JP2009155363A - Manufacturing method for long fiber-reinforced thermoplastic resin material - Google Patents

Manufacturing method for long fiber-reinforced thermoplastic resin material Download PDF

Info

Publication number
JP2009155363A
JP2009155363A JP2007331538A JP2007331538A JP2009155363A JP 2009155363 A JP2009155363 A JP 2009155363A JP 2007331538 A JP2007331538 A JP 2007331538A JP 2007331538 A JP2007331538 A JP 2007331538A JP 2009155363 A JP2009155363 A JP 2009155363A
Authority
JP
Japan
Prior art keywords
component
composite
resin material
thermoplastic resin
constitutive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007331538A
Other languages
Japanese (ja)
Inventor
Mitsunari Togawa
三成 外川
Toshihiro Hatsu
敏博 発
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007331538A priority Critical patent/JP2009155363A/en
Publication of JP2009155363A publication Critical patent/JP2009155363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for obtaining a long fiber-reinforced thermoplastic material capable of reducing defective molding such as gas burning and mold deposit, at high productivity. <P>SOLUTION: This manufacturing method for the long fiber-reinforced thermoplastic material is a method for manufacturing the long fiber-reinforced thermoplastic material containing a constitutive element A of a reinforcing fiber bundle, a constitutive element B, that is a thermoplastic polymer having a fusion viscosity lower than a constitutive element C, having 200-10,000 of weight-averaged molecular weight, and the constitutive element C of a thermoplastic polymer having 10,000 or more of weight-averaged molecular weight, and arranged to bring the constitutive element C into contact with a composite containing the constitutive element A and the constitutive element B, and includes the first process for impregnating the constitutive element B fused heatedly at the temperature where the fusion viscosity of the constitutive element B comes to 10 Pa s or less and where a weight holding rate when heated for one minute gets to 95% or more, into the constitutive element A to from a composite, the second process for heat-treating the composite at a temperature higher by 50-150°C than a fusion temperature of the constitutive element C, and the third process for arranging the fused constitutive element C to contact with the composite. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、連続繊維と熱可塑性樹脂から製造される長繊維強化樹脂材料に関する。さらに詳しくは、射出成形などによって成形を行う際に、強化繊維の成形品中への分散が容易であり、さらにモールドデポジットなどの成形不良が少ない長繊維強化樹脂材料の製造方法に関する。   The present invention relates to a long fiber reinforced resin material produced from continuous fibers and a thermoplastic resin. More particularly, the present invention relates to a method for producing a long fiber reinforced resin material in which reinforcing fibers can be easily dispersed in a molded product when molding is performed by injection molding or the like, and molding defects such as mold deposits are small.

連続繊維束に熱可塑性樹脂を効率的に含浸させた長繊維強化熱可塑性樹脂材料は、熱可塑性樹脂の物性を飛躍的に向上させるとともに、樹脂としての活用範囲を飛躍的に拡大させた。長繊維強化熱可塑性樹脂材料の製造方法は、溶融樹脂中に浸漬した繊維束の開繊やしごきを加えたり、さらに樹脂に圧力を加えるなどしたりすることで、繊維間に溶融樹脂を機械的に含浸させるプルトルージョン法が一般的に使用されている。しかしながら、高い機械物性を発現する高粘度の熱可塑性樹脂を連続繊維束に良好に含浸させようとすると、プルトルージョン法では繊維引取速度を非常に遅い速度にする必要があるため、生産性が低くなることが問題となっている。この他、熱可塑性樹脂を溶媒で希釈して低粘度化した溶液を連続繊維束に含浸させて次工程で溶媒を除去する方法や、熱可塑性樹脂をエマルジョン化、ディスパージョン化したものを連続繊維束に含浸させた後に溶媒を除去する方法などの製造法が提案されているが、いずれもプルトルージョン法より生産性を向上させるには至っていない。   A long fiber reinforced thermoplastic resin material in which a continuous fiber bundle is efficiently impregnated with a thermoplastic resin has drastically improved the physical properties of the thermoplastic resin and has dramatically expanded the range of use as a resin. The manufacturing method of the long fiber reinforced thermoplastic resin material is to mechanically dispose the molten resin between the fibers by adding fibers such as opening or squeezing the fiber bundle immersed in the molten resin or applying pressure to the resin. In general, a pultrusion method for impregnating the material is used. However, when trying to satisfactorily impregnate a continuous fiber bundle with a high-viscosity thermoplastic resin that exhibits high mechanical properties, the pultrusion method requires a very low fiber take-up speed, resulting in low productivity. Is a problem. In addition to this, a continuous fiber bundle is impregnated with a solution obtained by diluting a thermoplastic resin with a solvent to reduce the viscosity, and the solvent is removed in the next step, or a continuous fiber obtained by emulsifying and dispersing a thermoplastic resin. Manufacturing methods such as a method of removing the solvent after impregnating the bundle have been proposed, but none of them has improved productivity compared to the pultrusion method.

このような状況に対して、繊維表面を改質させることにより、熱可塑性樹脂の含浸性を改善させる手法が提案されている。特許文献1では、繊維表面上に、高分子量の熱可塑性樹脂と相溶性のある低分子量で且つ溶融粘度が低い熱可塑性重合体を配置した後、高分子量の熱可塑性樹脂を含浸させる方法が記載されている。この方法によれば、前述した製造方法より生産効率を高められるとともに、高い機械物性の樹脂材料を得ることができる。しかしながら、この方法で得られた樹脂材料を射出成形などで成形する際、熱可塑性重合体に含まれる低分子量体が可塑化装置内および/または金型内部で気化し、成形品表面にガス焼けが生じたり、金型内部にモールドデポジットを発生させたりするなど、成形不良をしばしば発生させていた。
特開平10−138379号公報
For such a situation, a technique for improving the impregnation property of the thermoplastic resin by modifying the fiber surface has been proposed. Patent Document 1 describes a method of impregnating a high molecular weight thermoplastic resin after disposing a thermoplastic polymer having a low molecular weight and low melt viscosity compatible with the high molecular weight thermoplastic resin on the fiber surface. Has been. According to this method, it is possible to obtain a resin material having higher mechanical properties and higher production efficiency than the manufacturing method described above. However, when the resin material obtained by this method is molded by injection molding or the like, the low molecular weight substance contained in the thermoplastic polymer is vaporized in the plasticizer and / or inside the mold, and gas is burned on the surface of the molded product. In many cases, molding defects occur, such as the occurrence of mold deposits and mold deposits in the mold.
Japanese Patent Laid-Open No. 10-138379

