0%, Mn: 0.4-0.8 %, Ni: 0.13-5.0%, Cr: 10.0-23.0%, Mo: 0.5-4.0%, W: 0-3.9%, Nb: 0-2. 1%, Ti: 0 to 1.0%, V: 0 to 0.7%, the balance being Fe and inevitable impurities, and when P is represented by the following formula, P = 1.72 [Mo% ] +0.51 [W%] + 0.23 [Nb%] + 5.29 [Ti%] + 12.2 [C%] − 0.59 [Cr%] + 2.23 [Ni%], satisfying P ≧ 32. It has a composition.
(2) The wear-resistant cast iron of the present invention is in mass% as a chemical composition, C: 2.5 to 3.7%, Si: 0.2 to 1.0%, Mn: 0.4 to 0.8 %, Ni: 0.13-5.0%, Cr: 10.0-23.0%, Mo: 0.5-4.0%, W: 0-3.9%, Nb: 0-2. 1%, Ti: 0 to 1.0%, V: 0 to 0.7%, the balance being Fe and inevitable impurities, and when P is represented by the following formula, P * = 1.72 [Mo %] + 0.51 [W%] + 0.23 [Nb%] + 2.23 [V%] + 5.29 [Ti%] + 12.2 [C%] − 0.59 [Cr%] + 2.23 [Ni %],
It has the composition which satisfy | fills P> = 32.

(3)本発明の耐摩耗性鋳鉄は、(1)または(2)に記載の耐摩耗性鋳鉄の化学組成において、C:2.88〜3.7%、Si:0.55〜1.0%、Mn:0.6〜0.8%、Ni:0.13〜5.0%、Cr:10.0〜22.56%、Mo:0.5〜3.94%としたことを特徴とする。
(4)本発明の耐摩耗性鋳鉄は、化学組成として質量%で、C:2.88〜3.22%、Si:0.55〜0.66%、Mn:0.60〜0.72%、Ni:0.13〜1.55%、Cr:16.51〜22.56%、Mo:0.50〜3.94%、W:0〜3.86%、V:0〜0.7%、Nb:0〜2.1%、Ti:0〜0.27%、を含み、残部Feおよび不可避不純物からなることを特徴とする。
(3) The wear-resistant cast iron of the present invention has the chemical composition of the wear-resistant cast iron described in (1) or (2), C: 2.88 to 3.7%, Si: 0.55 to 1. 0%, Mn: 0.6 to 0.8%, Ni: 0.13 to 5.0%, Cr: 10.0 to 22.56%, Mo: 0.5 to 3.94% Features.
(4) The wear-resistant cast iron of the present invention has a chemical composition of mass%, C: 2.88 to 3.22%, Si: 0.55 to 0.66%, Mn: 0.60 to 0.72. %, Ni: 0.13 to 1.55%, Cr: 16.51 to 22.56%, Mo: 0.50 to 3.94%, W: 0 to 3.86%, V: 0 to 0.0. 7%, Nb: 0 to 2.1%, Ti: 0 to 0.27%, and remaining Fe and inevitable impurities.

(5)本発明の耐摩耗性鋳鉄は、(3)に記載の化学組成において、C:3.07〜3.15%、Ni:1.0〜1.55%、Cr:17.76〜18.18%、Mo:1.5〜3.94%、W:0〜2.38%としたことを特徴とする。
(6)本発明の耐摩耗性鋳鉄は、(1)〜(5)に記載の金属組織中に、(Cr,Fe)7C3で示されるM7C3炭化物と、MoC,TiC,NbCのいずれかからなるMC炭化物と、(Cr,Fe)23C6で示されるM23C6炭化物とが析出されてなることを特徴とする。
(7)本発明の耐摩耗性鋳鉄は、(6)に記載の金属組織中のM7C3炭化物と、M23C6炭化物の量比が、M7C3炭化物(at%)÷M23C6量(at%)<3.4となることを特徴とする。
(8)本発明の耐摩耗性鋳鉄は、(6)に記載の金属組織中のM7C3炭化物と、M23C6炭化物の量比が、M7C3炭化物(at%)÷M23C6量(at%)<2.5となることを特徴とする。
(9)本発明の耐摩耗性鋳鉄は、(1)、(3)〜(8)のいずれかに記載のP=1.72[Mo%]+0.51[W%]+0.23[Nb%]+5.29[Ti%]+12.2[C%]−0.59[Cr%]+2.23[Ni%]なる式において、P≧33.7を満たす組成を有することを特徴とする。
(5) The wear-resistant cast iron of the present invention has the chemical composition described in (3), C: 3.07 to 3.15%, Ni: 1.0 to 1.55%, Cr: 17.76 to 18.18%, Mo: 1.5 to 3.94%, W: 0 to 2.38%.
(6) The wear-resistant cast iron of the present invention is composed of any one of M7C3 carbide represented by (Cr, Fe) 7C3 and MoC, TiC, NbC in the metal structure described in (1) to (5). MC carbide and M23C6 carbide represented by (Cr, Fe) 23C6 are precipitated.
(7) In the wear-resistant cast iron of the present invention, the amount ratio of M7C3 carbide to M23C6 carbide in the metal structure described in (6) is M7C3 carbide (at%) ÷ M23C6 amount (at%) <3.4. It is characterized by becoming.
(8) In the wear-resistant cast iron of the present invention, the amount ratio of M7C3 carbide to M23C6 carbide in the metal structure described in (6) is M7C3 carbide (at%) ÷ M23C6 amount (at%) <2.5. It is characterized by becoming.
(9) The wear-resistant cast iron of the present invention has P = 1.72 [Mo%] + 0.51 [W%] + 0.23 [Nb] according to any one of (1) and (3) to (8). %] + 5.29 [Ti%] + 12.2 [C%] − 0.59 [Cr%] + 2.23 [Ni%], and has a composition satisfying P ≧ 33.7. .

本発明によれば、Moの含有量を抑制し、安価にできるとともに、C、Si、Mn、Ni、Cr、Moの含有量を適度な範囲とすることにより良好な焼入性を保持しながらコストと高硬度などの諸性能のバランスを両立した耐摩耗性鋳鉄を提供することができる。
更に、これらの元素の添加に加え、W、Nb、Ti、Vの少なくとも1種をバランス良く含有させても、良好な焼入性を保持しながらコストと高硬度などの諸性能のバランスを更に高いレベルにおいて両立した耐摩耗性鋳鉄を提供することができる。
According to the present invention, the content of Mo can be suppressed and made inexpensive, while maintaining good hardenability by making the content of C, Si, Mn, Ni, Cr, and Mo within an appropriate range. It is possible to provide a wear-resistant cast iron that balances various performances such as cost and high hardness.
Furthermore, in addition to the addition of these elements, even if at least one of W, Nb, Ti, and V is contained in a well-balanced manner, the balance between various performances such as cost and high hardness is further maintained while maintaining good hardenability. A wear-resistant cast iron that is compatible at a high level can be provided.

以下、本発明の実施の形態を図面を用いて説明するが、本発明は以下に説明する各実施の形態に制限されるものではない。
本願発明に係る耐摩耗性鋳鉄は、化学組成として質量%で、C:2.5〜3.7%、Si:0.2〜1.0%、Mn:0.4〜0.8%、Ni:0.13〜5.0%、Cr:10.0〜23.0%、Mo:0.5〜4.0%、W:0〜3.9%、Nb:0〜2.1%、Ti:0〜1.0%、V:0〜0.7%を含み、残部Feおよび不可避不純物からなる。
前記化学組成に代えて、質量%で、C:2.88〜3.7%、Si:0.55〜1.0%、Mn:0.6〜0.8%、Ni:0.13〜5.0%、Cr:10.0〜22.56%、Mo:0.5〜3.94%としても良い。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments described below.
The wear-resistant cast iron according to the present invention is in mass% as a chemical composition, C: 2.5 to 3.7%, Si: 0.2 to 1.0%, Mn: 0.4 to 0.8%, Ni: 0.13-5.0%, Cr: 10.0-23.0%, Mo: 0.5-4.0%, W: 0-3.9%, Nb: 0-2.1% Ti: 0 to 1.0%, V: 0 to 0.7%, and the balance is Fe and inevitable impurities.
Instead of the chemical composition, C: 2.88-3.7%, Si: 0.55-1.0%, Mn: 0.6-0.8%, Ni: 0.13- It may be 5.0%, Cr: 10.0 to 22.56%, Mo: 0.5 to 3.94%.

