JP2009152420A - Lateral mosfet - Google Patents

Lateral mosfet Download PDF

Info

Publication number
JP2009152420A
JP2009152420A JP2007329471A JP2007329471A JP2009152420A JP 2009152420 A JP2009152420 A JP 2009152420A JP 2007329471 A JP2007329471 A JP 2007329471A JP 2007329471 A JP2007329471 A JP 2007329471A JP 2009152420 A JP2009152420 A JP 2009152420A
Authority
JP
Japan
Prior art keywords
region
type
drain
semiconductor layer
lateral mosfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007329471A
Other languages
Japanese (ja)
Inventor
Eishiro Sakai
英子郎 坂井
Jun Tamura
純 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2007329471A priority Critical patent/JP2009152420A/en
Publication of JP2009152420A publication Critical patent/JP2009152420A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the conventional lateral MOSFET 20 has a deficiency that Vt fluctuates because of hot carrier generation in a high electric field concentrated on the drain side edge, as a result of its inability reaching the drain side edge of the gate electrode 39, which is caused by the fact that a depletion layer a is not easily extended near an N type impurity region 44 with comparatively high impurity concentration, which is disposed for the purpose of reducing on-resistance. <P>SOLUTION: The lateral MOSFET 1 includes an N<SP>+</SP>type high concentration region 5 having higher impurity concentration than that of an N<SP>-</SP>type semiconductor layer 33 on the front surface layer of the N<SP>-</SP>type semiconductor layer 33 that lies between a P<SP>+</SP>type base region 35 and an N<SP>++</SP>type drain region 36; and a plurality of N<SP>-</SP>type low concentration regions 6 having lower impurity concentration than that of the N<SP>+</SP>type high concentration region 5 on the front surface layer of the N<SP>-</SP>type semiconductor layer 33 that extend towards the N<SP>++</SP>type drain region 36, while each one edge of the N<SP>-</SP>type low concentration regions touches the P<SP>+</SP>type base region 35. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、横型MOSFETに関する。   The present invention relates to a lateral MOSFET.

従来の横型MOSFETの一例を図8に示す。図8はSOI基板に形成されたNチャネル型の横型MOSFETの縦断面図である。   An example of a conventional lateral MOSFET is shown in FIG. FIG. 8 is a longitudinal sectional view of an N-channel lateral MOSFET formed on an SOI substrate.

図8において、20は従来の横型MOSFET、30はSOI基板、31はN型またはP型のシリコン基板、32はシリコン酸化膜、33はN型半導体層、34はN型ウェル領域、35はP型ベース領域、36はN++型ドレイン領域、37はN++型ソース領域、38はゲート絶縁膜、39はゲート電極、40はLOCOS酸化膜、41は層間絶縁膜、42はドレイン電極、43はソース電極、44はN型不純物領域である。 In FIG. 8, 20 is a conventional lateral MOSFET, 30 is an SOI substrate, 31 is an N-type or P-type silicon substrate, 32 is a silicon oxide film, 33 is an N type semiconductor layer, 34 is an N + type well region, 35 Is a P + -type base region, 36 is an N ++ -type drain region, 37 is an N ++ -type source region, 38 is a gate insulating film, 39 is a gate electrode, 40 is a LOCOS oxide film, 41 is an interlayer insulating film, and 42 is a drain electrode. , 43 are source electrodes, and 44 is an N-type impurity region.

SOI基板30は、N型またはP型のシリコン基板31と、その上のシリコン酸化膜32と、その上のN型半導体層33とで構成されている。 The SOI substrate 30 is composed of an N-type or P-type silicon substrate 31, a silicon oxide film 32 thereon, and an N type semiconductor layer 33 thereon.

型半導体層33の表面層の所定領域には、シリコン酸化膜32まで到達していないN型ウェル領域34と、シリコン酸化膜32まで到達したP型ベース領域35とが所定距離だけ離間してそれぞれ形成されている。 In a predetermined region of the surface layer of the N type semiconductor layer 33, an N + type well region 34 that does not reach the silicon oxide film 32 and a P + type base region 35 that reaches the silicon oxide film 32 are a predetermined distance. They are formed apart from each other.

また、P型ベース領域35とN型ウェル領域34の間のN型半導体層33の表面層には、N型半導体層33より高い不純物濃度を有するN型不純物領域44が形成され、N型ウェル領域34と共にオン抵抗を低減させる役目をしている。 Further, an N-type impurity region 44 having an impurity concentration higher than that of the N -type semiconductor layer 33 is formed in the surface layer of the N -type semiconductor layer 33 between the P + -type base region 35 and the N + -type well region 34. , N + -type well region 34 serves to reduce on-resistance.

