JP2009150779A - Insulation detector for non-grounded circuit - Google Patents

Insulation detector for non-grounded circuit Download PDF

Info

Publication number
JP2009150779A
JP2009150779A JP2007329187A JP2007329187A JP2009150779A JP 2009150779 A JP2009150779 A JP 2009150779A JP 2007329187 A JP2007329187 A JP 2007329187A JP 2007329187 A JP2007329187 A JP 2007329187A JP 2009150779 A JP2009150779 A JP 2009150779A
Authority
JP
Japan
Prior art keywords
resistor
ground
insulation
circuit
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007329187A
Other languages
Japanese (ja)
Other versions
JP4978970B2 (en
JP2009150779A5 (en
Inventor
Shinji Kitamoto
慎治 北本
Hidetaka Inoue
秀毅 井上
Koji Sakai
浩二 酒井
Satoru Sugiyama
哲 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007329187A priority Critical patent/JP4978970B2/en
Publication of JP2009150779A publication Critical patent/JP2009150779A/en
Publication of JP2009150779A5 publication Critical patent/JP2009150779A5/ja
Application granted granted Critical
Publication of JP4978970B2 publication Critical patent/JP4978970B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulation detector for a non-grounded circuit which is capable of accurately detecting insulation between the non-grounded circuit and a grounding potential section mounted onto a vehicle. <P>SOLUTION: The detector comprises a first resistor 21 which is connected to positive-electrode wiring of a DC power supply 12 and has a resistance higher than the insulation criterion for maintaining insulation between the non-grounded circuit 10 and the grounding potential section BE of the vehicle; a second resistor 22 which is connected to negative-electrode wiring of the DC power supply 12 and has a resistance higher than the insulation criterion; a third resistor 23 which is connected between the first resistor 21 and the second resistor 22, grounding wiring which connects a connection of the second resistor 22 and the third resistor 23 to the grounding potential section BE of the vehicle; and an insulation level detecting means 31 which inputs an inter-terminal voltage V<SB>in</SB>of the third resistor 23 via a differential amplifier 26 and detects the insulation level between the non-grounded circuit 10 and the grounding potential section BE of the vehicle, based on the voltage V<SB>in</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、車両の接地電位部から絶縁して配置された非接地回路と、車両の接地電位部間の絶縁レベルを検出する非接地回路の絶縁性検出装置に関する。   The present invention relates to an insulation detection device for a non-ground circuit that is insulated from a ground potential portion of a vehicle and a non-ground circuit that detects an insulation level between the ground potential portion of the vehicle.

高電圧を出力する直流電源を備えたバッテリ駆動車両、ハイブリッド車両、燃料電池車両等の車両においては、該直流電源及び該直流電源と接続される回路を車体の接地電位部から絶縁して非接地回路とするのが一般的である。   In vehicles such as battery-powered vehicles, hybrid vehicles, and fuel cell vehicles equipped with a DC power source that outputs high voltage, the DC power source and a circuit connected to the DC power source are insulated from the ground potential portion of the vehicle body and are not grounded Generally, it is a circuit.

そして、このようにして、車両の接地電位部から絶縁して配置された非接地回路と、車両の接地電位部との間の絶縁性の劣化や地絡(非接地回路と車両の接地電位部間が短絡して、非接地回路と車両の接地電位部間の抵抗が0Ω近くまで低下した状態)を検出するための構成として、図9に示した構成が提案されている(例えば、特許文献1参照)。   In this way, insulation deterioration between the non-ground circuit arranged insulated from the ground potential portion of the vehicle and the ground potential portion of the vehicle and a ground fault (non-ground circuit and ground potential portion of the vehicle) A configuration shown in FIG. 9 has been proposed as a configuration for detecting a short circuit between the non-ground circuit and the resistance between the non-ground circuit and the ground potential portion of the vehicle that has decreased to near 0Ω (for example, Patent Document 1). 1).

図9に示した構成では、車両に搭載された高圧の直流電源100の正側の配線が、スイッチング素子111と抵抗112とコンデンサ113からなる直列回路110を介して車両の接地電位部BEと接続されている。そして、スイッチング素子111を導通状態としたときのコンデンサ113の正側の測定点120の電位の変化に基いて、直流電源100を含む非接地回路と接地電位部BE間の絶縁性を検出している。   In the configuration shown in FIG. 9, the positive-side wiring of the high-voltage DC power supply 100 mounted on the vehicle is connected to the vehicle ground potential BE via the series circuit 110 including the switching element 111, the resistor 112, and the capacitor 113. Has been. Then, based on the change in potential at the measurement point 120 on the positive side of the capacitor 113 when the switching element 111 is turned on, the insulation between the non-ground circuit including the DC power supply 100 and the ground potential portion BE is detected. Yes.

ここで、非接地回路と接地電位部BE間の抵抗130が高く、非接地回路と接地電位部BE間の絶縁性が保たれているときは、スイッチング素子111を導通状態としても、直流電源100からコンデンサ113への電流I50がほとんど流れないため、測定点120の電位の上昇は微小なものとなる。 Here, when the resistance 130 between the non-ground circuit and the ground potential portion BE is high and the insulation between the non-ground circuit and the ground potential portion BE is maintained, the DC power supply 100 can be used even if the switching element 111 is in a conductive state. Since the current I 50 from the capacitor to the capacitor 113 hardly flows, the rise in the potential at the measurement point 120 is very small.

それに対して、非接地回路と接地電位部BE間の絶縁性の劣化や、非接地回路と接地電位部BE間の地絡が生じて、非接地回路と接地電位部BE間の抵抗130が低くなったときには、直流電流100からコンデンサ113に供給される電流I50が大きくなって、コンデンサ113が急速に充電される。そのため、測定点120の電位が急激に上昇する。そこで、スイッチング素子111を遮断状態から導通状態に切換えたときの測定点120の電位の上昇度合いから、非接地回路と接地電位部BE間の絶縁性を検知することができる。 On the other hand, the insulation between the non-ground circuit and the ground potential portion BE is deteriorated and a ground fault occurs between the non-ground circuit and the ground potential portion BE, so that the resistance 130 between the non-ground circuit and the ground potential portion BE is low. When this happens, the current I 50 supplied from the direct current 100 to the capacitor 113 increases and the capacitor 113 is rapidly charged. Therefore, the potential at the measurement point 120 increases rapidly. Therefore, the insulation between the non-ground circuit and the ground potential portion BE can be detected from the degree of increase in the potential at the measurement point 120 when the switching element 111 is switched from the cutoff state to the conductive state.

しかし、直流高圧電源100の出力端子と接地電位部BE間には、一般に、ノイズ対策のために、いわゆるYコンデンサ101,102が設けられている。そして、スイッチング素子111を遮断状態から導通状態に切換えたときに、Yコンデンサ101に充電されていた電荷による電流I51がコンデンサ113に供給されて、コンデンサ113の端子間電圧が上昇する。 However, generally, so-called Y capacitors 101 and 102 are provided between the output terminal of the DC high-voltage power supply 100 and the ground potential portion BE for noise countermeasures. When the switching element 111 is switched from the cut-off state to the conduction state, the current I 51 due to the charge charged in the Y capacitor 101 is supplied to the capacitor 113, and the voltage across the terminals of the capacitor 113 increases.

このように、図9に示した構成による場合には、Yコンデンサ101からコンデンサ113に供給される電流によっても測定点120の電位が上昇するため、非接地回路と接地電位部BE間の絶縁性を精度良く検知することができないという不都合があった。
特開平8−226950号公報
As described above, in the case of the configuration shown in FIG. 9, the potential at the measurement point 120 rises also by the current supplied from the Y capacitor 101 to the capacitor 113, so that the insulation between the non-ground circuit and the ground potential portion BE is achieved. There is a disadvantage that it cannot be detected with high accuracy.
JP-A-8-226950

本発明は上記背景を鑑みてなされたものであり、車両に搭載された非接地回路と接地電位部間の絶縁性を精度良く検知することができる非接地回路の絶縁性検出装置を提供することを目的とする。   The present invention has been made in view of the above background, and provides an insulation detection device for a non-ground circuit that can accurately detect insulation between a non-ground circuit mounted on a vehicle and a ground potential portion. With the goal.

本発明は上記目的を達成するためになされたものであり、直流電源と該直流電源の正極と接続された正側配線及び該直流電源の負極と接続された負側配線とを有して、車両の接地電位部から絶縁して車両に配置された非接地回路と、該接地電位部との間の絶縁レベルを検出する非接地回路の絶縁性検出装置に関する。   The present invention has been made to achieve the above object, and includes a DC power supply, a positive wiring connected to the positive electrode of the DC power supply, and a negative wiring connected to the negative electrode of the DC power supply. The present invention relates to an insulation detection device for a non-ground circuit that detects an insulation level between a non-ground circuit disposed on a vehicle and insulated from a ground potential portion of the vehicle.

