JP2009155427A - White film for optical duct - Google Patents
White film for optical duct Download PDFInfo
- Publication number
- JP2009155427A JP2009155427A JP2007334126A JP2007334126A JP2009155427A JP 2009155427 A JP2009155427 A JP 2009155427A JP 2007334126 A JP2007334126 A JP 2007334126A JP 2007334126 A JP2007334126 A JP 2007334126A JP 2009155427 A JP2009155427 A JP 2009155427A
- Authority
- JP
- Japan
- Prior art keywords
- film
- light
- white film
- optical duct
- duct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000005286 illumination Methods 0.000 abstract description 6
- 239000003960 organic solvent Substances 0.000 abstract description 4
- 208000008842 sick building syndrome Diseases 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 106
- 239000002245 particle Substances 0.000 description 22
- -1 for example Substances 0.000 description 20
- 229920005989 resin Polymers 0.000 description 17
- 239000011347 resin Substances 0.000 description 17
- 229920000728 polyester Polymers 0.000 description 15
- 229920005992 thermoplastic resin Polymers 0.000 description 14
- 239000000126 substance Substances 0.000 description 12
- 239000011146 organic particle Substances 0.000 description 11
- 239000010954 inorganic particle Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 229920000098 polyolefin Polymers 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000009998 heat setting Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000009210 therapy by ultrasound Methods 0.000 description 3
- 239000012463 white pigment Substances 0.000 description 3
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 229920006218 cellulose propionate Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000306 polymethylpentene Polymers 0.000 description 2
- 239000011116 polymethylpentene Substances 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 230000002087 whitening effect Effects 0.000 description 2
- 229920001634 Copolyester Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- VNGOYPQMJFJDLV-UHFFFAOYSA-N dimethyl benzene-1,3-dicarboxylate Chemical compound COC(=O)C1=CC=CC(C(=O)OC)=C1 VNGOYPQMJFJDLV-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229940119177 germanium dioxide Drugs 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、光ダクトシステムの導光部を構成する反射材として用いられる、光ダクト用白色フィルムに関する。 The present invention relates to a white film for an optical duct that is used as a reflecting material that constitutes a light guide portion of an optical duct system.
光ダクトシステムは、屋外の光を屋内に導き、屋内に照射するシステムである。一般に、光ダクトシステムは、採光部、導光部および放光部から構成される。屋外の自然光は、採光部でダクト内に取り込まれ、導光部によって屋内に搬送され、放光部から拡散光として屋内に照射される。 The optical duct system is a system that guides outdoor light indoors and irradiates it indoors. In general, an optical duct system includes a daylighting unit, a light guide unit, and a light emitting unit. Outdoor natural light is taken into the duct by the daylighting unit, conveyed indoors by the light guide unit, and irradiated indoors as diffused light from the light emitting unit.
オフィス用の建物が消費するエネルギーの1/3〜1/4は照明用であると言われる。日中、屋外では豊富な自然光があるにもかかわらず、オフィス用の建物内では電力による照明をフル点灯している場合がほとんどである。自然光を建物内で有効に利用することができれば、日中の消費電力を大幅に削減することができ、省エネルギーとともに、電力負荷の平準化に大きく寄与することができる。 It is said that 1/3 to 1/4 of the energy consumed by office buildings is for lighting. Despite the abundance of natural light outdoors during the day, most of the office buildings are fully lit with electricity. If natural light can be used effectively in the building, the power consumption during the day can be greatly reduced, which can greatly contribute to the leveling of the power load as well as energy saving.
これまでも建物内で自然光を利用するために、窓やトップライトを利用することが行われている。しかし、奥行きの深い近年のオフィスビルでは、窓面からの採光が有効であるのは、窓面からせいぜい2、3メートル程度の僅かな領域であり、これ以外の領域は電力による照明に頼らざるを得なかった。 In the past, in order to use natural light in buildings, it has been used windows and top lights. However, in recent office buildings with deep depths, the lighting from the window surface is effective in a small area of about 2 to 3 meters at most from the window surface, and other areas do not depend on lighting by electric power. Did not get.
光ダクトシステムは、建物の外壁や屋上から、日中の屋外の自然光を建物内に取り込み、内面を高反射率の反射材から構成されたダクトによって、ダクト内で光を反射させて屋内の必要な箇所に光を搬送して照明用に用いるので、窓やトップライトでは光を利用することが困難であった領域においても、効率よく自然光を利用することができる。
従来、光ダクトシステムの導光部には、高反射率のミラーが用いられ、例えば、アルミ材からなる高反射率ミラーが用いられてきた。
The light duct system requires indoor natural light during the daytime from the building's outer wall and rooftop, and the interior is made of a highly reflective material that reflects the light inside the duct. Since light is transported to various places and used for illumination, natural light can be used efficiently even in regions where it is difficult to use light with windows and top lights.
Conventionally, a high-reflectance mirror has been used for the light guide portion of the optical duct system, for example, a high-reflectance mirror made of an aluminum material has been used.
しかし、導光部にミラーを用いた場合、鏡面反射が強く、拡散反射が少ないため、太陽光を均一に屋内に搬送し、均一に拡散させることが困難である。また、紫外線も搬送されるため、屋内の内装が紫外線によって変色、劣化する問題がある。さらに、ミラーとしては軽いアルミ材を用いた場合においても、ミラーを支持するための頑丈な支持体が必要となり、光ダクトシステムとしての重量が重くなってしまい、特に軽量化が求めれられる高層建築や、一般の戸建住宅では採用しずらいことになる。 However, when a mirror is used for the light guide section, since the specular reflection is strong and the diffuse reflection is small, it is difficult to carry sunlight uniformly indoors and to diffuse it uniformly. In addition, since ultraviolet rays are also conveyed, there is a problem that the interior of the interior is discolored and deteriorated by the ultraviolet rays. Furthermore, even when a light aluminum material is used as the mirror, a sturdy support for supporting the mirror is required, which increases the weight of the optical duct system, and particularly high-rise buildings that are required to be reduced in weight. This is difficult to adopt in ordinary detached houses.
また、導光部に白色塗料で塗装した金属やプラスチックの板を用いた場合、塗料に溶剤として含まれる有機溶媒によって、シックハウス症候群を発症させる危険があり、居住用の建物はもとより、オフィス用の建物でも、望ましくない。 In addition, when a metal or plastic plate painted with white paint is used for the light guide, there is a risk of developing sick house syndrome due to the organic solvent contained in the paint as a solvent, not only for residential buildings but also for office use. Even a building is not desirable.