また、N型ウェル領域34の表面層には、N型ウェル領域34端から(図中、右方向へ)所定距離だけ離間して高不純物濃度のN++型ドレイン領域36が形成され、P型ベース領域35の表面層には、P型ベース領域35端から(図中、左方向へ)所定距離(チャネル長)だけ離間して高不純物濃度のN++型ソース領域37が形成されている。 The surface layer of the N + -type well region 34, N + -type well region 34 end (in the figure, rightward) N ++ type drain region 36 spaced a high impurity concentration by the predetermined distance is formed, on the surface layer of the P + -type base region 35, the P + -type base region 35 end (in the figure, to the left) a predetermined distance (channel length) spaced apart by a high impurity concentration N ++ type source region 37 is formed Has been.

また、N++型ドレイン領域36とN++型ソース領域37の間のP型ベース領域35表面上には、ゲート絶縁膜38を介して、ポリシリコンからなるゲート電極39が形成されている。 A gate electrode 39 made of polysilicon is formed on the surface of the P + -type base region 35 between the N ++ -type drain region 36 and the N ++ -type source region 37 via a gate insulating film 38.

また、N型不純物領域44とN++型ドレイン領域36の間には、厚いLOCOS酸化膜40が形成され、ゲート電極39のドレイン側端部(図中、E部)の電界集中を緩和させる役目をしている。 Further, a thick LOCOS oxide film 40 is formed between the N-type impurity region 44 and the N ++ type drain region 36, and serves to alleviate electric field concentration at the drain side end portion (E portion in the figure) of the gate electrode 39. I am doing.

そして、層間絶縁膜41によってゲート電極39と絶縁されて、N++型ドレイン領域36に電気的接続するドレイン電極42と、P型ベース領域35およびN++型ソース領域37に電気的接続するソース電極43とがそれぞれアルミニウム膜などで形成されている。(例えば、特許文献1参照) A drain electrode 42 that is insulated from the gate electrode 39 by the interlayer insulating film 41 and electrically connected to the N ++ type drain region 36, and a source that is electrically connected to the P + type base region 35 and the N ++ type source region 37. The electrodes 43 are each formed of an aluminum film or the like. (For example, see Patent Document 1)

特開2004−63918号公報 図1Japanese Patent Laid-Open No. 2004-63918 FIG.

しかしながら、従来の横型MOSFET20では、ドレイン-ソース間に電圧を印加した状態において、オン抵抗低減のために配置された比較的高い不純物濃度を有するN型不純物領域44の近傍で空乏層a(図8の拡大図中、破線で示す)が伸びにくかった。   However, in the conventional lateral MOSFET 20, when a voltage is applied between the drain and the source, the depletion layer a (see FIG. (Indicated by a broken line in the enlarged view) was difficult to stretch.

このため、空乏層aがゲート電極39のドレイン側端部(e部)まで達せず、厚いLOCOS酸化膜40が配置されているにも係らず、ドレイン側端部(e部)に集中する高電界でアバランシェ降伏を起こしホットキャリアが発生し、そのホットキャリアがゲ−ト絶縁膜38にトラップされてVt(スレッショルド電圧)が変動するという不具合があった。   For this reason, the depletion layer a does not reach the drain side end portion (e portion) of the gate electrode 39, and the high concentration concentrated on the drain side end portion (e portion) despite the thick LOCOS oxide film 40 being disposed. An avalanche breakdown is caused by an electric field, hot carriers are generated, the hot carriers are trapped in the gate insulating film 38, and Vt (threshold voltage) fluctuates.

本発明の横型MOSFETは、
第1導電型の半導体層と、
半導体層の表面層に形成された第1導電型のドレイン領域と、
ドレイン領域から離間して半導体層の表面層に形成された、第1導電型と反対導電型の第2導電型のベース領域と、
ベース領域の表面層に形成された第1導電型のソース領域と、
ベース領域とドレイン領域との間の半導体層の表面層に形成された、半導体層より高い不純物濃度を有する第1導電型の高濃度領域と、
高濃度領域の表面層に離散的に配列された、高濃度領域よりも低い不純物濃度を有する複数の低濃度領域とを有する横型MOSFETである。
The lateral MOSFET of the present invention is
A first conductivity type semiconductor layer;
A drain region of a first conductivity type formed in the surface layer of the semiconductor layer;
A base region of a second conductivity type opposite to the first conductivity type formed in the surface layer of the semiconductor layer apart from the drain region;
A source region of a first conductivity type formed in a surface layer of the base region;
A high concentration region of a first conductivity type formed in a surface layer of the semiconductor layer between the base region and the drain region and having an impurity concentration higher than that of the semiconductor layer;
A lateral MOSFET having a plurality of low-concentration regions that are discretely arranged on the surface layer of the high-concentration region and have an impurity concentration lower than that of the high-concentration region.

