JP2009150166A - Concrete composite product - Google Patents

Concrete composite product Download PDF

Info

Publication number
JP2009150166A
JP2009150166A JP2007330234A JP2007330234A JP2009150166A JP 2009150166 A JP2009150166 A JP 2009150166A JP 2007330234 A JP2007330234 A JP 2007330234A JP 2007330234 A JP2007330234 A JP 2007330234A JP 2009150166 A JP2009150166 A JP 2009150166A
Authority
JP
Japan
Prior art keywords
concrete
composite product
covering
peripheral surface
covering material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007330234A
Other languages
Japanese (ja)
Other versions
JP5064997B2 (en
Inventor
Hisayuki Matsuo
久幸 松尾
Yasuyuki Hayakawa
康之 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Concrete Industries Co Ltd
Original Assignee
Nippon Concrete Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Concrete Industries Co Ltd filed Critical Nippon Concrete Industries Co Ltd
Priority to JP2007330234A priority Critical patent/JP5064997B2/en
Publication of JP2009150166A publication Critical patent/JP2009150166A/en
Application granted granted Critical
Publication of JP5064997B2 publication Critical patent/JP5064997B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Landscapes

  • Building Environments (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a concrete composite product having a complex structure which can prevent cracking of a covering material molded by concrete on the peripheral surface of a core material. <P>SOLUTION: The concrete composite product 10 is provided with the core material 11, a shock absorbing material 12, and the covering material 13. The shock absorbing material 12 absorbs the amount of contraction of the concrete provided on the peripheral surface of the core material 11, and the covering material 13 is molded by concrete on the peripheral surface through the medium of the shock absorbing material 12. It is desirable that the shock absorbing material 12 employs a material having elasticity or plasticity, and that the covering material 13 employs ultrahigh strength fiber reinforced concrete (UFC), a high-toughness cement composite material (ECC), fiber mixing concrete (FRC, FRM), polymer cement concrete (PCC, PCM), or polymer concrete (PC, PM). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、芯材をコンクリートで被覆した複合構造のコンクリート複合製品に関する。   The present invention relates to a concrete composite product having a composite structure in which a core is covered with concrete.

鋼材などの芯材をコンクリートで被覆した複合構造のコンクリート複合製品において、特に、鋼材の外周(外側)面をコンクリートで被覆する方法として、次のものがある。   In a concrete composite product having a composite structure in which a core material such as a steel material is covered with concrete, there are the following methods in particular for covering the outer peripheral (outer) surface of the steel material with concrete.

(1) 鋼材に薄厚のコンクリート(樹脂繊維、鋼繊維、岩綿などを含んだモルタル)を吹付けて鋼材を被覆する。これは、建築の柱・梁などの耐火被覆、または鋼製セグメントの内面被覆などに適用される(例えば特許文献1、2参照)。 (1) Cover the steel by spraying thin concrete (mortar containing resin fiber, steel fiber, rock wool, etc.) on the steel. This is applied to fireproof coverings such as architectural columns and beams, or inner surface coverings of steel segments (see, for example, Patent Documents 1 and 2).

(2) 鋼材をコンクリートに埋める方法がある。これは、一般的なRC構造、SRC構造に相当する。 (2) There is a method of embedding steel in concrete. This corresponds to a general RC structure or SRC structure.

(3) 芯材には、鋼材の他に、コンクリート、石、木材などがある。ちなみに、コンクリート管(ヒューム管)の外周を、緊張鋼線と吹付けモルタルで被覆した内圧管は存在する。 (3) Core materials include steel, concrete, stone, and wood. Incidentally, there is an internal pressure pipe in which the outer periphery of a concrete pipe (fume pipe) is covered with a tension steel wire and sprayed mortar.

ここで、鋼材の外周(外側)面を薄い厚さのコンクリートで被覆する方法において、ひび割れの発生を制御する従来技術は見当たらない。   Here, there is no conventional technique for controlling the occurrence of cracks in the method of coating the outer peripheral (outer) surface of steel with a thin concrete.

従来技術(耐火被覆)では、被覆した部分が他の材料で覆われるか外部から見えない空間に置かれるため、ひび割れの発生は問題視されない。   In the prior art (fireproof coating), since the covered part is covered with another material or placed in a space that cannot be seen from the outside, the occurrence of cracks is not regarded as a problem.