本発明は、照明に適した可視光を効率的かつ均一に搬送し、軽量で、しかもシックハウス症候群を発生させる危険のある有機溶剤を使用しない、光ダクトシステムの導光部に用いる光ダクト用白色フィルムを提供することを課題とする。
さらに本発明は、上記課題に加えて、屋内の劣化をもたらす紫外線を搬送しない光ダクト用白色フィルムを提供することを課題とする。
The present invention provides a white light duct for use in a light guide part of a light duct system that efficiently and uniformly conveys visible light suitable for illumination, is lightweight, and does not use an organic solvent that may cause sick house syndrome. It is an object to provide a film.
Furthermore, an object of the present invention is to provide a white film for an optical duct that does not convey ultraviolet rays that cause indoor deterioration, in addition to the above problems.
すなわち本発明は、波長400〜700nmの平均反射率96.0%以上の白色フィルムからなり光ダクトに用いることを特徴とする光ダクト用白色フィルムである。 That is, this invention is a white film for optical ducts which consists of a white film with an average reflectance of 96.0% or more with a wavelength of 400-700 nm, and is used for an optical duct.
本発明によれば、照明に適した可視光を効率的かつ均一に搬送しながらも、軽量で、有機溶剤を使用しない、光ダクトシステムの導光部に用いる光ダクト用白色フィルムを提供することができる。さらに、本発明によれば、上記の効果を示しながら、紫外線を搬送することのない、光ダクト用白色フィルムを提供することができる。 According to the present invention, there is provided a white film for a light duct used for a light guide portion of a light duct system that is light and does not use an organic solvent while efficiently and uniformly conveying visible light suitable for illumination. Can do. Furthermore, according to this invention, the white film for optical ducts which does not convey an ultraviolet-ray, showing the said effect can be provided.
以下、本発明を詳細に説明する。
[白色フィルム]
白色フィルムは、熱可塑性樹脂に白色化剤を配合してフィルムとすることで得ることができる。白色化剤としては、白色顔料やボイド形成物質を用いることができる。白色顔料を用いる場合、熱可塑性樹脂に配合するだけで白色フィルムを得ることができる。この白色顔料としては、例えば、二酸化チタン、酸化亜鉛を用いることができる。
ボイド形成物質を用いる場合、熱可塑性樹脂にボイド形成物質を配合して、延伸することでボイドを多数含有するフィルムとする。このフィルム中に多数存在するボイドとフィルムの構成樹脂との界面で光が乱反射し、フィルムは白色を呈し、白色フィルムとなる。
Hereinafter, the present invention will be described in detail.
[White film]
A white film can be obtained by blending a whitening agent with a thermoplastic resin to form a film. As the whitening agent, a white pigment or a void forming substance can be used. When using a white pigment, a white film can be obtained simply by blending with a thermoplastic resin. As this white pigment, for example, titanium dioxide and zinc oxide can be used.
When a void forming substance is used, a void forming substance is blended in the thermoplastic resin and stretched to obtain a film containing many voids. Light is diffusely reflected at the interface between the voids present in the film and the constituent resin of the film, and the film exhibits a white color and becomes a white film.
[熱可塑性樹脂]
熱可塑性樹脂としては、例えばポリエステル、ポリオレフィン、ポリスチレンを用いることができる。なかでも機械的強度が高い点からポリエステルが好ましい。
ポリエステルとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートを例示することができる。なかでも、ポリエチレンテレフタレートが好ましい。
[Thermoplastic resin]
For example, polyester, polyolefin, or polystyrene can be used as the thermoplastic resin. Of these, polyester is preferred because of its high mechanical strength.
Examples of the polyester include polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate. Of these, polyethylene terephthalate is preferable.
ポリエステルは、適度な延伸性を得るために共重合ポリエステルを用いることが好ましい。共重合成分の割合は、全ジカルボン酸成分あたり、好ましくは1〜20モル%、さらに好ましくは3〜17モル%、さらに好ましくは3〜15モル%である。この範囲で共重合成分を共重合することで、無機粒子や有機粒子、ポリエステルと非相溶な樹脂を多量に添加しても良好な製膜性でフィルムを得ることができる。 As the polyester, a copolyester is preferably used in order to obtain an appropriate stretchability. The ratio of the copolymerization component is preferably 1 to 20 mol%, more preferably 3 to 17 mol%, still more preferably 3 to 15 mol% per total dicarboxylic acid component. By copolymerizing the copolymer component within this range, a film can be obtained with good film forming properties even if a large amount of resin incompatible with inorganic particles, organic particles, or polyester is added.
ポリオレフィンとしては、ポリエチレン、ポリプロピレン、ポリ−3−メチルブテン−1、ポリ−4−メチルペンテン−1、ポリビニル−t−ブタン、1,4−トランス−ポリ−2,3−ジメチルブタジエン、ポリビニルシクロヘキサン、ポリスチレン、ポリフルオロスチレン、セルロースアセテートセルロースプロピオネート、ポリクロロトリフルオロエチレンを例示することができる。なかでも、ポリエチレン、ポリプロピレン、ポリメチルペンテンが樹脂自体が高透明であるため、光の吸収を抑えて反射率を向上させることができて好ましい。 Polyolefins include polyethylene, polypropylene, poly-3-methylbutene-1, poly-4-methylpentene-1, polyvinyl t-butane, 1,4-trans-poly-2,3-dimethylbutadiene, polyvinylcyclohexane, polystyrene. , Polyfluorostyrene, cellulose acetate cellulose propionate, and polychlorotrifluoroethylene. Among these, polyethylene, polypropylene, and polymethylpentene are preferable because the resin itself is highly transparent, so that the absorption of light can be suppressed and the reflectance can be improved.
[ボイド形成物質]
ボイド形成物質としては、例えば、無機粒子、有機粒子を用いることができ、また、白色フィルムを構成する熱可塑性樹脂と非相溶な樹脂、すなわち非相溶樹脂を用いることができる。
[Void-forming substance]
As the void-forming substance, for example, inorganic particles and organic particles can be used, and a resin incompatible with the thermoplastic resin constituting the white film, that is, an incompatible resin can be used.
[無機粒子]
粒子としては、耐候性の点から、無機粒子が好ましく、白色無機粒子が特に好ましい。例えば、硫酸バリウム、二酸化珪素、炭酸カルシウムを用いることができる。
ボイド形成物質の無機粒子の平均粒径は、好ましくは0.1〜10.0μm、さらに好ましくは0.2〜8.0μm、特に好ましくは0.3〜6.0μmのものである。この範囲の粒径のものを用いることで、分散性が良好で、粒子の凝集が起こり難く、同時に滑らかな表面を備え、適度な光沢を備える白色フィルムを得ることができる。
[Inorganic particles]
As the particles, inorganic particles are preferable from the viewpoint of weather resistance, and white inorganic particles are particularly preferable. For example, barium sulfate, silicon dioxide, or calcium carbonate can be used.