そして、一端が前記正側配線に接続されて、前記非接地回路と車両の接地電位部間の絶縁性を維持するための絶縁基準値よりも高い抵抗を有する第1の抵抗と、一端が前記負側配線に接続されて、前記絶縁基準値よりも高い抵抗を有する第2の抵抗と、前記第1の抵抗の他端と前記第2の抵抗の他端間に接続された第3の抵抗と、前記第1の抵抗と前記第3の抵抗との接続部と、前記第2の抵抗と前記第3の抵抗との接続部のうちの何れか一方を、車両の接地電位部に接続する接地配線と、前記第3の抵抗の端子間電圧に応じて変化する電圧参照値に基いて、前記非接地回路と車両の接地電位部間の絶縁レベルを検出する絶縁レベル検出手段とを備えたことを特徴とする。   A first resistor having one end connected to the positive-side wiring and having a resistance higher than an insulation reference value for maintaining insulation between the non-grounded circuit and the ground potential portion of the vehicle; A second resistor connected to the negative wiring and having a resistance higher than the insulation reference value, and a third resistor connected between the other end of the first resistor and the other end of the second resistor Any one of a connecting portion between the first resistor and the third resistor and a connecting portion between the second resistor and the third resistor is connected to a ground potential portion of the vehicle. Grounding wiring, and an insulation level detection means for detecting an insulation level between the non-grounding circuit and the ground potential portion of the vehicle based on a voltage reference value that changes in accordance with the voltage across the terminals of the third resistor. It is characterized by that.

かかる本発明によれば、前記第1の抵抗及び前記第2の抵抗は、前記絶縁基準値よりも高い抵抗を有しているため、前記第1の抵抗の前記直流電源の正極と接続されていない側の端子又は前記第2の抵抗の前記直流電源の負極と接続されていない側の端子を、前記接地配線により車両の接地電位部と接続しても、前記非接地回路と車両の接地電位部間の絶縁レベルは前記絶縁基準値以上に維持される。そして、前記第3の抵抗の端子間電圧は、前記非接地回路と車両の接地電位部間の絶縁レベルが低下していなければ、前記直流電源の出力電圧を前記第1の抵抗と前記第2の抵抗と前記第3の抵抗とにより分圧した電圧となるが、前記非接地回路と車両の接地電位部間の絶縁レベルが低下すると、詳細は後述するが、前記第1の抵抗における電圧降下や前記第2の抵抗における電圧降下が変化して、前記第3の抵抗の端子間電圧も変化する。そのため、Yコンデンサ等の他の要素の影響を受けることない簡易な構成によって、前記絶縁レベル検出手段により、前記第3の抵抗の端子間電圧に応じて変化する電圧参照値に基いて、前記非接地回路と車両の接地電位部間の絶縁レベルを精度良く検出することができる。   According to this invention, since the first resistor and the second resistor have a resistance higher than the insulation reference value, they are connected to the positive electrode of the DC power source of the first resistor. Even if the terminal on the side not connected or the terminal not connected to the negative electrode of the DC power source of the second resistor is connected to the ground potential part of the vehicle by the ground wiring, the non-ground circuit and the ground potential of the vehicle The insulation level between the parts is maintained above the insulation reference value. If the insulation level between the non-ground circuit and the ground potential portion of the vehicle is not lowered, the voltage between the terminals of the third resistor is equal to the output voltage of the DC power source and the second resistor. However, if the insulation level between the non-grounded circuit and the ground potential portion of the vehicle decreases, the voltage drop in the first resistor will be described in detail later. As a result, the voltage drop in the second resistor changes, and the voltage across the terminals of the third resistor also changes. Therefore, with the simple configuration that is not affected by other elements such as a Y capacitor, the insulation level detection means is configured to perform the non-reduction based on the voltage reference value that changes according to the voltage across the third resistor. It is possible to accurately detect the insulation level between the ground circuit and the ground potential portion of the vehicle.

また、前記接地配線は、前記第2の抵抗と前記第3の抵抗との接続部を、車両の接地電位部に接続し、前記絶縁レベル検出手段は、車両の接地電位部を基準とした前記電圧参照値が、所定の負側地絡判定値以上となったときに、前記負側配線と車両の接地電位部との間で地絡が生じていると判断することを特徴とする。   Further, the ground wiring connects a connection portion between the second resistor and the third resistor to a ground potential portion of a vehicle, and the insulation level detection means uses the ground potential portion of the vehicle as a reference. When the voltage reference value is equal to or greater than a predetermined negative-side ground fault determination value, it is determined that a ground fault has occurred between the negative-side wiring and the ground potential portion of the vehicle.

かかる本発明によれば、前記負側配線と車両の接地電位部間で地絡が生じると、前記第2の抵抗の端子間電圧がほぼゼロとなり、それまで第2の抵抗で生じていた電圧降下分がなくなるので、前記第3の抵抗の端子間電圧が上昇して前記電圧参照値が増加する。そのため、前記絶縁レベル検出手段は、前記電圧参照値が前記負側地絡判定値以上となったときに、前記負側配線と車両の接地電位部との間で地絡が生じていると判断することができる。   According to the present invention, when a ground fault occurs between the negative wiring and the ground potential portion of the vehicle, the voltage between the terminals of the second resistor becomes substantially zero, and the voltage generated by the second resistor until then. Since there is no drop, the voltage between the terminals of the third resistor rises and the voltage reference value increases. Therefore, the insulation level detection means determines that a ground fault has occurred between the negative side wiring and the ground potential portion of the vehicle when the voltage reference value is equal to or greater than the negative side ground fault determination value. can do.

また、前記接地配線は、前記第2の抵抗と前記第3の抵抗との接続部を、車両の接地電位部に接続し、
前記絶縁レベル検出手段は、車両の接地電位部を基準とした前記電圧参照値が、所定の正側地絡判定値以下となったときに、前記正側配線と車両の接地電位部との間で地絡が生じていると判断することを特徴とする。
The ground wiring connects a connection portion between the second resistor and the third resistor to a ground potential portion of a vehicle.
When the voltage reference value with respect to the ground potential portion of the vehicle is equal to or less than a predetermined positive ground fault determination value, the insulation level detection means is configured to connect between the positive side wiring and the vehicle ground potential portion. It is characterized by determining that a ground fault has occurred.

かかる本発明によれば、前記正側配線と車両の接地電位部間で地絡が生じると、前記第1の抵抗及び前記第3の抵抗からなる直列回路の端子間電圧がほぼゼロとなる。その結果、前記第3の抵抗の端子間電圧もほぼゼロになって前記電圧参照値が減少する。そのため、絶縁レベル検出手段は、前記電圧参照値が前記正側地絡判定値以下となったときに、前記正側配線と車両の接地電位部との間で地絡が生じていると判断することができる。   According to the present invention, when a ground fault occurs between the positive wiring and the ground potential portion of the vehicle, the terminal voltage of the series circuit including the first resistor and the third resistor becomes substantially zero. As a result, the voltage between the terminals of the third resistor also becomes almost zero, and the voltage reference value decreases. Therefore, the insulation level detection means determines that a ground fault has occurred between the positive side wiring and the ground potential portion of the vehicle when the voltage reference value is equal to or less than the positive side ground fault determination value. be able to.

また、第4の抵抗とスイッチング素子とを直列に接続して構成され、前記第1の抵抗又は前記第2の抵抗と並列に接続された抵抗切換回路を備え、前記絶縁レベル検出手段は、前記スイッチング素子を導通状態としたときの前記電圧参照値に基いて、前記非接地回路と車両の接地電位部間の地絡の有無を判断すると共に、前記スイッチング素子を遮断状態としたときの前記電圧参照値に基いて、前記非接地回路と車両の接地電位部間の地絡の有無を判断することを特徴とする。   Further, a fourth resistor and a switching element are connected in series, and a resistance switching circuit connected in parallel with the first resistor or the second resistor is provided. Based on the voltage reference value when the switching element is in a conductive state, it is determined whether or not there is a ground fault between the non-ground circuit and the ground potential portion of the vehicle, and the voltage when the switching element is in a cutoff state Based on the reference value, it is determined whether or not there is a ground fault between the non-ground circuit and the ground potential portion of the vehicle.