一方、被覆コンクリートが鋼材面積より大きいと、ひび割れの発生は少ないか、それほど目立たない(例えば、SRC構造)。また、コンクリートの収縮が拘束されないケースでは、ひび割れは発生し難い(例えば、既設トンネルの内面被覆)。
特開2007−132082号公報(第1頁、図3) 特開2005−194124号公報(第1頁)
On the other hand, when the coated concrete is larger than the steel area, the occurrence of cracks is small or not so noticeable (for example, SRC structure). Moreover, in the case where the shrinkage of the concrete is not restrained, cracks are unlikely to occur (for example, the inner surface of an existing tunnel).
Japanese Unexamined Patent Publication No. 2007-133202 (first page, FIG. 3) Japanese Patent Laying-Open No. 2005-194124 (first page)

鋼材の外周(外側)をコンクリート(一般的に使用されている材料として、繊維混入モルタルがある)で被覆する場合、鋼材の質量(面積)に比較して外側コンクリート(モルタル)の質量(面積)が少ないと、鋼材の拘束とコンクリートの自己収縮および乾燥収縮によって、以下の現象が起こる。   When the outer periphery (outside) of steel is covered with concrete (a fiber mortar is a commonly used material), the mass (area) of the outer concrete (mortar) compared to the mass (area) of the steel If the amount is small, the following phenomenon occurs due to the restraint of the steel material and the self-shrinkage and drying shrinkage of the concrete.

外側コンクリート(モルタル)にひび割れが発生する。ひび割れの発生方向は一様でない。特に、外側コンクリート(モルタル)が粉体系の材料(例えば、超高強度繊維補強コンクリート(UFC)、高靭性セメント複合材料(ECC))では収縮変形量(自己収縮および乾燥収縮の合計)が大きいため、この収縮変形量に伴うひび割れの発生を使用材料の組合せ(配合)によって抑えた素材であるが、鋼材の拘束によって、ひび割れが入る。   Cracks occur in the outer concrete (mortar). The direction of occurrence of cracks is not uniform. In particular, outer concrete (mortar) has a large amount of shrinkage deformation (total of self-shrinkage and drying shrinkage) in powder-type materials (for example, ultra-high-strength fiber reinforced concrete (UFC) and high-toughness cement composite material (ECC)). The material is a material in which the generation of cracks due to the amount of shrinkage deformation is suppressed by the combination (compounding) of the materials used, but cracks occur due to the restraint of the steel material.

本発明は、このような点に鑑みなされたもので、芯材の周面にコンクリートで成形された被覆材のひび割れを防止できる複合構造のコンクリート複合製品を提供することを目的とする。   This invention is made | formed in view of such a point, and it aims at providing the concrete composite product of the composite structure which can prevent the crack of the coating material shape | molded with the concrete on the surrounding surface of the core material.

請求項1に記載された発明は、芯材と、この芯材の周面に設けられたコンクリート収縮量を吸収する緩衝材と、この緩衝材を介してその周面にコンクリートで成形された被覆材とを具備したコンクリート複合製品である。   The invention described in claim 1 includes a core material, a buffer material that absorbs the amount of concrete shrinkage provided on the peripheral surface of the core material, and a coating formed on the peripheral surface with concrete through the buffer material. It is a concrete composite product with materials.

請求項2に記載された発明は、請求項1記載のコンクリート複合製品における被覆材を、超高強度繊維補強コンクリート、高靭性セメント複合材料、繊維混入コンクリート、ポリマーセメントコンクリートおよびポリマーコンクリートのいずれかであるとしたものである。   In the invention described in claim 2, the covering material in the concrete composite product according to claim 1 is any one of ultra high strength fiber reinforced concrete, high toughness cement composite material, fiber mixed concrete, polymer cement concrete and polymer concrete. It is supposed to be.

請求項3に記載された発明は、請求項1または2記載のコンクリート複合製品における緩衝材を、弾性あるいは可塑性を備えた塗布あるいは接着可能な材料としたものである。   According to a third aspect of the present invention, the cushioning material in the concrete composite product according to the first or second aspect is a material that can be applied or adhered with elasticity or plasticity.