更に本発明の耐摩耗性鋳鉄は、化学組成として質量%で、C:2.88〜3.22%、Si:0.55〜0.66%、Mn:0.60〜0.72%、Ni:0.13〜1.55%、Cr:16.51〜22.56%、Mo:0.50〜3.94%、W:0〜3.9%、V:0〜0.5%、Nb:0〜2.1%、Ti:0〜0.27%、を含み、残部Feおよび不可避不純物からなることを特徴としても良い。
また、先に記載の化学組成において、C:3.07〜3.15%、Ni:1.0〜1.55%、Cr:17.76〜18.18%、Mo:1.5〜3.94%、W:0〜2.38%としても良い。
Further, the wear-resistant cast iron of the present invention has a chemical composition of mass%, C: 2.88 to 3.22%, Si: 0.55 to 0.66%, Mn: 0.60 to 0.72%, Ni: 0.13 to 1.55%, Cr: 16.51 to 22.56%, Mo: 0.50 to 3.94%, W: 0 to 3.9%, V: 0 to 0.5% Nb: 0 to 2.1%, Ti: 0 to 0.27%, and may be characterized by being composed of the remaining Fe and inevitable impurities.
In the chemical composition described above, C: 3.07 to 3.15%, Ni: 1.0 to 1.55%, Cr: 17.76 to 18.18%, Mo: 1.5 to 3 0.94%, W: 0 to 2.38%.

また、本発明の耐摩耗性鋳鉄は、前述のいずれかの組成を有しながら、Pを以下の式としたとき、P=1.72[Mo%]+0.51[W%]+0.23[Nb%]+5.29[Ti%]+12.2[C%]−0.59[Cr%]+2.23[Ni%]、
P≧32を満たす組成を有することが必要とされる。
前記Pの値は、32.8以上であることがより好ましく、33.7以上であることが最も好ましい。
本発明に係る耐摩耗性鋳鉄において、P値を32.8以上とすることでHRC62.5を超える耐摩耗性鋳鉄を得ることができ、P値を33.7以上とすることでHRC63.5を超える耐摩耗性鋳鉄を得ることができる。
次に、本発明の耐摩耗性鋳鉄は、前述のいずれかの組成を有しながら、Pを以下の式としたとき、P*=1.72[Mo%]+0.51[W%]+0.23[Nb%]+2.23[V%]+5.29[Ti%]+12.2[C%]−0.59[Cr%]+2.23[Ni%]、
P≧32を満たす組成を有することが必要とされる。
前記Pの値は、32.8以上であることがより好ましく、33.7以上であることが最も好ましい。
Further, the wear-resistant cast iron of the present invention has one of the above-mentioned compositions, and when P is represented by the following formula, P = 1.72 [Mo%] + 0.51 [W%] + 0.23 [Nb%] + 5.29 [Ti%] + 12.2 [C%] − 0.59 [Cr%] + 2.23 [Ni%]
It is required to have a composition that satisfies P ≧ 32.
The value of P is more preferably 32.8 or more, and most preferably 33.7 or more.
In the wear-resistant cast iron according to the present invention, a wear-resistant cast iron exceeding HRC62.5 can be obtained by setting the P value to 32.8 or more, and HRC63.5 by setting the P value to 33.7 or more. It is possible to obtain a wear-resistant cast iron exceeding.
Next, the wear-resistant cast iron of the present invention has one of the above-mentioned compositions, and when P is represented by the following formula, P * = 1.72 [Mo%] + 0.51 [W%] + 0 .23 [Nb%] + 2.23 [V%] + 5.29 [Ti%] + 12.2 [C%] − 0.59 [Cr%] + 2.23 [Ni%]
It is required to have a composition that satisfies P ≧ 32.
The value of P is more preferably 32.8 or more, and most preferably 33.7 or more.

以下に本発明の耐摩耗性鋳鉄の成分限定理由について説明する。以下に説明において成分の単位はいずれも質量%である。
C:2.5〜3.7%、
Cは耐摩耗性に有効な炭化物の主要構成元素の1つであり、添加量が多い程、析出物の量も多くなる。Cの含有量が2.5%よりも少ないと析出物の析出量が十分ではなく、逆に、Cの含有量が3.7%よりも多いと粗大な炭化物やグラファイトが多量に分散して脆くなるためこの範囲とした。中でも、C含有量範囲として、2.88〜3.7%、2.88〜3.22%、3.07〜3.15%がこの順により好ましい範囲となる。
The reasons for limiting the components of the wear-resistant cast iron of the present invention will be described below. In the following description, the unit of each component is mass%.
C: 2.5-3.7%
C is one of the main constituent elements of carbide effective for wear resistance, and the amount of precipitate increases as the amount added increases. If the C content is less than 2.5%, the amount of precipitation is not sufficient. Conversely, if the C content is more than 3.7%, a large amount of coarse carbides and graphite are dispersed. This range was selected because it became brittle. Among them, the C content range is preferably 2.88 to 3.7%, 2.88 to 3.22%, and 3.07 to 3.15% in this order.

Si:0.2〜1.0%、Mn:0.4〜0.8%、
SiおよびMnは鋳鉄の溶解における脱酸素に必要な元素であり、Siについては0.2〜1.0%、Mnについては0.4〜0.8%添加する。多量に添加すると耐摩耗性の劣化を招く。中でも、Si含有量において0.55〜1.0%、0.55〜0.66%の範囲がこの順でより好ましい範囲となる。また、Mn含有量において、0.6〜0.8%、0.5〜0.72%がこの順でより好ましい範囲となる。
Ni:0.13〜5.0%、
Niは焼入れ性を向上すべく、母材中に少量添加する元素であり、このような範囲で添加することが望ましい。 Ni添加はM23C6炭化物の生成に寄与し、硬さの向上に寄与する。Ni含有量において、0.13〜1.55%、1.0〜1.55%がこの順でより好ましい範囲となる。
Cr:10.0〜23.0%、
Crは材料元素として安価であり、Feと結びついて(Cr,Fe)23C6で示されるM23C6炭化物を形成する。なお、Crは(Cr,Fe)7C3で示されるM7C3炭化物の形成にも寄与する。ただし、本発明者はM7C3炭化物について鋳鉄の硬さの向上に寄与しないと考えているので、Crを必要以上に多く含有させることは望ましくない。
Cr含有量において、10〜22.56%、16.51〜22.56%、17.76〜18.18%がこの順でより好ましい範囲となる。
Si: 0.2-1.0%, Mn: 0.4-0.8%,
Si and Mn are elements necessary for deoxygenation in the melting of cast iron, and 0.2 to 1.0% is added for Si and 0.4 to 0.8% is added for Mn. Addition of a large amount leads to deterioration of wear resistance. Among these, the range of 0.55 to 1.0% and 0.55 to 0.66% in the Si content is a more preferable range in this order. Further, in the Mn content, 0.6 to 0.8% and 0.5 to 0.72% are more preferable ranges in this order.
Ni: 0.13-5.0%
Ni is an element added in a small amount in the base material in order to improve the hardenability, and it is desirable to add in such a range. Ni addition contributes to the production | generation of M23C6 carbide | carbonized_material, and contributes to the improvement of hardness. In the Ni content, 0.13 to 1.55% and 1.0 to 1.55% are more preferable ranges in this order.
Cr: 10.0-23.0%,
Cr is an inexpensive material element and is combined with Fe to form M23C6 carbide represented by (Cr, Fe) 23C6. Note that Cr also contributes to the formation of M7C3 carbide represented by (Cr, Fe) 7C3. However, since the present inventor believes that M7C3 carbide does not contribute to improving the hardness of cast iron, it is not desirable to contain more Cr than necessary.
In the Cr content, 10 to 22.56%, 16.51 to 22.56%, and 17.76 to 18.18% are more preferable ranges in this order.