The average particle diameter of the void-forming substance inorganic particles is preferably 0.1 to 10.0 μm, more preferably 0.2 to 8.0 μm, and particularly preferably 0.3 to 6.0 μm. By using a particle having a particle size in this range, it is possible to obtain a white film having good dispersibility, hardly causing particle aggregation, and having a smooth surface and appropriate gloss.
白色フィルムの熱可塑性樹脂としてポリエステルを用いる場合、白色フィルムのボイド形成物質の含有量は、白色フィルムのポリエステルとボイド形成物質の合計100重量%あたり、好ましくは31〜60重量%、さらに好ましくは35〜55重量%、特に好ましくは40〜50重量%である。この範囲でボイド形成物質を含有することで、高い反射率を備え光ダクトに用いたときに明るい照明光を得ることができ、生産や、折り曲げ加工、設置の際に破れづらい光ダクト用白色フィルムを得ることができる。 When polyester is used as the thermoplastic resin of the white film, the content of the void-forming substance in the white film is preferably 31 to 60% by weight, more preferably 35%, based on a total of 100% by weight of the polyester and void-forming substance in the white film. It is -55 weight%, Most preferably, it is 40-50 weight%. By containing a void-forming substance in this range, it is possible to obtain bright illumination light when used in a light duct with high reflectivity, and it is difficult to break during production, bending, and installation, a white film for a light duct Can be obtained.
ボイド形成物質の無機粒子および有機粒子としては、粒度分布が、小粒径側から積算した90%体積粒径(D90)として、15.0μm以下、さらに13.0μm以下、特に12.0μm以下である粒子を用いることが好ましい。この粒子を用いることで、フィルターの詰まりが発生せず、凝集物となってフィルムに表面欠点として現れることがなく、高い生産性で、表面欠点のない白色フィルムを得ることができる。
なお、無機粒子は、板状、球状いずれの粒子形状でもよい。また無機粒子には、分散性を向上させるための表面処理を行ってもよい。
As the inorganic particles and organic particles of the void-forming substance, the particle size distribution is 15.0 μm or less, further 13.0 μm or less, particularly 12.0 μm or less as a 90% volume particle size (D90) integrated from the small particle size side. It is preferable to use certain particles. By using these particles, filter clogging does not occur, aggregates do not appear as surface defects on the film, and a white film free from surface defects can be obtained with high productivity.
The inorganic particles may have a plate shape or a spherical particle shape. The inorganic particles may be subjected to a surface treatment for improving dispersibility.
[有機粒子]
ボイド形成物質として有機粒子を用いる場合、フィルムの熱可塑性樹脂とは非相溶な樹脂からなる有機粒子を用いる。例えば、フィルムの熱可塑性樹脂としてポリエステルを用いる場合、ボイド形成物質としてはポリエステルとは非相溶な樹脂の粒子を用いる。この有機粒子として、融点が高く、熱安定性を有することから、ポリテトラフルオロエチレンが特に好ましい。
[Organic particles]
When organic particles are used as the void-forming substance, organic particles made of a resin that is incompatible with the thermoplastic resin of the film are used. For example, when polyester is used as the thermoplastic resin of the film, resin particles incompatible with polyester are used as the void forming substance. As the organic particles, polytetrafluoroethylene is particularly preferable because of its high melting point and thermal stability.
有機粒子の平均粒子径は、好ましくは0.1〜10μm、さらに好ましくは0.2〜8.0μm、特に好ましくは0.3〜6.0μmのものである。平均粒径がこの範囲であることによって、分散性が良好で、粒子の凝集が起こりづらく、フィルム表面が滑らかで、適度な光沢を備える白色フィルムを得ることができる。 The average particle diameter of the organic particles is preferably 0.1 to 10 μm, more preferably 0.2 to 8.0 μm, and particularly preferably 0.3 to 6.0 μm. When the average particle size is within this range, a white film having good dispersibility, hardly causing particle aggregation, a smooth film surface, and appropriate gloss can be obtained.
白色フィルムの熱可塑性樹脂としてポリエステルを用いる場合、有機粒子の白色フィルム中での含有量は、白色フィルムのポリエステルと有機粒子の合計100重量%あたり、好ましくは1〜60重量%、さらに好ましくは3〜55重量%、特に好ましくは5〜50重量%である。この範囲で用いることによって、高い反射率を備え、光ダクトに用いたときに明るい照明光を得ることができ、フィルムの生産や、折り曲げ加工の際に破れづらい光ダクト用白色フィルムを得ることができる。 When polyester is used as the thermoplastic resin of the white film, the content of the organic particles in the white film is preferably 1 to 60% by weight, more preferably 3% per 100% by weight of the total of the polyester and organic particles of the white film. It is -55 weight%, Most preferably, it is 5-50 weight%. By using in this range, it is possible to obtain a white film for a light duct that has high reflectivity, can obtain bright illumination light when used in a light duct, and is not easily broken during film production or bending. it can.
[非相溶樹脂]
非相溶樹脂は、フィルムの熱可塑性樹脂の種類によって異なる。そこで、ここではフィルムの熱可塑性樹脂としてポリエステルを用いる場合を例に説明する。
ポリエステルと非相溶な樹脂としては、ポリオレフィン、ポリスチレン、ポリ−3−メチルブテン−1、ポリ−4−メチルペンテン−1、ポリエチレン、ポリプロピレン、ポリビニル−t−ブタン、1,4−トランス−ポリ−2,3−ジメチルブタジエン、ポリビニルシクロヘキサン、ポリスチレン、ポリフルオロスチレン、セルロースアセテートセルロースプロピオネート、ポリクロロトリフルオロエチレンを用いることができる。なかでも、ポリプロピレン、ポリメチルペンテンが樹脂自体が高透明であり、光の吸収を最小限に抑えて高い反射率を得ることができるので好ましい。
[Incompatible resin]
The incompatible resin varies depending on the type of the thermoplastic resin of the film. Therefore, here, a case where polyester is used as the thermoplastic resin of the film will be described as an example.
Examples of resins incompatible with polyester include polyolefin, polystyrene, poly-3-methylbutene-1, poly-4-methylpentene-1, polyethylene, polypropylene, polyvinyl t-butane, and 1,4-trans-poly-2. , 3-dimethylbutadiene, polyvinylcyclohexane, polystyrene, polyfluorostyrene, cellulose acetate cellulose propionate, polychlorotrifluoroethylene can be used. Among these, polypropylene and polymethylpentene are preferable because the resin itself is highly transparent, and light reflectance can be minimized and high reflectance can be obtained.