本発明の横型MOSFETによれば、オン抵抗を低減しつつ、ゲート電極のドレイン側端部での電界集中を緩和し、ホットキャリアによるVt(スレッショルド電圧)変動を抑えることができる。   According to the lateral MOSFET of the present invention, it is possible to reduce electric field concentration at the drain side end of the gate electrode and reduce Vt (threshold voltage) fluctuation due to hot carriers while reducing the on-resistance.

本発明の横型MOSFETの一例を図1,図2に示す。図1(a)はSOI基板に形成されたNチャネル型の横型MOSFETの平面図、図1(b)は図1(a)のC−C線における要部斜視図である。図2は図1(a)のA−A線およびB−B線における断面図である。尚、図1は層間絶縁膜、ソース電極およびドレイン電極を除去した状態を示す(ゲート電極は破線で示す)。また、図8と同一部分には同一符号を付す。   An example of the lateral MOSFET of the present invention is shown in FIGS. FIG. 1A is a plan view of an N-channel type lateral MOSFET formed on an SOI substrate, and FIG. 1B is a perspective view of a main part taken along line CC in FIG. FIG. 2 is a cross-sectional view taken along lines AA and BB in FIG. FIG. 1 shows a state where the interlayer insulating film, the source electrode and the drain electrode are removed (the gate electrode is indicated by a broken line). The same parts as those in FIG.

図1,2において、1は本発明の実施例1の横型MOSFET、5は第1導電型の高濃度領域としてのN型高濃度領域、6は第1導電型の低濃度領域としてのN型低濃度領域、30はSOI基板、31はN型またはP型のシリコン基板、32はシリコン酸化膜、33は第1導電型の半導体層としてのN型半導体層、35はP型ベース領域、36はN++型ドレイン領域、37はN++型ソース領域、38はシリコン酸化膜、39はゲート電極、41は層間絶縁膜、42はドレイン電極、43はソース電極である。 1 and 2, reference numeral 1 denotes a lateral MOSFET according to the first embodiment of the present invention, 5 denotes an N + type high concentration region as a first conductivity type high concentration region, and 6 denotes N as a first conductivity type low concentration region. Type low concentration region, 30 is an SOI substrate, 31 is an N type or P type silicon substrate, 32 is a silicon oxide film, 33 is an N type semiconductor layer as a first conductivity type semiconductor layer, and 35 is a P + type The base region 36 is an N ++ type drain region, 37 is an N ++ type source region, 38 is a silicon oxide film, 39 is a gate electrode, 41 is an interlayer insulating film, 42 is a drain electrode, and 43 is a source electrode.

SOI基板30は、N型またはP型のシリコン基板31と、その上のシリコン酸化膜32と、その上のN型半導体層33とで構成されている。 The SOI substrate 30 is composed of an N-type or P-type silicon substrate 31, a silicon oxide film 32 thereon, and an N type semiconductor layer 33 thereon.

型半導体層33の表面層の所定領域には、シリコン酸化膜32まで到達したP型ベース領域35が形成されている。 A P + type base region 35 reaching the silicon oxide film 32 is formed in a predetermined region of the surface layer of the N type semiconductor layer 33.

また、N型半導体層33の表面層には、P型ベース領域35から(図中、右方向へ)所定距離だけ離間した所定領域に高不純物濃度のN++型ドレイン領域36が形成され、P型ベース領域35の表面層には、P型ベース領域35端から(図中、左方向へ)所定距離(チャネル長)だけ離間して高不純物濃度のN++型ソース領域37が形成されている。 Further, on the surface layer of the N type semiconductor layer 33, a high impurity concentration N ++ type drain region 36 is formed in a predetermined region separated from the P + type base region 35 by a predetermined distance (to the right in the drawing). , the surface layer of the P + -type base region 35, the P + -type base region 35 end (in the figure, leftward) N ++ type source region 37 spaced a high impurity concentration by a predetermined distance (channel length) Is formed.

また、N++型ドレイン領域36とN++型ソース領域37の間のP型ベース領域35表面上には、ゲート絶縁膜38を介して、ポリシリコンからなるゲート電極39が形成されている。 A gate electrode 39 made of polysilicon is formed on the surface of the P + -type base region 35 between the N ++ -type drain region 36 and the N ++ -type source region 37 via a gate insulating film 38.

また、P型ベース領域35とN++型ドレイン領域36の間のN型半導体層33の表面層には、一端をP型ベース領域35に、他端をN++型ドレイン領域36に接して、N型半導体層33より高い不純物濃度を有するN型高濃度領域5が形成され、オン抵抗を低減させる役目をしている。 Also, one end of the surface layer of the N -type semiconductor layer 33 between the P + -type base region 35 and the N + -type drain region 36 is the P + -type base region 35 and the other end is the N + -type drain region 36. In contact therewith, an N + type high concentration region 5 having an impurity concentration higher than that of the N type semiconductor layer 33 is formed, and serves to reduce the on-resistance.