本発明の目的は、高い生産性にて、高い機械物性で高い品質の成形品が得られる長繊維強化熱可塑性樹脂材料の製造方法を提供することにある。詳しくは、射出成形などによって成形を行う際に、強化繊維の成形品中への分散が容易であり、さらにモールドデポジットなどの成形不良を起こしにくい長繊維強化熱可塑性樹脂材料の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a long fiber reinforced thermoplastic resin material that can provide a molded product with high mechanical properties and high quality with high productivity. Specifically, the present invention provides a method for producing a long fiber reinforced thermoplastic resin material that facilitates dispersion of reinforcing fibers into a molded product when molding by injection molding or the like, and does not easily cause molding defects such as mold deposits. For the purpose.

本発明者らは、上記の課題を解決するべく鋭意検討した結果、次の製造方法により達成できることを見出した。すなわち上記課題は、
(1)強化繊維束である構成要素(A)と、重量平均分子量200〜10,000で構成要素(C)よりも溶融粘度が低い熱可塑性重合体である構成要素(B)と、重量平均分子量が10,000以上である熱可塑性樹脂である構成要素(C)とを含み、構成要素(A)と構成要素(B)とを含む複合体に構成要素(C)が接するように配置されてなる長繊維強化熱可塑性樹脂材料の製造方法であって、
構成要素(B)の溶融粘度が10Pa・s以下になり、且つ、1分間加熱した際の重量保持率が95%以上となる温度で加熱溶融された構成要素(B)を構成要素(A)へ含浸させて複合体を形成する第一工程、前記複合体を構成要素(C)の溶融温度より50〜150℃高い温度で加熱処理する第二工程、次いで溶融した構成要素(C)を前記複合体に接するように配置する第三工程、を含むことを特徴とする長繊維強化熱可塑性樹脂材料の製造方法。
により解決が達成される。
As a result of intensive studies to solve the above problems, the present inventors have found that this can be achieved by the following production method. That is, the above problem is
(1) Component (A) which is a reinforcing fiber bundle, Component (B) which is a thermoplastic polymer having a weight average molecular weight of 200 to 10,000 and a melt viscosity lower than that of component (C), and a weight average The component (C) is a thermoplastic resin having a molecular weight of 10,000 or more, and the component (C) is disposed in contact with the composite including the component (A) and the component (B). A method for producing a long fiber reinforced thermoplastic resin material comprising:
The component (B) is heated and melted at a temperature at which the melt viscosity of the component (B) is 10 Pa · s or less and the weight retention when heated for 1 minute is 95% or more. A first step of impregnating the composite to form a composite, a second step of heat-treating the composite at a temperature 50 to 150 ° C. higher than the melting temperature of the component (C), and then the molten component (C) A method for producing a long fiber reinforced thermoplastic resin material, comprising a third step of placing the composite in contact with the composite.
The solution is achieved.

また、本発明の好ましい形態によれば、以下の発明が含まれることも好ましい態様である。   Moreover, according to the preferable form of this invention, it is also a preferable aspect that the following invention is included.

(2)構成要素(B)がフェノール系樹脂であることを特徴とする前記(1)に記載の長繊維強化熱可塑性樹脂材料の製造方法。   (2) The method for producing a long fiber reinforced thermoplastic resin material as described in (1) above, wherein the component (B) is a phenol resin.

(3)構成要素(A)が炭素繊維束であることを特徴とする前記(1)または(2)に記載の長繊維強化熱可塑性樹脂材料の製造方法。   (3) The method for producing a long fiber reinforced thermoplastic resin material according to (1) or (2), wherein the component (A) is a carbon fiber bundle.

(4)構成要素(C)がポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、スチレン系重合体から選ばれる1種または2種以上の混合物であることを特徴とする前記(1)〜(3)のいずれかに記載の長繊維強化熱可塑性樹脂材料の製造方法。   (4) The component (C) is one or a mixture of two or more selected from polyamide resins, polyester resins, polyphenylene sulfide resins, and styrene polymers. The manufacturing method of the long fiber reinforced thermoplastic resin material in any one.

本発明により、高い生産性にて、高い機械物性で高い品質の長繊維強化熱可塑性樹脂材料を得ることが可能となる。   The present invention makes it possible to obtain a high-quality long fiber reinforced thermoplastic resin material with high productivity and high mechanical properties.

以下に、本発明について具体的に説明するが、まず本発明にかかる構成要素について説明する。   Hereinafter, the present invention will be described in detail. First, components according to the present invention will be described.

構成要素(A)は強化繊維束である。強化繊維は、一般に強化繊維と呼ばれているものであれば特に限定されないが、例えば、炭素繊維、ガラス繊維、金属繊維、アラミド繊維またはこれらの組み合わせが使用できる。また、ロービング、ヤーン等の連続繊維を、連続した強化繊維束として使用することが好ましい。この中で、軽量・高剛性である炭素繊維が、本発明で得られる樹脂材料の物理的特性および力学的特性の観点から好ましく使用される。   The component (A) is a reinforcing fiber bundle. The reinforcing fiber is not particularly limited as long as it is generally called a reinforcing fiber. For example, carbon fiber, glass fiber, metal fiber, aramid fiber, or a combination thereof can be used. Further, it is preferable to use continuous fibers such as roving and yarn as a continuous reinforcing fiber bundle. Among these, carbon fibers that are lightweight and highly rigid are preferably used from the viewpoints of physical properties and mechanical properties of the resin material obtained in the present invention.