請求項4に記載された発明は、請求項1乃至3のいずれか記載のコンクリート複合製品において、コンクリートで成形された被覆材の周面をさらに別の緩衝材を介して別の被覆材で被覆したものである。   According to a fourth aspect of the present invention, in the concrete composite product according to any one of the first to third aspects, the peripheral surface of the covering material formed of concrete is further covered with another covering material via another buffer material. It is what.

請求項1に記載された発明によれば、コンクリートで成形された被覆材が収縮変形しても、緩衝材が被覆材の収縮量を吸収するので、被覆材のひび割れを防止できる。   According to the first aspect of the present invention, even if the covering material formed of concrete shrinks and deforms, the cushioning material absorbs the shrinkage amount of the covering material, so that cracking of the covering material can be prevented.

請求項2に記載された発明によれば、被覆材が、収縮変形量に伴うひび割れの発生を使用材料の組合せ(配合)によって抑えた素材である超高強度繊維補強コンクリートまたは高靭性セメント複合材料などであっても、芯材の拘束によってひび割れが発生するが、緩衝材によりコンクリート収縮量を吸収するので、芯材の周面に設けられたこれらの被覆材のひび割れを防止できる。   According to the invention described in claim 2, the super high strength fiber reinforced concrete or the high toughness cement composite material in which the coating material is a material in which the occurrence of cracks due to the amount of shrinkage deformation is suppressed by the combination (compounding) of the materials used. However, cracks occur due to the restraint of the core material, but since the amount of shrinkage of the concrete is absorbed by the buffer material, it is possible to prevent cracking of these coating materials provided on the peripheral surface of the core material.

請求項3に記載された発明によれば、弾性あるいは可塑性を備えた塗布あるいは接着可能な材料を緩衝材とした場合は、芯材に対する施工が容易である。   According to the third aspect of the present invention, when a material that can be applied or bonded with elasticity or plasticity is used as a cushioning material, construction on the core material is easy.

請求項4に記載された発明によれば、複層の緩衝材および被覆材により、漏れ防止を重視した産業廃棄物などの格納容器に適した複合構造のコンクリート複合製品を提供できる。   According to the fourth aspect of the present invention, a composite composite product having a composite structure suitable for a containment container such as industrial waste with an emphasis on leakage prevention can be provided by the multilayer cushioning material and the covering material.

以下、本発明を、図1および図2に示された一実施の形態、図3および図4に示された応用例を参照しながら詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to an embodiment shown in FIGS. 1 and 2 and an application example shown in FIGS.

図1は、複合構造のコンクリート複合製品10を示し、芯材11と、この芯材11の周面に設けられたコンクリート収縮量を吸収する緩衝材12と、この緩衝材12を介してその周面にコンクリートで成形された被覆材13と、この被覆材13の周面に設けられた保護材14とを具備したものである。   FIG. 1 shows a concrete composite product 10 having a composite structure. A core material 11, a buffer material 12 for absorbing the amount of concrete shrinkage provided on the peripheral surface of the core material 11, and its periphery through the buffer material 12. A covering material 13 formed of concrete on the surface and a protective material 14 provided on the peripheral surface of the covering material 13 are provided.

芯材11としては、鋼材が代表的であるが、コンクリート製品などを用いてもよい。また、図1に示された芯材11の形状は円形であるが、他の形状でもよく、例えば多角形をなした形状の芯材でもよい。   The core material 11 is typically a steel material, but a concrete product or the like may be used. Further, the shape of the core material 11 shown in FIG. 1 is circular, but may be other shapes, for example, a core material having a polygonal shape.

芯材11を被覆する被覆材13は、超高強度繊維補強コンクリート(UFC)、高靭性セメント複合材料(ECC)、繊維混入コンクリート(FRC、FRM)、ポリマーセメントコンクリート(PCC、PCM)およびポリマーコンクリート(PC、PM)のいずれかが望ましいが、鉄筋あるいは樹脂繊維を平面状あるいは立体状に配置して膨張剤を混入したコンクリート、または樹脂を含浸させたコンクリートなどを用いてもよい。   The covering material 13 for covering the core material 11 is ultra high strength fiber reinforced concrete (UFC), high toughness cement composite material (ECC), fiber mixed concrete (FRC, FRM), polymer cement concrete (PCC, PCM) and polymer concrete. Any of (PC, PM) is desirable, however, concrete in which reinforcing bars or resin fibers are arranged in a planar or three-dimensional form and mixed with an expansion agent, or concrete impregnated with a resin may be used.