また、そのN型高濃度領域5の表面層には、一端をP型ベース領域35に接し、N++型ドレイン領域36に向かって一定間隔を空けて離散的に配列された複数のストライプ状の、N型高濃度領域5よりも低い不純物濃度を有するN型低濃度領域6が形成されている。 In addition, the surface layer of the N + -type high concentration region 5 has a plurality of stripes discretely arranged at predetermined intervals toward the N + -type drain region 36 with one end in contact with the P + -type base region 35. The N type low concentration region 6 having an impurity concentration lower than that of the N + type high concentration region 5 is formed.

本実施例1では、N型低濃度領域6の他端は、ゲート電極39のドレイン側端部(図中、e部)を越えてN++型ドレイン領域36に達している。 In the first embodiment, the other end of the N -type low concentration region 6 reaches the N ++ -type drain region 36 beyond the drain side end portion (e portion in the figure) of the gate electrode 39.

このN型低濃度領域6により、ドレイン-ソース間に電圧が印加された際に、空乏層b(図2中に破線で示す)がゲート電極39のドレイン側端部(e部)よりもN++型ドレイン領域36側に延びて電界集中を緩和させ、ホットキャリアの発生を防止でき、その結果、Vt(スレッショルド電圧)の変動を抑制できる。 Due to the N type low concentration region 6, when a voltage is applied between the drain and the source, the depletion layer b (indicated by a broken line in FIG. 2) is more than the drain side end portion (e portion) of the gate electrode 39. Extending to the N ++ type drain region 36 side, the electric field concentration can be relaxed, and hot carriers can be prevented from being generated. As a result, fluctuations in Vt (threshold voltage) can be suppressed.

すなわち、低抵抗電流経路してのN型高濃度領域5と、空乏層bを延ばすためのN型低濃度領域6の両者を表面層に交互に配置することでオン抵抗を低減しつつ電界集中の緩和ができる。 That is, while the N + type high concentration region 5 as a low resistance current path and the N type low concentration region 6 for extending the depletion layer b are alternately arranged on the surface layer, the on-resistance is reduced. Electric field concentration can be reduced.

ここで、N型低濃度領域6の幅wおよび配列間隔sを共に、1〜2μm程度としておくと、間隔を空けて隣り合うN型低濃度領域6の空乏層b同士が互いに繋がりやすくなり、それに伴ってN型低濃度領域6に挟まれたN型高濃度領域5の空乏層bもN++型ドレイン領域36に引っ張られ、ゲート電極39のドレイン側端部(図中、e部)を越えて電界集中を緩和させる。 Here, if both the width w and the arrangement interval s of the N type low concentration region 6 are set to about 1 to 2 μm, the depletion layers b of the adjacent N type low concentration regions 6 are easily connected to each other with a space therebetween. Accordingly, the depletion layer b of the N + type high concentration region 5 sandwiched between the N type low concentration regions 6 is also pulled by the N ++ type drain region 36 and the drain side end portion of the gate electrode 39 (in the figure, The electric field concentration is relaxed beyond the portion e).

また、N型高濃度領域5の深さに対するN型低濃度領域6の深さdを、1/3〜1/2程度の範囲としておくとN型高濃度領域5の電流経路面積を過剰に減少させることがなく、オン抵抗増加を抑制できて好適である。 Further, if the depth d of the N type low concentration region 6 with respect to the depth of the N + type high concentration region 5 is set to a range of about 1/3 to 1/2, the current path area of the N + type high concentration region 5. Therefore, it is preferable that an increase in on-resistance can be suppressed without excessively reducing.

そして、層間絶縁膜41によってゲート電極39と絶縁されて、N++型ドレイン領域36に電気的接続するドレイン電極42と、P型ベース領域35およびN++型ソース領域37に電気的接続するソース電極43とがそれぞれアルミニウム膜などで形成されている。 A drain electrode 42 that is insulated from the gate electrode 39 by the interlayer insulating film 41 and electrically connected to the N ++ type drain region 36, and a source that is electrically connected to the P + type base region 35 and the N ++ type source region 37. The electrodes 43 are each formed of an aluminum film or the like.

このような横型MOSFET1は、N型高濃度領域5によりオン抵抗を低減しつつ、その表面層に一定間隔で離散的に配列したN型低濃度領域6により、空乏層bをゲート電極39のドレイン側端部(e部)を越えてN++型ドレイン領域36側に延ばすことができ電界集中を緩和させホットキャリアによるVt(スレッショルド電圧)変動を抑えることができる。 In such a lateral MOSFET 1, the on-resistance is reduced by the N + type high concentration region 5, while the depletion layer b is formed by the gate electrode 39 by the N type low concentration region 6 discretely arranged on the surface layer at a constant interval. Can extend to the N ++ type drain region 36 side beyond the drain side end portion (e portion), and can reduce electric field concentration and suppress Vt (threshold voltage) fluctuation due to hot carriers.