非相溶樹脂を用いる場合、配合量はポリエステルと非相溶樹脂との合計量100重量%あたり、好ましくは3〜50重量%、さらに好ましくは4〜45重量%、特に好ましくは5〜40重量%である。この範囲で用いることで、高い反射率のフィルムを安定して製膜 することができ、高い生産性でフィルムを生産することができる。 When an incompatible resin is used, the blending amount is preferably 3 to 50% by weight, more preferably 4 to 45% by weight, particularly preferably 5 to 40% by weight per 100% by weight of the total amount of the polyester and the incompatible resin. %. By using in this range, a film having a high reflectance can be stably formed, and the film can be produced with high productivity.
次に、フィルムの熱可塑性樹脂としてポリオレフィンを用いる場合を説明する。ポリオレフィンと非相溶な樹脂として、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートを例示することができる。配合量は、ポリオレフィンと非相溶樹脂との合計量100重量%あたり、好ましくは3〜50重量%、さらに好ましくは4〜45重量%、特に好ましくは5〜40重量%である。この範囲で用いることで、高い反射率のフィルムを安定して製膜 することができ、高い生産性でフィルムを生産することができる。 Next, the case where polyolefin is used as the thermoplastic resin for the film will be described. Examples of resins that are incompatible with polyolefin include polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate. The blending amount is preferably 3 to 50% by weight, more preferably 4 to 45% by weight, and particularly preferably 5 to 40% by weight per 100% by weight of the total amount of the polyolefin and the incompatible resin. By using in this range, a film having a high reflectance can be stably formed, and the film can be produced with high productivity.
[反射率および光学濃度]
本発明における白色フィルムは、波長400〜700nmの平均反射率が、96.0%以上、さらに好ましくは96.5%以上、特に好ましくは97.0%以上のフィルムである。平均反射率がこの範囲であることで、高い効率で光を搬送することができ、十分な明るさを得ることができる。
本発明における白色フィルムは、フィルムの光学濃度が、好ましくは0.8以上、さらに好ましくは0.9以上、特に好ましくは1.0以上のフィルムである。この光学濃度を備えることで、光ダクトに用いたときに、光ダクト内で光が漏れず、高い効率で光を搬送することができて好ましい。
[Reflectance and optical density]
The white film in the present invention is a film having an average reflectance of a wavelength of 400 to 700 nm of 96.0% or more, more preferably 96.5% or more, and particularly preferably 97.0% or more. When the average reflectance is within this range, light can be conveyed with high efficiency, and sufficient brightness can be obtained.
The white film in the present invention is a film having an optical density of preferably 0.8 or more, more preferably 0.9 or more, and particularly preferably 1.0 or more. By providing this optical density, when used in an optical duct, light does not leak in the optical duct, and light can be conveyed with high efficiency.
[光沢度]
本発明における白色フィルムは、少なくとも片面の光沢度が、好ましくは5〜100%、さらに好ましくは5〜90%、特好ましくは5〜80%である。この範囲の光沢度の白色フィルムを光ダクトの導光部として用いることで、効率よく、拡散反射によって光を搬送することができ、明るさの斑が生じない。
[Glossiness]
The glossiness of at least one side of the white film in the present invention is preferably 5 to 100%, more preferably 5 to 90%, and particularly preferably 5 to 80%. By using a white film having a glossiness in this range as the light guide portion of the optical duct, light can be efficiently conveyed by diffuse reflection, and no brightness spots are produced.
[フィルム厚み]
本発明における白色フィルムの厚みは、好ましくは25〜350μm、さらに好ましくは40〜300μm、特に好ましくは50〜250μmである。この範囲の厚みであることで、十分な反射率を得ることができる。なお、350μmを超えて厚くしても、さらなる反射率の上昇は望めないため、不経済である。
[Film thickness]
The thickness of the white film in the present invention is preferably 25 to 350 μm, more preferably 40 to 300 μm, and particularly preferably 50 to 250 μm. When the thickness is within this range, a sufficient reflectance can be obtained. Even if the thickness exceeds 350 μm, the reflectance cannot be further increased, which is uneconomical.
[面積当たりの重さ]
本発明における白色フィルムは、反射面の面積あたりの重さが、好ましくは50〜500g/m2、さらに好ましくは100〜400g/m2、特に好ましくは120〜350g/m2である。この範囲の重さであることによって、地震発生時の高い安全性を得ることができる。他方、金属反射板のように重いものを使用すると、地震発生時に落下すると危険であり、設置箇所を補強する必要があり、施工コストが高くなる。
[Weight per area]
The white film in the present invention has a weight per area of the reflecting surface of preferably 50 to 500 g / m 2 , more preferably 100 to 400 g / m 2 , and particularly preferably 120 to 350 g / m 2 . By being in this range of weight, it is possible to obtain high safety when an earthquake occurs. On the other hand, if a heavy object such as a metal reflector is used, it is dangerous to drop when an earthquake occurs, and it is necessary to reinforce the installation location, which increases the construction cost.
[製造方法]
以下、本発明の光ダクト用白色フィルムを製造する方法の一例として、A層/B層の積層白色フィルムの製造方法を説明する。まず、フィードブロックを用いた同時多層押出法により、ダイから溶融したポリマーをキャスティングドラム上に押し出して積層未延伸シートとする。すなわち、A層を形成するポリマーの溶融物とB層を形成するポリマーの溶融物とを、フィードブロックを用い、A層/B層となるように積層してダイに展開して押出す。このときフィードブロックで積層されたポリマーは積層された形態を維持している。ダイより押出された未延伸シートは、キャスティングドラム上で冷却固化され、未延伸フィルムとなる。
[Production method]
Hereinafter, as an example of a method for producing a white film for an optical duct according to the present invention, a method for producing an A / B laminated white film will be described. First, a polymer melted from a die is extruded onto a casting drum by a simultaneous multilayer extrusion method using a feed block to obtain a laminated unstretched sheet. That is, a polymer melt for forming the A layer and a polymer melt for forming the B layer are laminated so as to be A layer / B layer using a feed block, and are developed on a die and extruded. At this time, the polymer laminated by the feed block maintains the laminated form. The unstretched sheet extruded from the die is cooled and solidified on a casting drum to form an unstretched film.