Mo:0.5〜4.0%、
Moは焼入れ性を向上し、硬さの向上、耐摩耗性の向上に寄与すべく、母材中に添加されるものであり、M23C6炭化物の形成に寄与するが、Moの含有量が少ないと効果が得られにくく、含有量が多いとコストと耐摩耗性とのバランスが悪化する(特にコストの上昇が著しくなる)。
ここで、耐摩耗性を向上させるためにはMoの添加量を増やすことが好ましいが、本願発明ではMoの添加量を抑制し、耐摩耗性については他の元素の適量添加により補うので、0.5〜4.0%の範囲で良い。Mo含有量において、0.5〜3.94%、1.5〜3.94%がこの順でより好ましい範囲となる。
Mo: 0.5-4.0%
Mo is added to the base material in order to improve hardenability, improve hardness, and improve wear resistance, and contributes to the formation of M23C6 carbide, but with a small Mo content It is difficult to obtain an effect, and if the content is large, the balance between cost and wear resistance is deteriorated (particularly, the cost is significantly increased).
Here, in order to improve the wear resistance, it is preferable to increase the addition amount of Mo. However, in the present invention, the addition amount of Mo is suppressed, and the wear resistance is compensated by adding an appropriate amount of other elements. It may be in the range of .5 to 4.0%. In the Mo content, 0.5 to 3.94% and 1.5 to 3.94% are more preferable ranges in this order.

W:0〜3.9%
Wは、Moの代替え元素として有用であり、(Mo+W)量として勘案し、(3.9%以下)の範囲で添加することができる。Wは硬さの向上に寄与し、M6C炭化物としてのW6Cを析出させる。Wを添加するならば、0〜2.38%の範囲、即ち、2.38%以下が好ましい。
Nb:0〜2.1%
Nbは、Moの代替え元素として有用であり、(Mo+Nb)量として勘案し、(2.1%以下)の範囲で添加することができる。NbはNbC炭化物(MC炭化物)を析出する作用があり、耐摩耗性の向上に寄与する。
Ti:0〜1.0%
Tiは、Moの代替え元素として有用であり、(Mo+Ti)量として勘案し、(1.0%以下)の範囲で添加することができる。Tiは硬さの向上に大きく寄与し、TiCを生成する作用がある。Tiの範囲として0〜0.27%の範囲が好ましい。
V:0〜0.7%
VはVC(MC型炭化物)を析出させる作用を奏し、少量の添加でも耐摩耗性の向上効果がある。V含有量において0〜0.5%の範囲、即ち、0.5%以下の含有量がより好ましい。また、Vは焼き戻し軟化抵抗及び2次硬化に有効な元素でもある。
W: 0 to 3.9%
W is useful as a substitute element for Mo, and can be added in the range of (3.9% or less) in consideration of the amount of (Mo + W). W contributes to the improvement of hardness and precipitates W6C as M6C carbide. If W is added, the range of 0 to 2.38%, that is, 2.38% or less is preferable.
Nb: 0 to 2.1%
Nb is useful as a substitute element for Mo, and can be added in a range of (2.1% or less) in consideration of the amount of (Mo + Nb). Nb has the effect of precipitating NbC carbide (MC carbide) and contributes to the improvement of wear resistance.
Ti: 0 to 1.0%
Ti is useful as a substitute element for Mo and can be added in the range of (1.0% or less) in consideration of the amount of (Mo + Ti). Ti greatly contributes to the improvement of hardness and has an effect of generating TiC. The range of 0 to 0.27% is preferable as the range of Ti.
V: 0 to 0.7%
V has the effect of precipitating VC (MC type carbide), and even if added in a small amount, it has an effect of improving wear resistance. In the V content, a range of 0 to 0.5%, that is, a content of 0.5% or less is more preferable. V is also an element effective for temper softening resistance and secondary hardening.

更に本発明に係る耐摩耗性鋳鉄においては、前述の化学組成を備えた上に、金属組織中において、(Cr,Fe)7C3で示されるM7C3炭化物と、MoC,TiC,NbCのいずれかからなるMC炭化物と、(Cr,Fe)23C6で示されるM23C6炭化物とが析出されてなることが好ましい。
また、前記金属組織中のM7C3炭化物と、M23C6炭化物の量比が、M7C3炭化物(at%)÷M23C6量(at%)<3.4となることが好ましく、M7C3炭化物(at%)÷M23C6量(at%)<2.5となることがより好ましい。
Further, the wear-resistant cast iron according to the present invention has the above-described chemical composition, and in the metal structure, consists of M7C3 carbide represented by (Cr, Fe) 7C3 and MoC, TiC, NbC. It is preferable that MC carbide and M23C6 carbide represented by (Cr, Fe) 23C6 are precipitated.
Further, the amount ratio of M7C3 carbide to M23C6 carbide in the metal structure is preferably M7C3 carbide (at%) ÷ M23C6 amount (at%) <3.4, and M7C3 carbide (at%) ÷ M23C6 amount. More preferably, (at%) <2.5.

本発明の耐摩耗性鋳鉄において、一例としてM7C3炭化物は断面厚さ10μm〜数10μm、断面長さ数10〜数100μm程度の大きさの片状炭化物として析出され、MC炭化物は断面2〜10μm程度の粒状炭化物として析出され、M23C6炭化物は3μm程度以下の粒状炭化物として析出され、これらの炭化物がオーステナイト相を主体とする母相中に混在して析出された金属組織を呈する。通常は、オーステナイト相を主体とする母相中にM7C3炭化物が分散され、それらの間に偏在する如くMC炭化物が析出され、母相中にM23C6炭化物が分散析出された金属組織となる。   In the wear-resistant cast iron of the present invention, for example, M7C3 carbide is precipitated as flake carbide having a cross-sectional thickness of 10 μm to several tens of μm and a cross-sectional length of several tens to several hundreds of μm, and MC carbide is about 2 to 10 μm in cross section. The M23C6 carbide is precipitated as a granular carbide of about 3 μm or less, and presents a metal structure in which these carbides are mixed and precipitated in the parent phase mainly composed of the austenite phase. Usually, the M7C3 carbide is dispersed in the mother phase mainly composed of the austenite phase, the MC carbide is precipitated so as to be unevenly distributed between them, and the metal structure is formed in which the M23C6 carbide is dispersed and precipitated in the mother phase.

本発明の耐摩耗鋳鉄を製造するには、一例として、前記組成比となるように材料を混合して溶解炉に鋳込み、鋳込み試料を放冷する。次いで試料を焼き入れするが、焼き入れ時に常温から温度を上げてゆくと、500℃を超える付近からマトリックスがフェライト(bcc:αFe)からオーステナイト(fcc:γFe)に変わる。更に温度を上昇させるとM23C6が消失する温度以上、約1000℃〜1100℃の範囲、例えば1070℃にて数10分〜数時間(6時間)程度加熱した後、急冷する焼き入れ処理を施す。焼き入れ温度はM23C6消失温度より高く、液相への相転移温度より低いことが条件となる。 次いで各試料を450℃〜550℃の範囲、例えば、500℃に数10分〜数時間(4時間)程度加熱した後、炉冷する焼き戻し処理を施して製造することができる。   In order to manufacture the wear-resistant cast iron of the present invention, as an example, the materials are mixed so as to have the composition ratio, cast into a melting furnace, and the cast sample is allowed to cool. Next, the sample is quenched. When the temperature is raised from room temperature during quenching, the matrix changes from ferrite (bcc: αFe) to austenite (fcc: γFe) from around 500 ° C. Further, when the temperature is raised, it is heated at a temperature in the range of about 1000 ° C. to 1100 ° C., for example, 1070 ° C. for several tens of minutes to several hours (6 hours), and then quenching is performed for rapid cooling. The condition is that the quenching temperature is higher than the M23C6 disappearance temperature and lower than the phase transition temperature to the liquid phase. Next, each sample can be manufactured by heating to a temperature of 450 ° C. to 550 ° C., for example, 500 ° C. for about several tens of minutes to several hours (4 hours), followed by tempering in a furnace.

以上説明した製造方法により、前述の如く各炭化物がオーステナイト相を主体とする金属組織中に分散析出された目的の組織を有する耐摩耗性鋳鉄を得ることができる。
例えば、オーステナイト相を主体とする母相の中に、前記条件の焼き入れ処理により高硬度のM7C3炭化物を析出させ、前記条件の焼き戻し処理によりM7C3炭化物をできる限り微細に析出させる。
そして、以上のように得られた耐摩耗性鋳鉄は、Moを多く含む従来製品より安価に得ることができ、しかも高い硬さと良好な耐摩耗性を具備させることができる。
By the manufacturing method described above, it is possible to obtain wear-resistant cast iron having a target structure in which each carbide is dispersed and precipitated in a metal structure mainly composed of an austenite phase as described above.
For example, M7C3 carbide having a high hardness is precipitated by a quenching treatment under the above conditions in a mother phase mainly composed of an austenite phase, and M7C3 carbide is precipitated as finely as possible by a tempering treatment under the above conditions.
The wear-resistant cast iron obtained as described above can be obtained at a lower cost than conventional products containing a large amount of Mo, and can have high hardness and good wear resistance.