構成要素(A)は、製造される長繊維強化熱可塑性樹脂材料100重量%に対して、5〜50%の範囲で配合されるのが好ましい。5重量%未満では、本発明で得られる樹脂材料の機械強度の向上が小さいことがあり、50%を超えると樹脂材料の流動性が悪くなることがある。   The component (A) is preferably blended in an amount of 5 to 50% with respect to 100% by weight of the long fiber reinforced thermoplastic resin material to be produced. If it is less than 5% by weight, the improvement of the mechanical strength of the resin material obtained in the present invention may be small, and if it exceeds 50%, the fluidity of the resin material may be deteriorated.

構成要素(B)は重量平均分子量200〜10,000で、構成要素(C)よりも溶融粘度が低い熱可塑性重合体である。構成要素(B)が構成要素(A)と複合体を形成させて製造することにより、樹脂材料の高い生産性と高い機械物性が達成される。構成要素(B)の重量平均分子量が200未満では、耐熱性が低いため本発明の製造方法において容易に気化・放散してしまい、樹脂材料を成形する際に、繊維の分散性が低くなることがある。また、重量平均分子量10,000以上では、溶融粘度が高くなるため、繊維束への含浸が困難になることがある。より好ましい重量平均分子量は200〜5,000である。   The component (B) is a thermoplastic polymer having a weight average molecular weight of 200 to 10,000 and a lower melt viscosity than the component (C). When the component (B) is produced by forming a composite with the component (A), high productivity and high mechanical properties of the resin material are achieved. When the weight average molecular weight of the constituent element (B) is less than 200, the heat resistance is low, and thus it is easily vaporized and dissipated in the production method of the present invention, and the dispersibility of the fibers becomes low when the resin material is molded. There is. On the other hand, when the weight average molecular weight is 10,000 or more, the melt viscosity becomes high, so that the impregnation of the fiber bundle may be difficult. A more preferred weight average molecular weight is 200 to 5,000.

本発明で記す重量平均分子量の測定には、ゲル浸透クロマトグラフ法(GPC)を用い、検出器としてレーザーを用いた低角度光散乱光度計(LALLS)を使用する。また、溶融粘度の関係は、樹脂材料を成形する際の温度において構成要素(B)の溶融粘度が構成要素(C)の溶融粘度より小さければ良い。本発明で記す溶融粘度は、測定する物質のビカット軟化温度+30℃、あるいは融点+30℃における温度での粘度である。物質が結晶性であって明確な融点を持つ場合には融点+30℃の条件を採用し、それ以外は軟化温度+30℃の条件を用いる。粘度は、キャピラリーレオメーターを用いてJIS K7199(1999)試験法により測定する。測定におけるせん断速度は103-1とする。なお、ビカット軟化温度は、JIS K7206(1999)試験法にしたがって測定する。融点は、JIS K7121(1987)に従って示差走査熱量計(DSC)により測定する。 For the measurement of the weight average molecular weight described in the present invention, gel permeation chromatography (GPC) is used, and a low angle light scattering photometer (LALLS) using a laser as a detector is used. Moreover, the relationship of melt viscosity should just be the melt viscosity of a component (B) smaller than the melt viscosity of a component (C) in the temperature at the time of shape | molding a resin material. The melt viscosity described in the present invention is a viscosity at a temperature at a Vicat softening temperature + 30 ° C. or a melting point + 30 ° C. of a substance to be measured. When the substance is crystalline and has a clear melting point, the condition of melting point + 30 ° C. is adopted, otherwise the condition of softening temperature + 30 ° C. is used. The viscosity is measured by a JIS K7199 (1999) test method using a capillary rheometer. The shear rate in the measurement is 10 3 s −1 . The Vicat softening temperature is measured according to the JIS K7206 (1999) test method. The melting point is measured by a differential scanning calorimeter (DSC) according to JIS K7121 (1987).

構成要素(B)は極性基を有することも好ましい。極性基としては、例としてアミノ基、水酸基、カルボキシル基等が挙げられる。また、極性基とともに、極性の低い脂肪族炭化水素の部分もあわせて有していることも好ましい。構成要素(B)は、構成要素(A)と構成要素(C)の界相に配置されるため、このような極性の高い部分と低い部分をあわせ持たせると、界面活性剤としての働きも有することとなり、特に成形時において樹脂内への繊維の分散性の向上に寄与する点で好ましい。   The component (B) also preferably has a polar group. Examples of polar groups include amino groups, hydroxyl groups, and carboxyl groups. Moreover, it is also preferable to have a portion of an aliphatic hydrocarbon having a low polarity together with a polar group. Since the component (B) is arranged in the boundary phase between the component (A) and the component (C), if such a portion having a high polarity and a portion having a low polarity are combined, the component (B) also functions as a surfactant. In particular, it is preferable in that it contributes to the improvement of the dispersibility of the fibers in the resin during molding.

特に構成要素(B)として優れている熱可塑性重合体としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、テルペンフェノール樹脂、フェノールアラルキル樹脂などのフェノール系樹脂が挙げられる。また、構成要素(B)には、要求特性に応じて、難燃剤、耐候性改良剤、酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、導電性フィラー等を添加しておくことができる。   Particularly, examples of the thermoplastic polymer that is excellent as the component (B) include phenolic resins such as phenol novolac resin, cresol novolac resin, terpene phenol resin, and phenol aralkyl resin. In addition, the component (B) includes a flame retardant, a weather resistance improver, an antioxidant, a heat stabilizer, an ultraviolet absorber, a plasticizer, a lubricant, a colorant, a compatibilizer, and a conductivity depending on the required characteristics. A filler etc. can be added.