この未延伸フィルムを、例えばロール加熱、赤外線加熱で加熱し、縦方向に延伸して、縦延伸フィルムを得る。この延伸は2個以上のロールの周速差を利用して行うのが好ましい。延伸温度は、例えばガラス転移点(Tg)以上の温度、好ましくはTg〜160℃高い温度とする。延伸倍率は、縦方向、縦方向と直交する方向(以下「横方向」と呼ぶ)ともに、好ましくは2.2〜4.0倍、さらに好ましくは2.3〜3.9倍である。この範囲とすることによって、得られるフィルムの厚み斑が少なく、フィルムの製膜中も破断が少ない。 This unstretched film is heated by, for example, roll heating or infrared heating, and stretched in the longitudinal direction to obtain a longitudinally stretched film. This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls. The stretching temperature is, for example, a temperature equal to or higher than the glass transition point (Tg), preferably a temperature higher by Tg to 160 ° C. The stretching ratio is preferably 2.2 to 4.0 times, more preferably 2.3 to 3.9 times in both the longitudinal direction and the direction orthogonal to the longitudinal direction (hereinafter referred to as “lateral direction”). By setting it as this range, there are few thickness spots of the film obtained, and there are few fractures also during film forming of a film.
延伸によって、フィルムの熱可塑性樹脂と、フィルムに含まれる無機粒子もしくは有機粒子または非相溶樹脂との界面で剥離が生じて微細なボイドがフィルム中に形成され、白色で反射率の高いフィルムを得ることができる。 By stretching, peeling occurs at the interface between the thermoplastic resin of the film and the inorganic or organic particles or incompatible resin contained in the film, and fine voids are formed in the film, resulting in a white, highly reflective film. Obtainable.
縦延伸後のフィルムは続いて、横延伸、熱固定、熱弛緩の処理を順次施して、二軸配向フィルムとすることができる。これらの処理は、フィルムを走行させながら行うとよい。横延伸は、ガラス転移点(Tg)より高い温度から始め、Tgより(5〜160)℃高い温度まで昇温しながら行う。横延伸過程での昇温は連続的でも段階的(逐次的)でもよいが通常逐次的に昇温する。例えば、テンターの横延伸ゾーンをフィルム走行方向に沿って複数に分け、ゾーン毎に所定温度の加熱媒体を流すことで昇温する。横延伸の倍率は、例えば2.5〜4.5倍、好ましくは2.8〜3.9倍である。この範囲であることによって、得られるフィルムの厚み斑が少なく、製膜中も破断が少ない。 The film after the longitudinal stretching can subsequently be subjected to a process of transverse stretching, heat setting, and thermal relaxation to form a biaxially oriented film. These processes are preferably performed while the film is running. The transverse stretching starts from a temperature higher than the glass transition point (Tg) and is performed while raising the temperature to a temperature higher by 5 to 160 ° C. than Tg. Although the temperature rise in the transverse stretching process may be continuous or stepwise (sequential), the temperature is usually raised sequentially. For example, the transverse stretching zone of the tenter is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium having a predetermined temperature for each zone. The magnification of transverse stretching is, for example, 2.5 to 4.5 times, preferably 2.8 to 3.9 times. By being this range, there are few thickness spots of the film obtained, and there are few fractures also during film forming.
横延伸後のフィルムは両端を把持したまま(Tm−20〜Tm−130)℃で定幅または10%以下の幅減少下で熱処理して熱収縮率を低下させるのがよい。これより高い温度であるとフィルムの平面性が悪くなり、厚み斑が大きくなり好ましくない。また、熱処理温度が(Tm−130)℃より低いと熱収縮率が大きくなることがある。また、熱固定後フィルム温度を常温に戻す過程で熱収縮量を調整するために、(Tm−20〜Tm−130)℃で、把持しているフィルムの両端を切り落し、フィルム縦方向の引き取り速度を調整し、縦方向に弛緩させることができる。弛緩させる手段としてはテンター出側のロール群の速度を調整する。弛緩させる割合として、テンターのフィルムライン速度に対してロール群の速度ダウンを行い、好ましくは0.1〜2.5%、さらに好ましくは0.2〜2.3%、特に好ましくは0.3〜2.0%の速度ダウンを実施してフィルムを弛緩(この値を「弛緩率」という)して、弛緩率をコントロールすることによって縦方向の熱収縮率を調整する。また、フィルム横方向は両端を切り落すまでの過程で幅減少させて、所望の熱収縮率を得ることができる。 The film after transverse stretching is preferably heat-treated at a constant width or a width reduction of 10% or less at a temperature (Tm-20 to Tm-130) while holding both ends to reduce the thermal shrinkage rate. When the temperature is higher than this, the flatness of the film is deteriorated, and the thickness unevenness is unfavorable. On the other hand, if the heat treatment temperature is lower than (Tm-130) ° C., the thermal shrinkage rate may increase. In addition, in order to adjust the heat shrinkage in the process of returning the film temperature to room temperature after heat setting, both ends of the gripped film are cut off at (Tm-20 to Tm-130) ° C. Can be adjusted and relaxed in the vertical direction. As a means for relaxing, the speed of the roll group on the tenter exit side is adjusted. As the rate of relaxation, the speed of the roll group is reduced with respect to the film line speed of the tenter, preferably 0.1 to 2.5%, more preferably 0.2 to 2.3%, particularly preferably 0.3. The film is relaxed by performing a speed reduction of ˜2.0% (this value is referred to as “relaxation rate”), and the longitudinal heat shrinkage rate is adjusted by controlling the relaxation rate. Further, the width of the film in the horizontal direction can be reduced in the process until both ends are cut off, and a desired heat shrinkage rate can be obtained.
上記の製造方法は、逐次2軸延伸法を採用する場合について記述したが、ボイドをフィルム内部に発生させるためには、1軸延伸法を採用してもよく、同時2軸延伸法を採用してもよい。 In the above manufacturing method, the sequential biaxial stretching method is described. However, in order to generate voids in the film, the uniaxial stretching method may be employed, and the simultaneous biaxial stretching method is employed. May be.
以下、実施例により本発明を詳述する。なお、各特性値は以下の方法で測定した。
(1)平均反射率
分光光度計(島津製作所製UV−3101PC)に積分球を取り付け、BaSO4白板を100%としたときの反射率を波長400〜700nmにわたって測定し、得られたチャートから2nm間隔で反射率を読み取り、波長400〜700nmでの平均反射率を算出した。一方の面と他方の面で反射率が異なる場合は反射率の高い方の面を反射面として、反射率を測定した。
Hereinafter, the present invention will be described in detail by way of examples. Each characteristic value was measured by the following method.
(1) Average reflectance An integrating sphere was attached to a spectrophotometer (Shimadzu UV-3101PC), and the reflectance when BaSO 4 white plate was 100% was measured over a wavelength range of 400 to 700 nm, and 2 nm from the obtained chart. The reflectance was read at intervals, and the average reflectance at a wavelength of 400 to 700 nm was calculated. When the reflectance was different between one surface and the other surface, the reflectance was measured using the surface with the higher reflectance as the reflecting surface.