コンクリート複合製品10における緩衝材12は、硬化後に弾性あるいは可塑性を備えた材料、例えば弾性あるいは可塑性樹脂材料、無機質発泡体を含んだ弾性あるいは可塑性樹脂材料(シート状に加工したもの)、無機質発泡体を含んだ遮熱材料(シート状に加工したもの)、無機質発泡体を含んだ断熱材料(シート状に加工したもの)などで、塗布可能な材料あるいは接着可能な材料(シート状に加工したもの)が望ましいが、瀝青材料(アスファルト)、ゴム、紙、フェルトなどを用いてもよい。   The cushioning material 12 in the concrete composite product 10 is a material having elasticity or plasticity after curing, for example, an elastic or plastic resin material, an elastic or plastic resin material containing an inorganic foam (processed into a sheet shape), an inorganic foam Heat-shielding material (processed into a sheet) containing a material, heat-insulating material (processed into a sheet) containing an inorganic foam, and other materials that can be applied or bonded (processed into a sheet) However, bituminous materials (asphalt), rubber, paper, felt, etc. may be used.

保護材14としては、塗布可能な材料、浸透性能を備える材料、樹脂系材料で接着する繊維シートなどの材料が望ましいが、被覆材13のまま、あるいは外型枠に用いた材料(例えば、鋼管、樹脂管、ドラム缶、樹脂容器)などをそのまま保護材14として用いてもよい。なお、この保護材14は無くてもよい。   The protective material 14 is preferably a material that can be applied, a material having permeation performance, or a fiber sheet bonded with a resin-based material. However, the protective material 14 remains as it is or a material used for the outer mold (for example, a steel pipe). , Resin tube, drum can, resin container) or the like may be used as the protective material 14 as it is. The protective material 14 may be omitted.

そして、図2に示されるように、(a)芯材11を用意し、(b)この芯材11の周面に、コンクリート収縮量を吸収する緩衝材12を塗布あるいは巻付け、(c)この緩衝材12を介してその周面に被覆材13を成形して所要の養生を経た後、(d)被覆材13の周面に保護材14を設ける。この保護材14は、被覆材13を成形する際の外型枠をそのまま用いてもよいし、無くてもよい。   Then, as shown in FIG. 2, (a) a core material 11 is prepared, (b) a buffer material 12 that absorbs the amount of shrinkage of concrete is applied or wound around the peripheral surface of the core material 11, and (c) A covering material 13 is formed on the peripheral surface of the cushioning material 12 and subjected to necessary curing, and (d) a protective material 14 is provided on the peripheral surface of the covering material 13. The protective material 14 may or may not be used as it is in the outer mold for molding the covering material 13.

このようにして、芯材11の外周(外側)をコンクリートで成形された被覆材13で被覆して複合構造とする製作手段において、芯材11と外側の被覆材13との間にコンクリートの収縮量を吸収する緩衝材12を設けることで、外側の被覆材13の表面での「ひび割れ」の発生を防止できるコンクリート複合製品10を提供する。   In this way, in the production means in which the outer periphery (outside) of the core material 11 is covered with the covering material 13 formed of concrete to form a composite structure, the shrinkage of the concrete between the core material 11 and the outer covering material 13 By providing the cushioning material 12 that absorbs the amount, the concrete composite product 10 that can prevent the occurrence of “cracking” on the surface of the outer covering material 13 is provided.

次に、実施の形態の作用効果を説明する。   Next, the function and effect of the embodiment will be described.

コンクリートで成形された被覆材13が自己収縮および乾燥収縮により収縮変形しても、緩衝材12が被覆材13の収縮量を吸収するので、被覆材13のひび割れを防止できる。   Even if the covering material 13 formed of concrete shrinks and deforms due to self-shrinkage and drying shrinkage, the cushioning material 12 absorbs the amount of shrinkage of the covering material 13, so that cracking of the covering material 13 can be prevented.