次に、上記の横型MOSFET1の製造方法について、図3〜図6を参照して説明する。図3,図4(d),図5,図6は各製造工程完了毎のデバイスの断面図であり、図4(c)は斜視図である。   Next, a manufacturing method of the lateral MOSFET 1 will be described with reference to FIGS. 3, FIG. 4 (d), FIG. 5, and FIG. 6 are cross-sectional views of the device at the completion of each manufacturing process, and FIG. 4 (c) is a perspective view.

先ず、図3(a)に示すように、熱酸化法によりN型半導体層33の表面に薄いシリコン酸化膜11を形成し、リンをイオン注入してN型高濃度領域5を形成する。 First, as shown in FIG. 3A, a thin silicon oxide film 11 is formed on the surface of the N type semiconductor layer 33 by thermal oxidation, and phosphorus is ion-implanted to form an N + type high concentration region 5. .

次に、図3(b)、図4(c)に示すように、フォトリソグラフィ法を用いて形成した所定のレジストパターン12をマスクにして、P型不純物であるホウ素を選択的にイオン注入(所謂、打ち返し法)して、N型低濃度領域6を形成する。 Next, as shown in FIGS. 3B and 4C, boron, which is a P-type impurity, is selectively ion-implanted using a predetermined resist pattern 12 formed by photolithography as a mask (see FIG. 3B and FIG. 4C). An N type low concentration region 6 is formed by a so-called reversal method.

ここで、N型低濃度領域6の幅wおよび配列間隔sは共に、1〜2μm程度とし、N型高濃度領域5の深さに対するN型低濃度領域6の深さdは、1/3〜1/2程度の範囲となるようにする。 Here, both the width w and the arrangement interval s of the N type low concentration region 6 are about 1 to 2 μm, and the depth d of the N type low concentration region 6 with respect to the depth of the N + type high concentration region 5 is: The range is about 1/3 to 1/2.

次に、レジストパターン12を除去した後、ウェットエッチ法によりシリコン酸化膜11を除去する。   Next, after removing the resist pattern 12, the silicon oxide film 11 is removed by wet etching.

次に、図4(d)に示すように、熱酸化法により薄いシリコン酸化膜からなるゲート絶縁膜38を形成し、その上からCVD法によりポリシリコン膜を成長させ、フォトリソグラフィ法を用いて形成した所定のレジストパターン(図示せず)をマスクに不要部分をドライエッチングにより除去して、ゲート電極39を形成する。   Next, as shown in FIG. 4D, a gate insulating film 38 made of a thin silicon oxide film is formed by a thermal oxidation method, a polysilicon film is grown thereon by a CVD method, and a photolithography method is used. Using the formed resist pattern (not shown) as a mask, unnecessary portions are removed by dry etching to form the gate electrode 39.

次に、図5(e)に示すように、ゲート電極39とフォトリソグラフィ法を用いて形成したレジストパターン13をマスクにして、イオン注入法によりN型半導体層33の表面層内に選択的にホウ素を注入し、レジストパターン13を除去後、熱拡散してシリコン酸化膜32まで到達したP型ベース領域35を形成する。 Next, as shown in FIG. 5E, the resist pattern 13 formed by using the gate electrode 39 and the photolithography method is used as a mask to selectively form the surface layer of the N type semiconductor layer 33 by ion implantation. Then, boron is implanted, and after the resist pattern 13 is removed, a P + type base region 35 reaching the silicon oxide film 32 by thermal diffusion is formed.

次に、図5(f)に示すように、ゲート電極39とフォトリソグラフィ法を用いて形成したレジストパターン14をマスクにして、イオン注入法によりN型半導体層33およびP型ベース領域35の表面層内に選択的にヒ素を注入し、レジストパターン14を除去後、熱拡散してN++型ドレイン領域36、N++型ソース領域37をそれぞれ形成する。 Next, as shown in FIG. 5F, the N type semiconductor layer 33 and the P + type base region 35 are formed by ion implantation using the gate electrode 39 and the resist pattern 14 formed by photolithography as a mask. Arsenic is selectively implanted into the surface layer, and after removing the resist pattern 14, thermal diffusion is performed to form an N ++ type drain region 36 and an N ++ type source region 37, respectively.

最後に、図2に示すように、CVD法により層間絶縁膜41で被覆した後、P型ベース領域35、N++型ドレイン領域36、N++型ソース領域37およびゲート電極39の表面が露出するように層間絶縁膜41にコンタクト窓を形成する。 Finally, as shown in FIG. 2, the surface of the P + type base region 35, the N + + type drain region 36, the N + + type source region 37 and the gate electrode 39 is exposed after being covered with the interlayer insulating film 41 by the CVD method. Thus, a contact window is formed in the interlayer insulating film 41.