(2)光学濃度
マクベス社製光学濃度計TR927(透過)を用いて測定した。光源として、OSRAM社製ランプ12V/50Wを用いた。
(2) Optical density It measured using the optical density meter TR927 (transmission) by a Macbeth company. An OSRAM lamp 12V / 50W was used as the light source.
(3)フィルムの光沢度
ミノルタ製「Multi−Gloss 268」を用いてJIS K7105に準じ、入射角および受光角を60°として測定した。
(3) Glossiness of film Using “Multi-Gloss 268” manufactured by Minolta, the film was measured according to JIS K7105 with an incident angle and a light receiving angle of 60 °.
(4)光ダクトの作成
実施例の白色フィルムまたは比較例の白色フィルムもしくは反射板を用いて、30cm×100cm、長さ5mの筒状の光ダクトを作成した。このとき、反射面が光ダクトの内面に配置されるようにした。光ダクトの一方の端を採光部として、採光部から4mの位置の光ダクトの下側を構成する壁面について30cm×30cmの大きさの正方形の形状を切り抜くことで、放光部を設けた。このとき、放光部の正方形の中心が採光部から4mの位置になるようにした。
(4) Creation of optical duct Using the white film of an Example, the white film of a comparative example, or a reflecting plate, the cylindrical optical duct of 30 cm x 100 cm and length 5m was created. At this time, the reflection surface was arranged on the inner surface of the optical duct. With one end of the light duct as a daylighting part, a light emitting part was provided by cutting out a square shape with a size of 30 cm × 30 cm on the wall surface constituting the lower side of the light duct at a position 4 m from the daylighting part. At this time, the center of the square of the light emitting part was set at a position 4 m from the daylighting part.
(5)明るさと明るさ斑
放光部の真下1mの位置での30cm×30cmの正方形の領域を、照度計(東京光電製 Lux−meter ANA−315)を用いて、ランダムに10点について、照度を測定した。照度の平均値を明るさとし、照度の最大値と照度の最小値との差を明るさ斑とした。単位はlxである。
(5) Brightness and brightness spots Using a luminometer (Lux-meter ANA-315, manufactured by Tokyo Koden), a 10 cm square area at a position 1 m directly below the light emitting part The illuminance was measured. The average value of illuminance was defined as brightness, and the difference between the maximum value of illuminance and the minimum value of illuminance was defined as brightness spots. The unit is lx.
(6)フィルムの見かけ比重
フィルムを100×100mm角に切り取り、ダイアルゲージを取り付けたものにて、10点の厚みを測定し、平均厚みd(μm)を算出した。また、このフィルムを直示天秤にて秤量し、重さw(g)を10−4gの単位まで読み取った。平均厚みdと重さwから
見掛け比重を算出した。なお、見かけ比重=w/d×100である。
(6) Apparent specific gravity of the film The film was cut into a 100 × 100 mm square, and a thickness of 10 points was measured with a dial gauge attached thereto, and an average thickness d (μm) was calculated. Moreover, this film was weighed with a direct balance, and the weight w (g) was read to a unit of 10 −4 g. The apparent specific gravity was calculated from the average thickness d and the weight w. The apparent specific gravity is w / d × 100.
(7)フィルムの延伸性
フィルムの製膜時に下記基準で延伸性を評価した。
○:1時間以上安定に製膜できる
×:1時間経過する前に破断が発生し、安定な製膜ができない。
(7) Stretchability of film Stretchability was evaluated according to the following criteria during film formation.
○: Stable film formation for 1 hour or more ×: Breakage occurs before 1 hour elapses, and stable film formation cannot be performed.
(8)フィルムの各層厚み
サンプルを三角形に切り出し、包埋カプセルに固定後、エポキシ樹脂にて包埋した。そして、包埋されたサンプルをミクロトーム(ULTRACUT−S)で縦方向に平行な断面を50nm厚の薄膜切片にした後、透過型電子顕微鏡を用いて、加速電圧100kvにて観察撮影し、写真から各層の厚みを測定し、平均厚みを求めた。
(8) Thickness of each layer of film A sample was cut into a triangle, fixed in an embedded capsule, and then embedded in an epoxy resin. Then, after embedding the embedded sample with a microtome (ULTRACUT-S), a cross section parallel to the longitudinal direction was made into a thin film section having a thickness of 50 nm, and then observed and photographed with a transmission electron microscope at an acceleration voltage of 100 kv. The thickness of each layer was measured and the average thickness was determined.
(9)樹脂のガラス転移点(Tg)、融点(Tm)
示差走査熱量測定装置(TA Instruments 2100 DSC)を用い、昇温速度20m/分で測定を行った。
(9) Glass transition point (Tg) and melting point (Tm) of the resin
Using a differential scanning calorimeter (TA Instruments 2100 DSC), the measurement was performed at a heating rate of 20 m / min.
(10)粒子の平均粒径
島津製作所製レーザー散乱式粒度分布測定装置SALD−7000を用いて測定した。測定前のエチレングリコールへの分散は、硫酸バリウム粒子粉体を5重量%スラリー濃度相当になるよう計量して、ミキサー(たとえばNational MXV253型料理用ミキサー)で10分間攪拌し、常温まで冷却したのち、フローセル方式供給装置に供給した。そして、該供給装置中で、脱泡のために30秒間超音波処理(超音波処理の強度は超音波処理装置のつまみをMAX値を示す位置から60%の位置)してから測定に供した。粒度分布測定結果より50%体積粒径(D50)を求め、これを平均粒径とした。
(10) Average particle size of particles The particle size was measured using a laser scattering particle size distribution analyzer SALD-7000 manufactured by Shimadzu Corporation. Before dispersion, the barium sulfate particle powder was weighed so as to correspond to a 5 wt% slurry concentration, stirred for 10 minutes with a mixer (eg National MXV253 type cooking mixer), and cooled to room temperature. , And supplied to a flow cell type supply device. Then, in the supply device, ultrasonic treatment was performed for 30 seconds for defoaming (the strength of the ultrasonic treatment was 60% from the position showing the MAX value of the knob of the ultrasonic treatment device), and then the measurement was performed. . The 50% volume particle size (D50) was determined from the particle size distribution measurement result, and this was used as the average particle size.