被覆材13が、収縮変形量に伴うひび割れ発生を抑えた性能の超高強度繊維補強コンクリート(UFC)または高靭性セメント複合材料(ECC)の場合であっても、芯材11の拘束効果によって被覆材13表面には微細なひび割れが入ることから、緩衝材12によりコンクリート収縮量を吸収するので、芯材11の周面に設けられたこれらの被覆材13のひび割れを防止できる。   Even if the covering material 13 is an ultra high strength fiber reinforced concrete (UFC) or high toughness cement composite material (ECC) with a performance that suppresses the occurrence of cracks due to shrinkage deformation, the covering material 13 is covered by the restraining effect of the core material 11. Since the surface of the material 13 is finely cracked, the amount of shrinkage of the concrete is absorbed by the cushioning material 12, so that the coating material 13 provided on the peripheral surface of the core material 11 can be prevented from cracking.

保護材14は、被覆材13を成形して所要の養生を経た後に設ける保護層で、コンクリート複合製品の耐久性を向上させることができるが、被覆材13を成形する製造あるいは施工段階において外型枠(例えば、鋼管、樹脂管、ドラム缶、樹脂容器など)として使用した部材であって、取り外す必要のない場合では、そのまま保護材14とすることもできる。   The protective material 14 is a protective layer that is provided after the covering material 13 is molded and subjected to the required curing, and can improve the durability of the concrete composite product. If the member is used as a frame (for example, a steel pipe, a resin pipe, a drum can, a resin container, etc.) and does not need to be removed, the protective material 14 can be used as it is.

弾性あるいは可塑性を備えた材料を塗布して所定の養生を経て、または弾性あるいは可塑性を備えたシート状に加工した材料を接着して、緩衝材12とした場合は、芯材11に対する施工が容易である。   When the cushioning material 12 is formed by applying a material with elasticity or plasticity and undergoing a predetermined curing, or by bonding a material processed into a sheet shape with elasticity or plasticity, the construction to the core material 11 is easy It is.

次に、図3は、水中に施工された複合構造のコンクリート複合製品10aを示し、コンクリート柱体などの芯材11の表面に被覆材13を部分的に適用する例であり、水面または海面の浸食作用を受け易い範囲の芯材周面に、緩衝材12を介してコンクリートで成形された被覆材13を設ける。   Next, FIG. 3 shows a concrete composite product 10a having a composite structure constructed in water, and is an example in which a covering material 13 is partially applied to the surface of a core material 11 such as a concrete column, A covering material 13 formed of concrete is provided with a cushioning material 12 on the peripheral surface of the core material in a range that is susceptible to erosion.

次に、図4は、多層コンクリート複合製品10bを示し、コンクリートで成形された被覆材13の表面すなわち外周面を、さらに同一素材あるいは他の素材からなる別の緩衝材12aを介して別の被覆材13aで被覆した例であり、この多層コンクリート複合製品10bを容器とする場合は、外側の保護材14を芯材11〜被覆材13aの上面より上方へ突出させ、この保護材14の内部に蓋体15を挿入するようにして芯材11〜被覆材13a上に蓋体15を被嵌する。   Next, FIG. 4 shows a multilayer concrete composite product 10b. The surface of the covering material 13 formed of concrete, that is, the outer peripheral surface, is further covered with another cushioning material 12a made of the same material or another material. This is an example of coating with the material 13a, and when the multilayer concrete composite product 10b is used as a container, the outer protective material 14 is projected upward from the upper surface of the core material 11 to the covering material 13a, and the protective material 14 is placed inside the protective material 14. The lid 15 is fitted on the core material 11 to the covering material 13a so that the lid 15 is inserted.

このように、複層の緩衝材12,12aおよび被覆材13,13aにより形成した多層コンクリート複合製品10bは、漏れ防止を重視した産業廃棄物などの格納容器に適する。そして、そのような場合は、芯材11〜被覆材13aの上面に接着剤15aを用いて蓋体15を接着するとよい。   As described above, the multilayer concrete composite product 10b formed of the multilayer buffer materials 12 and 12a and the covering materials 13 and 13a is suitable for a storage container such as industrial waste in which leakage prevention is important. In such a case, the lid body 15 may be bonded to the upper surfaces of the core material 11 to the covering material 13a using an adhesive 15a.

鋼材(寸法変化はないものと仮定)の外周に設けるコンクリート(繊維混入モルタル)の自己収縮および乾燥収縮量は、最大で1000μである。例えば、外径994mmの鋼材外周に、3mm厚の緩衝材層を設け、さらにその外側に厚さ25mmのコンクリートで成形された被覆材層を設けたとする。   The maximum amount of self-shrinkage and drying shrinkage of concrete (fiber-mixed mortar) provided on the outer periphery of steel (assuming no dimensional change) is 1000 μm. For example, assume that a 3 mm-thick cushioning material layer is provided on the outer periphery of a steel material having an outer diameter of 994 mm, and a covering material layer formed of concrete having a thickness of 25 mm is provided on the outer side thereof.