ところで、本発明者は、本願発明の耐摩耗性鋳鉄においては、M7C3炭化物の減少とともに硬さが向上し、M7C3炭化物の増加とともに摩耗量が増加すると考えている。これは一般的に耐摩耗性に寄与すると考えられているM7C3炭化物の作用とは逆であり、本願耐摩耗性鋳鉄においては、M7C3炭化物が鋳鉄表面の異物となり、その表面が削り取られる現象が支配的になって耐摩耗性を阻害するものと推定している。即ち、M7C3炭化物は硬いが脆いので、耐摩耗性の面については母相ではなく、M7C3炭化物自体が欠けて摩耗性を損なうおそれがあるので、できるだけ微細に分散析出させることが好ましい。
本発明の耐摩耗性鋳鉄において、M23C6炭化物はその増加とともに硬さが向上し、その減少とともに摩耗量が増加する。本発明に係る耐摩耗鋳鉄においてM23C6炭化物は耐摩耗性に寄与する。これは、M23C6炭化物が母相中に微細に析出するため硬さや耐摩耗性に寄与するためと推定できる。
本発明の耐摩耗性鋳鉄においてMC炭化物は、その増加とともに硬さが向上し、摩耗量が増加すると考えられる。また、M6C炭化物はM7C3炭化物と同様の傾向を有すると考えられる。
By the way, the inventor believes that in the wear-resistant cast iron of the present invention, the hardness is improved with the decrease of M7C3 carbide, and the wear amount is increased with the increase of M7C3 carbide. This is opposite to the action of M7C3 carbide, which is generally considered to contribute to wear resistance. In this wear-resistant cast iron, the phenomenon that M7C3 carbide becomes a foreign material on the cast iron surface and the surface is scraped off is dominant. It is estimated that the wear resistance is hindered. That is, since the M7C3 carbide is hard but brittle, the M7C3 carbide itself is not a parent phase in terms of wear resistance, and there is a possibility that the M7C3 carbide itself may be lost, so that it is preferable to disperse and precipitate as finely as possible.
In the wear-resistant cast iron of the present invention, the hardness of M23C6 carbide increases with the increase, and the wear amount increases with the decrease. In the wear-resistant cast iron according to the present invention, M23C6 carbide contributes to wear resistance. It can be estimated that this is because M23C6 carbide precipitates finely in the matrix and contributes to hardness and wear resistance.
In the wear-resistant cast iron of the present invention, the MC carbide is considered to increase in hardness and increase in wear amount with the increase. Moreover, it is thought that M6C carbide has the same tendency as M7C3 carbide.

本発明者はこれらの知見に基づき、各炭化物の傾向を見極め、更に以下に説明する実施例において各元素の含有量について解析した結果として、前述した、P=1.72[Mo%]+0.51[W%]+0.23[Nb%]+5.29[Ti%]+12.2[C%]−0.59[Cr%]+2.23[Ni%]の式において、P≧32を満たす組成を有することが重要であることを見出した。
この式を満たす各元素の含有量とするならば、耐摩耗性と硬度とコストのバランスの取れた耐摩耗性鋳鉄を提供することができる。
なお、コスト換算において、Cは極めて安価、Crを基準単価1として現状金属相場の相対価格換算によると、Tiは8.7倍、Niは9.5倍、Nbは11.6倍、Vは17.6倍、Wは21倍、Moは33.2倍であるので、Moの使用量を削減して他の元素に振り分けることでコスト削減をなし得ることが明らかである。
Based on these findings, the present inventor ascertains the tendency of each carbide and further analyzes the content of each element in the examples described below. As a result, P = 1.72 [Mo%] + 0. 51 [W%] + 0.23 [Nb%] + 5.29 [Ti%] + 12.2 [C%] − 0.59 [Cr%] + 2.23 [Ni%] In the formula of P ≧ 32 It has been found that having a composition is important.
If the content of each element satisfying this equation is set, it is possible to provide a wear-resistant cast iron having a balance between wear resistance, hardness and cost.
In terms of cost conversion, C is extremely cheap, Cr is the standard unit price 1, and according to the relative price conversion of current metal prices, Ti is 8.7 times, Ni is 9.5 times, Nb is 11.6 times, and V is Since 17.6 times, W is 21 times, and Mo is 33.2 times, it is clear that the cost can be reduced by reducing the amount of Mo used and allocating it to other elements.

なお、前記の式には、Vの影響を考慮していないが、Vの影響も考慮した場合、以下の式とすることが好ましい。
即ち、P*を以下の式としたとき、P*=1.72[Mo%]+0.51[W%]+0.23[Nb%]+2.23[V%]+5.29[Ti%]+12.2[C%]−0.59[Cr%]+2.23[Ni%]、P≧32を満たす関係とすることが好ましい。
この式を満たす各元素の含有量とするならば、Vの影響も含めてより正確に考慮し、耐摩耗性と硬度とコストのバランスの取れた耐摩耗性鋳鉄を提供することができる。
In addition, although the influence of V is not considered in said Formula, when the influence of V is also considered, it is preferable to set it as the following formula | equation.
That is, when P * is represented by the following equation, P * = 1.72 [Mo%] + 0.51 [W%] + 0.23 [Nb%] + 2.23 [V%] + 5.29 [Ti%] +12.2 [C%] − 0.59 [Cr%] + 2.23 [Ni%] and a relationship satisfying P ≧ 32 are preferable.
If the content of each element satisfying this equation is taken into account, it is possible to provide a wear-resistant cast iron with a balance between wear resistance, hardness and cost in consideration of the influence of V more accurately.

前述の条件のうち、焼き入れ性向上のためには、炭素当量が1.8以上であることが好ましく、焼き戻し温度におけるM7C3量が0.25%以上であることが望ましい。焼き戻し温度におけるM23C6量は0.15%以上が望ましい。これは、マトリックスに固溶する炭化物であり、M7C3よりも硬度は下がるが、マトリックスに固溶するので、析出した方が望ましいと考えられる。   Among the above conditions, in order to improve the hardenability, the carbon equivalent is preferably 1.8 or more, and the M7C3 amount at the tempering temperature is preferably 0.25% or more. The amount of M23C6 at the tempering temperature is desirably 0.15% or more. This is a carbide that dissolves in the matrix, and its hardness is lower than that of M7C3. However, since it dissolves in the matrix, it is considered that it is preferably precipitated.

以下、本発明に係る耐摩耗性鋳鉄の具体例について説明する。
本発明に係る耐摩耗性鋳鉄を製造するにあたり、表1の試料No.1〜No.19に示す組成になるように溶解炉に鋳込み、鋳込み試料を8時間放冷して室温とした。鋳込み試料の製造は大型砂型鋳物を模擬した条件にて実施した。
次いで約1070℃にて6時間加熱後に放冷する焼き入れ処理を施し、次いで各試料を約500℃に4時間加熱後に炉冷して焼き戻す熱処理を行った。
得られた試料を研磨し、組織観察し、焼き戻し硬さの測定を行った。
その結果得られた各試料の組成比とP値、硬さ(HRC)の測定結果を以下の表1に示す。
Hereinafter, specific examples of the wear-resistant cast iron according to the present invention will be described.
In producing the wear-resistant cast iron according to the present invention, it was cast into a melting furnace so as to have the compositions shown in Sample No. 1 to No. 19 in Table 1, and the cast sample was allowed to cool for 8 hours to room temperature. The casting sample was manufactured under conditions simulating a large sand mold casting.
Next, a quenching treatment was performed in which the sample was allowed to cool after heating at about 1070 ° C. for 6 hours, and then each sample was subjected to a heat treatment in which the sample was heated to about 500 ° C. for 4 hours and then cooled in a furnace and tempered.
The obtained sample was polished, the structure was observed, and the tempering hardness was measured.
The measurement results of the composition ratio, P value, and hardness (HRC) of each sample obtained as a result are shown in Table 1 below.