構成要素(B)は製造される長繊維強化熱可塑性樹脂材料100重量%に対して、0.5〜30重量%の範囲で配合されるのが好ましい。0.5重量%未満では、樹脂材料の生産性や樹脂材料を成形する際の繊維の分散性が低下することがあり、30重量%を超えると樹脂材料の機械特性が低下することがある。より好ましくは、2〜15重量%の範囲で使用できる。   The component (B) is preferably blended in the range of 0.5 to 30% by weight with respect to 100% by weight of the long fiber reinforced thermoplastic resin material to be produced. If it is less than 0.5% by weight, the productivity of the resin material and the dispersibility of the fibers when molding the resin material may be reduced, and if it exceeds 30% by weight, the mechanical properties of the resin material may be deteriorated. More preferably, it can be used in the range of 2 to 15% by weight.

構成要素(C)は重量平均分子量が10,000以上の熱可塑性樹脂である。重量平均分子量が10,000未満では得られる樹脂材料の力学特性が低くなることがある。構成要素(C)は重量平均分子量が10,000以上であれば特に限定されないが、溶融粘度は50Pa・s以上1,000Pa・s以下であることも好ましい。   The component (C) is a thermoplastic resin having a weight average molecular weight of 10,000 or more. If the weight average molecular weight is less than 10,000, the mechanical properties of the resin material obtained may be lowered. The component (C) is not particularly limited as long as the weight average molecular weight is 10,000 or more, but the melt viscosity is preferably 50 Pa · s or more and 1,000 Pa · s or less.

構成要素(C)の熱可塑性樹脂の種類は特に限定されないが、例えば、ポリアミド6樹脂、ポリアミド66樹脂等のポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂等のポリエステル樹脂、ポリカーボネート樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンオキシド樹脂、ポリスチレン樹脂、液晶ポリエステル樹脂、ABS樹脂やAS樹脂などのスチレン系重合体等を用いることができる。これらの混合物でもよい。また、ナイロン6とナイロン66との共重合ナイロンのように共重合したものであってもよい。これらの中で、機械特性、成形性、成形品外観などの観点から、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、スチレン系重合体が特に好ましく使用できる。さらに得たい成形品の要求特性に応じて、構成要素(C)には難燃剤、耐候性改良剤、酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、導電性フィラー等を添加しておくことができる。   The type of the thermoplastic resin of the component (C) is not particularly limited. For example, polyamide resins such as polyamide 6 resin and polyamide 66 resin, polyolefin resins such as polyethylene resin and polypropylene resin, polyethylene terephthalate resin, polybutylene terephthalate resin, etc. Polyester resins, polycarbonate resins, polyphenylene sulfide resins, polyphenylene oxide resins, polystyrene resins, liquid crystal polyester resins, styrene polymers such as ABS resins and AS resins, and the like can be used. A mixture of these may also be used. Moreover, what was copolymerized like the copolymer nylon of nylon 6 and nylon 66 may be used. Among these, polyamide resins, polyester resins, polyphenylene sulfide resins, and styrene polymers can be particularly preferably used from the viewpoints of mechanical properties, moldability, appearance of molded products, and the like. Furthermore, depending on the required properties of the molded product to be obtained, the component (C) includes a flame retardant, a weather resistance improver, an antioxidant, a heat stabilizer, an ultraviolet absorber, a plasticizer, a lubricant, a colorant, and a compatibilizer. A conductive filler or the like can be added.

次に、本発明にかかる長繊維強化熱可塑性樹脂の製造方法について説明する。   Next, the manufacturing method of the long fiber reinforced thermoplastic resin concerning this invention is demonstrated.

本発明にかかる長繊維強化熱可塑性樹脂は、構成要素(B)を、構成要素(A)に含浸させて複合体を得る第一工程と、前記複合体を、構成要素(C)の溶融温度より50〜150℃高い温度で加熱処理する第二工程、溶融した構成要素(C)を前記複合体に接するように配置する第三工程、を経て製造されるものである。各工程について以下に説明する。   The long fiber reinforced thermoplastic resin according to the present invention comprises a first step of obtaining a composite by impregnating the component (B) into the component (A), and the melting temperature of the component (C). It is manufactured through a second step in which heat treatment is performed at a temperature higher by 50 to 150 ° C., and a third step in which the molten component (C) is disposed in contact with the composite. Each step will be described below.

本発明にかかる第一工程は、構成要素(B)を10Pa・s以下の溶融粘度にするとともに、且つ、1分間の加熱重量保持率が95%以上である温度で加熱溶融した含浸装置の中に、後述する付与方法を用いて構成要素(A)を含浸させて複合体を形成する工程である。本工程により、構成要素(A)にほぼ満遍なく構成要素(B)が行き渡った複合体の形成が可能となる。   In the first step according to the present invention, the component (B) is melted at a viscosity of 10 Pa · s or less, and the impregnation apparatus is heated and melted at a temperature at which the heated weight retention for 1 minute is 95% or more. This is a step of impregnating the component (A) using the application method described later to form a composite. By this step, it is possible to form a complex in which the component (B) is distributed almost uniformly throughout the component (A).

ここで、構成要素(B)の溶融粘度は、溶融粘度が10Pa・sより高くなるような温度で含浸させた場合、構成要素(B)の流動性が極端に悪くなるため、構成要素(A)の繊維間への含浸が困難となって樹脂材料の生産性が低下することがある。より好ましくは、2Pa・s以下になる温度にまで加温すると、繊維間へ樹脂を含浸しやすくなる点でさらに好ましい態様である。   Here, the melt viscosity of the component (B) is extremely low when impregnated at a temperature at which the melt viscosity is higher than 10 Pa · s. ) May be difficult to impregnate between the fibers, and the productivity of the resin material may be reduced. More preferably, heating to a temperature of 2 Pa · s or less is a more preferable aspect in that the resin is easily impregnated between the fibers.