この被覆材層が均等に周方向に収縮すると、円周長さは約3.14mm縮む。これは、コンクリート層の内径(直径)が約1mm縮んだことになる。したがって、緩衝材層が0.5mmの変位吸収能力を備えていれば、コンクリート層には収縮の影響が出ることはなく、ひび割れは発生しない。ちなみに、緩衝層の厚さは、3.0mmから2.5mmに圧縮される。   When this covering material layer shrinks evenly in the circumferential direction, the circumferential length shrinks by about 3.14 mm. This means that the inner diameter (diameter) of the concrete layer is reduced by about 1 mm. Therefore, if the buffer material layer has a displacement absorption capacity of 0.5 mm, the concrete layer will not be affected by shrinkage and will not crack. Incidentally, the thickness of the buffer layer is compressed from 3.0 mm to 2.5 mm.

一方、図5に示されたコンクリート複合製品10cのように、芯材11(直径600mmおよび長さ1.0mの鋼管)に、コンクリートで成形された被覆材13(厚さ25mmの超高強度繊維補強コンクリート(UFC))を直接被覆した試験体の場合は、軸方向のひび割れ16(幅0.15mm程度)が4本観察された。なお、周方向のひび割れは観察されなかった。   On the other hand, like the concrete composite product 10c shown in FIG. 5, the core material 11 (steel pipe with a diameter of 600 mm and a length of 1.0 m) is coated with a covering material 13 (thickness 25 mm, ultrahigh strength fiber reinforced). In the case of a specimen directly coated with concrete (UFC), four axial cracks 16 (width of about 0.15 mm) were observed. In addition, the crack of the circumferential direction was not observed.

また、図6に示されたコンクリート複合製品10dのように、芯材11(直径600mmおよび長さ3.0mの鋼管)に、コンクリートで成形された被覆材13(厚さ25mmの高靭性セメント複合材料(ECC))を直接被覆した試験体の場合は、発生方向は一様ではないが、軸方向のひび割れ16および周方向のひび割れ17(共に幅0.1mm程度)が観察される。   In addition, as shown in FIG. 6, the composite material 10d shown in FIG. 6, a core material 11 (steel pipe having a diameter of 600 mm and a length of 3.0 m) and a covering material 13 (25 mm thick, high toughness cement composite material) In the case of the specimen directly coated with (ECC)), the direction of occurrence is not uniform, but axial cracks 16 and circumferential cracks 17 (both about 0.1 mm wide) are observed.

これに対し、図1に示されるように、芯材11(直径600mmおよび長さ1.0mの鋼管)の外周に、緩衝材12(1.5mm厚×2層の無機質発泡体を含んだ遮熱シート)を介して、被覆材13(25mm厚の超高強度繊維補強コンクリート(UFC))を被覆した実験では、被覆材13の表面に、軸方向および周方向のひび割れが共に観察されなかった。   On the other hand, as shown in FIG. 1, a heat insulating sheet including a buffer material 12 (1.5 mm thickness × 2 layers of inorganic foam) on the outer periphery of a core material 11 (steel pipe having a diameter of 600 mm and a length of 1.0 m). In the experiment in which the coating material 13 (25 mm-thick ultra-high strength fiber reinforced concrete (UFC)) was coated via), neither cracks in the axial direction nor the circumferential direction were observed on the surface of the coating material 13.

これは、緩衝材12により、被覆材13の周方向の変位(自己収縮および乾燥収縮による収縮変形)を吸収できるとともに、緩衝材12の表面において被覆材13が長さ方向(鋼管軸方向)に滑るあるいは弾性変形する性質を付与させることによって、軸方向の変位(自己収縮および乾燥収縮による収縮変形)も吸収できるものと思われる。   This is because the cushioning material 12 can absorb the displacement in the circumferential direction of the coating material 13 (shrinkage deformation due to self-shrinkage and drying shrinkage), and the coating material 13 on the surface of the cushioning material 12 extends in the length direction (steel pipe axis direction). It seems that axial displacements (shrinkage deformation due to self-shrinkage and drying shrinkage) can be absorbed by imparting the property of slipping or elastically deforming.