かかる本発明において、詳細は後述するが、前記正側配線と車両の接地電位部間の地絡と、負側配線と車両の接地電位部間の地絡が同時に生じている場合に、前記正側配線の地絡と前記負側配線の地絡における絶縁レベルによっては、このように地絡が生じているときと地絡が生じていないときとで、前記電圧参照値の差異が生じない場合がある。そして、この場合には、前記正側配線及び前記負側配線と接地電位部間の短絡を検知することができない。そこで、前記絶縁レベル検出手段は、前記抵抗切換回路により前記スイッチング素子を導通状態と遮断状態に切換えて、前記正側配線又は前記負側配線と車両の接地電位部間の抵抗を変化させたときの前記電圧参照値に基いて、前記非接地回路と前記車両の接地電位部間の地絡の有無を判断する。これにより、前記正側配線と車両の接地電位部間及び前記負側配線と車両の接地電位部間の地絡が同時に生じている場合であっても、前記非接地回路と車両の接地電位部間の地絡の有無を判断することができる。   In the present invention, as will be described in detail later, when the ground fault between the positive side wiring and the ground potential portion of the vehicle and the ground fault between the negative side wiring and the ground potential portion of the vehicle occur at the same time, Depending on the insulation level in the ground fault of the side wiring and the ground fault of the negative side wiring, there is no difference in the voltage reference value between when the ground fault occurs and when no ground fault occurs. There is. In this case, a short circuit between the positive side wiring and the negative side wiring and the ground potential portion cannot be detected. Therefore, when the insulation level detecting means changes the resistance between the positive side wiring or the negative side wiring and the ground potential portion of the vehicle by switching the switching element between the conductive state and the cutoff state by the resistance switching circuit. Based on the voltage reference value, it is determined whether or not there is a ground fault between the non-ground circuit and the ground potential portion of the vehicle. As a result, even if a ground fault occurs between the positive side wiring and the ground potential portion of the vehicle and between the negative side wiring and the ground potential portion of the vehicle at the same time, the non-ground circuit and the ground potential portion of the vehicle. The presence or absence of a ground fault can be determined.

また、前記非接地回路は、モータと、該モータと前記直流電源間に接続されて該モータに多相の駆動電圧を供給するインバータとを有し、前記第1の抵抗の抵抗値と前記第2の抵抗の抵抗値が異なる値に設定され、前記第3の抵抗と並列に接続された平滑用コンデンサを備えて、前記絶縁レベル検出手段は、前記電圧参照値に基いて、前記インバータと前記モータ間の配線と車両の接地電位部との間の地絡の有無を判断することを特徴とする。   The non-grounding circuit includes a motor and an inverter connected between the motor and the DC power source and supplying a multiphase driving voltage to the motor, and the resistance value of the first resistor and the first resistance The resistance value of the two resistors is set to a different value, and includes a smoothing capacitor connected in parallel with the third resistor, the insulation level detecting means based on the voltage reference value, It is characterized by determining the presence or absence of a ground fault between the wiring between the motors and the ground potential part of the vehicle.

かかる本発明によれば、前記インバータと前記モータ間の配線と車両の接地電位部との間で地絡が生じると、前記インバータによるスイッチングのタイミングに応じて、該接地電位部を経由して前記多相の駆動電圧が前記正側配線又は前記負側配線に重畳する状態となる。そして、このように重畳した駆動電圧は、前記平滑用コンデンサにより平滑化されるが、前記第1の抵抗の抵抗値と前記第2の抵抗の抵抗値が異なる値に設定されているため、該駆動電圧を平滑化した電圧はゼロにはならず、前記平滑用コンデンサの端子間電圧は、前記直流電源の出力電圧を前記第1の抵抗と前記第2の抵抗と前記第3の抵抗により分圧した電圧に、該平滑化された電圧が重畳したものとなる。   According to the present invention, when a ground fault occurs between the wiring between the inverter and the motor and the ground potential portion of the vehicle, the ground potential portion passes through the ground potential portion according to the switching timing by the inverter. A multiphase drive voltage is superimposed on the positive side wiring or the negative side wiring. The driving voltage superimposed in this way is smoothed by the smoothing capacitor, but the resistance value of the first resistor and the resistance value of the second resistor are set to different values. The voltage obtained by smoothing the drive voltage does not become zero, and the voltage across the terminals of the smoothing capacitor is obtained by dividing the output voltage of the DC power supply by the first resistor, the second resistor, and the third resistor. The smoothed voltage is superimposed on the pressed voltage.

そのため、前記インバータと前記モータ間の配線と車両の接地電位部間の短絡が生じると、それに応じて前記第3の抵抗の端子間電圧が変化し、前記電圧参照値も変化する。そのため、前記絶縁レベル検出手段は、前記電圧参照値に基いて前記インバータと前記モータ間の配線と車両の接地電位部との間の地絡の有無を検出することができる。   Therefore, when a short circuit occurs between the wiring between the inverter and the motor and the ground potential portion of the vehicle, the voltage between the terminals of the third resistor changes accordingly, and the voltage reference value also changes. Therefore, the insulation level detection means can detect the presence or absence of a ground fault between the wiring between the inverter and the motor and the ground potential portion of the vehicle based on the voltage reference value.

また、前記電圧参照値は、前記第3の抵抗の端子間電圧を前記直流電源の出力電圧で除した値であることを特徴とする。   The voltage reference value is a value obtained by dividing the voltage across the third resistor by the output voltage of the DC power supply.

かかる本発明によれば、詳細は後述するが、前記電圧参照値を前記第3の抵抗の端子間電圧を前記直流電圧の出力電圧で除した値とすることにより、前記直流電圧の変動による影響を排除して、前記非接地回路と車両の接地電位部間の絶縁レベルを検出することができる。   According to the present invention, as will be described in detail later, the voltage reference value is a value obtained by dividing the voltage between the terminals of the third resistor by the output voltage of the DC voltage, thereby affecting the influence of fluctuations in the DC voltage. And the insulation level between the non-ground circuit and the ground potential portion of the vehicle can be detected.

また、前記絶縁レベル検出手段は、前記第3の抵抗の端子間電圧を入力する入力回路を有して、該入力回路への入力電圧に基いて前記電圧参照値を取得し、前記第1の抵抗と前記第2の抵抗と前記第3の抵抗の抵抗値が、前記非接地回路と車両の接地電位部間の地絡が生じたときに、前記第3の抵抗の端子間電圧が、前記入力回路の許容入力電圧範囲の上限以下となるように設定されていることを特徴とする。   Further, the insulation level detecting means has an input circuit for inputting a voltage across the third resistor, acquires the voltage reference value based on the input voltage to the input circuit, and The resistance value of the resistor, the second resistor, and the third resistor is such that when a ground fault occurs between the non-ground circuit and the ground potential portion of the vehicle, the voltage across the third resistor is It is set so that it may become below the upper limit of the allowable input voltage range of an input circuit.

かかる本発明によれば、前記非接地回路と車両の接地電位部間の地絡が生じたときに、前記入力回路に許容入力電圧範囲の上限を超える電圧が入力されて、前記入力回路が破損することを防止することができる。   According to the present invention, when a ground fault occurs between the non-ground circuit and the ground potential portion of the vehicle, a voltage exceeding the upper limit of the allowable input voltage range is input to the input circuit, and the input circuit is damaged. Can be prevented.

本発明の実施形態について、図1〜図8を参照して説明する。   An embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の非接地回路の絶縁性検出装置の構成図である。本実施の形態の非接地回路の絶縁性検出装置は、燃料電池スタック等の高電圧Vm(例えば数百V)を出力する直流電源12と、直流電源12とモータ40間に接続されて直流電源12から出力される電圧Vmを正側のトランジスタQ11,Q21,Q31及び負側のトランジスタQ12,Q22,Q32をスイッチングすることにより、モータ40に3相(U相,V相,W相)の駆動電圧を出力するインバータ11とを有して、接地電位部BEから絶縁して配置された非接地回路10と、車両の接地電位部BE間の絶縁性を検出するものであり、ECU(Electronic Control Unit)20の一部として構成されている。 FIG. 1 is a configuration diagram of an insulation detecting device for a non-grounded circuit according to the present invention. The insulation detection device for a non-grounded circuit according to the present embodiment includes a DC power source 12 that outputs a high voltage V m (for example, several hundreds V) such as a fuel cell stack, and a DC power source connected between the DC power source 12 and the motor 40. By switching the voltage V m output from the power supply 12 to the positive side transistors Q 11 , Q 21 , Q 31 and the negative side transistors Q 12 , Q 22 , Q 32 , the motor 40 has three phases (U phase, And an inverter 11 that outputs a drive voltage of V phase and W phase), and detects insulation between the non-ground circuit 10 arranged insulated from the ground potential portion BE and the ground potential portion BE of the vehicle. And is configured as a part of an ECU (Electronic Control Unit) 20.