Figure 2009155728
Figure 2009155728

表1に示す結果から、化学組成として質量%で、C:2.88〜3.22%、Si:0.55〜0.66%、Mn:0.60〜0.72%、Ni:0.13〜1.55%、Cr:16.51〜22.56%、Mo:0.50〜3.94%、W:0〜3.86%、V:0〜0.7%、Nb:0〜2.1%、Ti:0〜0.27%の範囲を選択することにより、ビッカース硬さHRCにおいて、62.18〜64.55の範囲の耐摩耗性鋳鉄を得られることが明らかとなった。
また、化学組成として質量%で、C:2.88〜3.22%、Si:0.55〜0.66%、Mn:0.60〜0.72%、Ni:1〜1.55%、Cr:16.51〜22.56%、Mo:1.50〜3.94%、W:0〜2.38%、V:0〜0.7%、Nb:0〜2.1%、Ti:0〜0.27%の範囲を選択することにより、ビッカース硬さHRCにおいて、62.5以上の耐摩耗性鋳鉄を得られることが明らかとなった。
From the results shown in Table 1, the chemical composition is in mass%, C: 2.88 to 3.22%, Si: 0.55 to 0.66%, Mn: 0.60 to 0.72%, Ni: 0 .13 to 1.55%, Cr: 16.51 to 22.56%, Mo: 0.50 to 3.94%, W: 0 to 3.86%, V: 0 to 0.7%, Nb: It is apparent that wear resistant cast iron in the range of 62.18 to 64.55 can be obtained in the Vickers hardness HRC by selecting the ranges of 0 to 2.1% and Ti: 0 to 0.27%. became.
In addition, as a chemical composition by mass%, C: 2.88 to 3.22%, Si: 0.55 to 0.66%, Mn: 0.60 to 0.72%, Ni: 1 to 1.55% , Cr: 16.51 to 22.56%, Mo: 1.50 to 3.94%, W: 0 to 2.38%, V: 0 to 0.7%, Nb: 0 to 2.1%, By selecting a range of Ti: 0 to 0.27%, it became clear that 62.5 or more wear-resistant cast iron can be obtained in the Vickers hardness HRC.

本発明に係る試料において、砂のみの鋳型を用いて鋳造しても硬さにおいてHRC61を達成している点において本発明に係る組成を採用することが有効に作用したと推定できる。本発明に係る組成からはずれる場合、砂のみの鋳造鋳型において先の硬さを達成することは容易ではない。また、焼き入れしたままであると、硬さは高いが脆くなり易いために、前述の条件にて焼き戻しを行うことで硬さを多少落とすものの、靭性を高くすることができる特徴を有する。
次に、表1に示す試料について、重回帰分析を行い、回帰式を算出した結果を図1に示す。
この重回帰分析結果から、P=1.72[Mo%]+0.51[W%]+0.23[Nb%]+5.29[Ti%]+12.2[C%]−0.59[Cr%]+2.23[Ni%]との回帰式を立案すると、その計算値HRC(予測HRC)が実測のHRCに極めて近似することを確認することができた。その重相関RはR=0.97となり、極めて1に近い数値となったので、図1に示す如く先の回帰式に基づく予測硬さと実測硬さがほぼ一致する傾向となり、先のPで示す式の実効性を確認することができる。
上の式を用いるならば、組成を変化させる際に、硬さを予測できることが判明した。この回帰式を見ると、硬さに寄与しているのは、C(12.2)>Ti(5.29)>Ni(2.23)>Mo(1.72)>W(5.1)Nb(0.23)の順である。なお、Crはマイナスの値であり、少ない方が硬さの面では良好であると考えられる。
In the sample according to the present invention, it can be presumed that adopting the composition according to the present invention effectively worked in terms of achieving HRC61 in hardness even when cast using a sand-only mold. When deviating from the composition according to the present invention, it is not easy to achieve the previous hardness in a sand-only casting mold. In addition, since the hardness is high but easily brittle when quenched, there is a feature that the toughness can be increased although the hardness is somewhat reduced by tempering under the above-mentioned conditions.
Next, with respect to the samples shown in Table 1, multiple regression analysis was performed and the results of calculating the regression equation are shown in FIG.
From this multiple regression analysis result, P = 1.72 [Mo%] + 0.51 [W%] + 0.23 [Nb%] + 5.29 [Ti%] + 12.2 [C%] − 0.59 [Cr %] + 2.23 [Ni%], it was confirmed that the calculated value HRC (predicted HRC) was very close to the actually measured HRC. The multiple correlation R is R = 0.97, which is a numerical value very close to 1. Therefore, as shown in FIG. 1, the predicted hardness based on the previous regression equation and the measured hardness tend to substantially coincide with each other. The effectiveness of the equation shown can be confirmed.
Using the above equation, it has been found that the hardness can be predicted when changing the composition. Looking at this regression equation, it is C (12.2)> Ti (5.29)> Ni (2.23)> Mo (1.72)> W (5.1) that contributes to the hardness. ) Nb (0.23). Note that Cr is a negative value, and a smaller value is considered to be better in terms of hardness.

次に、表1に示すNo.13の試料の組織写真(SEM写真)を図2(倍率500倍、図中の白点縮尺60μm)、図3(倍率1000倍、図中の白点縮尺30μm)、図4(倍率5000倍、図中の白点縮尺6μm)に示す。
図2(A)〜(C)に示す金属組織写真から、M7C3炭化物は比較的巨大に析出し、MC炭化物は10μm程度の大きさで析出し、M23C6炭化物は母相中に3μm以下の粒状に析出していることが分かる。なお、M23C6炭化物が熱処理により容易に母相に溶け込むことから、母相中に微細に分析している粒子がM23C6炭化物であると考えられる。

次に、図3にMC炭化物のEDX(エネルギー分散型X線)分析結果を示し、図4にM7C3炭化物のEDX分析結果を示し、図5にM23C6炭化物のEDX分析結果を示し、図6に母相のEDX分析結果を示すが、いずれも各炭化物と母相の特徴を明瞭に示している。また、MoC、TiCなどの炭化物の析出も考えられるが、本分析試料においてMC炭化物の分析結果からその主成分はNbCであると推定できる。
Next, the structure photograph (SEM photograph) of the sample No. 13 shown in Table 1 is shown in FIG. 2 (magnification 500 times, white spot scale 60 μm in the figure), FIG. 3 (magnification 1000 times, white spot scale 30 μm in the figure). ), FIG. 4 (5000 times magnification, white point scale 6 μm in the figure).
From the metallographic photographs shown in FIGS. 2 (A) to (C), M7C3 carbide precipitates relatively large, MC carbide precipitates with a size of about 10 μm, and M23C6 carbide has a particle size of 3 μm or less in the matrix. It turns out that it has precipitated. In addition, since M23C6 carbide | carbonized_material melt | dissolves in a mother phase easily by heat processing, it is thought that the particle | grains analyzed finely in a mother phase are M23C6 carbide | carbonized_material.

Next, FIG. 3 shows the EDX (energy dispersive X-ray) analysis result of MC carbide, FIG. 4 shows the EDX analysis result of M7C3 carbide, FIG. 5 shows the EDX analysis result of M23C6 carbide, and FIG. The results of EDX analysis of the phases are shown, and all clearly show the characteristics of each carbide and the parent phase. Although precipitation of carbides such as MoC and TiC is also conceivable, it can be estimated that the main component is NbC from the analysis result of MC carbide in this analysis sample.

次に、炭化物の析出量と各特性の関係を調べるために、焼き戻し温度から熱力学計算ソフト(JMatPro Ver.4.1)にて計算できる炭化物量を計算した結果を以下の表2に示す。   Next, in order to investigate the relationship between the amount of precipitated carbide and each characteristic, the results of calculating the amount of carbide that can be calculated from the tempering temperature using the thermodynamic calculation software (JMatPro Ver.4.1) are shown in Table 2 below.

Figure 2009155728
Figure 2009155728

表2に示す結果を纏めて図7(a)、(b)に対比させて示す。図7(a)は炭化物量の計算値と硬さHRCの対比データ、図7(b)は炭化物量の計算値と摩耗量の対比データを示す。摩耗量については、ラバーホイール試験により求めた。
試験条件は、荷重:10kg、試験時間:1時間、ラバー材質:クロロブチルラバー、回転数:70rpm、研削粉末:ムライトボール0.8mm、落下速度:300g/minとした。
The results shown in Table 2 are summarized and shown in comparison with FIGS. 7 (a) and 7 (b). FIG. 7A shows the calculated data of the carbide amount and the comparison data of the hardness HRC, and FIG. 7B shows the calculated data of the carbide amount and the comparison data of the wear amount. The amount of wear was determined by a rubber wheel test.
The test conditions were as follows: load: 10 kg, test time: 1 hour, rubber material: chlorobutyl rubber, rotation speed: 70 rpm, grinding powder: mullite ball 0.8 mm, drop speed: 300 g / min.

