JP2009154151A - Deodorization apparatus and deodorization method - Google Patents

Deodorization apparatus and deodorization method Download PDF

Info

Publication number
JP2009154151A
JP2009154151A JP2008310148A JP2008310148A JP2009154151A JP 2009154151 A JP2009154151 A JP 2009154151A JP 2008310148 A JP2008310148 A JP 2008310148A JP 2008310148 A JP2008310148 A JP 2008310148A JP 2009154151 A JP2009154151 A JP 2009154151A
Authority
JP
Japan
Prior art keywords
ammonia
packed tower
gas
carbon dioxide
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008310148A
Other languages
Japanese (ja)
Inventor
Akira Nakajima
朗 中島
Yasuo Yuasa
泰夫 湯浅
Takahiro Saegusa
孝裕 三枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAJIMA JIDOSHA DENSO KK
Original Assignee
NAKAJIMA JIDOSHA DENSO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAJIMA JIDOSHA DENSO KK filed Critical NAKAJIMA JIDOSHA DENSO KK
Priority to JP2008310148A priority Critical patent/JP2009154151A/en
Publication of JP2009154151A publication Critical patent/JP2009154151A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Fertilizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an deodorization method capable of deodorizing an offensive gas containing high concentration of offensive components generated from a composting apparatus. <P>SOLUTION: The offensive gas is deodorized by cooling an exhaust gas containing the offensive gas containing ammonia and carbon dioxide and moisture discharged from the composting apparatus 11 with a heat exchanger 12 to condense the moisture to separate the exhaust gas into the offensive gas and condensed water and allow the separated offensive gas and condensed water to contact each other in packed towers 14, 15, 16. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、畜産排泄物の堆肥化装置内から発生する臭気ガスを脱臭するための脱臭装置及び脱臭方法に係わる。
この臭気ガスに含まれる臭気成分は、例えば悪臭防止法に定められる悪臭物質であり、具体的にはアンモニアや硫黄化合物、有機酸等が該当するが、ここでは、特に、畜産排泄物の堆肥化装置内から発生する臭気ガスの主成分であるアンモニアの脱臭方法に関する。
The present invention relates to a deodorizing apparatus and a deodorizing method for deodorizing odorous gas generated from a composting apparatus for livestock excreta.
Odor components contained in this odor gas are, for example, malodorous substances stipulated in the Malodor Control Law, and specifically ammonia, sulfur compounds, organic acids, etc., but here, in particular, composting livestock excreta The present invention relates to a method for deodorizing ammonia, which is a main component of odor gas generated from the inside of the apparatus.

家禽、豚、牛そのほかの家畜の飼養がなされる畜産場、これら畜産場から出てくる家畜の排泄物や飼料等の廃棄物の集積場、また、これら排泄物等を用いて堆肥生産を行う作業場、工場等から発生する悪臭は、近隣住民とのトラブルの原因ともなり、近隣住民の生活に影響を及ぼす大きな問題となっている。   Livestock farms where poultry, pigs, cattle, and other livestock are raised, livestock excretion and livestock collection from these farms, and compost production using these excreta Offensive odors generated from workplaces, factories, etc. cause troubles with neighboring residents and are a major problem affecting the lives of neighboring residents.

特に、昨今、郊外への住宅地の進出によって、畜産場や工場と民家との距離が接近する傾向にあり、異臭、悪臭の完全な脱臭の必要性が高まっている。
一般に、養豚場における豚1頭で、人間10人分の排泄物が発生するといわれており、多くの豚を扱う養豚場では、その発する悪臭に対する近隣住民からの苦情に対する対応に苦慮しているのが現実である。
In particular, with the recent advancement of residential areas in the suburbs, the distance between livestock farms and factories and private houses tends to be closer, and the need for complete deodorization of off-flavors and odors is increasing.
In general, one pig in a pig farm is said to generate excrement for 10 humans, and pig farms that handle many pigs are struggling to respond to complaints from neighboring residents about the bad odor that occurs. Is the reality.

また、畜産排泄物の多くは堆肥化されるが、この堆肥生産を行う工場や作業場から発生する強烈な悪臭に関しても、近隣住民からの苦情が寄せられており、その脱臭は必須のものとなっている。
この脱臭方法及び脱臭装置としては、例えば微生物を使ったいわゆる生物脱臭法が提案されている(例えば、特許文献1参照)。
In addition, most of the livestock excreta are composted. Complaints from neighboring residents have been received regarding the intense odor generated from factories and workplaces that produce this compost, and deodorization is indispensable. ing.
As this deodorizing method and deodorizing apparatus, for example, a so-called biological deodorizing method using microorganisms has been proposed (see, for example, Patent Document 1).

この特許文献1に記載された脱臭方法は、臭気成分を含んだ気体を所要の濃度に調製された微生物培養液中に送り込み、これをバブリングさせて臭気成分を除去する方法である。
この方法では、微生物培養液内で臭気成分を除去する際に、微生物の脱臭作用によって微生物が減少した微生物培養液にエネルギー源を供給して微生物培養液中の微生物を培養増殖させることができる。
そして、この培養増殖によって所要の濃度に回復された微生物培養液を脱臭装置内に循環させることで、常に微生物の培養増殖によって所要の濃度に回復された微生物培養液により臭気成分を含んだ臭気ガスの脱臭を行うことができる。
The deodorization method described in Patent Document 1 is a method in which a gas containing an odor component is fed into a microorganism culture solution prepared to a required concentration, and this is bubbled to remove the odor component.
In this method, when removing the odor component in the microorganism culture solution, the microorganisms in the microorganism culture solution can be cultured and proliferated by supplying an energy source to the microorganism culture solution in which the microorganisms are reduced by the deodorizing action of the microorganism.
Then, by circulating the microorganism culture solution restored to the required concentration by the culture growth in the deodorizing apparatus, the odor gas containing the odor component by the microorganism culture solution always restored to the required concentration by the culture growth of the microorganism. Can be deodorized.

特開2007−283239号公報JP 2007-283239 A

しかしながら、微生物を用いた脱臭方法では、臭気ガスに含まれるアンモニアの濃度が高い場合には、処理が困難である。このため、家畜糞尿の堆肥化装置として、縦型急速発酵装置のような高温かつ高濃度のアンモニアを含む臭気ガスが大風量で発生する装置を用いた場合には、適用することができない。   However, the deodorization method using microorganisms is difficult to process when the concentration of ammonia contained in the odor gas is high. For this reason, it cannot be applied when a device that generates a high volume of odor gas containing high-temperature and high-concentration ammonia such as a vertical rapid fermentation device is used as a composting device for livestock manure.

また、微生物を用いた脱臭方法は、脱臭効果が気温の影響をうけるため、微生物の好適な生育範囲の15〜35℃の間で処理しなければ、極端に脱臭効率が悪くなるという問題がある。   In addition, the deodorizing method using microorganisms has a problem that the deodorizing efficiency is extremely deteriorated if the treatment is not performed between 15 and 35 ° C., which is a suitable growth range of microorganisms, because the deodorizing effect is affected by the temperature. .

上述した問題の解決のため、本発明においては、堆肥化装置から発生する高濃度の臭気成分を含む臭気ガスを、脱臭することが可能な脱臭装置及び脱臭方法を提供するものである。   In order to solve the above-described problems, the present invention provides a deodorizing apparatus and a deodorizing method capable of deodorizing odorous gas containing a high-concentration odorous component generated from a composting apparatus.

本発明の脱臭装置は、アンモニア及び二酸化炭素を含む臭気ガスと水分とが排出される堆肥化装置と堆肥化装置からの排気を冷却して水分を凝縮させる熱交換器と、熱交換器で凝縮された水と、臭気ガスとを接触させる充填塔とを備えることを特徴とする。   The deodorizing apparatus of the present invention includes a composting apparatus that discharges odorous gas containing ammonia and carbon dioxide and moisture, a heat exchanger that cools the exhaust from the composting apparatus and condenses moisture, and condenses in the heat exchanger And a packed tower for contacting the odor gas with the water.

また、本発明の脱臭方法は、堆肥化装置から排出される、アンモニアと二酸化炭素とが含まれる臭気ガス及び水分を含む排気を、熱交換器で冷却して水分を凝縮させて排気を臭気ガスと凝縮水とに分離し、この分離した臭気ガスと凝縮水とを充填塔で接触させることを特徴としている。   Further, the deodorizing method of the present invention is an odor gas containing ammonia and carbon dioxide discharged from a composting apparatus, and an exhaust gas containing moisture is cooled by a heat exchanger to condense the moisture and the exhaust gas is odor gas. And the condensed water, and the separated odor gas and the condensed water are brought into contact with each other in a packed tower.

本発明の脱臭装置及び脱臭方法によれば、堆肥化装置から排出される、水分を熱交換器により凝縮する。そして、堆肥化装置から排出される臭気ガスと熱交換器により凝縮した水を充填塔で接触させる。これにより、臭気ガスに含まれるアンモニアと二酸化炭素が凝縮水中に溶解する。そして、臭気ガスに含まれるアンモニアがほとんど凝縮水中に溶解するため、充填塔からの排気はアンモニアをほぼ含まないものとなり、臭気ガスを脱臭することができる。   According to the deodorizing apparatus and the deodorizing method of the present invention, the moisture discharged from the composting apparatus is condensed by the heat exchanger. And the odor gas discharged | emitted from a composting apparatus and the water condensed with the heat exchanger are made to contact in a packed tower. Thereby, ammonia and carbon dioxide contained in the odor gas are dissolved in the condensed water. And since most of the ammonia contained in the odor gas is dissolved in the condensed water, the exhaust from the packed tower does not substantially contain ammonia, and the odor gas can be deodorized.

従って、例えば縦型急速発酵装置のような高濃度のアンモニアが発生する堆肥化装置において、堆肥化装置から発生するアンモニアを、同じく堆肥化装置から発生する二酸化炭素と水とを使用して回収することができる。つまり、堆肥化装置から発生する臭気ガスから、臭気の主成分であるアンモニアを回収し、水中の二酸化炭素又は炭酸と反応させることにより、高濃度の炭酸アンモニウム溶液が得られる。このため、この脱臭装置及び脱臭方法により、臭気の主成分であるアンモニアがほとんど含まれない排気とすることができる。   Therefore, for example, in a composting apparatus that generates high-concentration ammonia such as a vertical rapid fermentation apparatus, ammonia generated from the composting apparatus is recovered using carbon dioxide and water generated from the composting apparatus. be able to. That is, a high concentration ammonium carbonate solution is obtained by recovering ammonia, which is the main component of the odor, from the odor gas generated from the composting apparatus and reacting it with carbon dioxide or carbonic acid in water. For this reason, by this deodorizing apparatus and deodorizing method, it can be set as exhaust which hardly contains ammonia which is the main component of odor.