そして、絶縁性検出装置は、差動増幅器26と、直流電源12の正極と接続された正側配線(図中POGと接続された配線)と差動増幅器26との間に接続された第1の抵抗21と、直流電源12の負極と接続された負側配線(図中NEGと接続された配線)と差動増幅器26との間に接続された第2の抵抗22と、差動増幅器26の入力端子間に接続された第3の抵抗23と、第2の抵抗22と第3の抵抗23の接続部を車両の接地電位部BEと接続する接地配線と、第3の抵抗23と並列に接続された平滑用コンデンサ25と、差動増幅器26の出力端子と接続されたマイクロコンピュータ30とにより構成されている。   The insulation detection device includes a differential amplifier 26, a first wiring connected between the positive amplifier connected to the positive electrode of the DC power supply 12 (wiring connected to POG in the drawing) and the differential amplifier 26. , The second resistor 22 connected between the negative wiring (connected to NEG in the figure) connected to the negative electrode of the DC power source 12 and the differential amplifier 26, and the differential amplifier 26 A third resistor 23 connected between the input terminals of the two, a ground wiring connecting the connection portion of the second resistor 22 and the third resistor 23 to the ground potential portion BE of the vehicle, and a third resistor 23 in parallel. And a microcomputer 30 connected to the output terminal of the differential amplifier 26.

なお、差動増幅器26の入力部は、本発明の第3の抵抗23の端子間電圧を入力する入力回路に相当する。   The input section of the differential amplifier 26 corresponds to an input circuit that inputs the voltage across the terminals of the third resistor 23 of the present invention.

マイクロコンピュータ30は、所定の制御用プログラムを実行することにより、非接地回路10と接地電位部BE間の絶縁レベルを検出する絶縁レベル検出手段31として機能する。なお、マイクロコンピュータ30と差動増幅器26は、直流電源12とは別に設けられた出力電圧がVmよりも低いVdである直流電源(図示しない)からの出力電力によって作動する。 The microcomputer 30 functions as an insulation level detection means 31 that detects an insulation level between the non-ground circuit 10 and the ground potential portion BE by executing a predetermined control program. Incidentally, the microcomputer 30 and the differential amplifier 26, the output voltage is provided separately from the DC power source 12 is activated by the output power from the DC power supply is lower V d than V m (not shown).

ここで、第1の抵抗21の抵抗値R1と、第2の抵抗22の抵抗値R2は、非接地回路10の接地電位部BEに対する絶縁抵抗の基準値(例えば、500Ω/V以上)以上の絶縁レベルを確保するために、MΩレベルに設定されている。ここで、非接地回路10と接地電位部BE間の地絡が生じていないときは、差動増幅器26への入力電圧(=第3の抵抗23の端子間電圧)Vinは、以下の式(1)により近似される。 Here, the resistance value R1 of the first resistor 21 and the resistance value R2 of the second resistor 22 are not less than a reference value (for example, 500 Ω / V or more) of the insulation resistance with respect to the ground potential portion BE of the non-ground circuit 10. In order to ensure the insulation level, the MΩ level is set. Here, when a ground fault between the ungrounded circuit 10 ground unit BE is not generated, V in (inter-terminal voltage of = the third resistor 23) the input voltage to the differential amplifier 26 has the following formula It is approximated by (1).

Figure 2009150779
Figure 2009150779

但し、Vin:差動増幅器26への入力電圧、R1:第1の抵抗21の抵抗値、R2:第2の抵抗22の抵抗値、R3:第3の抵抗23の抵抗値、Vm:直流電源12の出力電圧。 Where V in is the input voltage to the differential amplifier 26, R 1 is the resistance value of the first resistor 21, R 2 is the resistance value of the second resistor 22, R 3 is the resistance value of the third resistor 23, and V m is : The output voltage of the DC power supply 12.

そして、差動増幅器26への入力電圧Vinは、後述する負側配線の地絡を生じたときに最大となり、このときのVinは、以下の式(2)により近似される。 Then, the input voltage V in to the differential amplifier 26 becomes maximum when the resulted ground fault of the negative-side wiring to be described later, V in this case is approximated by the following equation (2).

Figure 2009150779
Figure 2009150779

そのため、上記式(2)によるVinが、差動増幅器26の許容入力電圧範囲の上限であるVdを超えないように、第1の抵抗21の抵抗値R1と第3の抵抗23の抵抗値R3が設定されている。そして、絶縁レベル検出手段31は、差動増幅器26から出力されるVinの増幅出力Vrefを入力して、Vinのレベルを認識する。 Therefore, the resistance value R1 of the first resistor 21 and the resistance of the third resistor 23 are set so that V in according to the above equation (2) does not exceed V d that is the upper limit of the allowable input voltage range of the differential amplifier 26. The value R3 is set. Then, insulating level detection means 31 inputs the amplified output V ref of V in output from the differential amplifier 26, recognizes the level of V in.

次に、図2を参照して、非接地回路10の負側配線と接地電位部BE間の地絡(以下、負側地絡という)の検出について説明する。図2(a)を参照して、非接地回路10の負側配線と接地電位部BE間が抵抗50により地絡(抵抗50の抵抗値Rt≪第2の抵抗22の抵抗値R2)した場合、差動増幅器26への入力電圧Vinは、以下の式(3)により近似される。 Next, detection of a ground fault between the negative side wiring of the non-ground circuit 10 and the ground potential part BE (hereinafter referred to as a negative side ground fault) will be described with reference to FIG. Referring to FIG. 2A, when a ground fault occurs between the negative wiring of the non-ground circuit 10 and the ground potential portion BE due to the resistor 50 (the resistance value Rt of the resistor 50 << the resistance value R2 of the second resistor 22). The input voltage V in to the differential amplifier 26 is approximated by the following equation (3).

Figure 2009150779
Figure 2009150779

但し、Rt:非接地回路10の負側配線と接地電位部BE間の抵抗値。   Rt: resistance value between the negative wiring of the non-ground circuit 10 and the ground potential portion BE.

上記式(3)から、非接地回路10の負側配線と接地電位部BE間の抵抗50の抵抗値Rtが小さくなるに従って、差動増幅器26への入力電圧Vinが高くなることがわかる。そして、Rt≒0ΩのときはVinは上記式(2)で示した電圧となる。 From the equation (3), in accordance with the resistance value Rt of the resistor 50 between the negative-side wiring and the ground potential portion BE ungrounded circuit 10 is reduced, it can be seen that the input voltage V in to the differential amplifier 26 becomes high. Then, V in the case of Rt ≒ 0 .OMEGA becomes a voltage shown by the formula (2).

図2(b)は、非接地回路10の負側配線と接地電位部BE間の抵抗50の抵抗値Rtと、差動増幅器26への入力電圧Vinとの関係を、抵抗値Rtを横軸とし、入力電圧Vinを縦軸として示した近似グラフである。絶縁レベル検出手段31は、図2(b)に示したように、差動増幅器26への入力電圧Vinが、非接地回路10と接地電位部BE間の絶縁抵抗の基準値Rth_1に対応した電圧Vth_1(本発明の負側地絡判定電圧に相当する)以上になったときに、非接地回路10の負側配線と接地電位部BE間の地絡が生じていると判断する。 2 (b) is the resistance value Rt of the resistor 50 between the negative-side wiring and the ground potential portion BE of ungrounded circuit 10, the relationship between the input voltage V in to the differential amplifier 26, a resistance value Rt horizontal It is an approximate graph which made the input voltage Vin in the axis | shaft and showed the input voltage Vin. Insulation level detecting means 31, as shown in FIG. 2 (b), the input voltage V in to the differential amplifier 26, corresponding to the reference value Rth_1 the insulation resistance between the ungrounded circuit 10 ground potential portion BE When the voltage becomes equal to or higher than the voltage Vth_1 (corresponding to the negative side ground fault determination voltage of the present invention), it is determined that a ground fault occurs between the negative side wiring of the non-ground circuit 10 and the ground potential portion BE.

次に、図3を参照して、非接地回路10の正側配線と接地電位部BE間の地絡(以下、正側地絡という)の検出について説明する。図3(a)を参照して、非接地回路10の正側配線と接地電位部BE間が抵抗51により地絡(抵抗51の抵抗値Rt≪第1の抵抗21の抵抗値R1)した場合、差動増幅器26への入力電圧Vinは、以下の式(4)により表される。 Next, detection of a ground fault between the positive wiring of the non-ground circuit 10 and the ground potential part BE (hereinafter referred to as a positive ground fault) will be described with reference to FIG. Referring to FIG. 3A, when a ground fault occurs between the positive wiring of the non-ground circuit 10 and the ground potential portion BE due to the resistor 51 (the resistance value Rt of the resistor 51 << the resistance value R1 of the first resistor 21). The input voltage V in to the differential amplifier 26 is expressed by the following equation (4).

Figure 2009150779
Figure 2009150779

上記式(4)から、非接地回路10の正側配線と接地電位部BE間の抵抗51の抵抗値Rtが小さくなるに従って、差動増幅器26への入力電圧Vinが低くなることがわかる。そして、抵抗値Rt≒0Ωのときに、Vinは0Vとなる。 From the equation (4), in accordance with the resistance value Rt of the resistor 51 between the positive-side wiring and the ground potential portion BE ungrounded circuit 10 is reduced, it can be seen that the input voltage V in to the differential amplifier 26 is lowered. Then, when the resistance value Rt ≒ 0Ω, V in becomes 0V.