本発明は、芯材の外周を超高強度繊維補強コンクリート(UFC)、高靭性セメント複合材料(ECC)などで被覆した複合構造のコンクリート複合製品に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for a concrete composite product having a composite structure in which the outer periphery of a core material is covered with ultra high strength fiber reinforced concrete (UFC), high tough cement composite material (ECC), or the like.

本発明に係るコンクリート複合製品の一実施の形態を示す断面図である。It is sectional drawing which shows one Embodiment of the concrete composite product which concerns on this invention. 同上コンクリート複合製品の製造工程を示す工程図であり、(a)は芯材を示す斜視図、(b)はシート状に加工した緩衝材を巻付ける状態を示す斜視図、(c)はコンクリートで被覆材を成形した状態を示す斜視図、(d)は被覆材の周面に保護材を設けた状態を示す斜視図である。It is process drawing which shows the manufacturing process of a concrete composite product same as the above, (a) is a perspective view which shows a core material, (b) is a perspective view which shows the state which wraps the buffer material processed into the sheet form, (c) is concrete The perspective view which shows the state which shape | molded the coating | covering material by (d) is a perspective view which shows the state which provided the protective material in the surrounding surface of the coating | covering material. 同上コンクリート複合製品の施工例を示す側面図である。It is a side view which shows the construction example of a concrete composite product same as the above. 同上コンクリート複合製品を多層状容器に施工した例を示す断面図である。It is sectional drawing which shows the example which constructed the concrete composite product same as the above in the multilayer container. 従来のコンクリート複合製品の第1試験例を示す斜視図である。It is a perspective view which shows the 1st test example of the conventional concrete composite product. 従来のコンクリート複合製品の第2試験例を示す斜視図である。It is a perspective view which shows the 2nd test example of the conventional concrete composite product.

符号の説明Explanation of symbols

10 コンクリート複合製品
11 芯材
12,12a 緩衝材
13,13a 被覆材
10 Concrete composite products
11 Core
12, 12a cushioning material
13, 13a Coating material

Claims (4)

芯材と、
この芯材の周面に設けられたコンクリート収縮量を吸収する緩衝材と、
この緩衝材を介してその周面にコンクリートで成形された被覆材と
を具備したことを特徴とするコンクリート複合製品。
A core material,
A cushioning material that absorbs the amount of concrete shrinkage provided on the peripheral surface of the core material;
A concrete composite product comprising: a covering material formed of concrete on a peripheral surface thereof through the cushioning material.
被覆材は、超高強度繊維補強コンクリート、高靭性セメント複合材料、繊維混入コンクリート、ポリマーセメントコンクリートおよびポリマーコンクリートのいずれかである
ことを特徴とする請求項1記載のコンクリート複合製品。
The concrete composite product according to claim 1, wherein the covering material is any one of ultra high strength fiber reinforced concrete, high toughness cement composite material, fiber mixed concrete, polymer cement concrete and polymer concrete.
緩衝材は、弾性あるいは可塑性を備えた塗布あるいは接着可能な材料である
ことを特徴とする請求項1または2記載のコンクリート複合製品。
The concrete composite product according to claim 1 or 2, wherein the cushioning material is a material that can be applied or adhered with elasticity or plasticity.
コンクリートで成形された被覆材の周面をさらに別の緩衝材を介して別の被覆材で被覆した
ことを特徴とする請求項1乃至3のいずれか記載のコンクリート複合製品。
The concrete composite product according to any one of claims 1 to 3, wherein a peripheral surface of the covering material formed of concrete is further covered with another covering material via another buffer material.
JP2007330234A 2007-12-21 2007-12-21 Concrete composite products Expired - Fee Related JP5064997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007330234A JP5064997B2 (en) 2007-12-21 2007-12-21 Concrete composite products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007330234A JP5064997B2 (en) 2007-12-21 2007-12-21 Concrete composite products

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012094183A Division JP5462308B2 (en) 2012-04-17 2012-04-17 Concrete composite product and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009150166A true JP2009150166A (en) 2009-07-09
JP5064997B2 JP5064997B2 (en) 2012-10-31