また、構成要素(B)を1分間加熱し続けた際の重量保持率が95%未満(すなわち1分間加熱した際の重量減量が5%を超える場合)になる温度まで加温すると、構成要素(A)へ含浸させる前に構成要素(B)中の低分子量体が気化・放散しやすくなる。   Further, when the component (B) is heated to a temperature at which the weight retention when the component (B) is heated for 1 minute is less than 95% (that is, when the weight loss when heated for 1 minute exceeds 5%), the component (B) is heated. Before impregnating (A), the low molecular weight substance in the component (B) is easily vaporized and released.

構成要素(B)のうち、低分子量体は動粘度が低いため繊維間へ含浸しやすい特性を有する。そのため、構成要素(A)には低分子量体から高分子量体へと順に含浸が進むと考えられている。このようにして構成要素(A)と構成要素(B)とから複合体を形成する際に、低分子量体が気化・放散すると、構成要素(A)にほぼ満遍なく構成要素(B)が行き渡った複合体の形成が不十分になるため、後述する樹脂材料を成形する際、構成要素(A)の分散性を低下させる恐れがある。   Among the constituent elements (B), the low molecular weight material has a low kinematic viscosity and thus has a characteristic of being easily impregnated between the fibers. Therefore, it is considered that impregnation of the component (A) proceeds in order from a low molecular weight body to a high molecular weight body. In this way, when forming a complex from the component (A) and the component (B), when the low molecular weight substance was vaporized and released, the component (B) was distributed almost uniformly throughout the component (A). Since the formation of the composite becomes insufficient, the dispersibility of the component (A) may be reduced when a resin material described later is molded.

なお、加熱した際の重量保持率は、JIS K7120(1987)試験法に従って熱重量分析計(TGA)により測定した値である。   In addition, the weight retention when heated is a value measured by a thermogravimetric analyzer (TGA) according to the JIS K7120 (1987) test method.

第一工程における構成要素(A)への構成要素(B)の付与方法は、繊維束に油剤、サイジング剤、マトリックス樹脂を付与するなどといった方法を用いることができる。より具体的な例としては、加熱した回転ロールの表面に、溶融した構成要素(B)を一定厚みの被膜として形成させ(コーティング)、このロール表面に構成要素(A)を接触させながら移動させることで、構成要素(A)に所定量の構成要素(B)を付着させる方法が挙げられる。ロール表面への構成要素(B)のコーティングに関しては、リバースロール、正回転ロール、キスロール、スプレー、カーテン、押出などの公知のコーティング装置の概念を応用することで実現できる。上記温度において、構成要素(B)の付着した構成要素(A)に対して、バーでしごきを加える、拡幅・集束を繰り返す、圧力や振動を加える、などの操作により、構成要素(B)を構成要素(A)である繊維束内部まで含浸するようにする。より具体的な例として、加熱された複数のロールやバーの表面に繊維束を接触するように通して拡幅などを行う方法を挙げられる。   As a method for applying the component (B) to the component (A) in the first step, a method such as applying an oil agent, a sizing agent, or a matrix resin to the fiber bundle can be used. As a more specific example, the molten component (B) is formed as a film having a constant thickness on the surface of a heated rotating roll (coating), and the component (A) is moved while contacting the roll surface. Thus, a method of attaching a predetermined amount of the component (B) to the component (A) can be mentioned. The coating of the component (B) on the roll surface can be realized by applying the concept of a known coating apparatus such as a reverse roll, a normal rotation roll, a kiss roll, a spray, a curtain, and extrusion. At the above temperature, the component (B) is applied to the component (A) to which the component (B) is adhered by operations such as ironing with a bar, repeating widening and focusing, and applying pressure and vibration. The inside of the fiber bundle as the component (A) is impregnated. As a more specific example, there is a method of performing widening by passing a fiber bundle in contact with the surfaces of a plurality of heated rolls or bars.

本発明にかかる第二工程は、第一工程で得られる複合体を構成要素(C)の溶融温度より50〜150℃高い温度で加熱処理する工程である。本工程により、構成要素(A)にほぼ満遍なく構成要素(B)が行き渡った前記複合体から、余分な構成要素(B)の低分子量体を除去することが可能となり、得られる樹脂材料の品質向上が可能となる。本発明で記す構成要素(C)の溶融温度とは、熱可塑性樹脂が結晶性であって明確な融点を持つ場合には融点、それ以外はビカット軟化温度を指す。   The second step according to the present invention is a step of heat-treating the composite obtained in the first step at a temperature 50 to 150 ° C. higher than the melting temperature of the component (C). By this step, it becomes possible to remove the low molecular weight body of the excess component (B) from the complex in which the component (B) is distributed almost uniformly throughout the component (A), and the quality of the resin material obtained Improvement is possible. The melting temperature of the component (C) described in the present invention refers to the melting point when the thermoplastic resin is crystalline and has a clear melting point, and the Vicat softening temperature otherwise.

構成要素(C)の溶融温度より50℃未満で加熱処理した場合、構成要素(B)の低分子量体が十分に気化・放散しない。そのため、得られる樹脂材料を射出成形などによって成形品に加工する際に、成形品へのガス焼けや金型へのモールドデポジット発生などの成形不良を発生させることがある。また、150℃より高い温度で加熱処理した場合、低分子量体に併せて中分子量体までも気化・放散することがあり、樹脂材料を成形する際の構成要素(A)の分散性が低下する恐れがある。より好ましくは、構成要素(C)の溶融温度より60〜120℃高い温度で加熱処理するものである。   When the heat treatment is performed at a temperature lower than 50 ° C. from the melting temperature of the component (C), the low molecular weight substance of the component (B) is not sufficiently vaporized and released. For this reason, when the obtained resin material is processed into a molded product by injection molding or the like, molding defects such as gas burning on the molded product or generation of mold deposit on the mold may occur. Further, when heat treatment is performed at a temperature higher than 150 ° C., the medium molecular weight body may be vaporized and released together with the low molecular weight body, and the dispersibility of the component (A) when molding the resin material is lowered. There is a fear. More preferably, the heat treatment is performed at a temperature 60 to 120 ° C. higher than the melting temperature of the component (C).