図7(a)、(b)に示す結果から、M7C3炭化物量が減少すると硬さが向上するが、増加すると摩耗量が上昇する傾向を示すことから、本願発明の耐摩耗性鋳鉄では、他の炭化物に比べて粗大に析出したM7C3炭化物が摩耗試験時に亀裂を生じやすいことが原因となっていると推定できる。また、M23C6炭化物は増加することにより硬さ、耐摩耗性、ともに向上する作用を有していると思われる。このように、M7C3は硬く、微細に分散させることによって耐摩耗性を向上させることができるが、その反面、脆さを持つという特徴があると考えられる。
これは一般的に耐摩耗性に寄与すると考えられているM7C3炭化物の作用とは逆であり、新規な知見である。発明者はM7C3量(at%)=−2.6266×[HRC]+197.97、M23C6量(at%)=2.8526×[HRC]−168.25の関係を見出している。これらから硬さHRCにおいて62.5を上回る耐摩耗鋳鉄を得るためには、M7C3炭化物とM23C6炭化物の量比がM7C3量(at%)÷M23C6量(at%)<3.4を満たすとよいことがわかる。硬さHRCにおいて63.5を上回る耐摩耗鋳鉄を得るためには、M7C3炭化物とM23C6炭化物の量比がM7C3量(at%)÷M23C6量(at%)<2.5を満たすとよいことがわかる。
From the results shown in FIGS. 7 (a) and 7 (b), the hardness increases as the M7C3 carbide content decreases, but the wear amount tends to increase as the M7C3 carbide content increases. It can be presumed that this is because the M7C3 carbide precipitated coarsely as compared with the carbides of No. 1 tends to crack during the wear test. In addition, it seems that M23C6 carbide has an effect of improving both hardness and wear resistance by increasing. Thus, although M7C3 is hard and can improve abrasion resistance by being finely dispersed, it is considered that it has a feature of being brittle.
This is a novel finding contrary to the action of M7C3 carbide, which is generally considered to contribute to wear resistance. The inventor has found a relationship of M7C3 amount (at%) = − 2.6266 × [HRC] +197.97 and M23C6 amount (at%) = 2.8526 × [HRC] −168.25. From these, in order to obtain wear-resistant cast iron having a hardness HRC exceeding 62.5, the amount ratio of M7C3 carbide to M23C6 carbide should satisfy M7C3 amount (at%) ÷ M23C6 amount (at%) <3.4. I understand that. In order to obtain wear-resistant cast iron having a hardness HRC exceeding 63.5, the amount ratio of M7C3 carbide to M23C6 carbide should satisfy M7C3 amount (at%) ÷ M23C6 amount (at%) <2.5. Recognize.

図8は先の表1に示したNo.1〜19の試料について、各試料のP値と硬さHRCとの相関関係を示す図である。
図8の結果から、P値を32.8以上とすることにより、硬さHRCにおいて62.5を上回る耐摩耗性鋳鉄を得ることができ、P値を33.7以上とすることにより、硬さHRCにおいて63.5を上回る耐摩耗性鋳鉄を得ることができることが分かる。
FIG. 8 is a diagram showing the correlation between the P value of each sample and the hardness HRC for the samples No. 1 to 19 shown in Table 1 above.
From the results of FIG. 8, by setting the P value to 32.8 or higher, it is possible to obtain wear-resistant cast iron having a hardness HRC exceeding 62.5, and by setting the P value to 33.7 or higher, It can be seen that a wear-resistant cast iron exceeding 63.5 in HRC can be obtained.

また、図8の結果から、M7C3炭化物の減少とともに硬さが向上し、M7C3炭化物の増加とともに摩耗量が上がる傾向があること、M23C6炭化物の増加とともに硬さが向上し、減少とともに摩耗量が上がる傾向があること、MC炭化物の増加とともに硬さが向上し、摩耗量も向上すること、M6C炭化物はM7C3炭化物と同様の傾向を有することが判明した。   Further, from the results of FIG. 8, the hardness increases as the M7C3 carbide decreases, the wear amount tends to increase as the M7C3 carbide increases, the hardness increases as the M23C6 carbide increases, and the wear amount increases as the decrease increases. It has been found that there is a tendency, hardness increases with increasing MC carbide, wear amount also improves, and M6C carbide has the same tendency as M7C3 carbide.

次に、以下の表3に示す各組成の試料A〜Dについて、先の表2に示した試料と同様に、計算値HRC(予測HRC)とP値を求めた。
更に、Vを含む組成の試料について更に検討するために、表2の各試料で使用したP=1.72[Mo%]+0.51[W%]+0.23[Nb%]+5.29[Ti%]+12.2[C%]−0.59[Cr%]+2.23[Ni%]の回帰式に代えて、P*=1.72[Mo%]+0.51[W%]+0.23[Nb%]+2.23[V%]+5.29[Ti%]+12.2[C%]−0.59[Cr%]+2.23[Ni%]の回帰式を用い、予測HRC*の値と、P*値を求めた。
それらの結果を表3にまとめて示す。
Next, for the samples A to D having the respective compositions shown in Table 3 below, the calculated value HRC (predicted HRC) and the P value were obtained in the same manner as the sample shown in Table 2 above.
Further, in order to further examine a sample having a composition containing V, P = 1.72 [Mo%] + 0.51 [W%] + 0.23 [Nb%] + 5.29 [ Instead of the regression equation of Ti%] + 12.2 [C%] − 0.59 [Cr%] + 2.23 [Ni%], P * = 1.72 [Mo%] + 0.51 [W%] + 0 Predictive HRC using a regression equation of .23 [Nb%] + 2.23 [V%] + 5.29 [Ti%] + 12.2 [C%] − 0.59 [Cr%] + 2.23 [Ni%] * Values and P * values were determined.
The results are summarized in Table 3.

Figure 2009155728
Figure 2009155728

表3に示す結果から見て、P=1.72[Mo%]+0.51[W%]+0.23[Nb%]+5.29[Ti%]+12.2[C%]−0.59[Cr%]+2.23[Ni%]の回帰式とP=1.72[Mo%]+0.51[W%]+0.23[Nb%]+2.23[V%]+5.29[Ti%]+12.2[C%]−0.59[Cr%]+2.23[Ni%]の回帰式のいずれにおいても予測硬さと実測硬さがほぼ一致する傾向となり、Pの値に加え、P*で示す式の実効性も確認することができた。   From the results shown in Table 3, P = 1.72 [Mo%] + 0.51 [W%] + 0.23 [Nb%] + 5.29 [Ti%] + 12.2 [C%] − 0.59 [Cr%] + 2.23 [Ni%] regression equation and P = 1.72 [Mo%] + 0.51 [W%] + 0.23 [Nb%] + 2.23 [V%] + 5.29 [Ti %] + 12.2 [C%] − 0.59 [Cr%] + 2.23 [Ni%] in any of the regression equations, the predicted hardness and the measured hardness tend to almost coincide, in addition to the value of P, The effectiveness of the formula indicated by P * could also be confirmed.