図3(b)は、非接地回路10の正側配線と接地電位部BE間の抵抗51の抵抗値Rtと、差動増幅器26への入力電圧Vinとの関係を、抵抗値Rtを横軸とし、入力電圧Vinを縦軸として示した近似グラフである。絶縁レベル検出手段31は、図3(b)に示したように、差動増幅器26への入力電圧Vinが、非接地回路10と接地電位部BE間の絶縁抵抗の基準値Rth_2に対応した電圧Vth_2(本発明の正側地絡判定電圧に相当する)以下になったときに、非接地回路10の正側配線と接地電位部BE間の地絡が生じていると判断する。 FIG. 3 (b), the resistance value Rt of the positive-side wiring and the ground potential portion BE resistance between 51 ungrounded circuit 10, the relationship between the input voltage V in to the differential amplifier 26, a resistance value Rt horizontal It is an approximate graph which made the input voltage Vin in the axis | shaft and showed the input voltage Vin. Insulation level detecting means 31, as shown in FIG. 3 (b), the input voltage V in to the differential amplifier 26, corresponding to the reference value Rth_2 the insulation resistance between the ungrounded circuit 10 ground potential portion BE When the voltage becomes equal to or lower than the voltage Vth_2 (corresponding to the positive side ground fault determination voltage of the present invention), it is determined that a ground fault occurs between the positive side wiring of the non-ground circuit 10 and the ground potential portion BE.

次に、図4を参照して、非接地回路10の直流電源12の中点(直流電源12の出力電圧VmをVm/2に分ける点)と接地電位部BE間の地絡(以下、中点地絡という)の検出について説明する。図4(a)を参照して、直流電源12の中点と接地電位部BE間が抵抗52により地絡(抵抗52の抵抗値Rt≪第1の抵抗21の抵抗値R1,第2の抵抗22の抵抗値R2)した場合、差動増幅器26への入力電圧Vinは、以下の式(5)により表される。 Next, referring to FIG. 4, a ground fault between the DC midpoint of the power supply 12 (the point of dividing the output voltage V m of the DC power supply 12 to the V m / 2) and the ground potential portion BE ungrounded circuit 10 (hereinafter The detection of the midpoint ground fault) will be described. Referring to FIG. 4A, a ground fault occurs between the middle point of the DC power supply 12 and the ground potential portion BE due to the resistor 52 (the resistance value Rt of the resistor 52 << the resistance value R1 of the first resistor 21, the second resistance 22), the input voltage V in to the differential amplifier 26 is expressed by the following equation (5).

Figure 2009150779
Figure 2009150779

上記式(5)により、直流電源12の中点と接地電位部BE間の抵抗52の抵抗値Rtが小さくなるに従って、差動増幅器26への入力電圧Vinが高くなることがわかる。そして、抵抗値Rt≒0Ωのときには、Vinは以下の式(6)により表される。 The above equation (5), in accordance with the resistance value Rt of the resistor 52 between the ground potential portion BE and the midpoint of the DC power supply 12 is small, it can be seen that the input voltage V in to the differential amplifier 26 becomes high. Then, when the resistance value Rt ≒ 0Ω, V in is represented by the following equation (6).

Figure 2009150779
Figure 2009150779

図4(b)は、直流電源12の中点と接地電位部BE間の抵抗52の抵抗値Rtと、差動増幅器26への入力電圧Vinとの関係を、抵抗値Rtを横軸とし、入力電圧Vinを縦軸として示した近似グラフである。絶縁レベル検出手段31は、図4(b)に示したように、差動増幅器26への入力電圧Vinが、直流電源12の中点と接地電位部BE間の絶縁抵抗の基準値Rth_3以上となったときに、直流電源12の中点と接地電位部BE間の地絡が生じていると判断する。 FIG. 4 (b), the resistance value Rt of the resistor 52 between the midpoint of the DC power source 12 ground unit BE, the relationship between the input voltage V in to the differential amplifier 26, the resistance value Rt and the horizontal axis a proximity graph showing the input voltage V in the vertical axis. Insulation level detecting means 31, as shown in FIG. 4 (b), the differential input voltage V in to the amplifier 26, the DC power source 12 midpoint between the reference value of insulation resistance between the ground potential portion BE Rth_3 more Then, it is determined that a ground fault has occurred between the midpoint of the DC power supply 12 and the ground potential portion BE.

次に、図5及び図6を参照して、非接地回路10のインバータ11とモータ40間の配線と接地電位部BEと間の地絡(以下、3相地絡という)の検出について説明する。図5は、インバータ11とモータ40のW相間の配線が抵抗53を介して接地電位部BEに地絡した状態を示している。   Next, with reference to FIGS. 5 and 6, detection of a ground fault (hereinafter referred to as a three-phase ground fault) between the wiring of the non-ground circuit 10 between the inverter 11 and the motor 40 and the ground potential portion BE will be described. . FIG. 5 shows a state where the wiring between the inverter 11 and the W phase of the motor 40 is grounded to the ground potential portion BE via the resistor 53.

図5において、W相については、インバータ11のトランジスタQ31がON(導通状態)であってトランジスタQ32がOFF(遮断状態)であるときに、非接地回路10の正側配線がトランジスタQ31を介して接地電位部BEに地絡する。また、インバータ11のトランジスタQ32がONであってトランジスタQ31がOFFであるときに、非接地回路10の負側配線がトランジスタQ32を介して接地電位部BEに地絡する。U相、V相についも同様である。 5, for the W phase, when the transistor Q 32 transistors Q 31 of inverter 11 is a ON (conductive state) is OFF (disconnected state), the positive-side wiring transistor Q 31 ungrounded circuit 10 Through the ground potential portion BE. The transistor Q 31 transistors Q 32 of inverter 11 is a turned ON when it is OFF, the negative side wiring ungrounded circuit 10 is a ground fault to the ground potential portion BE through the transistor Q 32. The same applies to the U phase and the V phase.

図6(a)は、R1=R2(≫R3)、抵抗53の抵抗値Rt≒0Ωであって、平滑用コンデンサ25の容量C1が0pFであるときと大(モータ40に対する駆動電圧を平滑化するために、該駆動電圧の周波数に応じて設定される)であるときの差動増幅器26への入力電圧Vinの変化を示したものである。 FIG. 6A shows a case where R1 = R2 (>> R3), the resistance value Rt of the resistor 53 Rt≈0Ω, and the capacitance C1 of the smoothing capacitor 25 is 0 pF, which is large (the drive voltage for the motor 40 is smoothed). Therefore, the change in the input voltage Vin to the differential amplifier 26 is set according to the frequency of the drive voltage.

この場合、平滑用コンデンサ25の容量C1が0pFであるときは、トランジスタQ31がONでトランジスタQ32がOFFであるときに、非接地回路10の正側配線がトランジスタQ31を介して接地電位部BEに地絡し、差動増幅器26への入力電圧Vinが0Vとなる。また、トランジスタQ32がONでトランジスタQ31がOFFであるときに、非接地回路10の負側配線がトランジスタQ32を介して接地電位部BEに地絡し、差動増幅器26への入力電圧Vinが、地絡が生じていないときの電圧Vtypの2倍(Vtpy×2)となる。 In this case, when the capacitance C1 of the smoothing capacitor 25 is 0pF, when the transistor Q 31 is a transistor Q 32 is OFF in ON, the ground potential positive side wiring through the transistor Q 31 of ungrounded circuit 10 A ground fault occurs in the portion BE, and the input voltage Vin in the differential amplifier 26 becomes 0V. When the transistor Q 32 is ON and the transistor Q 31 is OFF, the negative side wiring of the non-ground circuit 10 is grounded to the ground potential part BE via the transistor Q 32 , and the input voltage to the differential amplifier 26 V in is twice the voltage V typ when no ground fault occurs (V tpy × 2).

そして、平滑用コンデンサ25の容量C1を増大させると、差動増幅器26への入力電圧Vinが電圧Vtyp付近に平滑化されて、インバータ11とモータ40間の配線と接地電位部BEとの間で地絡が生じていない場合と同じ状況となる。そのため、絶縁レベル検出手段31は、インバータ11とモータ40間の配線と接地電位部BEとの間で地絡が生じていることを検知することができない。 When the capacitance C1 of the smoothing capacitor 25 is increased, the input voltage V in to the differential amplifier 26 is smoothed near the voltage V typ , and the wiring between the inverter 11 and the motor 40 and the ground potential portion BE are reduced. The situation is the same as when no ground fault has occurred. Therefore, the insulation level detection means 31 cannot detect that a ground fault has occurred between the wiring between the inverter 11 and the motor 40 and the ground potential portion BE.