本発明の第二工程の加熱処理を行う際には、第一工程と同様に、前記複合体をバーでしごく、拡幅・集束を繰り返す、圧力や振動を加える、などの操作を加えることも好ましい。   When performing the heat treatment in the second step of the present invention, it is also preferable to add operations such as squeezing the composite with a bar, repeating widening and focusing, applying pressure and vibration, as in the first step. .

本発明の第三工程は、溶融した構成要素(C)を前記複合体に接するように配置するものである。より具体的には、押出機と電線被覆法用のコーティングダイを用いて、連続的に複合体の周囲に構成要素(C)を被覆するように配置していく方法や、ロール等で扁平化した複合体の片面あるいは両面から、押出機とTダイを用いて溶融したフィルム状の構成要素(C)を配置し、ロールなどで一体化させる方法を挙げることができる。   In the third step of the present invention, the molten component (C) is disposed so as to contact the composite. More specifically, using an extruder and a coating die for the wire coating method, it is flattened by a method of continuously arranging the component (C) around the composite or by a roll or the like. An example is a method in which a film-like component (C) melted using an extruder and a T-die is disposed from one side or both sides of the composite and integrated with a roll or the like.

このような工程を経て得られた樹脂材料は、一般の成形加工法により最終的な形状の製品に加工できる。成形加工法は特に限定されないが、例えば、プレス成形、トランスファー成形、射出成形や、これらの組合せ等が挙げられ、目的とする種々の成形品内部に、構成要素(A)がほぼ均一に分散され、ガス焼けやモールドデポジットなどによる成形不良の発生頻度が低下した成形品を得ることができる。この中で、射出成形に用いる場合には、樹脂材料をペレタイザーやストランドカッターなどの装置で一定長に切断してペレットにしても良い。ペレットの長さは、成形加工を容易にできる1〜50mmの範囲が好ましく、さらには3〜12mmがより好ましい。   The resin material obtained through such steps can be processed into a final product by a general molding method. The molding method is not particularly limited, and examples thereof include press molding, transfer molding, injection molding, and combinations thereof. The component (A) is almost uniformly dispersed in various target molded products. Further, it is possible to obtain a molded product in which the occurrence frequency of molding defects due to gas burning or mold deposit is reduced. Among these, when used for injection molding, the resin material may be cut into pellets by cutting to a certain length with an apparatus such as a pelletizer or a strand cutter. The length of the pellet is preferably in the range of 1 to 50 mm, which can facilitate the forming process, and more preferably 3 to 12 mm.

以下、実施例を挙げて本発明を詳細に説明するが、本発明の骨子は以下の実施例のみ限定されるものではない。
[実施例1]第一工程として、130℃に加熱されたロール上に、テルペンフェノール重合体(ヤスハラケミカル(株)製YP90L、重量平均分子量460)を加熱溶融した液体の被膜を形成させた。ロール上に一定した厚みの被膜を形成するためキスコーターを用いた。このロール上を連続した炭素繊維束(東レ(株)製T300、繊維系7μm、炭素繊維本数12,000本)を接触させながら通過させて、炭素繊維束の単位長さあたりに一定量のテルペンフェノール重合体を付着させた。
Hereinafter, although an example is given and the present invention is explained in detail, the gist of the present invention is not limited only to the following examples.
[Example 1] As a first step, a liquid film obtained by heating and melting a terpene phenol polymer (YP90L, manufactured by Yashara Chemical Co., Ltd., weight average molecular weight 460) was formed on a roll heated to 130 ° C. A kiss coater was used to form a film with a constant thickness on the roll. A continuous carbon fiber bundle (T300 manufactured by Toray Industries Inc., fiber system: 7 μm, number of carbon fibers: 12,000) is passed through the roll while making contact, and a certain amount of terpene per unit length of the carbon fiber bundle A phenolic polymer was deposited.

重合体を付着させた炭素繊維を、130℃に加熱された、ベアリングで自由に回転する、一直線上に配置された8本の直径50mmのロールの上下を交互に通過させた。この操作により、重合体を繊維束の内部まで含浸させ、炭素繊維とテルペンフェノール重合体よりなる連続した複合体を形成した。この段階で、複合体全体に対する重合体の量は15重量%であった。130℃におけるYP90Lの、せん断速度10−1における溶融粘度は、キャピラリーレオメーターによる測定で約1Pa・sであった。また、130℃における1分間のYP90Lの加熱重量保持率は、熱重量分析計による測定で98%であった。 The carbon fibers to which the polymer was attached were alternately passed over 8 rolls with a diameter of 8 mm, which were heated to 130 ° C. and freely rotated by bearings, and arranged in a straight line. By this operation, the polymer was impregnated to the inside of the fiber bundle to form a continuous composite made of carbon fiber and terpene phenol polymer. At this stage, the amount of polymer relative to the entire composite was 15% by weight. The melt viscosity of YP90L at 130 ° C. at a shear rate of 10 3 s −1 was about 1 Pa · s as measured by a capillary rheometer. Moreover, the heating weight retention of YP90L for 1 minute at 130 ° C. was 98% as measured by a thermogravimetric analyzer.

次に第二工程として、この複合体を、290℃に加熱され、ベアリングで自由に回転し、一直線上に配置された直径50mmのロール6本の上下を交互に通過させた。ここで、290℃の温度は、次工程で被覆するナイロン6樹脂の示差走査熱量計により測定された融点220℃に対して70℃高い温度に設定したものである。この操作により、低分子量体が除去されたテルペンフェノール重合体と炭素繊維よりなる連続した複合体を形成した。この段階で、複合体全体に対する重合体の量は13重量%であった。   Next, as a second step, the composite was heated to 290 ° C., freely rotated by a bearing, and passed alternately above and below six 50 mm diameter rolls arranged in a straight line. Here, the temperature of 290 ° C. is set to a temperature 70 ° C. higher than the melting point of 220 ° C. measured by the differential scanning calorimeter of the nylon 6 resin to be coated in the next step. By this operation, a continuous complex composed of the terpene phenol polymer from which the low molecular weight product was removed and the carbon fiber was formed. At this stage, the amount of polymer relative to the entire composite was 13% by weight.

次に第三工程として、この連続した複合体を、直径40mmの単軸押出機の先端に設置された電線被覆法用のコーティングダイ中に通し、押出機からダイ中に240℃で溶融させたナイロン6樹脂(東レ(株)製“アミラン”(登録商標)CM1017、重量平均分子量18,600)を吐出させて、複合体の周囲を被覆するようにナイロン6樹脂を連続的に配置した。240℃におけるナイロン6の、せん断速度10−1における溶融粘度は、キャピラリーレオメーターによる測定で約200Pa・sであった。 Next, as a third step, the continuous composite was passed through a coating die for wire coating method installed at the tip of a single screw extruder having a diameter of 40 mm, and melted at 240 ° C. from the extruder into the die. Nylon 6 resin (“Amilan” (registered trademark) CM1017 manufactured by Toray Industries, Inc., weight average molecular weight 18,600) was discharged to continuously arrange the nylon 6 resin so as to cover the periphery of the composite. The melt viscosity of nylon 6 at 240 ° C. at a shear rate of 10 3 s −1 was about 200 Pa · s as measured by a capillary rheometer.

この複合体をナイロン6で被覆した樹脂材料を常温近くまで冷却後、ストランドカッターにより長さ7mmのペレットとした。ここまでの成形材料製造は連続した工程によりなされ、炭素繊維束の引き取り速度は30m/分であった。また、この樹脂材料の組成比は、炭素繊維:テルペンフェノール重合体:ナイロン6樹脂=33:5:62であった。   A resin material obtained by coating this composite with nylon 6 was cooled to near room temperature, and then pellets having a length of 7 mm were formed by a strand cutter. The molding material production up to this point was made by a continuous process, and the take-up speed of the carbon fiber bundle was 30 m / min. The composition ratio of the resin material was carbon fiber: terpene phenol polymer: nylon 6 resin = 33: 5: 62.

このペレットを用いて、型締め力100tの射出成形機により、外形が80mm×80mm、厚み1mmの平板成形品を得た。この成形の際、シリンダ温度はノズル近くで260℃に設定し、金型温度は80℃とした。成形品の表面は平滑で、成形品中の繊維の分散性に問題はなく、ガス焼けの成形不良も認められなかった。また、成形を連続的に繰り返し行ったが、1,000ショット繰り返してもモールドデポジットの発生は認められなかった。   Using this pellet, a flat plate molded product having an outer shape of 80 mm × 80 mm and a thickness of 1 mm was obtained by an injection molding machine having a clamping force of 100 t. During this molding, the cylinder temperature was set to 260 ° C. near the nozzle, and the mold temperature was set to 80 ° C. The surface of the molded product was smooth, there was no problem with the dispersibility of the fibers in the molded product, and no molding failure due to gas burning was observed. Further, although the molding was repeated continuously, generation of mold deposits was not recognized even after 1,000 shots were repeated.

なお、この成形品のアイゾット衝撃値(ノッチ有)(JIS K7110(1999)に準拠)は20kJ/mであった。 In addition, the Izod impact value (with a notch) of this molded product (based on JIS K7110 (1999)) was 20 kJ / m 2 .

[比較例1]実施例1の第二工程を180℃に加熱して行った以外は、実施例1と同様に製造して、樹脂材料のペレットを得た。この樹脂材料の組成比は、炭素繊維:テルペンフェノール重合体:ナイロン6樹脂=33:6:61であった。   [Comparative Example 1] A pellet of resin material was obtained in the same manner as in Example 1 except that the second step of Example 1 was carried out at 180 ° C. The composition ratio of this resin material was carbon fiber: terpene phenol polymer: nylon 6 resin = 33: 6: 61.

このペレットを用いて、型締め力100tの射出成形機により、外形が80mm×80mm、厚み1mmの平板状成形品を得た。成形品中の繊維の分散性は問題なかったが、流動末端部分に僅かなガス焼けが認められた。また、成形を連続的に繰り返し行ったところ、約500ショットでモールドデポジットの発生が認められた。   Using this pellet, a flat molded product having an outer shape of 80 mm × 80 mm and a thickness of 1 mm was obtained by an injection molding machine having a clamping force of 100 t. Although there was no problem with the dispersibility of the fibers in the molded article, slight gas burning was observed at the flow end portion. Further, when the molding was continuously repeated, generation of mold deposits was recognized in about 500 shots.

なお、この成形品のアイゾット衝撃値(ノッチ有)(JIS K7110(1999)に準拠)は20kJ/mであった。 In addition, the Izod impact value (with a notch) of this molded product (based on JIS K7110 (1999)) was 20 kJ / m 2 .

本発明によれば、前記樹脂材料を使用して成形加工をし続けても、成形不良が起こりにくく、高品質な成形品を製造することができる。   According to the present invention, even if the molding process is continued using the resin material, molding defects are unlikely to occur, and a high-quality molded product can be manufactured.

Claims (4)

強化繊維束である構成要素(A)と、重量平均分子量200〜10,000で構成要素(C)よりも溶融粘度が低い熱可塑性重合体である構成要素(B)と、重量平均分子量が10,000以上である熱可塑性樹脂である構成要素(C)とを含み、構成要素(A)と構成要素(B)とを含む複合体に構成要素(C)が接するように配置されてなる長繊維強化熱可塑性樹脂材料の製造方法であって、
構成要素(B)の溶融粘度が10Pa・s以下になり、且つ、1分間加熱した際の重量保持率が95%以上となる温度で加熱溶融された構成要素(B)を構成要素(A)へ含浸させて複合体を形成する第一工程、前記複合体を構成要素(C)の溶融温度より50〜150℃高い温度で加熱処理する第二工程、次いで溶融した構成要素(C)を前記複合体に接するように配置する第三工程、を含むことを特徴とする長繊維強化熱可塑性樹脂材料の製造方法。
Component (A) which is a reinforcing fiber bundle, component (B) which is a thermoplastic polymer having a weight average molecular weight of 200 to 10,000 and a melt viscosity lower than that of component (C), and a weight average molecular weight of 10 And a constituent element (C) that is a thermoplastic resin that is equal to or greater than 1,000, and is configured such that the constituent element (C) is in contact with a composite that includes the constituent element (A) and the constituent element (B). A method for producing a fiber-reinforced thermoplastic resin material,
The component (B) is heated and melted at a temperature at which the melt viscosity of the component (B) is 10 Pa · s or less and the weight retention when heated for 1 minute is 95% or more. A first step of impregnating the composite to form a composite, a second step of heat-treating the composite at a temperature 50 to 150 ° C. higher than the melting temperature of the component (C), and then the molten component (C) A method for producing a long fiber reinforced thermoplastic resin material, comprising a third step of placing the composite in contact with the composite.
構成要素(B)がフェノール系樹脂であることを特徴とする請求項1に記載の長繊維強化熱可塑性樹脂材料の製造方法。 The method for producing a long fiber reinforced thermoplastic resin material according to claim 1, wherein the component (B) is a phenol resin. 構成要素(A)が炭素繊維束であることを特徴とする請求項1または2に記載の長繊維強化熱可塑性樹脂材料の製造方法。 The method for producing a long fiber reinforced thermoplastic resin material according to claim 1 or 2, wherein the component (A) is a carbon fiber bundle. 構成要素(C)がポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、スチレン系重合体から選ばれる1種または2種以上の混合物であることを特徴とする請求項1〜3のいずれかに記載の長繊維強化熱可塑性樹脂材料の製造方法。 The constituent element (C) is one or a mixture of two or more selected from polyamide resin, polyester resin, polyphenylene sulfide resin, and styrene-based polymer. A method for producing a fiber-reinforced thermoplastic resin material.
JP2007331538A 2007-12-25 2007-12-25 Manufacturing method for long fiber-reinforced thermoplastic resin material Pending JP2009155363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007331538A JP2009155363A (en) 2007-12-25 2007-12-25 Manufacturing method for long fiber-reinforced thermoplastic resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007331538A JP2009155363A (en) 2007-12-25 2007-12-25 Manufacturing method for long fiber-reinforced thermoplastic resin material

Publications (1)

Publication Number Publication Date
JP2009155363A true JP2009155363A (en) 2009-07-16

Family

ID=40959733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007331538A Pending JP2009155363A (en) 2007-12-25 2007-12-25 Manufacturing method for long fiber-reinforced thermoplastic resin material

Country Status (1)

Country Link
JP (1) JP2009155363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122438A (en) * 2012-12-20 2014-07-03 Teijin Ltd Method for producing reinforcing carbon fiber bundle and carbon fiber composite material using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122438A (en) * 2012-12-20 2014-07-03 Teijin Ltd Method for producing reinforcing carbon fiber bundle and carbon fiber composite material using the same

Similar Documents

Publication Publication Date Title
JP3774959B2 (en) Molding material and manufacturing method thereof
TWI795516B (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molded material
CN107075142B (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP6052421B2 (en) Fiber-reinforced thermoplastic resin molding material and fiber-reinforced thermoplastic resin molded product
KR101981837B1 (en) Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
CN108137829B (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP6123956B1 (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP2013203941A (en) Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and automobile part that uses the carbon fiber-reinforced composite material
JP2018059087A (en) Fiber-reinforced thermoplastic resin molded product and fiber-reinforced thermoplastic resin molding material
JP2009155363A (en) Manufacturing method for long fiber-reinforced thermoplastic resin material
JP2016190922A (en) Carbon fiber-reinforced thermoplastic resin molding and carbon fiber-reinforced thermoplastic resin molding material
JP2018145245A (en) Carbon fiber composite material
EP4182382B1 (en) Process for preparing a continuous fiber filament, continuous fiber filament and use thereof
US20220145528A1 (en) Method for producing opened carbon fibre bundle and fibre reinforced composite material
JP6554815B2 (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP6996351B2 (en) Fiber-reinforced thermoplastic resin composition, fiber-reinforced thermoplastic resin molding material, and molded products made of the same.
WO2023058448A1 (en) Fiber-reinforced thermoplastic resin composition
JP2006052411A (en) Polyamide resin composition and molded product
RU2783519C1 (en) Method for producing a polyesterimide composite material for 3d printing
US20220220303A1 (en) Resin composition, film, composite material, moving body, and three-dimensional printing material
TW202132425A (en) Fiber-reinforced resin molding material, fiber-reinforced resin molded article, and method for manufacturing fiber-reinforced resin molded article
JP2013018821A (en) Composite reinforced fiber bundle, its production method, and its molding material
CN115873380A (en) Polymer film, laminate, and substrate for high-speed communication