図1は本発明に係る耐摩耗性鋳鉄の試料の試験結果について重回帰分析を行い、回帰式を算出した結果において予測硬さと実測硬さを対比させて示したグラフ。FIG. 1 is a graph showing a result of performing multiple regression analysis on the test results of the wear-resistant cast iron sample according to the present invention and comparing the predicted hardness and the measured hardness in the result of calculating the regression equation. 図2は本発明に係る耐摩耗性鋳鉄の試料において一部金属組織の写真を示すもので、図2(A)は500倍に拡大したSEM写真、図2(B)は1000倍に拡大したSEM写真、図2(C)は500倍に拡大したSEM写真。FIG. 2 shows a photograph of a part of the metal structure in a wear-resistant cast iron sample according to the present invention. FIG. 2 (A) is an SEM photograph magnified 500 times, and FIG. 2 (B) is magnified 1000 times. SEM photograph, FIG. 2 (C) is an SEM photograph magnified 500 times. 図3は本発明に係る耐摩耗性鋳鉄試料におけるMC炭化物のEDX分析結果を示す図。FIG. 3 is a diagram showing an EDX analysis result of MC carbide in a wear-resistant cast iron sample according to the present invention. 図4は本発明に係る耐摩耗性鋳鉄試料におけるM7C3炭化物のEDX分析結果を示す図。FIG. 4 is a diagram showing an EDX analysis result of M7C3 carbide in a wear-resistant cast iron sample according to the present invention. 図5は本発明に係る耐摩耗性鋳鉄試料におけるM23C6炭化物のEDX分析結果を示す図。FIG. 5 is a diagram showing an EDX analysis result of M23C6 carbide in a wear-resistant cast iron sample according to the present invention. 図6は本発明に係る耐摩耗性鋳鉄試料における母相のEDX分析結果を示す図。FIG. 6 is a view showing an EDX analysis result of a parent phase in a wear-resistant cast iron sample according to the present invention. 図7は本発明に係る耐摩耗性鋳鉄試料における炭化物量と硬さ、摩耗量の関係を示すもので、図7(a)は炭化物量と硬さ(HRC)の関係を示す図、図7(b)は炭化物量と摩耗量の関係を示す図。FIG. 7 shows the relationship between the amount of carbide, the hardness, and the amount of wear in the wear-resistant cast iron sample according to the present invention, and FIG. 7A shows the relationship between the amount of carbide and the hardness (HRC). (B) is a diagram showing the relationship between the amount of carbide and the amount of wear. 図8は本発明に係る耐摩耗性鋳鉄試料におけるP値と硬さの関係を示す図。FIG. 8 is a diagram showing the relationship between P value and hardness in a wear-resistant cast iron sample according to the present invention.

Claims (9)

化学組成として質量%で、C:2.5〜3.7%、Si:0.2〜1.0%、Mn:0.4〜0.8%、Ni:0.13〜5.0%、Cr:10.0〜23.0%、Mo:0.5〜4.0%、W:0〜3.9%、Nb:0〜2.1%、Ti:0〜1.0%、V:0〜0.7%を含み、残部Feおよび不可避不純物からなり、かつ、Pを以下の式としたとき、
P=1.72[Mo%]+0.51[W%]+0.23[Nb%]+5.29[Ti%]+12.2[C%]−0.59[Cr%]+2.23[Ni%]、
P≧32を満たす組成を有することを特徴とする耐摩耗性鋳鉄。
The chemical composition is mass%, C: 2.5-3.7%, Si: 0.2-1.0%, Mn: 0.4-0.8%, Ni: 0.13-5.0% Cr: 10.0-23.0%, Mo: 0.5-4.0%, W: 0-3.9%, Nb: 0-2.1%, Ti: 0-1.0%, V: 0 to 0.7%, the balance consisting of Fe and inevitable impurities, and when P is represented by the following formula:
P = 1.72 [Mo%] + 0.51 [W%] + 0.23 [Nb%] + 5.29 [Ti%] + 12.2 [C%] − 0.59 [Cr%] + 2.23 [Ni %],
A wear-resistant cast iron having a composition satisfying P ≧ 32.
化学組成として質量%で、C:2.5〜3.7%、Si:0.2〜1.0%、Mn:0.4〜0.8%、Ni:0.13〜5.0%、Cr:10.0〜23.0%、Mo:0.5〜4.0%、W:0〜3.9%、Nb:0〜2.1%、Ti:0〜1.0%、V:0〜0.7%を含み、残部Feおよび不可避不純物からなり、かつ、Pを以下の式としたとき、
P*=1.72[Mo%]+0.51[W%]+0.23[Nb%]+2.23[V%]+5.29[Ti%]+12.2[C%]−0.59[Cr%]+2.23[Ni%]、
P≧32を満たす組成を有することを特徴とする耐摩耗性鋳鉄。
The chemical composition is mass%, C: 2.5-3.7%, Si: 0.2-1.0%, Mn: 0.4-0.8%, Ni: 0.13-5.0% Cr: 10.0-23.0%, Mo: 0.5-4.0%, W: 0-3.9%, Nb: 0-2.1%, Ti: 0-1.0%, V: 0 to 0.7%, the balance consisting of Fe and inevitable impurities, and when P is represented by the following formula:
P * = 1.72 [Mo%] + 0.51 [W%] + 0.23 [Nb%] + 2.23 [V%] + 5.29 [Ti%] + 12.2 [C%] − 0.59 [ Cr%] + 2.23 [Ni%],
A wear-resistant cast iron having a composition satisfying P ≧ 32.
前記化学組成において、C:2.88〜3.7%、Si:0.55〜1.0%、Mn:0.6〜0.8%、Ni:0.13〜5.0%、Cr:10.0〜22.56%、Mo:0.5〜3.94%としたことを特徴とする請求項1または2に記載の耐摩耗性鋳鉄。   In the chemical composition, C: 2.88 to 3.7%, Si: 0.55 to 1.0%, Mn: 0.6 to 0.8%, Ni: 0.13 to 5.0%, Cr The wear-resistant cast iron according to claim 1 or 2, wherein: 10.0 to 22.56%, Mo: 0.5 to 3.94%. 化学組成として質量%で、C:2.88〜3.22%、Si:0.55〜0.66%、Mn:0.60〜0.72%、Ni:0.13〜1.55%、Cr:16.51〜22.56%、Mo:0.50〜3.94%、W:0〜3.86%、V:0〜0.7%、Nb:0〜2.1%、Ti:0〜0.27%、を含み、残部Feおよび不可避不純物からなることを特徴とする請求項1または2に記載の耐摩耗性鋳鉄。   The chemical composition is mass%, C: 2.88 to 3.22%, Si: 0.55 to 0.66%, Mn: 0.60 to 0.72%, Ni: 0.13 to 1.55% , Cr: 16.51 to 22.56%, Mo: 0.50 to 3.94%, W: 0 to 3.86%, V: 0 to 0.7%, Nb: 0 to 2.1%, The wear-resistant cast iron according to claim 1 or 2, characterized by comprising Ti: 0 to 0.27%, and comprising balance Fe and inevitable impurities. 前記化学組成において、C:3.07〜3.15%、Ni:1.0〜1.55%、Cr:17.76〜18.18%、Mo:1.5〜3.94%、W:0〜2.38%としたことを特徴とする請求項4に記載の耐摩耗性鋳鉄。   In the chemical composition, C: 3.07 to 3.15%, Ni: 1.0 to 1.55%, Cr: 17.76 to 18.18%, Mo: 1.5 to 3.94%, W The wear-resistant cast iron according to claim 4, wherein the wear-resistant cast iron is 0 to 2.38%. 前記化学組成を有し、金属組織中に、(Cr,Fe)7C3で示されるM7C3炭化物と、MoC,TiC,NbCのいずれかからなるMC炭化物と、(Cr,Fe)23C6で示されるM23C6炭化物とが析出されてなることを特徴とする請求項1〜5のいずれかに記載の耐摩耗性鋳鉄。   M7C3 carbide represented by (Cr, Fe) 7C3, MC carbide composed of any of MoC, TiC, and NbC, and M23C6 carbide represented by (Cr, Fe) 23C6 in the metal structure. The wear-resistant cast iron according to any one of claims 1 to 5, wherein 前記金属組織中のM7C3炭化物と、M23C6炭化物の量比が、M7C3炭化物(at%)÷M23C6量(at%)<3.4となることを特徴とする請求項6に記載の耐摩耗性鋳鉄。   7. The wear-resistant cast iron according to claim 6, wherein the amount ratio of M7C3 carbide to M23C6 carbide in the metal structure is M7C3 carbide (at%) ÷ M23C6 amount (at%) <3.4. . 前記金属組織中のM7C3炭化物と、M23C6炭化物の量比が、M7C3炭化物(at%)÷M23C6量(at%)<2.5となることを特徴とする請求項6に記載の耐摩耗性鋳鉄。   7. The wear-resistant cast iron according to claim 6, wherein an amount ratio of M7C3 carbide to M23C6 carbide in the metal structure is M7C3 carbide (at%) ÷ M23C6 amount (at%) <2.5. . 前記P=1.72[Mo%]+0.51[W%]+0.23[Nb%]+5.29[Ti%]+12.2[C%]−0.59[Cr%]+2.23[Ni%]なる式において、P≧33.7を満たす組成を有することを特徴とする請求項1、3〜8のいずれかに記載の耐摩耗性鋳鉄。   P = 1.72 [Mo%] + 0.51 [W%] + 0.23 [Nb%] + 5.29 [Ti%] + 12.2 [C%] − 0.59 [Cr%] + 2.23 [ The wear-resistant cast iron according to any one of claims 1 and 3 to 8, which has a composition satisfying P ≧ 33.7 in the formula of “Ni%”.
JP2008310042A 2007-12-04 2008-12-04 Wear-resistant cast iron Active JP5470825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008310042A JP5470825B2 (en) 2007-12-04 2008-12-04 Wear-resistant cast iron