そこで、第1の抵抗21の抵抗値R1と第2の抵抗22の抵抗値R2を異なる値に設定することにより、インバータ11とモータ40間の配線と接地電位部BEとの間で地絡が生じていることを、該地絡が生じていないときと区別して検出することができる。   Therefore, by setting the resistance value R1 of the first resistor 21 and the resistance value R2 of the second resistor 22 to different values, a ground fault occurs between the wiring between the inverter 11 and the motor 40 and the ground potential portion BE. The occurrence can be detected separately from the case where the ground fault does not occur.

図6(b)は、第2の抵抗22の抵抗値R2を第1の抵抗21の抵抗値R1の3倍の値にしたとき(R2=3×R1)に、抵抗53の抵抗値Rt≒0Ωとなったときの差動増幅器26への入力出力電圧Vinの変化を、図6(a)と同様に、平滑用コンデンサ25の容量C1が0pFであるときと大(モータ40に対する駆動電圧を平滑化するために、該駆動電圧の周波数に応じて設定される)であるときについて示したものである。 FIG. 6B shows the resistance value Rt of the resistor 53 when the resistance value R2 of the second resistor 22 is three times the resistance value R1 of the first resistor 21 (R2 = 3 × R1). the change in the input output voltage V in to the differential amplifier 26 when a 0 .OMEGA, similarly to FIG. 6 (a), the time the capacity C1 of the smoothing capacitor 25 is 0pF and large (drive voltage to the motor 40 Is set according to the frequency of the drive voltage in order to smooth the signal.

図6(b)において、平滑用コンデンサ25の容量が0pFであるときは、トランジスタQ31がONでトランジスタQ32がOFFであるときに、非接地回路10の正側配線がトランジスタQ31を介して接地電位部BEに地絡し、差動増幅器26への入力電圧Vinが0Vとなる。また、トランジスタQ32がONでトランジスタQ31がOFFであるときに、非接地回路10の負側配線がトランジスタQ32を介して接地電位部BEに地絡し、差動増幅器26への入力電圧Vinが、地絡が生じていない通常時の電圧(Vtyp=R3/(R3+4R1)≒R3/4R1)の4倍(4×Vtyp)となる。 In FIG. 6B, when the capacitance of the smoothing capacitor 25 is 0 pF, when the transistor Q 31 is ON and the transistor Q 32 is OFF, the positive-side wiring of the non-ground circuit 10 passes through the transistor Q 31 . grounded to a ground potential portion bE Te, the input voltage V in to the differential amplifier 26 is 0V. When the transistor Q 32 is ON and the transistor Q 31 is OFF, the negative side wiring of the non-ground circuit 10 is grounded to the ground potential part BE via the transistor Q 32 , and the input voltage to the differential amplifier 26 V in is, it is four times the normal voltage at the time of a ground fault has not occurred (V typ = R3 / (R3 + 4R1) ≒ R3 / 4R1) (4 × V typ).

そして、平滑用コンデンサ25の容量C1を増大させると、差動増幅器26への入力電圧Vinが定常時の電圧Vtypの2倍(2×Vtyp)となる。そのため、絶縁レベル検出手段31は、差動増幅器26への入力電圧Vinが、定常時の電圧Vtypの2倍程度まで上昇したときに、3相地絡が生じたと判断することができる。 When the capacitance C1 of the smoothing capacitor 25 is increased, the input voltage V in to the differential amplifier 26 becomes twice (2 × V typ ) the steady-state voltage V typ . Therefore, the insulation level detecting means 31 can determine that a three-phase ground fault has occurred when the input voltage V in to the differential amplifier 26 has increased to about twice the steady-state voltage V typ .

次に、図7(a)に示したように、非接地回路10の正側配線と接地電位部BE間が抵抗54を介して地絡すると共に、非接地回路10の負側配線と接地電位部BE間が抵抗55を介して地絡した状態(以下、両極地絡という)となったときに、ECU20の故障が生じないことについて説明する。   Next, as shown in FIG. 7A, a ground fault occurs between the positive wiring of the non-ground circuit 10 and the ground potential portion BE through the resistor 54, and the negative wiring of the non-ground circuit 10 and the ground potential. It will be described that the ECU 20 does not fail when a ground fault occurs between the parts BE via the resistor 55 (hereinafter referred to as a bipolar ground fault).

図7(b)を参照して、非接地回路10の正側配線と接地電位部BE間が地絡すると、ECU20への入力1、入力2が同電位となるため、負側配線と接地電位部BE間の地絡の有無に拘わらず、差動増幅器26への入力電圧Vinは0Vとなる。 Referring to FIG. 7B, when a ground fault occurs between the positive side wiring of the non-ground circuit 10 and the ground potential portion BE, the input 1 and the input 2 to the ECU 20 have the same potential. or without a ground fault between parts bE, the input voltage V in to the differential amplifier 26 becomes 0V.

そして、負側配線と接地電位部BE間の地絡が生じると、直流電源12の正極(POG側)から抵抗54及び抵抗55を介して負極(NEG側)に電流I10が流れる。このように、両極地絡が生じても、電流I10はECU20の外の経路を流れるため、ECU20に過電流が流れることはないため、ECU20の故障は生じない。 When a ground fault occurs between the negative wiring and the ground potential portion BE, the current I 10 flows from the positive electrode (POG side) of the DC power supply 12 to the negative electrode (NEG side) through the resistor 54 and the resistor 55. Thus, even if a bipolar ground fault occurs, the current I 10 flows through a path outside the ECU 20, and therefore no overcurrent flows through the ECU 20, so that the ECU 20 does not fail.

次に、図8を参照して、両極地絡が生じたときに、地絡の検知が不能となることを回避するための構成について説明する。非接地回路10の正側配線と接地電位部BE間の抵抗54の抵抗値がRt1であり、非接地回路10の負側配線と接地電位部BE間の地絡抵抗55の抵抗値がRt2であるときは、差動増幅器26への入力電圧Vinは以下の式(7)により表される。 Next, with reference to FIG. 8, a description will be given of a configuration for avoiding the detection of the ground fault when a bipolar ground fault occurs. The resistance value of the resistor 54 between the positive side wiring of the non-ground circuit 10 and the ground potential portion BE is Rt1, and the resistance value of the ground fault resistor 55 between the negative side wiring of the non-ground circuit 10 and the ground potential portion BE is Rt2. In some cases, the input voltage V in to the differential amplifier 26 is expressed by the following equation (7).

Figure 2009150779
Figure 2009150779

但し、(R1+R3)//Rt1:(R1+R3)とRt1の並列接続時の抵抗値、R2//Rt2:R2とRt2の並列接続時の抵抗値。   However, (R1 + R3) // Rt1: Resistance value when (R1 + R3) and Rt1 are connected in parallel, R2 // Rt2: Resistance value when R2 and Rt2 are connected in parallel.

上記式(7)で、例えばRt1=R1+R3、Rt2=R2とすると、以下の式(8)となり、定常時と同じ電圧となるため、絶縁レベル検出手段31は、両極地絡が生じたことを検出することができない。   If, for example, Rt1 = R1 + R3 and Rt2 = R2 in the above equation (7), the following equation (8) is obtained, and the voltage is the same as in the normal state. Therefore, the insulation level detecting means 31 indicates that a bipolar ground fault has occurred. It cannot be detected.

Figure 2009150779
Figure 2009150779

このように、Rt1=A×(R1+R3)、Rt2=A×R2(Aは変数)であるとき、すなわち、以下の式(9)の関係が成り立つときに、地絡を検知することができない。   Thus, when Rt1 = A.times. (R1 + R3) and Rt2 = A.times.R2 (A is a variable), that is, when the relationship of the following equation (9) is established, a ground fault cannot be detected.

Figure 2009150779
Figure 2009150779

そこで、図8に示したように、第1の抵抗21と並列に、第4の抵抗とスイッチング素子27とを直列に接続した切替回路を接続することで、両極地絡を検知することが可能となる。スイッチング素子27をON(導通状態)としたときの差動増幅器26への入力電圧Vinは、以下の式(10)により表される。 Therefore, as shown in FIG. 8, it is possible to detect a bipolar ground fault by connecting a switching circuit in which a fourth resistor and a switching element 27 are connected in series in parallel with the first resistor 21. It becomes. An input voltage V in to the differential amplifier 26 when the switching element 27 is turned on (conductive state) is expressed by the following equation (10).

Figure 2009150779
Figure 2009150779

但し、R1//R4:R1とR4の並列接続時の抵抗値、(R1//R4+R3)//Rt1:(R1//R4+R3)とRt1の並列接続時の抵抗値、R2//Rt2の並列接続時の抵抗値。   However, R1 // R4: resistance value when R1 and R4 are connected in parallel, (R1 // R4 + R3) // Rt1: resistance value when (R1 // R4 + R3) and Rt1 are connected in parallel, R2 // Rt2 in parallel Resistance value when connected.

上記式(9)では、両極地絡の検知が不可能なRt1とRt2との比率が、以下の式(11)に示したようになり、上記式(9)とは相違する比率となる。   In the above formula (9), the ratio of Rt1 and Rt2 in which the detection of the bipolar ground fault is impossible is as shown in the following formula (11), which is a ratio different from the above formula (9).