そして、スパッタ法によりアルミニウム膜で被覆した後、このアルミニウム膜をフォトリソグラフィ法およびドライエッチ法により選択的に除去して、N++型ドレイン領域36と電気的接続するドレイン電極42と、P型ベース領域35およびN++型ソース領域37と電気的接続するソース電極43を形成する。 Then, after being coated with an aluminum film by a sputtering method, the aluminum film is selectively removed by a photolithography method and a dry etching method, and a drain electrode 42 electrically connected to the N ++ type drain region 36, and a P + type A source electrode 43 electrically connected to the base region 35 and the N ++ type source region 37 is formed.

尚、上記では、N型低濃度領域6の終端をN++型ドレイン領域36に達する構成例で説明したが、オン抵抗を極力、低減させる場合の構成を実施例2として図6,図7を参照して説明する。 In the above description, the configuration example in which the termination of the N -type low concentration region 6 reaches the N ++ -type drain region 36 has been described. However, the configuration in the case where the on-resistance is reduced as much as possible is shown in FIG. Will be described with reference to FIG.

図6(a)は実施例2の横型MOSFET2の平面図、図6(b)は図6(a)のF−F線における要部斜視図である。図7(a)は図6(a)のD−D線における断面図、図7(b)は図6(a)のE−E線における断面図である。尚、図6は層間絶縁膜、ソース電極およびドレイン電極を除去した状態を示す(ゲート電極は破線で示す)。また、図1,2,8と同一部分には同一符号を付す。   6A is a plan view of the lateral MOSFET 2 according to the second embodiment, and FIG. 6B is a perspective view of a main part taken along line FF in FIG. 6A. 7A is a cross-sectional view taken along the line DD of FIG. 6A, and FIG. 7B is a cross-sectional view taken along the line EE of FIG. 6A. FIG. 6 shows a state where the interlayer insulating film, the source electrode and the drain electrode are removed (the gate electrode is indicated by a broken line). The same parts as those shown in FIGS.

図6,図7に示すように、N型低濃度領域6はゲート電極37のドレイン側端部(e部)を若干越えた位置で終端している。 As shown in FIGS. 6 and 7, the N -type low concentration region 6 terminates at a position slightly beyond the drain side end portion (e portion) of the gate electrode 37.

これにより、実施例1に比べてN型低濃度領域6の長さが短くなり低抵抗化できる。 As a result, the length of the N -type low concentration region 6 becomes shorter than that of the first embodiment, and the resistance can be reduced.

この実施例2の構成においても、空乏層bがゲート電極39のドレイン側端部(e部)を越えて延びるようにさえすれば、実施例1の場合とほぼ同等の電界集中緩和効果が得られる。   Even in the configuration of the second embodiment, as long as the depletion layer b extends beyond the drain-side end portion (e portion) of the gate electrode 39, an electric field concentration relaxation effect substantially the same as that of the first embodiment is obtained. It is done.

つまり、N型低濃度領域6の長さLや深さdを適宜変更することで、電界緩和効果とオン抵抗低減効果のバランスを選択できる。 That is, the balance between the electric field relaxation effect and the on-resistance reduction effect can be selected by appropriately changing the length L and the depth d of the N type low concentration region 6.

より具体的には、ドレイン-ソース間に高電圧が印加される場合は、電界集中緩和効果を優先させるため、例えば、N型低濃度領域6幅wを大きくしたり、深さdを深くする。 More specifically, when a high voltage is applied between the drain and source, in order to prioritize the electric field concentration relaxation effect, for example, the N type low concentration region 6 width w is increased or the depth d is increased. To do.

また、これとは反対に、ドレイン-ソース間に低電圧が印加される場合は、オン抵抗低減効果を優先させるために、例えば、N型低濃度領域6幅wを小さくしたり、深さdを浅くする。 On the other hand, when a low voltage is applied between the drain and source, for example, in order to prioritize the on-resistance reduction effect, for example, the N - type low concentration region 6 width w is reduced or the depth is reduced. Reduce d.

尚、上記の実施例1,2ともにSOI基板30を用いた横型MOSFET1,2の例で説明したが、特にこれに限定するものではなく、SOI基板30を用いない横型MOSFETにも同様に適用可能である。   Although the examples of the lateral MOSFETs 1 and 2 using the SOI substrate 30 have been described in both the first and second embodiments, the invention is not particularly limited to this, and the present invention can be similarly applied to a lateral MOSFET that does not use the SOI substrate 30. It is.

また、上記の実施例1,2ともにN型チャネルMOSFETの例で説明したが、P型チャネル横型MOSFETにも同様に適用できる。この場合、すべての拡散層の導電型を反対導電型に置き換えればよい。   Further, although both the first and second embodiments have been described using the example of the N-type channel MOSFET, the present invention can be similarly applied to a P-type channel lateral MOSFET. In this case, the conductivity type of all the diffusion layers may be replaced with the opposite conductivity type.

すなわち、本発明は上記の実施例に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることは言うまでもない。   That is, the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the invention described in the claims, and these are also included in the scope of the present invention. Needless to say.

本発明の実施例1の横型MOSFETの平面図およびC−C線における要部断面斜視図The top view of the horizontal type | mold MOSFET of Example 1 of this invention, and the principal part cross-section perspective view in CC line 図1のA−A線およびB−B線における断面図Sectional drawing in the AA line and BB line of FIG. 本発明の横型MOSFETの各製造工程完了毎のデバイスの要部断面図Cross-sectional view of the main part of the device at the completion of each manufacturing process of the lateral MOSFET of the present invention 本発明の横型MOSFETの各製造工程完了毎のデバイスの要部断面図および斜視図Cross-sectional view and perspective view of main part of device for each manufacturing process completion of lateral MOSFET of the present invention 本発明の横型MOSFETの各製造工程完了毎のデバイスの要部断面図Cross-sectional view of the main part of the device at the completion of each manufacturing process of the lateral MOSFET of the present invention 本発明の実施例2の横型MOSFETの平面図およびF−F線における要部断面斜視図The top view of the horizontal type | mold MOSFET of Example 2 of this invention, and the principal part cross-section perspective view in the FF line 図6のD−D線およびE−E線における断面図Sectional drawing in the DD line and EE line of FIG. 従来の横型MOSFETの断面図および要部拡大図Sectional view and main part enlarged view of a conventional lateral MOSFET

符号の説明Explanation of symbols

1 本発明の実施例1の横型MOSFET
2 本発明の実施例2の横型MOSFET
5 第1導電型高濃度領域としてのN型高濃度領域
6 第1導電型低濃度領域としてのN型低濃度領域
11 シリコン酸化膜
12,13,14 レジストパターン
20 従来の横型MOSFET
30 SOI基板
31 N型またはP型のシリコン基板
32 シリコン酸化膜
33 N型半導体層
34 N型ウェル領域
35 P型ベース領域
36 N++型ドレイン領域
37 N++型ソース領域
38 ゲート絶縁膜
39 ゲート電極
40 LOCOS酸化膜
41 層間絶縁膜
42 ドレイン電極
43 ソース電極
44 N型不純物領域
a,b 空乏層
d N型低濃度領域6の深さ
e ゲート電極39のドレイン側端部
L N型低濃度領域6の長さ
s N型低濃度領域6の配列間隔
w N型低濃度領域6の幅
Vt スレッショルド電圧
1 Lateral MOSFET of Embodiment 1 of the present invention
2 Lateral MOSFET of Example 2 of the present invention
5 N + type high concentration region as first conductivity type high concentration region 6 N type low concentration region as first conductivity type low concentration region 11 Silicon oxide film 12, 13, 14 resist pattern 20 Conventional lateral MOSFET
30 SOI substrate 31 N-type or P-type silicon substrate 32 Silicon oxide film 33 N type semiconductor layer 34 N + type well region 35 P + type base region 36 N + + type drain region 37 N + + type source region 38 Gate insulating film 39 Gate electrode 40 LOCOS oxide film 41 Interlayer insulating film 42 Drain electrode 43 Source electrode 44 N-type impurity region a, b Depletion layer d Depth of N - type low concentration region 6 e Drain side end of gate electrode 39 L N type low concentration region 6 length s N - -type lower array spacing density region 6 w N - width Vt threshold voltage type low-concentration region 6

Claims (7)