本発明によれば、臭気の主成分であるアンモニアと水中の二酸化炭素又は炭酸と反応させることにより、堆肥化装置から排出されるアンモニアを含む臭気ガスを極めて効果的に脱臭することができる。   ADVANTAGE OF THE INVENTION According to this invention, the odor gas containing ammonia discharged | emitted from a composting apparatus can be deodorized very effectively by making it react with the carbon dioxide or carbonic acid in water, the ammonia which is a main component of an odor.

以下、本発明の具体的な実施の形態について図面を用いて説明する。
図1に本発明の一実施の形態の脱臭装置のブロック図を示す。
図1に示す脱臭装置10は、堆肥化装置11、熱交換器12、第1の貯水槽13、第1の充填塔14、第2の充填塔15、第3の充填塔16、及び、第2の貯水槽17とを備える。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a block diagram of a deodorizing apparatus according to an embodiment of the present invention.
1 includes a composting device 11, a heat exchanger 12, a first water tank 13, a first packed tower 14, a second packed tower 15, a third packed tower 16, and a first packed tower 16. 2 water tanks 17.

堆肥化装置11は、外部から空気が供給され、装置内で畜産排泄物(有機廃棄物)を発酵させて堆肥化させる装置である。この堆肥化装置11としては、例えば、畜産排泄物を連続的、好気的に発酵させる縦型急速発酵装置が用いられる。
堆肥化装置11は、上部に形成される畜産排泄物の投入口と、この投入口から投入された畜産排泄物を常時又は定期的に撹拌する撹拌機と、装置内に外部から空気を供給するための送風管と、送風管の途中部位に設置される空気加熱用の電気ヒータ等を含んで構成される。
堆肥化装置11の上部には、ガス送管31が接続される。ガス送管31は、堆肥化装置11からブロア25を介して熱交換器12に接続されている。
The composting apparatus 11 is an apparatus that is supplied with air from the outside, fertilizes livestock excrement (organic waste) in the apparatus, and composts it. As the composting apparatus 11, for example, a vertical rapid fermentation apparatus that continuously and aerobically fertilizes livestock excrement is used.
The composting apparatus 11 supplies a livestock excrement input port formed at an upper part thereof, an agitator that constantly or periodically stirs the livestock excrement input from the input port, and supplies air from the outside into the apparatus. For example, an air heater and an electric heater for air heating installed at an intermediate portion of the air duct are configured.
A gas feed pipe 31 is connected to the upper part of the composting apparatus 11. The gas pipe 31 is connected to the heat exchanger 12 from the composting apparatus 11 through the blower 25.

この堆肥化装置11内において、家畜排泄物を発酵及び乾燥させる際に、アンモニアを主成分とし、その他各種の有機酸を微量に含む臭気ガスが発生するとともに、二酸化炭素及び家畜排泄物の乾燥による多量の水分が発生する。そして、ブロア25を駆動することにより、堆肥化装置11内で発生した臭気ガス、二酸化炭素、水分等を含む排気が、ガス送管31を通じて熱交換器12に供給される。   In the composting apparatus 11, when fermenting and drying livestock excreta, odorous gas containing ammonia as a main component and a small amount of other various organic acids is generated, and carbon dioxide and livestock excrement are dried. A large amount of water is generated. Then, by driving the blower 25, exhaust gas containing odor gas, carbon dioxide, moisture and the like generated in the composting apparatus 11 is supplied to the heat exchanger 12 through the gas feed pipe 31.

そして、この熱交換器12において、堆肥化装置11から供給されたアンモニア及び二酸化炭素を含む臭気ガスや、水分等を含む排気を冷却することにより、排気中に含まれる水分を凝縮させる。これにより、堆肥化装置11から供給された排気が、アンモニアや二酸化炭素等による気体と凝縮水とに分離される。
熱交換器12には、配管32とガス送管34が接続されている。配管32は、熱交換器12から第1の貯水槽13に接続されている。この配管32は、堆肥化装置11から供給された排気から分離された凝縮水を、第1の貯水槽13に送る。ガス送管34は、熱交換器12から第1の充填塔14の下部に接続されている。
And in this heat exchanger 12, the moisture contained in exhaust_gas | exhaustion is condensed by cooling the exhaust gas containing the odor gas containing ammonia and the carbon dioxide supplied from the composting apparatus 11, or a water | moisture content. Thereby, the exhaust gas supplied from the composting apparatus 11 is separated into a gas such as ammonia or carbon dioxide and condensed water.
A pipe 32 and a gas feed pipe 34 are connected to the heat exchanger 12. The pipe 32 is connected from the heat exchanger 12 to the first water tank 13. This pipe 32 sends the condensed water separated from the exhaust gas supplied from the composting apparatus 11 to the first water tank 13. The gas feed pipe 34 is connected to the lower part of the first packed tower 14 from the heat exchanger 12.

第1の貯水槽13は、熱交換器12内の凝縮水を配管32を通して回収する。
第1の貯水槽13には、配管37、配管38、及び、ガス送管33が接続されている。
配管37は、ブロア18を介して外部からの空気を第1の貯水槽13内に供給する。配管38は、第1の貯水槽13から第3の充填塔16の上部に設けられたスプレイノズル20に接続されている。ガス送管33は、第1の貯水槽13からガス送管34に接続されている。
また、第1の貯水槽13に回収された凝縮水のうち、第3の充填塔16に供給された残りは、オーバーフローにより排水される。
The first water tank 13 collects the condensed water in the heat exchanger 12 through the pipe 32.
A pipe 37, a pipe 38, and a gas feed pipe 33 are connected to the first water tank 13.
The pipe 37 supplies air from the outside into the first water tank 13 through the blower 18. The pipe 38 is connected to the spray nozzle 20 provided in the upper part of the third packed tower 16 from the first water tank 13. The gas feed pipe 33 is connected to the gas feed pipe 34 from the first water storage tank 13.
Moreover, the remainder supplied to the 3rd packed tower 16 among the condensed water collect | recovered by the 1st water tank 13 is drained by overflow.

第1の貯水槽13に回収された凝縮水には、堆肥化装置11の排気に含まれるアンモニア及び二酸化炭素が溶解している。このため、ブロア18を駆動することにより、第1の貯水槽13に接続された配管37から空気を供給し、第1の貯水槽内に回収されている凝縮水を空気で曝気する。このように第1の貯水槽内で凝縮水が曝気されるため、凝縮水中に含まれるアンモニア及び二酸化炭素等がガス送管33を通してガス送管34に供給される。
ガス送管34は、熱交換器12及びガス送管33からのアンモニア及び二酸化炭素を含む臭気ガスを、第1の充填塔14の下部へ供給する。
In the condensed water collected in the first water tank 13, ammonia and carbon dioxide contained in the exhaust gas from the composting apparatus 11 are dissolved. For this reason, by driving the blower 18, air is supplied from the pipe 37 connected to the first water tank 13, and the condensed water collected in the first water tank is aerated with air. Since the condensed water is aerated in the first water tank in this way, ammonia, carbon dioxide and the like contained in the condensed water are supplied to the gas feeding pipe 34 through the gas feeding pipe 33.
The gas feed pipe 34 supplies odor gas containing ammonia and carbon dioxide from the heat exchanger 12 and the gas feed pipe 33 to the lower part of the first packed tower 14.

第1の充填塔14、第2の充填塔15、及び、第3の充填塔16は、それぞれ配管により直列に接続されている。これらは上方から下方へ凝縮水が供給され、下方から上方へ臭気ガスが供給される向流接触型の充填塔である。   The 1st packed tower 14, the 2nd packed tower 15, and the 3rd packed tower 16 are connected in series by piping, respectively. These are counter flow contact type packed towers in which condensed water is supplied from above to below and odorous gas is supplied from below to above.

第1の充填塔14は、塔内に充填材26が設けられている。また、第1の充填塔14の充填材26の上部には、スプレイノズル24が配置されている。また、第1の充填塔14の下部には、循環水タンク45が設置されている。
第1の充填塔14には、ガス送管34、ガス送管35、オーバーフロー配管41が接続されている。また、循環水タンク45には、循環パイプ48が接続されている。ガス送管35は、第1の充填塔14の上部から第2の充填塔15の下部に接続されている。オーバーフロー配管41は、第1の充填塔14の下部において、循環水タンク45の上部から第2の貯水槽17に接続されている。また、第1の充填塔14の上部に配置されたスプレイノズル24には、配管40が接続されている。また、配管40には、循環水タンク45からの循環パイプ48が接続されている。
The first packed tower 14 is provided with a filler 26 in the tower. In addition, a spray nozzle 24 is disposed on the top of the packing material 26 of the first packed tower 14. A circulating water tank 45 is installed in the lower part of the first packed tower 14.
A gas feed pipe 34, a gas feed pipe 35, and an overflow pipe 41 are connected to the first packed tower 14. A circulating pipe 48 is connected to the circulating water tank 45. The gas feed pipe 35 is connected from the upper part of the first packed tower 14 to the lower part of the second packed tower 15. The overflow pipe 41 is connected to the second water storage tank 17 from the upper part of the circulating water tank 45 at the lower part of the first packed tower 14. A pipe 40 is connected to the spray nozzle 24 arranged at the upper part of the first packed tower 14. Further, a circulation pipe 48 from the circulating water tank 45 is connected to the pipe 40.

第2の充填塔15は、塔内に充填材27が設けられている。また、第2の充填塔15の充填材27の上部には、スプレイノズル22が配置されている。また、第2の充填塔15の下部には、循環水タンク44が設置されている。
第2の充填塔15には、ガス送管35、ガス送管36、配管40が接続されている。また、循環水タンク44には、循環パイプ47が接続されている。ガス送管36は、第2の充填塔15の上部から第3の充填塔16の下部に接続される。配管40は、第2の充填塔15の下部からポンプ23を介して、第1の充填塔14に配置されたスプレイノズル24に接続されている。
また、第2の充填塔15の上部に配置されたスプレイノズル22には、配管39が接続されている。また、配管39には、循環水タンク44からの循環パイプ47が接続されている。
The second packed tower 15 is provided with a filler 27 in the tower. In addition, a spray nozzle 22 is disposed above the filler 27 of the second packed tower 15. A circulating water tank 44 is installed at the lower part of the second packed tower 15.
A gas feed pipe 35, a gas feed pipe 36, and a pipe 40 are connected to the second packed tower 15. A circulating pipe 47 is connected to the circulating water tank 44. The gas feed pipe 36 is connected from the upper part of the second packed column 15 to the lower part of the third packed column 16. The pipe 40 is connected to the spray nozzle 24 disposed in the first packed tower 14 through the pump 23 from the lower part of the second packed tower 15.
A pipe 39 is connected to the spray nozzle 22 arranged at the upper part of the second packed tower 15. A circulation pipe 47 from the circulating water tank 44 is connected to the pipe 39.

第3の充填塔16は、塔内に充填材28が設けられている、また、第3の充填塔16の充填材28の上部には、スプレイノズル20が配置されている。また、第3の充填塔16の下部には、循環水タンク43が設置されている。
第3の充填塔16には、ガス送管36、配管39、排気管42が接続されている。また、循環水タンク43には、循環パイプ46が接続されている。配管39は、ポンプ21を介して第2の充填塔15に配置されたスプレイノズル22に接続されている。また、第3の充填塔16の上部に配置されたスプレイノズル20には、配管38が接続されている。また、配管38には、循環水タンク46からの循環パイプ47が接続されている。
排気管42は、第1の充填塔14から第3の充填塔16までを通過し、臭気成分の濃度が充分に低下した気体が排気される。
The third packed column 16 is provided with a packing material 28 in the column, and a spray nozzle 20 is disposed above the packing material 28 of the third packed column 16. A circulating water tank 43 is installed in the lower part of the third packed tower 16.
A gas feed pipe 36, a pipe 39, and an exhaust pipe 42 are connected to the third packed tower 16. A circulating pipe 46 is connected to the circulating water tank 43. The piping 39 is connected to the spray nozzle 22 disposed in the second packed tower 15 via the pump 21. A pipe 38 is connected to the spray nozzle 20 disposed at the upper part of the third packed tower 16. A circulation pipe 47 from the circulating water tank 46 is connected to the pipe 38.
The exhaust pipe 42 passes from the first packed tower 14 to the third packed tower 16, and the gas in which the concentration of the odor component is sufficiently reduced is exhausted.

第2の貯水槽17は、第1の充填塔14の下部からオーバーフロー配管41を通して排出された水が蓄えられる。第2の貯水槽17に蓄えられる水は、充填塔内で気液接触により、臭気ガスに含まれるアンモニアと二酸化炭素を溶解した水である。また、この水には、溶解した炭酸とアンモニアとの反応物である炭酸アンモニウムが含まれている。   The second water tank 17 stores water discharged from the lower portion of the first packed tower 14 through the overflow pipe 41. The water stored in the second water tank 17 is water in which ammonia and carbon dioxide contained in the odor gas are dissolved by gas-liquid contact in the packed tower. The water also contains ammonium carbonate, which is a reaction product of dissolved carbonic acid and ammonia.

上述したように、脱臭装置10では、充填塔でアンモニアを回収する際に、堆肥化装置11から発生する二酸化炭素と、同じく堆肥化装置11から発生する水分を凝縮させている。このため、外部からの水分や、臭気ガスに含まれる臭気成分を吸収するための物質を加えずに、堆肥化装置11から発生する臭気成分の主成分であるアンモニアを回収することができる。   As described above, in the deodorizing apparatus 10, when ammonia is recovered in the packed tower, carbon dioxide generated from the composting apparatus 11 and moisture generated from the composting apparatus 11 are condensed. For this reason, ammonia which is the main component of the odor component generated from the composting apparatus 11 can be recovered without adding a substance for absorbing moisture from the outside or the odor component contained in the odor gas.

次に、上述の脱臭装置10を用いて臭気ガスから、臭気成分の主成分であるアンモニアを脱臭する方法について説明する。なお、以下の説明では、脱臭装置10の構成について、図1で用いた符号と同じ符号を付して説明する。   Next, a method for deodorizing ammonia, which is the main component of the odor component, from the odor gas using the above-described deodorization apparatus 10 will be described. In the following description, the configuration of the deodorizing apparatus 10 will be described with the same reference numerals as those used in FIG.

まず、堆肥化装置11からの排気は、ブロア25を駆動することによりガス送管31を通して熱交換器12に供給される。この熱交換器12に供給された堆肥化装置11からの排気は、熱交換器12により冷却されるため排気中に含まれる水分が凝縮される。すなわち、堆肥化装置11からの排気は、通常外気温よりも高い温度で排出されるが、熱交換器12ではこの高い温度の排気が外気温まで下げられるため、その結果、排気に含まれる水分を凝縮することができるのである。   First, the exhaust from the composting apparatus 11 is supplied to the heat exchanger 12 through the gas feed pipe 31 by driving the blower 25. Since the exhaust from the composting apparatus 11 supplied to the heat exchanger 12 is cooled by the heat exchanger 12, moisture contained in the exhaust is condensed. That is, the exhaust gas from the composting apparatus 11 is normally discharged at a temperature higher than the outside air temperature, but in the heat exchanger 12, this high temperature exhaust gas is lowered to the outside air temperature. Can be condensed.

次に、熱交換器12により水分を除去された臭気ガスが、ガス送管34により熱交換器12から排出される。そして、熱交換器12で凝縮された水分が、配管32を通して第1の貯水槽13に回収される。続いて、第1の貯水槽に回収された水をブロア18により曝気し、この水に溶解しているアンモニアと二酸化炭素を気体として取り出すようにする。この曝気により取り出されたアンモニア及び二酸化炭素を、ガス送管33を通して、ガス送管34に供給する。   Next, the odor gas from which moisture has been removed by the heat exchanger 12 is discharged from the heat exchanger 12 through the gas feed pipe 34. Then, the water condensed in the heat exchanger 12 is collected in the first water tank 13 through the pipe 32. Subsequently, the water collected in the first water tank is aerated by the blower 18 so that ammonia and carbon dioxide dissolved in the water are taken out as gases. Ammonia and carbon dioxide extracted by this aeration are supplied to the gas feed pipe 34 through the gas feed pipe 33.

次に、ガス送管34により、熱交換器12及び第1の貯水槽13で分離されたアンモニア及び二酸化炭素を含む臭気ガスを、第1の充填塔14に充填材26の下部、且つ、循環水タンク45の上方から供給する。そして、供給した臭気ガスは、充填材26を通過し、第1の充填塔14の上部に接続されたガス送管35から排出される。
ガス送管35から排出した臭気ガスは、第2の充填塔15に、充填材27の下部、且つ、循環水タンク44の上方から供給される。そして、供給した臭気ガスは、充填材27を通過し、第2の充填塔15の上部に接続されたガス送管36から排出される。
ガス送管36から排出した臭気ガスは、第3の充填塔16に、充填材28の下部、且つ、循環水タンク43の上方から供給される。そして、供給した臭気ガスは、充填材28を通過し、第3の充填塔16の上部に接続された排気管42から大気中に排出される。
Next, the odor gas containing ammonia and carbon dioxide separated by the heat exchanger 12 and the first water storage tank 13 is circulated to the first packed tower 14 at the lower part of the packing material 26 by the gas feed pipe 34. Supply from above the water tank 45. Then, the supplied odor gas passes through the filler 26 and is discharged from the gas feed pipe 35 connected to the upper portion of the first packed tower 14.
The odor gas discharged from the gas feed pipe 35 is supplied to the second packed tower 15 from below the filler 27 and from above the circulating water tank 44. Then, the supplied odor gas passes through the filler 27 and is discharged from the gas feed pipe 36 connected to the upper part of the second packed tower 15.
The odor gas discharged from the gas feed pipe 36 is supplied to the third packed tower 16 from below the filler 28 and from above the circulating water tank 43. The supplied odor gas passes through the filler 28 and is discharged into the atmosphere from the exhaust pipe 42 connected to the upper portion of the third packed tower 16.

また、第1の貯水槽13で回収した凝縮水は、ポンプ19を介して配管38により第3の充填塔16の充填材28の上部に配置されたスプレイノズル20に供給される。そして、スプレイノズル20に供給された凝縮水を、充填材28の上部から下方に向けて噴射する。また、スプレイノズル20から噴射された凝縮水が、循環水タンク43内に蓄えられる。そして、ポンプ19を駆動することにより、循環水タンク43内に蓄えられた凝縮水が循環パイプ46から配管38に供給され、再びスプレイノズル20から第3の充填塔16に噴射される。このように、第1の貯水槽13から第3の充填塔16に供給された凝縮水は、第3の充填塔16内を循環する。
また、スプレイノズル20で凝縮水を噴射することにより、充填材28にほぼ均一に凝縮水を供給することができる。
Further, the condensed water collected in the first water storage tank 13 is supplied to the spray nozzle 20 disposed on the upper portion of the filler 28 of the third packed tower 16 through the pipe 19 through the pump 19. Then, the condensed water supplied to the spray nozzle 20 is jetted downward from the upper part of the filler 28. Further, the condensed water jetted from the spray nozzle 20 is stored in the circulating water tank 43. Then, by driving the pump 19, the condensed water stored in the circulating water tank 43 is supplied from the circulating pipe 46 to the pipe 38, and is again injected from the spray nozzle 20 to the third packed tower 16. As described above, the condensed water supplied from the first water storage tank 13 to the third packed tower 16 circulates in the third packed tower 16.
Further, the condensed water can be supplied almost uniformly to the filler 28 by spraying the condensed water with the spray nozzle 20.