[実施例1]
テレフタル酸ジメチル132重量部、イソフタル酸ジメチル18重量部(ポリエステルの酸成分に対して12モル%)、エチレングリコール98重量部、ジエチレングリコール1.0重量部、酢酸マンガン0.05重量部、酢酸リチウム0.012重量部を精留塔、留出コンデンサを備えたフラスコに仕込み、撹拌しながら150〜235℃に加熱しメタノールを留出させエステル交換反応を行った。メタノールが留出した後、リン酸トリメチル0.03重量部、二酸化ゲルマニウム0.04重量部を添加し、反応物を反応器に移した。ついで撹拌しながら反応器内を徐々に0.5mmHgまで減圧するとともに290℃まで昇温し重縮合反応を行った。このポリエステル樹脂を層A、Bに用い、硫酸バリウムのマスターバッチを作製し、表1に示す添加量に調整した。
[Example 1]
132 parts by weight of dimethyl terephthalate, 18 parts by weight of dimethyl isophthalate (12 mol% based on the acid component of the polyester), 98 parts by weight of ethylene glycol, 1.0 part by weight of diethylene glycol, 0.05 part by weight of manganese acetate, 0 parts of lithium acetate .012 parts by weight were charged into a rectifying column and a flask equipped with a distillation condenser, and heated to 150 to 235 ° C. with stirring to distill methanol to conduct a transesterification reaction. After the methanol was distilled off, 0.03 part by weight of trimethyl phosphate and 0.04 part by weight of germanium dioxide were added, and the reaction product was transferred to the reactor. Subsequently, while stirring, the pressure in the reactor was gradually reduced to 0.5 mmHg and the temperature was raised to 290 ° C. to carry out a polycondensation reaction. Using this polyester resin for layers A and B, a master batch of barium sulfate was prepared and adjusted to the addition amount shown in Table 1.
これらの原料を用い、それぞれ270℃に加熱された2台の押出機に供給し、層Aポリマー、層Bポリマーを層Aと層BがA/Bとなるような2層フィードブロック装置を使用して合流させ、その積層状態を保持したままダイスよりシート状に成形した。さらにこのシートを表面温度25℃の冷却ドラムで冷却固化した未延伸フィルムを記載された温度にて加熱し長手方向(縦方向)に延伸し、25℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き125℃に加熱された雰囲気中で長手に垂直な方向(横方向)に延伸した。その後テンター内で表の温度で熱固定を行い、表2に示す条件にて縦方向の弛緩、横方向の幅入れを行い、室温まで冷やして、総厚み188μmの二軸延伸フィルムである、光ダクト用白色フィルムを得た。
この光ダクト用白色フィルムを用いて、光ダクトを作成し、評価を行った。結果を表2に示す。
Using these raw materials, supply them to two extruders each heated to 270 ° C, and use a two-layer feed block device in which layer A polymer and layer B polymer are A / B in layer A and layer B Then, the sheet was formed into a sheet shape from a die while maintaining the laminated state. Further, an unstretched film obtained by cooling and solidifying the sheet with a cooling drum having a surface temperature of 25 ° C. was heated at the described temperature, stretched in the longitudinal direction (longitudinal direction), and cooled by a roll group at 25 ° C. Subsequently, while holding both ends of the longitudinally stretched film with clips, the film was guided to a tenter and stretched in a direction perpendicular to the longitudinal direction (lateral direction) in an atmosphere heated to 125 ° C. Thereafter, heat setting is performed in the tenter at the temperature shown in the table, the longitudinal direction is relaxed and the width is set in the horizontal direction under the conditions shown in Table 2, and the mixture is cooled to room temperature. The light is a biaxially stretched film having a total thickness of 188 μm. A white film for duct was obtained.
Using this optical duct white film, an optical duct was created and evaluated. The results are shown in Table 2.
[実施例2〜10]
表1の実施例2〜10の欄に示す条件で製膜して、総厚み188μmの光ダクト用白色フィルムを得た。得られた光ダクト用白色フィルムを用いて光ダクトを作成し、評価を行った。結果を表2に示す。いずれも明るさおよび明るさの斑において優れていた。
[Examples 2 to 10]
Film formation was carried out under the conditions shown in the columns of Examples 2 to 10 in Table 1 to obtain a white film for an optical duct having a total thickness of 188 μm. An optical duct was created using the obtained white film for an optical duct and evaluated. The results are shown in Table 2. Both were excellent in brightness and brightness spots.
[実施例11、12]
表1の実施例11および12の欄に示す条件で製膜して、総厚み188μmの光ダクト用白色フィルムを得た。得られた光ダクト用白色フィルムを用いて光ダクトを作成し、評価を行った。結果を表2に示す。いずれも明るさおよび明るさの斑において優れていた。
[Examples 11 and 12]
Films were formed under the conditions shown in the columns of Examples 11 and 12 in Table 1 to obtain a white film for an optical duct having a total thickness of 188 μm. An optical duct was created using the obtained white film for an optical duct and evaluated. The results are shown in Table 2. Both were excellent in brightness and brightness spots.
[比較例1、2]
表に記載の条件でフィルムを製膜し、総厚み188μmのフィルムを作成した。得られたフィルムを用いて光ダクトを作成して、評価を行った。結果を表2に示す。
[Comparative Examples 1 and 2]
A film was formed under the conditions described in the table to produce a film having a total thickness of 188 μm. An optical duct was created using the obtained film and evaluated. The results are shown in Table 2.
[比較例3〜5]
表に示す反射板を用いて光ダクトを作成して、評価を行った。結果を表2に示す。
比較例はいずれも、明るさに劣るか、明るさの斑の大きな光ダクトであった。
[Comparative Examples 3 to 5]
An optical duct was created using the reflector shown in the table and evaluated. The results are shown in Table 2.
All of the comparative examples were light ducts having poor brightness or large brightness spots.
本発明の光ダクト用白色フィルムは、光ダクトシステムの導光部に用いる反射材として好適に用いることができる。
本発明の光ダクト用白色フィルムは、反射面として用いる側を内側にして、例えば一辺が50cm程度の四角い筒状に折り曲げてダクトの形状にすることで、光ダクトの導光部とすることができる。さらに、ダクトの一方の端に採光部を設置し、ダクトの壁面に放光部を適宜設置することで光ダクトを作成することができる。
The white film for optical ducts of the present invention can be suitably used as a reflective material used for a light guide part of an optical duct system.