第1導電型の半導体層と、
前記半導体層の表面層に形成された第1導電型のドレイン領域と、
前記ドレイン領域から離間して前記半導体層の表面層に形成された、前記第1導電型と反対導電型の第2導電型のベース領域と、
前記ベース領域の表面層に形成された前記第1導電型のソース領域と、
前記ベース領域と前記ドレイン領域との間の前記半導体層の表面層に形成された、前記半導体層より高い不純物濃度を有する前記第1導電型の高濃度領域と、
前記高濃度領域の表面層に離散的に配列された、前記高濃度領域よりも低い不純物濃度を有する複数の低濃度領域とを有する横型MOSFET。
A first conductivity type semiconductor layer;
A drain region of a first conductivity type formed in a surface layer of the semiconductor layer;
A base region of a second conductivity type opposite to the first conductivity type formed in a surface layer of the semiconductor layer apart from the drain region;
A source region of the first conductivity type formed in a surface layer of the base region;
A high concentration region of the first conductivity type formed in a surface layer of the semiconductor layer between the base region and the drain region and having an impurity concentration higher than that of the semiconductor layer;
A lateral MOSFET having a plurality of low-concentration regions that are discretely arranged on the surface layer of the high-concentration region and have an impurity concentration lower than that of the high-concentration region.
前記低濃度領域は、一端を前記ベース領域に接しつつ前記ドレイン領域に向かって延在する領域である請求項1に記載の横型MOSFET。   2. The lateral MOSFET according to claim 1, wherein the low concentration region is a region extending toward the drain region while contacting one end with the base region. 前記低濃度領域は、前記高濃度領域の表面層に一定間隔で配列されたストライプ状の領域である請求項1または2に記載の横型MOSFET。   3. The lateral MOSFET according to claim 1, wherein the low concentration region is a striped region arranged at regular intervals on a surface layer of the high concentration region. 前記ソース領域と前記ドレイン領域の間の前記半導体層の表面上にゲート絶縁膜を介して形成されたゲート電極を備え、前記低濃度領域の他端は、前記ゲート電極のドレイン側端を越えて前記ドレイン領域側に延在する請求項1から3のいずれかに記載の横型MOSFET。   A gate electrode formed on a surface of the semiconductor layer between the source region and the drain region via a gate insulating film, and the other end of the low concentration region extends beyond a drain side end of the gate electrode. The lateral MOSFET according to claim 1, which extends toward the drain region. 前記低濃度領域の他端は、前記ドレイン領域に達する請求項4に記載の横型MOSFET。   The lateral MOSFET according to claim 4, wherein the other end of the low concentration region reaches the drain region. 前記低濃度領域の幅および配列間隔は共に、1〜2μmの範囲である請求項1から5のいずれかに記載の横型MOSFET。   6. The lateral MOSFET according to claim 1, wherein both the width and the arrangement interval of the low concentration region are in the range of 1 to 2 [mu] m. 前記低濃度領域の深さは、前記高濃度領域の深さの1/3〜1/2の範囲である請求項1から6のいずれかに記載の横型MOSFET。   The lateral MOSFET according to any one of claims 1 to 6, wherein the depth of the low concentration region is in a range of 1/3 to 1/2 of the depth of the high concentration region.
JP2007329471A 2007-12-21 2007-12-21 Lateral mosfet Pending JP2009152420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007329471A JP2009152420A (en) 2007-12-21 2007-12-21 Lateral mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007329471A JP2009152420A (en) 2007-12-21 2007-12-21 Lateral mosfet

Publications (1)

Publication Number Publication Date
JP2009152420A true JP2009152420A (en) 2009-07-09

Family

ID=40921218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007329471A Pending JP2009152420A (en) 2007-12-21 2007-12-21 Lateral mosfet

Country Status (1)

Country Link
JP (1) JP2009152420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408811B (en) * 2011-02-25 2013-09-11 Richtek Technology Corp High voltage device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181321A (en) * 1994-12-26 1996-07-12 Matsushita Electric Works Ltd Soi substrate and its manufacture
JP2007173675A (en) * 2005-12-26 2007-07-05 Toyota Central Res & Dev Lab Inc Semiconductor device and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181321A (en) * 1994-12-26 1996-07-12 Matsushita Electric Works Ltd Soi substrate and its manufacture
JP2007173675A (en) * 2005-12-26 2007-07-05 Toyota Central Res & Dev Lab Inc Semiconductor device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408811B (en) * 2011-02-25 2013-09-11 Richtek Technology Corp High voltage device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4860929B2 (en) Semiconductor device and manufacturing method thereof
US7692241B2 (en) Semiconductor device
JP6666671B2 (en) Semiconductor device
US10903202B2 (en) Semiconductor device
US10249708B2 (en) Semiconductor device
JP2009164460A (en) Semiconductor device
JP2006019518A (en) Horizontal trench mosfet
KR101371495B1 (en) Semiconductor device and method manufacturing the same
JP2006202940A (en) Semiconductor device and its manufacturing method
JP2009272453A (en) Transistor, semiconductor apparatus, and method of manufacturing the same
JP4820899B2 (en) Semiconductor device
JP2006261562A (en) Semiconductor device
JP7007971B2 (en) Semiconductor device
JP2004031519A (en) Semiconductor device
JP2009152420A (en) Lateral mosfet
WO2014174741A1 (en) Semiconductor device
JP2009246224A (en) Semiconductor device
JP2008205031A (en) Method for manufacturing semiconductor device
JP2021007129A (en) Semiconductor device
JP2007115791A (en) Semiconductor device and method of manufacturing same
JP7405230B2 (en) switching element
JP6243748B2 (en) Semiconductor device and manufacturing method thereof
WO2016039069A1 (en) Semiconductor device and production method therefor
KR101420528B1 (en) Power semiconductor device
JP7151395B2 (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20100426

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A621 Written request for application examination

Effective date: 20100805

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507