また、循環水タンク43に蓄えられた凝縮水は、第3の充填塔16の下部に接続された配管39から排出される。そして、配管39から排出された凝縮水を、ポンプ21を介して第2の充填塔15の充填材27の上部に配置されたスプレイノズル22に供給する。このスプレイノズル22に供給された凝縮水は、充填材27の上部から下方に向けて噴射する。また、スプレイノズル22から噴射された凝縮水が、循環水タンク44内に蓄えられる。そして、ポンプ21を駆動することにより、循環水タンク44内に蓄えられた凝縮水が循環パイプ47から配管39に供給され、再びスプレイノズル22から第2の充填塔15に噴射される。このように、第3の充填塔16から供給された凝縮水は、循環水タンク44、循環パイプ47、配管39、及び、スプレイノズル22によって第2の充填塔15内を循環する。   Further, the condensed water stored in the circulating water tank 43 is discharged from a pipe 39 connected to the lower part of the third packed tower 16. And the condensed water discharged | emitted from the piping 39 is supplied to the spray nozzle 22 arrange | positioned through the pump 21 at the upper part of the filler 27 of the 2nd packed tower 15. FIG. The condensed water supplied to the spray nozzle 22 is jetted downward from the upper portion of the filler 27. Further, the condensed water jetted from the spray nozzle 22 is stored in the circulating water tank 44. Then, by driving the pump 21, the condensed water stored in the circulating water tank 44 is supplied from the circulating pipe 47 to the pipe 39 and is again injected from the spray nozzle 22 to the second packed tower 15. As described above, the condensed water supplied from the third packed tower 16 circulates in the second packed tower 15 by the circulating water tank 44, the circulating pipe 47, the piping 39, and the spray nozzle 22.

また、循環水タンク44に蓄えられた凝縮水は、第2の充填塔15の下部に接続された配管40から排出される。そして、配管40から排出された凝縮水を、ポンプ23を介して第1の充填塔14の充填材26の上部に配置されたスプレイノズル24に供給する。このスプレイノズル24に供給された凝縮水は、充填材26の上部から下方に向けて噴射する。また、スプレイノズル24から噴射された凝縮水が、循環水タンク45内に蓄えられる。そして、ポンプ23を駆動することにより、循環水タンク45内に蓄えられた凝縮水が循環パイプ48から配管40に供給され、再びスプレイノズル20から第2の充填塔15に噴射される。このように、第2の充填塔15から供給された凝縮水は、循環水タンク45、循環パイプ48、配管40、及び、スプレイノズル24によって第1の充填塔14内を循環する。   Further, the condensed water stored in the circulating water tank 44 is discharged from the pipe 40 connected to the lower part of the second packed tower 15. And the condensed water discharged | emitted from the piping 40 is supplied to the spray nozzle 24 arrange | positioned through the pump 23 at the upper part of the filler 26 of the 1st packed tower 14. The condensed water supplied to the spray nozzle 24 is jetted downward from the upper part of the filler 26. Further, the condensed water jetted from the spray nozzle 24 is stored in the circulating water tank 45. Then, by driving the pump 23, the condensed water stored in the circulating water tank 45 is supplied from the circulating pipe 48 to the pipe 40 and is again injected from the spray nozzle 20 to the second packed tower 15. As described above, the condensed water supplied from the second packed tower 15 circulates in the first packed tower 14 by the circulating water tank 45, the circulating pipe 48, the piping 40, and the spray nozzle 24.

スプレイノズル24から噴射され、循環水タンク45に蓄えられた凝縮水は、第1の充填塔14の下部において、循環水タンク45の上部に接続されたオーバーフロー配管41からオーバーフローにより排出される。そして、オーバーフロー配管41から排出される凝縮水を、第2の貯水槽17で回収する。   The condensed water sprayed from the spray nozzle 24 and stored in the circulating water tank 45 is discharged by overflow from an overflow pipe 41 connected to the upper part of the circulating water tank 45 in the lower part of the first packed tower 14. Then, the condensed water discharged from the overflow pipe 41 is collected in the second water tank 17.

上述のように、臭気ガスを充填塔の下部から供給し、凝縮水を充填塔のスプレイノズルから供給することにより、充填塔内で臭気ガスと凝縮水が接触する。また、充填塔には充填材が設けられているため、この充填材により、臭気ガスと凝縮水との接触面積が大きくなり、気液接触の効率が向上し、臭気ガスに含まれるアンモニア及び二酸化炭素を効率的に、凝縮水に溶解させることができる。   As described above, the odor gas and the condensed water are brought into contact with each other in the packed tower by supplying the odor gas from the lower part of the packed tower and supplying the condensed water from the spray nozzle of the packed tower. In addition, since the packed tower is provided with a packing material, this packing material increases the contact area between the odor gas and the condensed water, improves the efficiency of gas-liquid contact, and reduces the ammonia and dioxide contained in the odor gas. Carbon can be efficiently dissolved in condensed water.

第1の充填塔14の下部にガス送管34通じて供給される臭気ガスは、堆肥化装置11から排気された臭気ガスと、ほぼ同じ濃度のアンモニアと二酸化炭素を含む。このガス送管34から供給される臭気ガスのアンモニア及び二酸化炭素を、スプレイノズル24から供給される凝縮水で吸収する。スプレイノズル24から供給される凝縮水は、第3の充填塔16及び第2の充填塔15において臭気ガスとの接触している。このため、凝縮水中には、既にアンモニア及び二酸化炭素が溶解している。   The odor gas supplied through the gas feed pipe 34 to the lower part of the first packed tower 14 includes ammonia and carbon dioxide having substantially the same concentration as the odor gas exhausted from the composting apparatus 11. The odor gas ammonia and carbon dioxide supplied from the gas feed pipe 34 are absorbed by the condensed water supplied from the spray nozzle 24. The condensed water supplied from the spray nozzle 24 is in contact with the odor gas in the third packed tower 16 and the second packed tower 15. For this reason, ammonia and carbon dioxide are already dissolved in the condensed water.

第1の充填塔14に供給された臭気ガスは、上述のスプレイノズル24から供給される凝縮水と接触することにより、アンモニア及び二酸化炭素が凝縮水中に溶解する。このため、第1の充填塔14の上部から、ガス送管35により排出される臭気ガスは、ガス送管34内の臭気ガスよりも、臭気成分であるアンモニアの濃度が低下している。
また、スプレイノズル24から供給される凝縮水は、第1の充填塔14内で臭気ガスと接触することにより、アンモニア及び二酸化炭素を溶解する。そして、循環水タンク45に蓄えられた後、循環パイプ48、配管40から再び第1の充填塔14内に供給されることにより、凝縮水中に溶解するアンモニア及び二酸化炭素を濃縮することができる。このため、第1の充填塔14の下部からオーバーフロー配管41により排出される凝縮水は、第2の充填塔15から供給される凝縮水よりも、多くのアンモニア及び二酸化炭素が溶解している。
The odor gas supplied to the first packed tower 14 comes into contact with the condensed water supplied from the spray nozzle 24, whereby ammonia and carbon dioxide are dissolved in the condensed water. For this reason, the odor gas discharged from the upper portion of the first packed tower 14 through the gas feed pipe 35 has a lower concentration of ammonia, which is an odor component, than the odor gas in the gas feed pipe 34.
Moreover, the condensed water supplied from the spray nozzle 24 is dissolved in ammonia and carbon dioxide by contacting the odor gas in the first packed tower 14. Then, after being stored in the circulating water tank 45, ammonia and carbon dioxide dissolved in the condensed water can be concentrated by being supplied again from the circulating pipe 48 and the piping 40 into the first packed tower 14. For this reason, the condensed water discharged from the lower portion of the first packed tower 14 through the overflow pipe 41 has more ammonia and carbon dioxide dissolved therein than the condensed water supplied from the second packed tower 15.

また、上述の第1の充填塔14と同様に、第2の充填塔15において、第2の充填塔15の下部から供給される臭気ガスと、スプレイノズル22から供給される凝縮水とが接触する。このため、第2の充填塔15からガス送管36により排出される臭気ガスは、ガス送管35により供給される臭気ガスよりも、臭気成分であるアンモニアの濃度が低下している。また、第2の充填塔15から、配管40により排出される凝縮水は、循環水タンク44に蓄えられた後、循環パイプ47、配管39から再び第2の充填塔15内に供給されることにより、凝縮水中に溶解するアンモニア及び二酸化炭素を濃縮することができる。このため、第3の充填塔16から供給される凝縮水よりも、多くのアンモニア及び二酸化炭素が溶解している。   Similarly to the first packed tower 14 described above, in the second packed tower 15, the odor gas supplied from the lower portion of the second packed tower 15 and the condensed water supplied from the spray nozzle 22 come into contact with each other. To do. For this reason, the odor gas discharged from the second packed tower 15 through the gas feed pipe 36 has a lower concentration of ammonia, which is an odor component, than the odor gas supplied through the gas feed pipe 35. Further, the condensed water discharged from the second packed tower 15 through the pipe 40 is stored in the circulating water tank 44 and then supplied again from the circulating pipe 47 and the pipe 39 into the second packed tower 15. Thus, ammonia and carbon dioxide dissolved in the condensed water can be concentrated. For this reason, more ammonia and carbon dioxide are dissolved than the condensed water supplied from the third packed tower 16.

また、第3の充填塔16において、第3の充填塔16の下部から供給される臭気ガスと、スプレイノズル20から供給される凝縮水とが接触する。このスプレイノズル20から供給される凝縮水は、第1の貯水槽13において曝気された凝縮水である。このため、この凝縮水には、ほとんどアンモニアが溶解していない。そして、スプレイノズル20から供給される凝縮水が、第3の充填塔16内でガス送管36から供給される臭気ガスと接触し、臭気ガスに含まれる、アンモニア及び二酸化炭素が凝縮水に溶解する。さらに、循環水タンク43に蓄えられた後、循環パイプ46、配管38から再び第3の充填塔16内に供給されることにより、凝縮水中に溶解するアンモニア及び二酸化炭素を濃縮する。このため、第3の充填塔16の下部から配管39により排出される凝縮水は、第1の貯水槽13から供給される凝縮水よりも、多くのアンモニア及び二酸化炭素が溶解している。
また、第3の充填塔16から排気管42により排出される気体は、気液接触により臭気ガスに含まれる臭気成分であるアンモニアが凝縮水に溶解したことにより、臭気成分の濃度が充分に低下している。
Further, in the third packed tower 16, the odor gas supplied from the lower part of the third packed tower 16 and the condensed water supplied from the spray nozzle 20 come into contact with each other. The condensed water supplied from the spray nozzle 20 is condensed water aerated in the first water storage tank 13. For this reason, ammonia is hardly dissolved in this condensed water. Then, the condensed water supplied from the spray nozzle 20 comes into contact with the odor gas supplied from the gas feed pipe 36 in the third packed tower 16, and ammonia and carbon dioxide contained in the odor gas are dissolved in the condensed water. To do. Further, after being stored in the circulating water tank 43, the ammonia and carbon dioxide dissolved in the condensed water are concentrated by being supplied again into the third packed tower 16 from the circulating pipe 46 and the pipe 38. For this reason, the condensed water discharged from the lower part of the third packed tower 16 through the pipe 39 has more ammonia and carbon dioxide dissolved therein than the condensed water supplied from the first water storage tank 13.
Further, the gas discharged from the third packed tower 16 through the exhaust pipe 42 is sufficiently reduced in concentration of the odor component because the odor component ammonia contained in the odor gas is dissolved in the condensed water by gas-liquid contact. is doing.