Figure 2009150779
Figure 2009150779

そのため、絶縁レベル検出手段31は、スイッチング素子27をONしたときの差動増幅器26への入力電圧Vinと、スイッチング素子27をOFFしたときの差動増幅器26への入力電圧Vinとについて、それぞれ地絡を判断することにより、両極地絡が生じたときに、地絡の検知が不能となることを回避することができる。 Therefore, the insulating level detection unit 31, the input voltage V in to the differential amplifier 26 when the ON the switching element 27, the input voltage V in to the differential amplifier 26 when the OFF the switching element 27, By determining the ground fault, it is possible to avoid the detection of the ground fault when a bipolar ground fault occurs.

また、差動増幅器16への入力電圧Vinは、直流電源12の出力電圧Vmのレベルに応じて変化する。そのため、直流電源12の出力電圧Vmの変動の影響により、差動増幅器16への入力電圧Vinに基く地絡の検知精度が低下することが考えられる。 Further, the input voltage V in to the differential amplifier 16 changes according to the level of the output voltage V m of the DC power supply 12. Therefore, due to the influence of fluctuations in the output voltage V m of the DC power source 12, detection accuracy of the ground fault based on the input voltage V in to the differential amplifier 16 may deteriorate.

そこで、以下の式(12)に示したように、差動増幅器26への入力電圧Vinを直流電源12の出力電圧Vmで除して、抵抗値のみで算出される電圧参照値Atを採用し、この電圧参照値Atに基いて地絡を判定することで、出力電圧Vmの変動の影響により地絡の検知精度が悪化して地絡の誤検知等が生じることを防止することができる。 Therefore, as shown in the following equation (12), by dividing the input voltage V in to the differential amplifier 26 by the output voltage V m of the DC power source 12, the voltage reference value At calculated only by the resistance By adopting and determining the ground fault based on this voltage reference value At, it is possible to prevent the ground fault detection accuracy from deteriorating due to the influence of the fluctuation of the output voltage V m and causing the false detection of the ground fault. Can do.

なお、本実施の形態では、負側地絡、正側地絡、中点地絡、3相地絡、及び両極地絡の判断を行なったが、少なくともいずれか1つの地絡を検知することによって、本発明の効果を得ることができる。   In this embodiment, the negative side ground fault, the positive side ground fault, the midpoint ground fault, the three-phase ground fault, and the bipolar ground fault are determined, but at least one of the ground faults is detected. Thus, the effects of the present invention can be obtained.

また、本実施の形態では、図1に示したように、第2の抵抗22と第3の抵抗23との接続部を車両の接地電位部BEに接続したが、第1の抵抗21と第3の抵抗23との接続部を車両の接地電位部BEに接続し、第3の抵抗23の端子間電圧に基いて、非接地回路10と接地電位部BE間の絶縁レベルを検出するようにしてもよい。   Further, in the present embodiment, as shown in FIG. 1, the connecting portion between the second resistor 22 and the third resistor 23 is connected to the ground potential portion BE of the vehicle. 3 is connected to the ground potential BE of the vehicle, and the insulation level between the non-ground circuit 10 and the ground potential BE is detected based on the voltage across the third resistor 23. May be.

本発明の非接地回路の絶縁性検出装置の構成図。The block diagram of the insulation detection apparatus of the non-grounding circuit of this invention. 負側地絡検出の説明図。Explanatory drawing of a negative side ground fault detection. 正側地絡検出の説明図。Explanatory drawing of a positive side ground fault detection. 中点地絡検出の説明図。Explanatory drawing of a midpoint ground fault detection. 3相地絡検出の説明図。Explanatory drawing of a three-phase ground fault detection. 3相地絡検出の説明図。Explanatory drawing of a three-phase ground fault detection. 両極地絡が生じた状態の説明図。Explanatory drawing of the state where a bipolar ground fault occurred. 両極地絡に対応するための構成図。The block diagram for responding to a bipolar ground fault. 従来の絶縁性検出装置の構成図。The block diagram of the conventional insulation detection apparatus.

符号の説明Explanation of symbols

10…非接地回路、11…インバータ、12…直流電源、20…ECU、21…第1の抵抗、22…第2の抵抗、23…第3の抵抗、24…第4の抵抗、25…平滑用コンデンサ、26…差動増幅器、27…スイッチング素子、30…マイクロコンピュータ、31…絶縁レベル検出手段   DESCRIPTION OF SYMBOLS 10 ... Ungrounded circuit, 11 ... Inverter, 12 ... DC power supply, 20 ... ECU, 21 ... 1st resistance, 22 ... 2nd resistance, 23 ... 3rd resistance, 24 ... 4th resistance, 25 ... Smoothing Capacitor, 26 ... Differential amplifier, 27 ... Switching element, 30 ... Microcomputer, 31 ... Insulation level detection means

Claims (7)

直流電源と該直流電源の正極と接続された正側配線及び該直流電源の負極と接続された負側配線とを有して、車両の接地電位部から絶縁して車両に配置された非接地回路と、該接地電位部との間の絶縁レベルを検出する非接地回路の絶縁性検出装置であって、
一端が前記正側配線に接続されて、前記非接地回路と車両の接地電位部間の絶縁性を維持するための絶縁基準値よりも高い抵抗を有する第1の抵抗と、
一端が前記負側配線に接続されて、前記絶縁基準値よりも高い抵抗を有する第2の抵抗と、
前記第1の抵抗の他端と前記第2の抵抗の他端間に接続された第3の抵抗と、
前記第1の抵抗と前記第3の抵抗との接続部と、前記第2の抵抗と前記第3の抵抗との接続部のうちの何れか一方を、車両の接地電位部に接続する接地配線と、
前記第3の抵抗の端子間電圧に応じて変化する電圧参照値に基いて、前記非接地回路と車両の接地電位部間の絶縁レベルを検出する絶縁レベル検出手段とを備えたことを特徴とする非接地回路の絶縁性検出装置。
A non-grounded circuit having a DC power source and a positive side wiring connected to the positive electrode of the DC power source and a negative side wiring connected to the negative electrode of the DC power source and arranged on the vehicle insulated from the ground potential portion of the vehicle An insulation detection device for a non-ground circuit that detects an insulation level between a circuit and the ground potential portion,
A first resistor having one end connected to the positive side wiring and having a resistance higher than an insulation reference value for maintaining insulation between the non-grounded circuit and the ground potential portion of the vehicle;
A second resistor having one end connected to the negative wiring and having a resistance higher than the insulation reference value;
A third resistor connected between the other end of the first resistor and the other end of the second resistor;
A ground wiring for connecting one of the connection portion between the first resistor and the third resistor and the connection portion between the second resistor and the third resistor to a ground potential portion of the vehicle. When,
Insulation level detection means for detecting an insulation level between the non-ground circuit and the ground potential portion of the vehicle based on a voltage reference value that changes in accordance with the voltage across the terminals of the third resistor. A non-grounded circuit insulation detector.
前記接地配線は、前記第2の抵抗と前記第3の抵抗との接続部を、車両の接地電位部に接続し、
前記絶縁レベル検出手段は、車両の接地電位部を基準とした前記電圧参照値が、所定の負側地絡判定値以上となったときに、前記負側配線と車両の接地電位部との間で地絡が生じていると判断することを特徴とする請求項1記載の非接地回路の絶縁性検出装置。
The ground wiring connects a connection portion between the second resistor and the third resistor to a ground potential portion of a vehicle,
When the voltage reference value based on the ground potential portion of the vehicle is equal to or greater than a predetermined negative ground fault determination value, the insulation level detection means is configured to be between the negative wiring and the ground potential portion of the vehicle. 2. The non-grounded circuit insulation detection device according to claim 1, wherein a ground fault is determined in step 1.
前記接地配線は、前記第2の抵抗と前記第3の抵抗との接続部を、車両の接地電位部に接続し、
前記絶縁レベル検出手段は、車両の接地電位部を基準とした前記電圧参照値が、所定の正側地絡判定値以下となったときに、前記正側配線と車両の接地電位部との間で地絡が生じていると判断することを特徴とする請求項1又は請求項2記載の非接地回路の絶縁性検出装置。
The ground wiring connects a connection portion between the second resistor and the third resistor to a ground potential portion of a vehicle,
When the voltage reference value with respect to the ground potential portion of the vehicle is equal to or less than a predetermined positive ground fault determination value, the insulation level detection means is configured to connect between the positive side wiring and the vehicle ground potential portion. 3. The non-grounded circuit insulation detection device according to claim 1, wherein it is determined that a ground fault has occurred.
第4の抵抗とスイッチング素子とを直列に接続して構成され、前記第1の抵抗又は前記第2の抵抗と並列に接続された抵抗切換回路を備え、
前記絶縁レベル検出手段は、前記スイッチング素子を導通状態としたときの前記電圧参照値に基いて、前記非接地回路と車両の接地電位部間の地絡の有無を判断すると共に、前記スイッチング素子を遮断状態としたときの前記電圧参照値に基いて、前記非接地回路と車両の接地電位部間の地絡の有無を判断することを特徴とする請求項1から請求項3のうちいずれか1項の非接地回路の絶縁性検出装置。
A fourth resistor and a switching element connected in series, and a resistance switching circuit connected in parallel with the first resistor or the second resistor;
The insulation level detection means determines the presence or absence of a ground fault between the non-ground circuit and the ground potential portion of the vehicle based on the voltage reference value when the switching element is in a conductive state, and the switching element The presence or absence of a ground fault between the non-grounded circuit and the ground potential portion of the vehicle is determined based on the voltage reference value in the cut-off state. Insulation detecting device for non-grounded circuit of item.
前記非接地回路は、モータと、該モータと前記直流電源間に接続されて該モータに多相の駆動電圧を供給するインバータとを有し、
前記第1の抵抗の抵抗値と前記第2の抵抗の抵抗値が異なる値に設定され、
前記第3の抵抗と並列に接続された平滑用コンデンサを備えて、
前記絶縁レベル検出手段は、前記電圧参照値に基いて、前記インバータと前記モータ間の配線と車両の接地電位部との間の地絡の有無を判断することを特徴とする請求項1から請求項4のうちいずれか1項記載の非接地回路の絶縁性検出装置。
The non-grounded circuit has a motor and an inverter connected between the motor and the DC power source to supply a multiphase drive voltage to the motor,
The resistance value of the first resistor and the resistance value of the second resistor are set to different values,
A smoothing capacitor connected in parallel with the third resistor;
The said insulation level detection means judges the presence or absence of the ground fault between the wiring between the said inverter and the said motor, and the grounding potential part of a vehicle based on the said voltage reference value. Item 5. The non-grounded circuit insulation detection device according to any one of Items 4 to 5.
前記電圧参照値は、前記第3の抵抗の端子間電圧を前記直流電源の出力電圧で除した値であることを特徴とする請求項1から請求項5のうちいずれか1項記載の非接地回路の絶縁性検出装置。   6. The non-grounding according to any one of claims 1 to 5, wherein the voltage reference value is a value obtained by dividing a voltage across the third resistor by an output voltage of the DC power supply. Circuit insulation detector. 前記絶縁レベル検出手段は、前記第3の抵抗の端子間電圧を入力する入力回路を有して、該入力回路への入力電圧に基いて前記電圧参照値を取得し、
前記第1の抵抗と前記第2の抵抗と前記第3の抵抗の抵抗値が、前記非接地回路と車両の接地電位部間の地絡が生じたときに、前記第3の抵抗の端子間電圧が、前記入力回路の許容入力電圧範囲の上限以下となるように設定されていることを特徴とする請求項1から請求項6のうちいずれか1項記載の非接地回路の絶縁性検出装置。
The insulation level detection means has an input circuit for inputting the voltage across the third resistor, acquires the voltage reference value based on the input voltage to the input circuit,
The resistance values of the first resistor, the second resistor, and the third resistor are between the terminals of the third resistor when a ground fault occurs between the non-ground circuit and the ground potential portion of the vehicle. The insulation detection device for a non-grounded circuit according to any one of claims 1 to 6, wherein the voltage is set to be equal to or lower than an upper limit of an allowable input voltage range of the input circuit. .
JP2007329187A 2007-12-20 2007-12-20 Non-grounded circuit insulation detector Expired - Fee Related JP4978970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007329187A JP4978970B2 (en) 2007-12-20 2007-12-20 Non-grounded circuit insulation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007329187A JP4978970B2 (en) 2007-12-20 2007-12-20 Non-grounded circuit insulation detector