The white film for an optical duct of the present invention can be used as a light guide part of an optical duct by bending the side to be used as a reflective surface inward, for example, by bending it into a rectangular tube shape with a side of about 50 cm. it can. Furthermore, an optical duct can be created by installing a daylighting unit at one end of the duct and appropriately installing a light emitting unit on the wall surface of the duct.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007334126A JP2009155427A (en) | 2007-12-26 | 2007-12-26 | White film for optical duct |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007334126A JP2009155427A (en) | 2007-12-26 | 2007-12-26 | White film for optical duct |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009155427A true JP2009155427A (en) | 2009-07-16 |
Family
ID=40959786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007334126A Pending JP2009155427A (en) | 2007-12-26 | 2007-12-26 | White film for optical duct |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009155427A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012001616A (en) * | 2010-06-16 | 2012-01-05 | Teijin Ltd | Aliphatic polyesteric resin white film and reflector using the same |
JP2013527350A (en) * | 2010-05-27 | 2013-06-27 | ソラチューブ インターナショナル インコーポレイテッド | Thermal insulation window splitting apparatus and method |
US9127823B2 (en) | 2011-11-30 | 2015-09-08 | Solatube International, Inc. | Daylight collection systems and methods |
US9291321B2 (en) | 2012-12-11 | 2016-03-22 | Solatube International, Inc. | Devices and methods for collecting daylight in clear and cloudy weather conditions |
US9816676B2 (en) | 2015-03-18 | 2017-11-14 | Solatube International, Inc. | Daylight collectors with diffuse and direct light collection |
US9816675B2 (en) | 2015-03-18 | 2017-11-14 | Solatube International, Inc. | Daylight collectors with diffuse and direct light collection |
US9921397B2 (en) | 2012-12-11 | 2018-03-20 | Solatube International, Inc. | Daylight collectors with thermal control |
JP2020147638A (en) * | 2019-03-11 | 2020-09-17 | デンカ株式会社 | Optically-transparent sheet, multilayer sheet, illumination device, and automobile interior member |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07239404A (en) * | 1994-02-25 | 1995-09-12 | Sanyo Electric Co Ltd | Reflecting film, production of reflecting film and light guide duct using that reflecting film |
JP2001225434A (en) * | 2000-02-16 | 2001-08-21 | Toyobo Co Ltd | White polyester film, light reflecting sheet, and sheet for printing/recording |
JP2005125700A (en) * | 2003-10-27 | 2005-05-19 | Teijin Dupont Films Japan Ltd | White polyester film |
WO2007072737A1 (en) * | 2005-12-22 | 2007-06-28 | Mitsubishi Plastics, Inc. | Reflective film |
JP2009032654A (en) * | 2007-06-27 | 2009-02-12 | Asahi Kasei Homes Kk | Optical duct device |
-
2007
- 2007-12-26 JP JP2007334126A patent/JP2009155427A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07239404A (en) * | 1994-02-25 | 1995-09-12 | Sanyo Electric Co Ltd | Reflecting film, production of reflecting film and light guide duct using that reflecting film |
JP2001225434A (en) * | 2000-02-16 | 2001-08-21 | Toyobo Co Ltd | White polyester film, light reflecting sheet, and sheet for printing/recording |
JP2005125700A (en) * | 2003-10-27 | 2005-05-19 | Teijin Dupont Films Japan Ltd | White polyester film |
WO2007072737A1 (en) * | 2005-12-22 | 2007-06-28 | Mitsubishi Plastics, Inc. | Reflective film |
JP2009032654A (en) * | 2007-06-27 | 2009-02-12 | Asahi Kasei Homes Kk | Optical duct device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013527350A (en) * | 2010-05-27 | 2013-06-27 | ソラチューブ インターナショナル インコーポレイテッド | Thermal insulation window splitting apparatus and method |
JP2012001616A (en) * | 2010-06-16 | 2012-01-05 | Teijin Ltd | Aliphatic polyesteric resin white film and reflector using the same |
US9127823B2 (en) | 2011-11-30 | 2015-09-08 | Solatube International, Inc. | Daylight collection systems and methods |
US9291321B2 (en) | 2012-12-11 | 2016-03-22 | Solatube International, Inc. | Devices and methods for collecting daylight in clear and cloudy weather conditions |
US9921397B2 (en) | 2012-12-11 | 2018-03-20 | Solatube International, Inc. | Daylight collectors with thermal control |
US9816676B2 (en) | 2015-03-18 | 2017-11-14 | Solatube International, Inc. | Daylight collectors with diffuse and direct light collection |
US9816675B2 (en) | 2015-03-18 | 2017-11-14 | Solatube International, Inc. | Daylight collectors with diffuse and direct light collection |
JP2020147638A (en) * | 2019-03-11 | 2020-09-17 | デンカ株式会社 | Optically-transparent sheet, multilayer sheet, illumination device, and automobile interior member |
JP7165078B2 (en) | 2019-03-11 | 2022-11-02 | デンカ株式会社 | Light-transmitting sheets, multilayer sheets, lighting devices, automobile interior materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009155427A (en) | White film for optical duct | |
TWI400164B (en) | White polyester film | |
JP3927585B2 (en) | Aliphatic polyester resin reflective film and reflector | |
CN106908863B (en) | Optical reflecting film and preparation method thereof | |
TW200846179A (en) | Surface optical diffusility polyester film | |
JP4834549B2 (en) | Aliphatic polyester resin reflective film and reflector | |
JPWO2006112425A1 (en) | Reflective sheet and manufacturing method thereof | |
JP5464997B2 (en) | Light reflector and surface light source device | |
JPWO2005123385A1 (en) | Laminated film for reflector | |
JP2010224446A (en) | White film for reflection film of backlight unit of liquid crystal display device | |
WO2009060978A1 (en) | Multilayer film | |
JP2007178505A (en) | White polyester film for display reflecting plate | |
TWI579323B (en) | White film | |
JP5353178B2 (en) | Polyester film and liquid crystal display backlight and solar cell using the same | |
KR101574190B1 (en) | White polyester reflective film and method for manufacturing the same and reflective sheet using the same | |
JP2006145573A (en) | Aliphatic polyester resin reflection film and reflector plate | |
JP4804741B2 (en) | Aliphatic polyester resin reflective film and reflector | |
JP2006145568A (en) | Aliphatic polyester resin reflection film and reflecting plate | |
KR101561288B1 (en) | Low gloss white polyester film, method of manufacturing the same and reflective sheet thereof | |
JP4630642B2 (en) | Aliphatic polyester resin reflective film and reflector | |
JP4607553B2 (en) | Aliphatic polyester resin reflective film and reflector | |
JP5038824B2 (en) | Biaxially stretched laminated film for reflectors | |
KR20170087314A (en) | White polyester reflective film and method for manufacturing the same and reflective sheet using the same | |
KR102434140B1 (en) | White polyester film for solar cell, back-sealing sheet comprising same for solar cell, and solar cell module | |
JP2007072383A (en) | Reflecting sheet and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100924 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110707 |
|
RD04 | Notification of resignation of power of attorney |
Effective date: 20110707 Free format text: JAPANESE INTERMEDIATE CODE: A7424 |
|
A977 | Report on retrieval |
Effective date: 20120328 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20120403 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130226 |
|
A521 | Written amendment |
Effective date: 20130422 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130625 |