また、第1の充填塔14の下部に設置された循環水タンク45の上部から、オーバーフロー配管41によって第2の貯水槽17が接続されている。そして、第1の充填塔14内でアンモニア及び二酸化炭素を高濃度で溶解した凝縮水が、第1の充填塔14の下部からオーバーフロー配管41から排出されて、第2の貯水槽17に回収される。第2の貯水槽17に回収された凝縮水は、高濃度の炭酸アンモニウム溶液である。また、この凝縮水には、臭気ガスに含まれていたアンモニア、二酸化炭素、及び、アンモニウムイオン、炭酸イオンが溶解している。   In addition, a second water tank 17 is connected by an overflow pipe 41 from an upper part of a circulating water tank 45 installed at the lower part of the first packed tower 14. Then, the condensed water in which ammonia and carbon dioxide are dissolved at a high concentration in the first packed tower 14 is discharged from the lower portion of the first packed tower 14 through the overflow pipe 41 and collected in the second water storage tank 17. The The condensed water recovered in the second water tank 17 is a high concentration ammonium carbonate solution. In addition, ammonia, carbon dioxide, ammonium ions, and carbonate ions contained in the odor gas are dissolved in the condensed water.

このように、第1の充填塔14から第3の充填塔16を用いて、臭気ガスと凝縮水とを多段階式に向流接触させることにより、臭気ガスに含まれるアンモニアを凝縮水により吸収することができる。この結果、脱臭装置10からの排気には、臭気成分の主成分であるアンモニアがほとんど含まれないため、堆肥化装置から発生する高濃度の臭気成分を含む臭気ガスを脱臭することができる。   In this way, by using the first packed tower 14 to the third packed tower 16 to bring the odor gas and the condensed water into countercurrent contact in a multistage manner, the ammonia contained in the odor gas is absorbed by the condensed water. can do. As a result, the exhaust gas from the deodorizing apparatus 10 contains almost no ammonia, which is the main component of the odor component, so that the odor gas containing the high-concentration odor component generated from the composting apparatus can be deodorized.

堆肥化装置11から排出される臭気ガスには、臭気成分の主成分としてアンモニアを含む。また、堆肥化装置11から排出される排気には、アンモニアの約10倍程度の二酸化炭素が含まれる。   The odor gas discharged from the composting apparatus 11 includes ammonia as a main component of the odor component. Further, the exhaust gas discharged from the composting apparatus 11 contains about 10 times as much carbon dioxide as ammonia.

通常、水にアンモニアのみを溶解した場合には、アンモニアの溶解度以上には溶解しない。しかし、臭気ガスには、アンモニアの10倍程度の二酸化炭素が含まれているため、臭気ガスに含まれるアンモニアは、水に溶解することにより、水酸化アンモニウム(アンモニウムイオン)となる。また、二酸化炭素は、水に溶解することにより、溶解した二酸化炭素の一部が炭酸(炭酸イオン)となる。そして、アンモニアと二酸化炭素とを水に溶解させることで、水酸化アンモニウムと炭酸とによる、酸と塩基の中和反応が起こり、炭酸アンモニウム又は炭酸水素アンモニウム、及び、その類似塩が生成する。   Usually, when only ammonia is dissolved in water, it does not dissolve above the solubility of ammonia. However, since the odor gas contains about 10 times as much carbon dioxide as ammonia, the ammonia contained in the odor gas becomes ammonium hydroxide (ammonium ion) when dissolved in water. Carbon dioxide dissolves in water, so that part of the dissolved carbon dioxide becomes carbonic acid (carbonate ions). Then, by dissolving ammonia and carbon dioxide in water, neutralization reaction of acid and base by ammonium hydroxide and carbonic acid occurs, and ammonium carbonate or ammonium hydrogen carbonate and similar salts thereof are generated.

このように、水に溶解したアンモニアが、水酸化アンモニウムを経て炭酸アンモニウム又は炭酸水素アンモニウム、及び、その類似塩となることにより、水中のアンモニア濃度が低下する。そして、水中のアンモニア濃度が低下した分、臭気ガス中のアンモニアが水に溶解することができる。
また、二酸化炭素も同様に、炭酸を経て炭酸アンモニウム又は炭酸水素アンモニウムとなることにより、水中の炭酸濃度が低下する。そして、水中の炭酸濃度が低下した分、臭気ガス中の二酸化炭素が水に溶解することができる。また、臭気ガスには、二酸化炭素がアンモニアの約10の濃度で存在するため、臭気ガス中のアンモニアは、二酸化炭素に対してガス中及び水中での余剰分が発生しない。
このように、アンモニア、二酸化炭素の水への溶解と、炭酸アンモニウム又は炭酸水素アンモニウムの発生が連続して起こることにより、臭気ガス中のアンモニアを水に効率的に溶解することができる。
このように、臭気ガスに含まれる二酸化炭素をアンモニアと同時に、充填塔において水に溶解させることで、アンモニアの水への溶解度以上に、アンモニアを溶解させ、回収することができる。
As described above, ammonia dissolved in water becomes ammonium carbonate or ammonium hydrogen carbonate and its similar salt through ammonium hydroxide, so that the ammonia concentration in water decreases. And the ammonia in odor gas can melt | dissolve in water by the part for which the ammonia concentration in water fell.
Similarly, carbon dioxide is converted to ammonium carbonate or ammonium hydrogen carbonate through carbonic acid, so that the concentration of carbonic acid in water decreases. And since the carbonic acid density | concentration in water fell, the carbon dioxide in odor gas can melt | dissolve in water. In addition, since carbon dioxide is present in the odor gas at a concentration of about 10 of ammonia, the ammonia in the odor gas does not generate surplus in the gas and water with respect to carbon dioxide.
As described above, ammonia and carbon dioxide are dissolved in water and ammonium carbonate or ammonium hydrogen carbonate is continuously generated, so that ammonia in the odor gas can be efficiently dissolved in water.
Thus, by dissolving carbon dioxide contained in the odor gas in water in the packed tower simultaneously with ammonia, the ammonia can be dissolved and recovered more than the solubility of ammonia in water.

また、堆肥化装置から排出される臭気ガスの臭気成分として、例えば、硫化水素、メチルメルカプタン等の硫黄化合物臭気成分や、有機酸等の臭気成分を含有している場合にも、凝縮水に溶解したアンモニアとの中和反応により、効率的に回収することができる。このため、臭気ガスが硫黄化合物臭気成分及び有機酸等の臭気成分を含んでいた場合にも、脱臭することが可能である。   It also dissolves in condensed water when it contains odorous components of odorous gases emitted from composting equipment, such as sulfur compound odorous components such as hydrogen sulfide and methyl mercaptan, and odorous components such as organic acids. It can be efficiently recovered by neutralization with ammonia. For this reason, it is possible to deodorize even when the odor gas contains a odor component such as a sulfur compound odor component and an organic acid.

なお、上述の実施の形態において、脱臭装置から排気されるアンモニア濃度を充分に低下させるため、脱臭装置を構成するための充填塔の数及び充填塔の構成を、臭気ガス中のアンモニア濃度や二酸化炭素濃度に応じて変更することが可能である。
例えば、充填塔の充填剤の材料や比表面積又は充填率を変化させることや、充填塔の数を変更することが可能である。また、充填塔での凝縮水と臭気ガスとの気液接触は、並流接触又は向流接触のいずれの構成でもよい。このように、脱臭装置の構成を必要に応じて変更することにより、凝縮水によるアンモニア及び二酸化炭素の吸収を最適化し、脱臭装置から排気されるアンモニア濃度を充分に低下させることが可能である。
In the above-described embodiment, in order to sufficiently reduce the ammonia concentration exhausted from the deodorization apparatus, the number of packed towers and the configuration of the packed towers for configuring the deodorization apparatus are determined according to the concentration of ammonia in the odor gas and the dioxide dioxide. It can be changed according to the carbon concentration.
For example, it is possible to change the packing material, specific surface area, or packing rate of the packed tower, or to change the number of packed towers. Further, the gas-liquid contact between the condensed water and the odor gas in the packed tower may be either a cocurrent contact or a countercurrent contact. In this way, by changing the configuration of the deodorizing device as necessary, it is possible to optimize the absorption of ammonia and carbon dioxide by the condensed water and sufficiently reduce the concentration of ammonia exhausted from the deodorizing device.

また、循環水タンク43,44,45内に蓄えられた凝縮水内に、マイクロバブル又はエアーストーンにより二酸化炭素を供給してもよい。循環水タンク43,44,45内に蓄えられた凝縮水中にマイクロバブル又はエアーストーンにより二酸化炭素を溶解させることにより、凝縮水の二酸化炭素濃度を高めることができる。このため、充填塔内でのアンモニアとの気液接触による、アンモニアの凝縮水への溶解を効率よく行うことができる。
上述の循環水タンク43,44,45内への二酸化炭素の供給は、例えば、堆肥化装置11からの排気に含まれる二酸化炭素を供給することができる。また、外部から循環水タンク43,44,45内に、二酸化炭素ボンベ、また、二酸化炭素を排出するボイラーやエンジン等を接続することにより、二酸化炭素を供給することができる。
Further, carbon dioxide may be supplied to the condensed water stored in the circulating water tanks 43, 44, 45 by microbubbles or air stones. The carbon dioxide concentration of the condensed water can be increased by dissolving the carbon dioxide in the condensed water stored in the circulating water tanks 43, 44, and 45 with microbubbles or air stones. Therefore, it is possible to efficiently dissolve ammonia in condensed water by gas-liquid contact with ammonia in the packed tower.
For example, carbon dioxide contained in the exhaust gas from the composting apparatus 11 can be supplied to the circulating water tanks 43, 44, and 45 described above. Further, carbon dioxide can be supplied by connecting a carbon dioxide cylinder, a boiler, an engine, or the like that discharges carbon dioxide into the circulating water tanks 43, 44, and 45 from the outside.

以下、実験例により本発明を具体的に説明する。
実験に用いた脱臭装置を図2に示す。図2に示す脱臭装置50は、アンモニアボンベ59、二酸化炭素ボンベ61、第1の充填塔62、第2の充填塔63、及び、循環水タンク64を備える。
Hereinafter, the present invention will be described in detail by experimental examples.
The deodorizing apparatus used for experiment is shown in FIG. The deodorizing apparatus 50 shown in FIG. 2 includes an ammonia cylinder 59, a carbon dioxide cylinder 61, a first packed tower 62, a second packed tower 63, and a circulating water tank 64.

アンモニアボンベ59からアンモニアガスを脱臭装置50に供給し、また、二酸化炭素ボンベ61から二酸化炭素ガスを脱臭装置50に供給することで、擬似的に堆肥化装置として用いた。アンモニアボンベ59から供給されたアンモニアガスと、二酸化炭素ボンベ61から供給された二酸化炭素ガスは、送管52内で混合され、第1の充填塔62に上部から供給される。   Ammonia gas was supplied from the ammonia cylinder 59 to the deodorization apparatus 50, and carbon dioxide gas was supplied from the carbon dioxide cylinder 61 to the deodorization apparatus 50, so that it was used as a pseudo composting apparatus. The ammonia gas supplied from the ammonia cylinder 59 and the carbon dioxide gas supplied from the carbon dioxide cylinder 61 are mixed in the feed pipe 52 and supplied to the first packed tower 62 from above.

第1の充填塔62は、内部に充填材67を備える。また、充填材67の上部にスプレイノズル65を備える。
第1の充填塔62は、充填材67の上部に設けられたガス送管52からアンモニアを含む気体が供給され、同じく充填材67の上部に設けられたスプレイノズル65から循環水が供給される並流接触型の充填塔である。充填材67として、裁断した不織布を塔内に充填した。
The first packed tower 62 includes a filler 67 inside. In addition, a spray nozzle 65 is provided above the filler 67.
The first packed column 62 is supplied with a gas containing ammonia from a gas feed pipe 52 provided at the upper part of the filler 67, and is supplied with circulating water from a spray nozzle 65 provided at the upper part of the filler 67. It is a co-current contact type packed tower. As the filler 67, the cut nonwoven fabric was filled in the tower.

また、第1の充填塔62の充填材67の下部には、ガス送管53と配管54が接続されている。ガス送管53は、第1の充填塔62の下部から第2の充填塔63の上部に接続される。また、第1の充填塔62の上部から供給されて充填材67を通過した気体が、ガス送管53を通り第2の充填塔63の上部に供給される。配管54は、第1の充填塔62の下部から循環水タンク64に接続される。また、スプレイノズル65から供給された循環水が第1の充填塔62の下部から配管54を通り、循環水タンク64に回収される。   Further, a gas feed pipe 53 and a pipe 54 are connected to the lower part of the packing material 67 of the first packed tower 62. The gas feed pipe 53 is connected from the lower part of the first packed column 62 to the upper part of the second packed column 63. Further, the gas supplied from the upper part of the first packed tower 62 and passing through the filler 67 is supplied to the upper part of the second packed tower 63 through the gas feed pipe 53. The pipe 54 is connected to the circulating water tank 64 from the lower part of the first packed tower 62. Further, the circulating water supplied from the spray nozzle 65 passes through the pipe 54 from the lower part of the first packed tower 62 and is collected in the circulating water tank 64.

第2の充填塔63は、内部に充填材68を備える。また、充填材68の上部にスプレイノズル66を備える。
第2の充填塔63は、充填材68の上部に設けられたガス送管53から、第1の充填塔62から排出されたアンモニアを含む気体が供給され、同じく充填材68の上部に設けられたスプレイノズル66から循環水が供給される並流接触型の充填塔である。
充填材68として、裁断した不織布を塔内に充填した。
また、第2の充填塔63の下部には、配管55が接続されている。配管55は、第2の充填塔63の下部から循環水タンク64に接続される。また、第2の充填塔63の上部から供給された気体と循環水とが配管55を通り、循環水タンク64で回収される。
The second packed tower 63 includes a filler 68 inside. Further, a spray nozzle 66 is provided above the filler 68.
The second packed tower 63 is supplied with a gas containing ammonia discharged from the first packed tower 62 from a gas feed pipe 53 provided at the upper part of the filler 68, and is also provided at the upper part of the filler 68. It is a co-current contact type packed tower to which circulating water is supplied from the spray nozzle 66.
As the filler 68, the cut nonwoven fabric was filled in the tower.
A pipe 55 is connected to the lower part of the second packed tower 63. The pipe 55 is connected to the circulating water tank 64 from the lower part of the second packed tower 63. Further, the gas and the circulating water supplied from the upper part of the second packed tower 63 pass through the pipe 55 and are collected in the circulating water tank 64.

循環水タンク64は、循環水が蓄えられている。
また、循環水タンク64には、配管57が接続されている。配管57は、ポンプ69を介して循環水を、第1の充填塔62の上部に配置されたスプレイノズル65に供給する。また、循環水タンク64には、配管58が接続されている。配管58は、ポンプ60を介して循環水を、第2の充填塔63の上部に配置されたスプレイノズル66に供給する。
また、循環水タンク64には、配管56が接続されている。配管56は、ブロア51を駆動することにより、第2の充填塔63の下部から配管55を通り循環水タンク64内に回収された気体が、循環水タンク64の外部に排出される。
Circulating water is stored in the circulating water tank 64.
A piping 57 is connected to the circulating water tank 64. The pipe 57 supplies the circulating water to the spray nozzle 65 disposed in the upper part of the first packed tower 62 via the pump 69. A piping 58 is connected to the circulating water tank 64. The pipe 58 supplies the circulating water to the spray nozzle 66 disposed in the upper part of the second packed tower 63 via the pump 60.
A piping 56 is connected to the circulating water tank 64. The pipe 56 drives the blower 51, whereby the gas recovered from the lower part of the second packed tower 63 through the pipe 55 into the circulating water tank 64 is discharged to the outside of the circulating water tank 64.

まず、一般的に使用されている堆肥化装置から排出された臭気ガスに含まれるアンモニアの濃度及び二酸化炭素の濃度を測定した結果を図3A,Bに示す。図3Aは、時間(h)毎の堆肥化装置から排出される臭気ガスのアンモニア濃度(ppm)、及び、臭気ガスが排出される配管の温度(℃)を示すグラフである。また、図3Bは、時間(h)毎の堆肥化装置から排出される臭気ガスの二酸化炭素濃度(ppm)、及び、臭気ガスが排出される配管の温度(℃)の関係を示すグラフである。   First, the result of having measured the density | concentration of the ammonia contained in the odor gas discharged | emitted from the composting apparatus generally used and the density | concentration of a carbon dioxide is shown to FIG. FIG. 3A is a graph showing the ammonia concentration (ppm) of the odor gas discharged from the composting apparatus every time (h) and the temperature (° C.) of the pipe from which the odor gas is discharged. Moreover, FIG. 3B is a graph which shows the relationship between the carbon dioxide concentration (ppm) of the odor gas discharged | emitted from the composting apparatus for every time (h), and the temperature (degreeC) of the piping from which odor gas is discharged | emitted. .

図3Aに示すように、堆肥化装置から排出された臭気ガスに含まれるアンモニアは、測定開始時の1000ppm付近から、時間経過と共に上昇し、2000ppm付近の濃度で安定した。また、図3Bに示すように、堆肥化装置から排出された臭気ガスに含まれる二酸化炭素は、10000ppm付近から20000ppm付近まで間の濃度を推移した。この結果から、堆肥化装置からはアンモニアの約10倍の濃度の二酸化炭素が排出されていることがわかった。
また、堆肥化装置から排出された臭気ガスの温度は、測定開始時には40℃程度であるが、時間経過と共に上昇し、50℃から60℃の間で安定した。
As shown in FIG. 3A, ammonia contained in the odor gas discharged from the composting apparatus increased with time from about 1000 ppm at the start of measurement, and stabilized at a concentration of about 2000 ppm. Moreover, as shown to FIG. 3B, the carbon dioxide contained in the odor gas discharged | emitted from the composting apparatus changed the density | concentration between 10000 ppm vicinity and 20000 ppm vicinity. From this result, it was found that carbon dioxide having a concentration about 10 times that of ammonia was discharged from the composting apparatus.
Further, the temperature of the odor gas discharged from the composting apparatus was about 40 ° C. at the start of measurement, but increased with the passage of time and stabilized between 50 ° C. and 60 ° C.