Publications (3)

Publication Number Publication Date
JP2009150779A true JP2009150779A (en) 2009-07-09
JP2009150779A5 JP2009150779A5 (en) 2009-10-22
JP4978970B2 JP4978970B2 (en) 2012-07-18

Family

ID=40920061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007329187A Expired - Fee Related JP4978970B2 (en) 2007-12-20 2007-12-20 Non-grounded circuit insulation detector

Country Status (1)

Country Link
JP (1) JP4978970B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209247A (en) * 2010-03-31 2011-10-20 Honda Motor Co Ltd Ground fault detector and alarm device
JP2012124975A (en) * 2010-12-06 2012-06-28 Hitachi Automotive Systems Ltd Power conversion apparatus and method of controlling the same
JP2012173053A (en) * 2011-02-18 2012-09-10 Mitsubishi Heavy Ind Ltd Electric leak detecting device and method for the same
JP2013090540A (en) * 2011-10-21 2013-05-13 Keihin Corp Electronic control device
DE102013213301A1 (en) 2012-07-09 2014-01-30 Honda Motor Co., Ltd. Ground fault detection device for an ungrounded circuit
US9533578B2 (en) 2011-10-21 2017-01-03 Keihin Corporation Electronic control unit
JP2020060423A (en) * 2018-10-09 2020-04-16 一般財団法人中部電気保安協会 Insulation level monitoring device for photovoltaic power generation facility and insulation level monitoring method for photovoltaic power generation facility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226950A (en) * 1994-12-12 1996-09-03 Honda Motor Co Ltd Method and apparatus for detecting insulation of non-grounded power source
JP2002296316A (en) * 2001-03-30 2002-10-09 Sanyo Electric Co Ltd Leakage detecting circuit for power-supply device
JP2005189005A (en) * 2003-12-24 2005-07-14 Honda Motor Co Ltd Ground fault detection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226950A (en) * 1994-12-12 1996-09-03 Honda Motor Co Ltd Method and apparatus for detecting insulation of non-grounded power source
JP2002296316A (en) * 2001-03-30 2002-10-09 Sanyo Electric Co Ltd Leakage detecting circuit for power-supply device
JP2005189005A (en) * 2003-12-24 2005-07-14 Honda Motor Co Ltd Ground fault detection system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209247A (en) * 2010-03-31 2011-10-20 Honda Motor Co Ltd Ground fault detector and alarm device
JP2012124975A (en) * 2010-12-06 2012-06-28 Hitachi Automotive Systems Ltd Power conversion apparatus and method of controlling the same
JP2012173053A (en) * 2011-02-18 2012-09-10 Mitsubishi Heavy Ind Ltd Electric leak detecting device and method for the same
JP2013090540A (en) * 2011-10-21 2013-05-13 Keihin Corp Electronic control device
US9321360B2 (en) 2011-10-21 2016-04-26 Keihin Corporation Electronic control unit
US9533578B2 (en) 2011-10-21 2017-01-03 Keihin Corporation Electronic control unit
DE102013213301A1 (en) 2012-07-09 2014-01-30 Honda Motor Co., Ltd. Ground fault detection device for an ungrounded circuit
US9261551B2 (en) 2012-07-09 2016-02-16 Honda Motor Co., Ltd. Ground fault detecting device for an ungrounded circuit
JP2020060423A (en) * 2018-10-09 2020-04-16 一般財団法人中部電気保安協会 Insulation level monitoring device for photovoltaic power generation facility and insulation level monitoring method for photovoltaic power generation facility

Also Published As

Publication number Publication date
JP4978970B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
US9255957B2 (en) Earth fault detection circuit and power source device
JP4978970B2 (en) Non-grounded circuit insulation detector
US9261551B2 (en) Ground fault detecting device for an ungrounded circuit
US10161982B2 (en) Failure inspection system enabling discrimination between leakage current failure and short-circuit failure
US7586727B2 (en) Inrush current limiting switching circuit for power supply
JP6478200B2 (en) Power supply voltage detector
JP3311268B2 (en) Current sensor failure judgment device
US10222423B2 (en) Electrical storage system
US8929113B2 (en) Capacitor discharger for power conversion system
WO2020170556A1 (en) Electrical fault detection device and vehicle power supply system
JP6414520B2 (en) Inspection system
WO2007119682A1 (en) Battery pack and method for detecting disconnection of same
JP2011021990A (en) Insulation state detector
JP2007068249A (en) Leak detector for electric car
JP6369407B2 (en) Failure detection system
JP4944733B2 (en) Insulation failure detection device
US9091710B2 (en) Circuit arrangement and method for monitoring electrical isolation
JP4804514B2 (en) Non-grounded circuit insulation detector
JP5575326B2 (en) On-board power supply network for vehicles and control device for on-board power supply network
JP2010035284A (en) Overcurrent protection circuit
JP2015087217A (en) Leakage detection device
JP5989171B1 (en) CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT
WO2021106285A1 (en) Earth leakage detecting device, and vehicular power supply system
JP6919628B2 (en) Current detection circuit and power supply
JP2017112006A (en) Short circuit detection system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees