JP2009149957A - Method for manufacturing ferrous sintered component - Google Patents

Method for manufacturing ferrous sintered component Download PDF

Info

Publication number
JP2009149957A
JP2009149957A JP2007330426A JP2007330426A JP2009149957A JP 2009149957 A JP2009149957 A JP 2009149957A JP 2007330426 A JP2007330426 A JP 2007330426A JP 2007330426 A JP2007330426 A JP 2007330426A JP 2009149957 A JP2009149957 A JP 2009149957A
Authority
JP
Japan
Prior art keywords
sizing
sintered
thickness
component
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007330426A
Other languages
Japanese (ja)
Inventor
Takehiro Nakajima
武博 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2007330426A priority Critical patent/JP2009149957A/en
Publication of JP2009149957A publication Critical patent/JP2009149957A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remarkably exhibit a straightening effect at sizing after sintering and to minimize warpage even in the case of a thin ferrous sintered component and also to increase the strength and hardness of the component by a sufficiently practicable method. <P>SOLUTION: The manufacturing of the ferrous sintered component, in which sizing is performed after sintering, is carried out by the following method: the sizing of a sintered compact is performed at 300 to 600°C and then heat treatment is applied. By this method, a thin-walled clutch component 10 etc. can be manufactured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、焼結後にサイジングと熱処理を行う鉄系焼結部品の製造方法、詳しくは、厚みが15mmにも満たない薄肉焼結部品の精度の向上と不良率低減に有効な鉄系焼結部品の製造方法に関する。   The present invention relates to a method for manufacturing an iron-based sintered part in which sizing and heat treatment are performed after sintering. Specifically, the iron-based sintering is effective in improving the accuracy and reducing the defective rate of a thin-walled sintered part having a thickness of less than 15 mm. The present invention relates to a part manufacturing method.

周知の焼結部品のひとつに、図2〜図4に示すような板状のクラッチ部品10がある。このクラッチ部品10は、ランプ溝を形成するカム面12を端面11に有しており、そのカム面12上を相手部品13に保持されるボール14が転がる構造にして一方向クラッチを構成する。このクラッチ部品10は、粉末冶金法の特徴を生かすためにカム面12も含めて全体を金型で成形して作られている。   One of the known sintered parts is a plate-like clutch part 10 as shown in FIGS. The clutch component 10 has a cam surface 12 that forms a ramp groove on the end surface 11, and a ball 14 held on the counterpart component 13 rolls on the cam surface 12 to constitute a one-way clutch. The clutch component 10 is formed by molding the entire die including the cam surface 12 in order to take advantage of the characteristics of the powder metallurgy method.

上記のクラッチ部品などは、厚みが15mmにも満たない(厚みの上限は一般的には7〜10mm)薄肉部品であるので、焼結工程において素材に歪や図4に示すような反り(厚み方向への反り。一点鎖線が反りのない状態)が発生し易い。そこで、焼結後にサイジングを行って形状の修正、反りの戻しを行っている。焼結後のサイジングについては、下記特許文献1などが開示している。   Since the above-mentioned clutch parts are thin parts having a thickness of less than 15 mm (the upper limit of the thickness is generally 7 to 10 mm), distortion and warping (thickness) shown in FIG. Warp in the direction (a state in which the one-dot chain line is not warped) is likely to occur. Therefore, sizing is performed after sintering to correct the shape and return the warp. The following Patent Document 1 discloses sizing after sintering.

焼結体のサイジングは、常温下で実施する常温サイジングが一般的である。特許文献1が開示している方法も、サイジングの温度条件についての記載はないが、その常温サイジングと考えられる。
特開2003−41301号公報
The sizing of the sintered body is generally performed at room temperature sizing performed at room temperature. The method disclosed in Patent Document 1 is also considered to be normal temperature sizing, although there is no description about the sizing temperature condition.
Japanese Patent Laid-Open No. 2003-41301

常温サイジングは、矯正効果が小さくて焼結部品の形状精度、寸法精度を十分に高めることができない。反りを生じ易い薄肉部品は、サイジング後も反りが残るため、高精度が要求される場合にはその反りの除去や抑制が必要になる。   Room temperature sizing has a small correction effect and cannot sufficiently increase the shape accuracy and dimensional accuracy of sintered parts. Thin-walled parts that are likely to warp remain warped after sizing, and therefore, when high accuracy is required, the warp needs to be removed or suppressed.

反りの抑制は、部品厚みを増加することで行うが、この方法では必要以上に厚くなった部品厚みを要求寸法にするために、後工程で部品端面の追加工(研削や研磨)が必要になる。常温サイジングによる矯正では矯正後も部品の反りが大きく残るため部品厚みを増加する方法での反りの抑制では部品厚みの増加量が多くなり、追加工での端面の加工代が多くなって生産性の悪化などにつながる。   Although warpage is suppressed by increasing the thickness of the part, this method requires additional processing (grinding and polishing) of the end face of the part in the subsequent process in order to make the part thickness that is thicker than necessary into the required dimension. Become. When straightening with room temperature sizing, the warpage of the part remains largely even after straightening, so suppressing the warpage with the method of increasing the thickness of the part increases the amount of increase in the thickness of the part, which increases the processing cost of the end face in additional machining and increases productivity. It will lead to worsening.

また、限界を超える反りを生じた部品は修正不可能な不良品となる。常温サイジングによる矯正では、その不良発生率が無視できないものになっている。   Also, a part that has warped exceeding the limit becomes a defective product that cannot be corrected. In the correction by room temperature sizing, the defect occurrence rate cannot be ignored.

また、サイジング後に焼き入れなどの熱処理(以下ではこれを後工程の熱処理と言う)を施す場合には、後工程の熱処理によって形状精度、寸法精度が更に悪化するため、熱処理前の形状精度、寸法精度はより厳しく管理しなければならない。   In addition, when heat treatment such as quenching is performed after sizing (hereinafter referred to as post-treatment heat treatment), shape accuracy and dimensional accuracy are further deteriorated by post-treatment heat treatment. The accuracy must be managed more strictly.

この発明は、サイジングでの矯正効果が顕著に発揮されて薄肉鉄系焼結部品についても反りが小さく抑えられるようにすると共に、実施性に優れる方法で部品の高強度化、高硬度化、高面圧化も実現することを課題としている。   This invention has a remarkable effect of sizing correction, and is capable of suppressing the warpage of thin-walled iron-based sintered parts as well as increasing the strength, hardness, The challenge is to achieve surface pressure.

上記の課題を解決するため、この発明においては、鉄系焼結部品の製造を以下のようにして行う。即ち、歪や反りを生じた焼結体の矯正を効果的に行うために、焼結体のサイジングを300〜600℃の温度下で行う。そして、その後に、熱処理を施す。サイジングに供する焼結体の炭素含有量が適切な範囲(例えば0.5〜1.5wt%)に制御されていると、この熱処理で高強度化、高硬度化、高面圧化が図れる。   In order to solve the above problems, in the present invention, the iron-based sintered part is manufactured as follows. That is, the sizing of the sintered body is performed at a temperature of 300 to 600 ° C. in order to effectively correct the sintered body that is distorted or warped. Thereafter, heat treatment is performed. When the carbon content of the sintered body used for sizing is controlled within an appropriate range (for example, 0.5 to 1.5 wt%), high strength, high hardness, and high surface pressure can be achieved by this heat treatment.

この方法でのサイジングの圧力は、200〜1000MPaの範囲が好ましい。200MPa以下では形状、寸法の矯正効果が不十分になる可能性がある。また、1000MPa以上では金型の寿命短縮、サイジング時の金型の歪による部品の精度悪化などが考えられるようになる。   The sizing pressure in this method is preferably in the range of 200 to 1000 MPa. If it is 200 MPa or less, the effect of correcting the shape and dimensions may be insufficient. In addition, when the pressure is 1000 MPa or more, it is considered that the life of the mold is shortened and the accuracy of the parts is deteriorated due to the distortion of the mold during sizing.

かかる鉄系焼結部品の製造方法は、反りを生じ易いのに精度が要求される部品、具体的には、金型によって成形、矯正されるカム面を端面に備えた、厚みが2〜15mmの薄肉部品の製造に適用すると特に大きな効果を期待できる。   Such a method for manufacturing an iron-based sintered part has a thickness of 2 to 15 mm, which is provided with a cam surface which is easily formed and corrected by a mold, and is required to be accurate although it tends to be warped. When applied to the manufacture of thin-walled parts, a particularly great effect can be expected.

なお、部品の高強度化、高硬度化、高面圧化のための熱処理は、窒化や軟窒化などの処理も考えられるが、浸炭・焼入れが好ましい。   The heat treatment for increasing the strength, hardness, and surface pressure of the parts may be nitriding or soft nitriding, but carburizing and quenching are preferred.

この発明では、焼結体のサイジングを300〜600℃の温度下で行うので、部品の内部に残留する歪が除去され、サイジングによる矯正効果が高まって反りや歪が減少し、端面の平面度を追加工によって修正するときの加工代が減少する。さらに、端面にカム面を有する部品については、カム面の形状精度、位置精度も良くなり、さらには面圧強度もアップして部品の性能が向上する。   In this invention, since the sizing of the sintered body is performed at a temperature of 300 to 600 ° C., the strain remaining in the part is removed, the correction effect by sizing is increased, the warpage and strain are reduced, and the flatness of the end face Machining cost is reduced when reworking is modified by additional machining. Further, for a part having a cam surface on the end surface, the shape accuracy and position accuracy of the cam surface are improved, and further, the surface pressure strength is increased and the performance of the part is improved.

サイジングの温度は、300℃以上とすることによってサイジングによる矯正効果が高まる。その温度の上限は、素材の組織変化を抑えるために後工程の熱処理温度よりも低くする必要があり、後工程の熱処理温度が焼入れなどでは800℃以上となるので、200℃の余裕を持たせて600℃にした。   By adjusting the sizing temperature to 300 ° C. or higher, the correction effect by sizing is enhanced. The upper limit of the temperature needs to be lower than the heat treatment temperature in the subsequent process in order to suppress the structural change of the material, and the heat treatment temperature in the subsequent process becomes 800 ° C. or higher in quenching or the like. To 600 ° C.

以下、この発明の実施の形態について説明する。
実施例1
4重量%Ni−0.5重量%Mo−1.5重量%Cu−残Feの組成の合金粉末に1.0重量%のグラファイト粉末と0.8重量%の潤滑剤を添加混合し、得られた混合粉末を粉末成形装置を使用して約600MPaの成形圧力で成形し、図1に示す円盤状の圧粉体1を得た。この圧粉体1の寸法諸元は、外径D=90mm、厚みt=6mmである。圧粉体1の端面2には、窪んだカム面3を周方向に一定ピッチで計4箇所設けている。
Embodiments of the present invention will be described below.
Example 1
An alloy powder having a composition of 4 wt% Ni-0.5 wt% Mo-1.5 wt% Cu-residual Fe was added and mixed with 1.0 wt% graphite powder and 0.8 wt% lubricant. The obtained mixed powder was molded at a molding pressure of about 600 MPa using a powder molding apparatus to obtain a disk-shaped green compact 1 shown in FIG. The dimensions of the green compact 1 are an outer diameter D = 90 mm and a thickness t = 6 mm. The end surface 2 of the green compact 1 is provided with a total of four recessed cam surfaces 3 at a constant pitch in the circumferential direction.

上記の圧粉体1を窒素ガス雰囲気の炉に導入して1150℃で20分間焼結し、真密度89%、気孔率11%の鉄系焼結体を得た。   The green compact 1 was introduced into a furnace in a nitrogen gas atmosphere and sintered at 1150 ° C. for 20 minutes to obtain an iron-based sintered body having a true density of 89% and a porosity of 11%.

次に、その鉄系焼結体を表1に示す温度に温めた。そして、温めた焼結体を400℃の温度に加温したサイジング金型を用いて約700MPaの圧力でサイジングを行った。   Next, the iron-based sintered body was heated to the temperature shown in Table 1. Then, sizing was performed at a pressure of about 700 MPa using a sizing mold in which the heated sintered body was heated to a temperature of 400 ° C.

比較のために、同一焼結体を常温下において実施例と同一成形圧力でサイジングした。   For comparison, the same sintered body was sized at the same molding pressure as in the examples at room temperature.

サイジング後の焼結体は、いずれも800〜900℃の温度に加熱して浸炭処理を行い
、その後、急冷して焼入れを行った。
All the sintered bodies after sizing were heated to a temperature of 800 to 900 ° C. to perform carburizing treatment, and then quenched and quenched.

熱処理(浸炭、焼入れ)後の焼結体(試料)の厚み方向の反り量を調べた。その測定結果を表1に併せて示す。反りの大きい試料ほど端面の平面度を修正するための追加工による加工代が大きくなる。   The amount of warpage in the thickness direction of the sintered body (sample) after heat treatment (carburizing and quenching) was examined. The measurement results are also shown in Table 1. As the warpage of the specimen increases, the machining allowance for the additional work for correcting the flatness of the end face increases.

Figure 2009149957
Figure 2009149957

この実施例1からわかるように、この発明の方法によれば、肉厚の薄い焼結体の歪や反りをサイジングによる矯正で効果的に修正することができ、高精度が要求される場合に行う追加工での加工代を減少させ、生産性を高めることができる。   As can be seen from Example 1, according to the method of the present invention, distortion and warpage of a thin sintered body can be effectively corrected by correction by sizing, and high accuracy is required. It can reduce the processing cost for additional machining and increase productivity.

また、クラッチ部品などは、反りが抑えられることによって端面のカム形状やカム面の位置精度が高まり、さらには面圧強度もアップして部品そのものの性能が向上する。   In addition, by suppressing the warpage of the clutch parts and the like, the cam shape of the end face and the positional accuracy of the cam surface are increased, and the surface pressure strength is also increased, thereby improving the performance of the parts themselves.

さらに、追加工での取り代が減少するので、表面硬化層の減少が少なくなり、高面圧耐久性にも優れた部品を提供することも可能になる。   Furthermore, since the machining allowance for additional machining is reduced, the reduction of the surface hardened layer is reduced, and it is also possible to provide a component having excellent high surface pressure durability.

実施例2
実施例1と同じ材料を使用して同一成形条件で円盤状圧粉体を成形した。その圧粉体として表2に示す直径と厚みを有するものを作り、これを焼結した後にサイジングし、その後さらに熱処理を行った。焼結、サイジング、熱処理の条件はいずれも実施例1と同じにした。そして、得られた焼結体の反り量を調べた。その測定結果を表2に示す。
Example 2
Using the same material as in Example 1, a disk-shaped green compact was molded under the same molding conditions. The green compact having the diameter and thickness shown in Table 2 was prepared, sintered, sized, and then further heat-treated. The conditions for sintering, sizing, and heat treatment were all the same as in Example 1. And the amount of curvature of the obtained sintered compact was investigated. The measurement results are shown in Table 2.

Figure 2009149957
Figure 2009149957

この実施例2からわかるように、熱処理後の残存反り量は、焼結体の厚みが厚くなるほど小さくなる傾向にあるので、この発明は、15mm以下の厚みの薄い焼結部品の製造に利用すると特に大きな効果を期待できる。なお、厚みが2mmにも満たないような極薄焼結部品の要求は殆どないので、この発明を適用する焼結部品の厚みの下限は2mm程度になると思われる。   As can be seen from Example 2, the amount of remaining warp after the heat treatment tends to decrease as the thickness of the sintered body increases, so that the present invention can be used for manufacturing a thin sintered part having a thickness of 15 mm or less. A particularly large effect can be expected. In addition, since there is almost no request | requirement of the ultra-thin sintered part that thickness is less than 2 mm, it seems that the minimum of the thickness of the sintered part to which this invention is applied will be about 2 mm.

実施例で製造した部品の斜視図Perspective view of parts manufactured in Example 反りを生じ易い焼結部品の一例(クラッチ部品)を示す斜視図A perspective view showing an example (clutch part) of a sintered part that easily warps. 図2の焼結部品を用いた一方向クラッチの概要を示す断面図Sectional drawing which shows the outline | summary of the one-way clutch using the sintered component of FIG. 図2のクラッチ部品が反った状態を誇張して示す図The figure which exaggerates and shows the state which the clutch components of FIG. 2 curved

符号の説明Explanation of symbols

1 圧粉体
2 端面
3 カム面
10 クラッチ部品
11 端面
12 カム面
13 相手部品
14 ボール
DESCRIPTION OF SYMBOLS 1 Green compact 2 End surface 3 Cam surface 10 Clutch component 11 End surface 12 Cam surface 13 Counterpart 14 Ball

Claims (2)

焼結後にサイジングを行う鉄系焼結部品の製造方法であって、焼結体のサイジングを300〜600℃の温度下で行い、その後、熱処理を施すことを特徴とする鉄系焼結部品の製造方法。   An iron-based sintered part manufacturing method for performing sizing after sintering, wherein the sintered body is sized at a temperature of 300 to 600 ° C., and then heat-treated. Production method. 金型によって成形、矯正されるカム面を端面に備えた、厚みが2〜15mmの薄肉部品を製造する請求項1に記載の鉄系焼結部品の製造方法。   The method for producing an iron-based sintered part according to claim 1, wherein a thin-walled part having a thickness of 2 to 15 mm and having a cam surface formed and corrected by a mold on the end face is produced.
JP2007330426A 2007-12-21 2007-12-21 Method for manufacturing ferrous sintered component Pending JP2009149957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007330426A JP2009149957A (en) 2007-12-21 2007-12-21 Method for manufacturing ferrous sintered component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007330426A JP2009149957A (en) 2007-12-21 2007-12-21 Method for manufacturing ferrous sintered component

Publications (1)

Publication Number Publication Date
JP2009149957A true JP2009149957A (en) 2009-07-09

Family

ID=40919410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007330426A Pending JP2009149957A (en) 2007-12-21 2007-12-21 Method for manufacturing ferrous sintered component

Country Status (1)

Country Link
JP (1) JP2009149957A (en)

Similar Documents

Publication Publication Date Title
JP4902280B2 (en) Powder forged member, mixed powder for powder forging, method for producing powder forged member, and fracture split type connecting rod using the same
US20150033894A1 (en) Mechanical structure component, sintered gear, and methods of manufacturing mechanical structure component and sintered gear
KR20100133956A (en) Material for projecting material for shot-peening, finished wire, production process, and projecting material for shot-peening
CN112090975B (en) Surface extrusion reinforced engine gear manufacturing process and extrusion forming die
JP2011190513A (en) Method for manufacturing sliding component
EP3483295B1 (en) Repair-welding material for die
CN107243638A (en) A kind of high-precision, wear-resistant sprocket wheel method for preparing powder metallurgy
JP2009167477A (en) Sintered clutch hub, compact therefor, and method for manufacturing sintered clutch hub
JP4301507B2 (en) Sintered sprocket for silent chain and manufacturing method thereof
KR20050055732A (en) High-precision sintered cam lobe material
JPH08295904A (en) Preparation of cam for jointed cam shaft
JP2009149957A (en) Method for manufacturing ferrous sintered component
JP5073510B2 (en) Manufacturing method of sintered parts with excellent dimensional accuracy
CN113260473B (en) 3D printed high-carbon-content steel and preparation method thereof
JP5276491B2 (en) Surface densification method of sintered body
JP6274743B2 (en) Shot peening method to obtain high compressive residual stress
JP2007077425A (en) Carburizing method and carburized member
JP2017088959A (en) Method of producing nitrided component and nitrided component
JP4405781B2 (en) Wear-resistant parts and method for manufacturing the same
JP2018127650A (en) Ferrous powder metallurgical member and method for producing the same
JP2013189658A (en) Machine structural component and method of manufacturing the same
JP2005240059A (en) Method for producing composite sintered component and composite sintered component obtained by the method
CN107435094B (en) A kind of pure iron component improves the process of hardness
JP6064919B2 (en) Annealing sleeve roll
JP6228733B2 (en) Induction hardening method of iron-based sintered body