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007313473 2007-12-04
JP2007313473 2007-12-04
JP2008310042A JP5470825B2 (en) 2007-12-04 2008-12-04 Wear-resistant cast iron

Publications (2)

Publication Number Publication Date
JP2009155728A true JP2009155728A (en) 2009-07-16
JP5470825B2 JP5470825B2 (en) 2014-04-16

Family

ID=40960034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310042A Active JP5470825B2 (en) 2007-12-04 2008-12-04 Wear-resistant cast iron

Country Status (1)

Country Link
JP (1) JP5470825B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2462527C1 (en) * 2011-09-30 2012-09-27 Юлия Алексеевна Щепочкина Cast iron
JP2013237904A (en) * 2012-05-16 2013-11-28 Sintokogio Ltd High chromium wear resistant cast iron
CN103993242A (en) * 2014-04-23 2014-08-20 中建材宁国新马耐磨材料有限公司 Vertical mill liner and making method thereof
CN104099533A (en) * 2013-04-09 2014-10-15 丁年花 Seven-element alloy casting with high chromium, nickel and tungsten content and production process thereof
CN104818429A (en) * 2015-05-05 2015-08-05 柳州金特新型耐磨材料股份有限公司 Wear-resistant steel main cutter plate used for land leveller
CN109852876A (en) * 2019-03-29 2019-06-07 重庆科技学院 A kind of high hardness high toughness grinding ball material and preparation method thereof
KR20190084526A (en) * 2018-01-08 2019-07-17 주식회사 성일터빈 High Chrome Cast Iron With Excellent Abrasion Resistance and Corrosion Resistance
CN111748723A (en) * 2020-06-16 2020-10-09 新泰市鼎鑫工贸有限公司 Formula of yttrium series heavy rare earth high-toughness wear-resistant high-chromium cast iron
CN111893373A (en) * 2020-07-15 2020-11-06 中国兵器科学研究院宁波分院 High-hardness wear-resistant cast iron and preparation method thereof
CN112359273A (en) * 2020-10-15 2021-02-12 武汉科技大学 High-hardness high-carbon medium-chromium wear-resistant cast iron and preparation method thereof
CN113755742A (en) * 2021-08-05 2021-12-07 宁国东方碾磨材料股份有限公司 High-hardness chromium alloy cast ball
CN114438410A (en) * 2022-01-14 2022-05-06 赣州市福牛金属制品有限公司 Wear-resistant impact-resistant metal material and forming method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575844A (en) * 1980-06-13 1982-01-12 Komatsu Ltd Antiabrasion special cast iron
JP2001081527A (en) * 1999-09-16 2001-03-27 Kurimoto Ltd Wear resistant alloy cast iron material
JP2001247929A (en) * 2000-03-07 2001-09-14 Kobe Steel Ltd Wear resistant high cromium cast iron
JP2003286537A (en) * 2002-03-28 2003-10-10 Kawasaki Heavy Ind Ltd High-chromium iron casting for large object and its manufacturing process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575844A (en) * 1980-06-13 1982-01-12 Komatsu Ltd Antiabrasion special cast iron
JP2001081527A (en) * 1999-09-16 2001-03-27 Kurimoto Ltd Wear resistant alloy cast iron material
JP2001247929A (en) * 2000-03-07 2001-09-14 Kobe Steel Ltd Wear resistant high cromium cast iron
JP2003286537A (en) * 2002-03-28 2003-10-10 Kawasaki Heavy Ind Ltd High-chromium iron casting for large object and its manufacturing process

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2462527C1 (en) * 2011-09-30 2012-09-27 Юлия Алексеевна Щепочкина Cast iron
JP2013237904A (en) * 2012-05-16 2013-11-28 Sintokogio Ltd High chromium wear resistant cast iron
CN104099533A (en) * 2013-04-09 2014-10-15 丁年花 Seven-element alloy casting with high chromium, nickel and tungsten content and production process thereof
CN103993242A (en) * 2014-04-23 2014-08-20 中建材宁国新马耐磨材料有限公司 Vertical mill liner and making method thereof
CN104818429A (en) * 2015-05-05 2015-08-05 柳州金特新型耐磨材料股份有限公司 Wear-resistant steel main cutter plate used for land leveller
KR20190084526A (en) * 2018-01-08 2019-07-17 주식회사 성일터빈 High Chrome Cast Iron With Excellent Abrasion Resistance and Corrosion Resistance
KR102063134B1 (en) 2018-01-08 2020-01-08 주식회사 성일터빈 High Chrome Cast Iron With Excellent Abrasion Resistance and Corrosion Resistance
CN109852876A (en) * 2019-03-29 2019-06-07 重庆科技学院 A kind of high hardness high toughness grinding ball material and preparation method thereof
CN111748723A (en) * 2020-06-16 2020-10-09 新泰市鼎鑫工贸有限公司 Formula of yttrium series heavy rare earth high-toughness wear-resistant high-chromium cast iron
CN111893373A (en) * 2020-07-15 2020-11-06 中国兵器科学研究院宁波分院 High-hardness wear-resistant cast iron and preparation method thereof
CN112359273A (en) * 2020-10-15 2021-02-12 武汉科技大学 High-hardness high-carbon medium-chromium wear-resistant cast iron and preparation method thereof
CN112359273B (en) * 2020-10-15 2022-08-05 武汉科技大学 High-hardness high-carbon medium-chromium wear-resistant cast iron and preparation method thereof
CN113755742A (en) * 2021-08-05 2021-12-07 宁国东方碾磨材料股份有限公司 High-hardness chromium alloy cast ball
CN114438410A (en) * 2022-01-14 2022-05-06 赣州市福牛金属制品有限公司 Wear-resistant impact-resistant metal material and forming method thereof

Also Published As

Publication number Publication date
JP5470825B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5470825B2 (en) Wear-resistant cast iron
AU2013302197B2 (en) Method for producing molten steel having high wear resistance and steel having said characteristics
TWI332031B (en) Corrosion-resistant, cold-formable, machinable, high strength, martensitic stainless steel
CN102134682B (en) Wear resistant steel plate
KR20140004718A (en) High thermal diffusivity and high wear resistance tool steel
WO2014123229A1 (en) Stainless steel brake disc and method for manufacturing same
BR112015011069B1 (en) MARTENSITIC CAST STEEL AND ITS PRODUCTION METHOD
KR20170026220A (en) Steel for mold and mold
CN108884529B (en) Cr-based two-phase alloy and product thereof
JP5753365B2 (en) High chrome cast iron
JP5712560B2 (en) Spheroidal graphite cast iron products with excellent wear resistance
CN104087818A (en) Low-chromium alloy wear-resisting ball and preparation method thereof
KR101723174B1 (en) High chromium white cast-iron alloy with excellent abrasion resistance, oxidation resistance and strength and method for preparing the same
JP5522854B2 (en) Cold tool steel and manufacturing method thereof
JP2010242147A (en) Steel for plastic molding die and plastic molding die
JP4569961B2 (en) Manufacturing method of parts for ball screw or one-way clutch
KR20160010930A (en) (High wear-resistant cold work tool steels with enhanced impact toughness
CN102676882B (en) Alloy material with wear-resistance, heat-resistance, corrosion-resistance, high hardness
CN104087865A (en) Long-service-life high-chromium alloy wear-resistant ball and preparation method thereof
JP5712525B2 (en) Spheroidal graphite cast iron products with excellent wear resistance
JP5282546B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
CN106048451A (en) Wear-resistant alloy spring steel and thermal treatment process thereof
JP6096040B2 (en) Powdered high-speed tool steel with excellent high-temperature tempering hardness
Li et al. A study of casting high‐boron high‐speed steel roll materials: Untersuchung von gegossenem hochborhaltigen Schnellarbeitsstahl als Walzenmaterial
CN101748335B (en) Nickel-free grate material for sintering machine and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5470825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250