次に、図2に示した脱臭装置50を用いて、アンモニアを含む臭気ガスを循環水により吸収する実験を行った。この実験の結果を図4及び図5に示す。
この実験では、脱臭装置として、第1の充填塔62及び第2充填塔63の直径が150mm、各充填塔62,63の充填材67,68として、2cm×2cm×120cmの大きさに裁断した不織布を塔内に充填した。また、循環水タンク64には50Lの循環水を準備した。
各充填塔62,63のスプレイノズル65,66からの循環水の散布は、毎分4.5Lで行った。
また、第1の充填塔62に供給されるアンモニア濃度が平均2000ppmとなるように、アンモニアボンベ59からのアンモニアの流量を設定した。さらに、二酸化炭素ボンベ61の流量を、アンモニアボンベ59からのアンモニアの流量の10倍となるように設定した。これにより、擬似的に堆肥化装置から排出される臭気ガスを作製した。二酸化炭素ボンベ61より、アンモニアの10倍程度の濃度となるように二酸化炭素を供給した。
なお、アンモニア濃度及び二酸化炭素濃度は、上述の図2に示した脱臭装置50の測定箇所において検知管を用いて測定した。
Next, using the deodorizing apparatus 50 shown in FIG. 2, an experiment was conducted in which odorous gas containing ammonia was absorbed by circulating water. The results of this experiment are shown in FIGS.
In this experiment, the diameter of the first packed column 62 and the second packed column 63 was 150 mm as a deodorizing device, and the packing materials 67 and 68 of the packed columns 62 and 63 were cut to a size of 2 cm × 2 cm × 120 cm. A nonwoven fabric was packed into the tower. In addition, 50 L of circulating water was prepared in the circulating water tank 64.
The circulating water was sprayed from the spray nozzles 65 and 66 of the packed towers 62 and 63 at 4.5 L / min.
In addition, the flow rate of ammonia from the ammonia cylinder 59 was set so that the ammonia concentration supplied to the first packed tower 62 would be 2000 ppm on average. Further, the flow rate of the carbon dioxide cylinder 61 was set to be 10 times the flow rate of ammonia from the ammonia cylinder 59. Thereby, the odor gas discharged | emitted from a composting apparatus in pseudo was produced. Carbon dioxide was supplied from a carbon dioxide cylinder 61 so as to have a concentration about 10 times that of ammonia.
In addition, the ammonia concentration and the carbon dioxide concentration were measured using a detection tube at the measurement location of the deodorizing apparatus 50 shown in FIG.

図4Aは、時間(h)毎の脱臭装置からの排気中に含まれるアンモニア濃度(ppm)を示すグラフである。また、図4Bは、時間(h)毎の循環水中の窒素含有量(ppm)及びpHを示すグラフである。   FIG. 4A is a graph showing the ammonia concentration (ppm) contained in the exhaust gas from the deodorizing apparatus every time (h). FIG. 4B is a graph showing the nitrogen content (ppm) and pH in the circulating water for each time (h).

図4Aに示すように、配管56から排気されるアンモニアの濃度は、実験開始直後は、200ppm程度であるが、時間経過と共に1000〜1400ppmまで上昇している。   As shown in FIG. 4A, the concentration of ammonia exhausted from the pipe 56 is about 200 ppm immediately after the start of the experiment, but increases to 1000 to 1400 ppm over time.

また、図4Bに示す結果からわかるように、実験開始直後の循環水中の窒素含有量は500〜1000ppm程度であるが、実験開始後から循環水中の窒素含有量が除々に上昇し、12時間経過後には4000ppm以上まで上昇した。
また、図4Bに示すように、二酸化炭素を供給したことにより、循環水に溶解したアンモニアと二酸化炭素が反応して炭酸アンモニウム又は炭酸水素アンモニウムが発生し、循環水のpHが下降した。
Moreover, as can be seen from the results shown in FIG. 4B, the nitrogen content in the circulating water immediately after the start of the experiment is about 500 to 1000 ppm, but the nitrogen content in the circulating water gradually increases after the start of the experiment, and 12 hours have elapsed. Later, it increased to 4000 ppm or more.
Moreover, as shown in FIG. 4B, by supplying carbon dioxide, ammonia dissolved in the circulating water and carbon dioxide reacted to generate ammonium carbonate or ammonium hydrogen carbonate, and the pH of the circulating water decreased.

次に、上述の実験を入気のアンモニア濃度と排気のアンモニア濃度が同じになるまで継続した結果を図5A,Bに示す。
図5Aは、時間(h)毎の脱臭装置に供給される臭気ガス中のアンモニア濃度(ppm)及び排気中に含まれるアンモニアの濃度(ppm)を示すグラフである。また、図5Bは、時間(h)毎の循環水中の窒素含有量(ppm)及びpHを示すグラフである。
Next, the results of continuing the above-described experiment until the ammonia concentration in the intake air and the ammonia concentration in the exhaust gas are the same are shown in FIGS. 5A and 5B.
FIG. 5A is a graph showing the ammonia concentration (ppm) in the odor gas supplied to the deodorization apparatus and the concentration (ppm) of ammonia contained in the exhaust gas every time (h). FIG. 5B is a graph showing the nitrogen content (ppm) and pH in the circulating water for each time (h).

図5Aに示すように、脱臭装置50に入気される臭気ガスのアンモニア濃度と、脱臭装置50からの排気中のアンモニアの濃度とが、時間経過により1500ppm程度で同じになった。図5Bに示すように脱臭装置50に入気される臭気ガスと、脱臭装置50からの排気に含まれるアンモニア濃度が同じになったときの循環水中の窒素含有量は、8000ppm程度まで上昇した。   As shown in FIG. 5A, the ammonia concentration of the odor gas entering the deodorizing device 50 and the ammonia concentration in the exhaust gas from the deodorizing device 50 became the same at about 1500 ppm over time. As shown in FIG. 5B, the nitrogen content in the circulating water increased to about 8000 ppm when the odorous gas entering the deodorizing device 50 and the ammonia concentration contained in the exhaust from the deodorizing device 50 were the same.

上述の図4B及び図5Bより、充填塔を用いてアンモニア濃度の10倍程度の濃度の二酸化炭素が臭気ガス中のアンモニアと反応することで、最大8000ppm程度まで循環水中の窒素含有量を上昇させることができるという結果が得られた。   From FIG. 4B and FIG. 5B described above, the nitrogen content in the circulating water is increased to a maximum of about 8000 ppm by reacting carbon dioxide having a concentration of about 10 times the ammonia concentration with ammonia in the odor gas using the packed tower. The result that can be obtained.

次に、上述の図2に示した脱臭装置50で、アンモニアのみを用いて循環水への溶解を行った場合の結果を図6A,Bに示す。
この実験では、第1の充填塔62に供給されるアンモニア濃度が平均1500ppmとなるように、アンモニアボンベ59からのアンモニアの流量を設定した。また、二酸化炭素ボンベ61からの二酸化炭素の供給を行わなかった。これらの条件以外は、上述のアンモニアを循環水により吸収する実験と同じ条件で行った。
図6Aは、時間(h)毎の第2の充填塔63へ供給される臭気ガスに含まれるアンモニア濃度(ppm)及びpHを測定したグラフである。また、図6Bは、時間(h)毎の図2に示した脱臭装置50の第2の充填塔63から排出される循環水の窒素含有量(ppm)を示すグラフである。
Next, FIGS. 6A and 6B show the results when the deodorizing apparatus 50 shown in FIG. 2 is used to dissolve in circulating water using only ammonia.
In this experiment, the flow rate of ammonia from the ammonia cylinder 59 was set so that the ammonia concentration supplied to the first packed column 62 would be 1500 ppm on average. Further, carbon dioxide was not supplied from the carbon dioxide cylinder 61. Except these conditions, it carried out on the same conditions as the experiment which absorbs the above-mentioned ammonia by circulating water.
FIG. 6A is a graph obtained by measuring the ammonia concentration (ppm) and pH contained in the odor gas supplied to the second packed tower 63 every time (h). Moreover, FIG. 6B is a graph which shows the nitrogen content (ppm) of the circulating water discharged | emitted from the 2nd packed tower 63 of the deodorizing apparatus 50 shown in FIG. 2 for every time (h).

図6Aに示すように、実験の開始直後は、第2の充填塔63へ供給される臭気ガスに含まれるアンモニア濃度に対し、第2の充填塔63から排出される臭気ガスに含まれるアンモニア濃度に大きな差がある。しかし、第2の充填塔63に供給される臭気ガスに含まれるアンモニア濃度がほぼ同じ値となった。
実験開始直後は、第1の充填塔62内で循環水と臭気ガスとが接触することにより、アンモニアが循環水中に溶解し、循環水中のpHが上昇し続けアンモニアが飽和状態となったため、循環水と臭気ガスとが接触した場合にも、アンモニアが循環水中に溶解せず、臭気ガスに含まれるアンモニアの量が減らなかったと考えられる。
また、図6Bに示すように、循環水中の窒素含有量は、実験開始直後は、第1の充填塔62及び第2の充填塔63共に上昇する。循環水中のアンモニアが飽和状態となったことを意味していると考えられる。
なお、図5Bに示すように、第1の充填塔62及び第2の充填塔63から排出される循環水の窒素含有量は、1400ppm程度が上限である。
As shown in FIG. 6A, immediately after the start of the experiment, the ammonia concentration contained in the odor gas discharged from the second packed tower 63 with respect to the ammonia concentration contained in the odor gas supplied to the second packed tower 63. There is a big difference. However, the ammonia concentration contained in the odor gas supplied to the second packed column 63 became almost the same value.
Immediately after the start of the experiment, the circulating water and the odor gas contacted in the first packed tower 62, so that ammonia was dissolved in the circulating water and the pH in the circulating water continued to rise, and the ammonia became saturated. Even when water and odor gas contact, it is considered that ammonia did not dissolve in the circulating water, and the amount of ammonia contained in the odor gas did not decrease.
As shown in FIG. 6B, the nitrogen content in the circulating water rises in both the first packed column 62 and the second packed column 63 immediately after the start of the experiment. This is considered to mean that the ammonia in the circulating water has become saturated.
As shown in FIG. 5B, the upper limit of the nitrogen content of the circulating water discharged from the first packed column 62 and the second packed column 63 is about 1400 ppm.

上述の実験結果から、アンモニアの吸収に二酸化炭素を用いることにより、効率的にアンモニアを水で回収することができることがわかる。
二酸化炭素を用いずに、アンモニアのみを水で回収した場合には、実験開始から8時間程度で飽和し、循環水中の窒素濃度が1400ppm程度で上限となった。これに対し、アンモニアの10倍程度の濃度の二酸化炭素を用いることにより、循環水中の窒素濃度を8000ppm以上にすることができた。また、脱臭装置から排出される排気に含まれるアンモニア濃度を400ppm程度まで低下させることができる。従って、脱臭装置から排出される排気には臭気成分の主成分であるアンモニアをほとんど除去することができ、臭気ガスを脱臭することができた。
From the above experimental results, it is understood that ammonia can be efficiently recovered with water by using carbon dioxide for absorption of ammonia.
When only ammonia was recovered with water without using carbon dioxide, it was saturated in about 8 hours from the start of the experiment, and the nitrogen concentration in the circulating water reached an upper limit at about 1400 ppm. On the other hand, the nitrogen concentration in the circulating water could be increased to 8000 ppm or more by using carbon dioxide having a concentration about 10 times that of ammonia. Moreover, the ammonia concentration contained in the exhaust gas discharged from the deodorizing device can be reduced to about 400 ppm. Therefore, ammonia, which is the main component of the odor component, can be almost removed from the exhaust gas discharged from the deodorizer, and the odor gas can be deodorized.

本発明は、上述の構成に限定されるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。   The present invention is not limited to the above-described configuration, and various other configurations can be employed without departing from the gist of the present invention described in the claims.

本発明の実施の形態の脱臭装置を説明するためのブロック図である。It is a block diagram for demonstrating the deodorizing apparatus of embodiment of this invention. 実験で用いた脱臭装置を説明するためのブロック図である。It is a block diagram for demonstrating the deodorizing apparatus used in experiment. Aは、時間毎の堆肥化装置から排出される臭気ガスのアンモニア濃度及び配管の温度を示すグラフである。Bは、時間毎の堆肥化装置から排出された二酸化炭素濃度及び配管温度を示すグラフである。A is a graph which shows the ammonia concentration of the odor gas discharged | emitted from the composting apparatus for every hour, and the temperature of piping. B is a graph which shows the carbon dioxide concentration discharged | emitted from the composting apparatus for every hour, and piping temperature. Aは、時間毎の循環水タンク内の循環水のアンモニア濃度を示すグラフである。Bは、時間毎の循環水中の窒素含有量及びpHを示すグラフである。A is a graph showing the ammonia concentration of circulating water in the circulating water tank every hour. B is a graph showing the nitrogen content and pH in the circulating water every hour. Aは、時間毎の装置に供給される臭気ガス中のアンモニア濃度及び排気中に含まれるアンモニアの濃度を示すグラフである。Bは、時間毎の循環水中の窒素含有量及びpHを示すグラフである。A is a graph showing the ammonia concentration in the odor gas supplied to the apparatus for each hour and the concentration of ammonia contained in the exhaust gas. B is a graph showing the nitrogen content and pH in the circulating water every hour. Aは、時間毎の第2の充填塔へ供給される臭気ガスに含まれるアンモニア濃度及びpHを測定したグラフである。Bは、時間毎の図2に示した脱臭装置50の第2の充填塔63から排出される循環水の窒素含有量を示すグラフである。A is a graph obtained by measuring the ammonia concentration and pH contained in the odor gas supplied to the second packed tower every hour. B is a graph which shows the nitrogen content of the circulating water discharged | emitted from the 2nd packed tower 63 of the deodorizing apparatus 50 shown in FIG. 2 for every hour.

符号の説明Explanation of symbols

10,50 脱臭装置、11 堆肥化装置、12 熱交換器、13 第1の貯水槽、14,62 第1の充填塔、15,63 第2の充填塔、16 第3の充填塔、17 第2の貯水槽、18,25,51 ブロア、19,21,23,60,69 ポンプ、20,22,24,65,66 スプレイノズル、26,27,28,67,68 充填材、31,33,34,35,36,52,53 ガス送管、32,38,39,40,54,55,56,57,58 配管、41 オーバーフロー配管、42 排気管、43,44,45 循環水タンク、46、47,48 循環パイプ、59 アンモニアボンベ、61 二酸化炭素ボンベ   DESCRIPTION OF SYMBOLS 10,50 Deodorizing apparatus, 11 Composting apparatus, 12 Heat exchanger, 13 1st water tank, 14,62 1st packed tower, 15,63 2nd packed tower, 16 3rd packed tower, 17 1st 2 water tanks, 18, 25, 51 blowers, 19, 21, 23, 60, 69 pumps, 20, 22, 24, 65, 66 spray nozzles, 26, 27, 28, 67, 68 fillers, 31, 33 , 34, 35, 36, 52, 53 Gas pipe, 32, 38, 39, 40, 54, 55, 56, 57, 58 Pipe, 41 Overflow pipe, 42 Exhaust pipe, 43, 44, 45 Circulating water tank, 46, 47, 48 Circulation pipe, 59 Ammonia cylinder, 61 Carbon dioxide cylinder

Claims (4)

アンモニア及び二酸化炭素を含む臭気ガスと水分とが排出される堆肥化装置と、
前記堆肥化装置からの排気を冷却して前記水分を凝縮させる熱交換器と、
前記熱交換器で凝縮された水と、前記臭気ガスとを接触させる充填塔とを備える
ことを特徴とする脱臭装置。
A composting device from which odorous gas containing ammonia and carbon dioxide and moisture are discharged;
A heat exchanger that cools the exhaust from the composting device and condenses the moisture;
A deodorizing apparatus comprising: a packed tower that brings water condensed in the heat exchanger into contact with the odor gas.
前記堆肥化装置が縦型急速発酵装置であることを特徴とする請求項1に記載の脱臭装置。   The deodorizing apparatus according to claim 1, wherein the composting apparatus is a vertical rapid fermentation apparatus. 前記充填塔の充填剤が裁断された不織布であることを特徴とする請求項1に記載の脱臭装置。   The deodorizing apparatus according to claim 1, wherein the filler of the packed tower is a cut nonwoven fabric. 堆肥化装置から排出される、アンモニアと二酸化炭素とが含まれる臭気ガス及び水分を含む排気を、熱交換器で冷却して前記水分を凝縮させて前記排気を前記臭気ガスと凝縮水とに分離し、この分離した前記臭気ガスと前記凝縮水とを充填塔で接触させることを特徴とする脱臭方法。   The exhaust containing the odor gas and moisture containing ammonia and carbon dioxide discharged from the composting apparatus is cooled by a heat exchanger to condense the moisture, and the exhaust is separated into the odor gas and condensed water. The deodorizing method is characterized in that the separated odor gas and the condensed water are brought into contact with each other in a packed tower.
JP2008310148A 2007-12-04 2008-12-04 Deodorization apparatus and deodorization method Pending JP2009154151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008310148A JP2009154151A (en) 2007-12-04 2008-12-04 Deodorization apparatus and deodorization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007313877 2007-12-04
JP2008310148A JP2009154151A (en) 2007-12-04 2008-12-04 Deodorization apparatus and deodorization method

Publications (1)

Publication Number Publication Date
JP2009154151A true JP2009154151A (en) 2009-07-16

Family

ID=40958741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310148A Pending JP2009154151A (en) 2007-12-04 2008-12-04 Deodorization apparatus and deodorization method

Country Status (1)

Country Link
JP (1) JP2009154151A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101180328B1 (en) 2010-10-27 2012-09-06 경북대학교 산학협력단 Fermentation method and apparatus for manufacture of Liquid-fertilizer with two-step condensing module
KR20160139349A (en) * 2015-05-27 2016-12-07 (주)아이에스오탱크 System for removing a odor in the tank container
KR101757684B1 (en) 2015-05-27 2017-07-13 (주)아이에스오탱크 Method for removing a odor in the tank container
KR101948600B1 (en) * 2016-06-23 2019-02-15 (주)아이에스오탱크 an efficient System for removing a odor in the tank container
JP2019063363A (en) * 2017-10-03 2019-04-25 キヤノンマーケティングジャパン株式会社 Cleaning device and cleaning method
JP2019063796A (en) * 2017-10-03 2019-04-25 キヤノンマーケティングジャパン株式会社 Cleaning system and cleaning method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101180328B1 (en) 2010-10-27 2012-09-06 경북대학교 산학협력단 Fermentation method and apparatus for manufacture of Liquid-fertilizer with two-step condensing module
KR20160139349A (en) * 2015-05-27 2016-12-07 (주)아이에스오탱크 System for removing a odor in the tank container
KR101699240B1 (en) 2015-05-27 2017-01-24 (주)아이에스오탱크 System for removing a odor in the tank container
KR101757684B1 (en) 2015-05-27 2017-07-13 (주)아이에스오탱크 Method for removing a odor in the tank container
KR101948600B1 (en) * 2016-06-23 2019-02-15 (주)아이에스오탱크 an efficient System for removing a odor in the tank container
JP2019063363A (en) * 2017-10-03 2019-04-25 キヤノンマーケティングジャパン株式会社 Cleaning device and cleaning method
JP2019063796A (en) * 2017-10-03 2019-04-25 キヤノンマーケティングジャパン株式会社 Cleaning system and cleaning method
JP7023079B2 (en) 2017-10-03 2022-02-21 キヤノンマーケティングジャパン株式会社 Cleaning system and cleaning method
JP7201380B2 (en) 2017-10-03 2023-01-10 キヤノンマーケティングジャパン株式会社 Cleaning system and cleaning method

Similar Documents

Publication Publication Date Title
KR101363282B1 (en) Appaarayus for treating vocs
JP2009154151A (en) Deodorization apparatus and deodorization method
KR101023649B1 (en) Slurry offensive odor removal apparatus
KR102103703B1 (en) System for removing malodor of livestock excretions
JP2007269517A (en) Exhaust gas treatment apparatus and exhaust gas treatment method of suction ventilation type compost manufacturing facility
JP4349306B2 (en) Deodorizing device and deodorizing system
KR101300234B1 (en) Apparatus and Method for Removing Livestock Excrement Odor Using Photo-Oxidation Process
JP5467765B2 (en) Fertilizer manufacturing method
KR101512990B1 (en) An integral system for removing a bad smell
JP2010214243A (en) Deodorizing device and deodorizing method
KR100945292B1 (en) Odor reduction and deodorization device
JP5839262B2 (en) Odor amount leveling method and apparatus
JP2007136252A (en) Deodorization method and apparatus for odor gas
JP2008132459A (en) Microorganism deodorization apparatus
JP3510539B2 (en) Odor treatment method and system for composting equipment
JP3595748B2 (en) Fermentation treatment apparatus and operation method thereof
JP2003117341A (en) Method for treating gas containing ammonia and device therefor
KR102491368B1 (en) System of capable of removing malodor gas of anomal-excretion on barnyard manure factory
JP2004130163A (en) Deodorizing device and control method therefor
JP2001137652A (en) Method for deodorizing malodorous gas and device
JP3510540B2 (en) Odor treatment method and system for composting equipment
JP3815439B2 (en) Deodorizing device and deodorizing method
JP2000327468A (en) Deodorizing method for compost odor
JP2005022928A (en) Compost manufacturing unit and manufacturing method of compost
JPH07155534A (en) Deodorizing device