Family

ID=40919583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007330234A Expired - Fee Related JP5064997B2 (en) 2007-12-21 2007-12-21 Concrete composite products

Country Status (1)

Country Link
JP (1) JP5064997B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194355A (en) * 2012-03-15 2013-09-30 Ohbayashi Corp Reinforcement structure and reinforcement method for existing pile
JP2019124045A (en) * 2018-01-16 2019-07-25 株式会社大林組 Composite material, structure, and method for producing composite material
WO2021003862A1 (en) * 2019-07-10 2021-01-14 中国矿业大学 Fabric-reinforced ecc-steel pipe-steel frame composite member and fabrication method therefor
CN113089417A (en) * 2021-04-06 2021-07-09 华南理工大学 ECC-concrete-steel sandwich tubular structure and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104775565A (en) * 2015-03-30 2015-07-15 东南大学 Steel bar reinforced ECC-steel pipe concrete composite column

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03172438A (en) * 1989-11-30 1991-07-25 Shimizu Corp Filled steel pipe type concrete pillar
JP2003041708A (en) * 2001-07-27 2003-02-13 Ps Mitsubishi Construction Co Ltd Member for structure
JP2003336349A (en) * 2002-05-23 2003-11-28 Hiroshi Kuramoto Composite structural member of reinforced concrete

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03172438A (en) * 1989-11-30 1991-07-25 Shimizu Corp Filled steel pipe type concrete pillar
JP2003041708A (en) * 2001-07-27 2003-02-13 Ps Mitsubishi Construction Co Ltd Member for structure
JP2003336349A (en) * 2002-05-23 2003-11-28 Hiroshi Kuramoto Composite structural member of reinforced concrete

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194355A (en) * 2012-03-15 2013-09-30 Ohbayashi Corp Reinforcement structure and reinforcement method for existing pile
JP2019124045A (en) * 2018-01-16 2019-07-25 株式会社大林組 Composite material, structure, and method for producing composite material
JP7067074B2 (en) 2018-01-16 2022-05-16 株式会社大林組 Composite materials, structures, and methods for manufacturing composite materials
WO2021003862A1 (en) * 2019-07-10 2021-01-14 中国矿业大学 Fabric-reinforced ecc-steel pipe-steel frame composite member and fabrication method therefor
CN113089417A (en) * 2021-04-06 2021-07-09 华南理工大学 ECC-concrete-steel sandwich tubular structure and preparation method thereof

Also Published As

Publication number Publication date
JP5064997B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
Yaqub et al. Strength and stiffness of post-heated columns repaired with ferrocement and fibre reinforced polymer jackets
JP5064997B2 (en) Concrete composite products
Orton The way we build now: form, scale and technique
JP5726590B2 (en) Connection structure of reinforced concrete beams or columns
Li et al. Strain efficiency of FRP jackets in FRP-confined concrete-filled circular steel tubes
JP2011520047A (en) Grouting double tube energy absorbing member
Roy et al. Strengthening of heat damaged reinforced concrete short columns
JP2008521650A (en) Plastic hollow body, especially plastic pipe
JP5462308B2 (en) Concrete composite product and manufacturing method thereof
Halim et al. Durability of fibre reinforced polymer under aggressive environment and severe loading: A review
Ranolia et al. Effect of different patterns and cracking in FRP wrapping on compressive strength of confined concrete
JP5990003B2 (en) Structure and reinforcing method thereof
JP2008520460A (en) Plastic tube
KR102205216B1 (en) Ceramic integrated abrasion resistant composite pipe and manufacturing method thereof
US11000987B2 (en) Reinforcement of structures using 3D-fabric wrap
JP6151047B2 (en) Composite structure construction method and composite structure
CA2926664A1 (en) Method of strengthening an existing infrastructure using sprayed-fiber reinforced polymer composite
JP5936059B2 (en) Ready-made pile
JP6108335B2 (en) Beam-column joint structure
CN108316559A (en) A kind of novel stage construction CFRP restrained concrete superposed column
KR101784512B1 (en) Building Reinforcement and Noise Blocking Method that can improve endurance
JP2008038453A (en) Box culvert and method of producing the same
JP6468578B2 (en) Plate structure
JP5498103B2 (en) Buckling restraint brace
JP2007002432A (en) Method of reinforcing cement-based structure, and cement-based structure reinforced by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Ref document number: 5064997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees