JP2009149952A - Heat-resistant magnesium alloy and producing method therefor - Google Patents

Heat-resistant magnesium alloy and producing method therefor Download PDF

Info

Publication number
JP2009149952A
JP2009149952A JP2007329986A JP2007329986A JP2009149952A JP 2009149952 A JP2009149952 A JP 2009149952A JP 2007329986 A JP2007329986 A JP 2007329986A JP 2007329986 A JP2007329986 A JP 2007329986A JP 2009149952 A JP2009149952 A JP 2009149952A
Authority
JP
Japan
Prior art keywords
atomic
heat
magnesium alloy
phase
resistant magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007329986A
Other languages
Japanese (ja)
Inventor
Kenshi Inoue
剣志 井上
Yuichi Ienaga
裕一 家永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007329986A priority Critical patent/JP2009149952A/en
Priority to US12/338,747 priority patent/US20090162242A1/en
Publication of JP2009149952A publication Critical patent/JP2009149952A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D30/00Cooling castings, not restricted to casting processes covered by a single main group
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-resistant magnesium alloy which has at the same time high strength and high ductility even under high temperature environment and is also inexpensive, and to provide a production method therefor. <P>SOLUTION: The heat-resistant magnesium alloy comprises, in relation to the total amount of the alloy, 1 to 3 atomic% Zn, 1 to 3 atomic% Y and 0.01 to 0.5 atomic% Zr and the balance Mg with inevitable impurities, wherein composition ratio Zn/Y between Zn and Y falls within the range of 0.6 to 1.3 and also, α-Mg phase and an intermetallic compound Mg<SB>3</SB>Y<SB>2</SB>Zn<SB>3</SB>phase are finely dispersed, and a long period stacking ordered structure phase is formed in three-dimensional network shape. The heat-resistant magnesium alloy can be produced by melting a metal material having the above composition at a temperature within the range of 650 to 900°C and pouring the molten metal material into a mold and cooling the molten metal material at a rate of 10 to 10<SP>3</SP>K/sec. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐熱性マグネシウム合金及びその製造方法に関するものである。   The present invention relates to a heat-resistant magnesium alloy and a method for producing the same.

マグネシウムは、鉄、アルミニウムに比べて軽量であるため、鉄鋼材料や、アルミニウム合金材料からなる部材に代わる軽量代替材として用いることが検討されている。ところが、一般のマグネシウム合金は、200〜250℃の高温域において、引張強度及び伸び等の機械的特性が低下し、鋳造AC8B−T6材、鍛造A4032−T6材等の耐熱アルミニウム合金に匹敵する高温強度を得ることができない。   Since magnesium is lighter than iron and aluminum, it has been studied to be used as a lightweight substitute material in place of a member made of a steel material or an aluminum alloy material. However, in general magnesium alloys, mechanical properties such as tensile strength and elongation decrease at a high temperature range of 200 to 250 ° C., and high temperatures comparable to heat-resistant aluminum alloys such as cast AC8B-T6 material and forged A4032-T6 material. Can't get strength.

そこで、従来、高温環境下においても高強度と高延性とを兼ね備える耐熱性マグネシウム合金が種々提案されている。このような耐熱性マグネシム合金として、例えば、全量に対して、Zn1〜4原子%と、Y1〜4.5原子%と、Zr0.1〜0.5原子%とを含み、残部がMgと不可避の不純物とからなり、ZnとYとの組成比Zn/Yが0.6〜1.3の範囲にある組成を備えるMg合金を鋳造後、塑性加工してなるマグネシム合金が知られている。前記耐熱性マグネシウム合金は、金属間化合物MgZnと、長周期構造を示すMg12ZnYとを含む合金組織とを備えており、高温環境下において高強度と高延性とを得ることができる(特許文献1参照)。 Accordingly, various heat-resistant magnesium alloys that have both high strength and high ductility even under high temperature environments have been proposed. Such a heat-resistant magnesium alloy includes, for example, Zn 1 to 4 atomic%, Y 1 to 4.5 atomic%, and Zr 0.1 to 0.5 atomic% with respect to the total amount, and the balance is inevitable with Mg. A magnesium alloy is known which is formed by casting a Mg alloy having a composition in which Zn / Y is in the range of 0.6 to 1.3, and then plastically working. The heat-resistant magnesium alloy includes an intermetallic compound Mg 3 Y 2 Zn 3 and an alloy structure containing Mg 12 ZnY exhibiting a long-period structure, and obtains high strength and high ductility in a high temperature environment. (See Patent Document 1).

しかしながら、前記耐熱性マグネシウム化合物は、鋳造後、さらに塑性加工しなければならず、該塑性加工には大きなエネルギーを必要とするため、製造コストが大きくなる。そこで、高温環境下において高強度と高延性とを兼ね備えると共に安価な耐熱性マグネシウム合金が望まれる。
特開2006−97037号公報
However, the heat-resistant magnesium compound must be further plastically processed after casting, and the plastic processing requires a large amount of energy, which increases the manufacturing cost. Thus, an inexpensive heat-resistant magnesium alloy that has both high strength and high ductility in a high temperature environment is desired.
JP 2006-97037 A

本発明は、かかる不都合を解消して、高温環境下において高強度と高延性とを兼ね備えると共に安価な耐熱性マグネシウム合金を提供することを目的とする。   An object of the present invention is to eliminate such inconveniences and to provide an inexpensive heat-resistant magnesium alloy that has both high strength and high ductility in a high temperature environment.

かかる目的を達成するために、本発明の耐熱性マグネシウム合金は、全量に対して、Zn1〜3原子%と、Y1〜3原子%と、Zr0.01〜0.5原子%とを含み、残部がMgと不可避の不純物とからなり、ZnとYとの組成比Zn/Yが0.6〜1.3の範囲にあると共に、α−Mg相及び金属間化合物MgZn相が微細に分散し、かつ、長周期積層構造相が三次元網目状に形成されていることを特徴とする。 In order to achieve this object, the heat-resistant magnesium alloy of the present invention contains Zn 1 to 3 atomic%, Y 1 to 3 atomic%, and Zr 0.01 to 0.5 atomic% with respect to the total amount, and the balance. Is composed of Mg and inevitable impurities, the composition ratio Zn / Y of Zn and Y is in the range of 0.6 to 1.3, and the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 phase are It is characterized by being finely dispersed and having a long-period laminated structure phase formed in a three-dimensional network.

本発明の耐熱性マグネシム合金は、前記組成を備えると共に、前記α−Mg相及び金属間化合物MgZn相が微細に分散し、かつ、長周期積層構造相が三次元網目状に形成されていることにより、200〜250℃の高温環境下においても高強度と高延性とを兼ね備えることができる。耐熱性マグネシウム合金の全量に対して、Znが1原子%未満または3原子%を超え、Yが1原子%未満または3原子%を超えるときには、強度または延性のいずれか一方、または両方が不十分になる。 The heat-resistant magnesium alloy of the present invention has the above composition, the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 phase are finely dispersed, and the long-period laminated structure phase has a three-dimensional network shape. By being formed, even in a high temperature environment of 200 to 250 ° C., it is possible to have both high strength and high ductility. When Zn is less than 1 atomic% or more than 3 atomic% and Y is less than 1 atomic% or more than 3 atomic%, either strength or ductility, or both are insufficient with respect to the total amount of heat-resistant magnesium alloy become.

また、本発明の耐熱性マグネシウム合金は、Zrを前記範囲で含むことにより、前記α−Mg相及び金属間化合物MgZn相を微細化すると共に、鋳造冷却中における前記金属間化合物MgZnの粗大化を抑制することができる。Zrの含有量が合金全量に対して0.01原子%未満では前記α−Mg相及び金属間化合物MgZn相を微細化し、鋳造冷却中における前記金属間化合物MgZnの粗大化を抑制する効果を得ることができず、0.5原子%を超えると前記α−Mg相及び金属間化合物MgZnの微細化効果は飽和状態に達する。 In addition, the heat-resistant magnesium alloy of the present invention contains Zr in the above range to refine the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 phase, and the intermetallic compound during casting cooling. The coarsening of Mg 3 Y 2 Zn 3 can be suppressed. When the Zr content is less than 0.01 atomic% with respect to the total amount of the alloy, the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 phase are refined, and the intermetallic compound Mg 3 Y 2 Zn during casting cooling. 3 cannot be obtained, and if it exceeds 0.5 atomic%, the effect of refining the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 reaches a saturated state.

さらに、本発明の耐熱性マグネシウム合金は、前記金属間化合物MgZnと、前記長周期積層構造との両方を確実に含むために、前記ZnとYとの組成比Zn/Yが0.6〜1.3の範囲にあることが必要である。前記ZnとYとの組成比Zn/Yが0.6未満または1.3を超えるときには、前記耐熱性マグネシウム合金に前記金属間化合物MgZnと、前記長周期積層構造とのいずれか一方、または両方が含まれないことがある。 Furthermore, since the heat-resistant magnesium alloy of the present invention surely includes both the intermetallic compound Mg 3 Y 2 Zn 3 and the long-period stacked structure, the composition ratio Zn / Y of Zn and Y is It must be in the range of 0.6 to 1.3. When the Zn / Y composition ratio Zn / Y is less than 0.6 or exceeds 1.3, any one of the intermetallic compound Mg 3 Y 2 Zn 3 and the long-period stacked structure is included in the heat-resistant magnesium alloy. One or both may not be included.

本発明の耐熱性マグネシム合金においては、三次元網目状に形成された前記長周期積層構造相の間に、前記α−Mg相及び金属間化合物MgZn相の微細な粒子が存在している合金組織を備えることが必要である。前記α−Mg相及び金属間化合物MgZn相の粒子が粗大化し、粗大な粒子により前記長周期積層構造相の三次元網目状の構成が崩れると、前記高温環境下において高強度と高延性とを得ることができない。 In the heat-resistant magnesium alloy of the present invention, fine particles of the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 phase exist between the long-period laminated structure phases formed in a three-dimensional network. It is necessary to provide the alloy structure which is doing. When the particles of the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 phase are coarsened and the three-dimensional network structure of the long-period laminated structure phase is broken by the coarse particles, the strength is increased in the high temperature environment. And high ductility cannot be obtained.

前記合金組織を備える本発明の耐熱性マグネシム合金は、全量に対して、Zn1〜3原子%と、Y1〜3原子%と、Zr0.01〜0.5原子%とを含み、残部がMgと不可避の不純物とからなり、ZnとYとの組成比Zn/Yが0.6〜1.3の範囲にある金属材料を、650〜900℃の範囲の温度で溶融し、金型に鋳込んで10〜10K/秒の速度で冷却する製造方法により有利に製造することができる。前記溶融温度が650℃未満では前記金属材料を構成する各金属成分を均一に溶融させることができず、900℃を超えると前記各金属成分の一部が気化して失われる。また、冷却速度が10K/秒未満の場合には、前記α−Mg相及び金属間化合物MgZn相の粒子が粗大化し、前記長周期積層構造相の三次元網目状の構成を得ることができない。一方、10K/秒を超える冷却速度とすることは技術的に困難である。 The heat-resistant magnesium alloy of the present invention having the alloy structure includes Zn 1 to 3 atomic%, Y 1 to 3 atomic%, and Zr 0.01 to 0.5 atomic%, with the balance being Mg. A metal material consisting of unavoidable impurities and having a Zn / Y composition ratio Zn / Y in the range of 0.6 to 1.3 is melted at a temperature in the range of 650 to 900 ° C. and cast into a mold. Can be advantageously produced by a production method of cooling at a rate of 10 to 10 3 K / sec. When the melting temperature is less than 650 ° C., each metal component constituting the metal material cannot be uniformly melted, and when it exceeds 900 ° C., a part of each metal component is vaporized and lost. Further, when the cooling rate is less than 10 K / sec, the particles of the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 phase are coarsened, and the three-dimensional network structure of the long-period stacked structure phase is formed. Can't get. On the other hand, it is technically difficult to achieve a cooling rate exceeding 10 3 K / sec.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の耐熱性マグネシウム合金の鋳造物の形状を示す平面図、図2は図1のII−II線断面図であり、図3は本実施形態の耐熱性マグネシウム合金の合金組織の反射電子像であり、図4は機械的性質を測定するために図1及び図2に示す鋳造物から切り出した試験片の形状を示す平面図である。また、図5及び図6は、比較例の耐熱性マグネシウム合金の合金組織の反射電子像である。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. 1 is a plan view showing the shape of a cast of the heat-resistant magnesium alloy of the present embodiment, FIG. 2 is a sectional view taken along the line II-II of FIG. 1, and FIG. 3 is an alloy structure of the heat-resistant magnesium alloy of the present embodiment. FIG. 4 is a plan view showing the shape of a test piece cut out from the casting shown in FIGS. 1 and 2 in order to measure mechanical properties. 5 and 6 are backscattered electron images of the alloy structure of the heat-resistant magnesium alloy of the comparative example.

本実施形態では、まず、全量に対して、Zn1〜3原子%と、Y1〜3原子%と、Zr0.01〜0.5原子%とを含み、残部がMgと不可避の不純物とからなり、ZnとYとの組成比Zn/Yが0.6〜1.3の範囲にある金属材料を、650〜900℃の範囲の温度で溶融し、溶融合金を得る。   In this embodiment, first, with respect to the total amount, Zn 1 to 3 atomic%, Y 1 to 3 atomic%, Zr 0.01 to 0.5 atomic%, the balance consists of Mg and inevitable impurities, A metal material having a Zn / Y composition ratio Zn / Y in the range of 0.6 to 1.3 is melted at a temperature in the range of 650 to 900 ° C. to obtain a molten alloy.

次に、前記溶融合金を金型に注入して鋳造を行う。前記鋳造は、例えば、無酸素銅(C1020、純度4N)からなる金型を用い、重力鋳造方式により、前記溶融合金を800〜850℃の範囲の温度に維持して鋳込むことにより行う。前記鋳造における冷却は、10〜10K/秒の範囲の速度で行う。 Next, the molten alloy is poured into a mold and cast. The casting is performed, for example, by using a mold made of oxygen-free copper (C1020, purity 4N) and casting the molten alloy at a temperature in the range of 800 to 850 ° C. by a gravity casting method. Cooling in the casting is performed at a speed in the range of 10 to 10 3 K / sec.

この結果、全量に対して、Zn1〜3原子%と、Y1〜3原子%と、Zr0.01〜0.5原子%とを含み、残部がMgと不可避の不純物とからなり、ZnとYとの組成比Zn/Yが0.6〜1.3の範囲にあると共に、α−Mg相及び金属間化合物MgZn相が微細に分散し、かつ、長周期積層構造相が三次元網目状に形成されているマグネシウム合金を得ることができる。前記マグネシウム合金は、鋳造後、塑性加工を必要としないので安価であり、200〜250℃の高温環境下で高強度と高延性とを兼ね備える耐熱性マグネシウム合金である。 As a result, with respect to the total amount, Zn 1 to 3 atomic%, Y 1 to 3 atomic%, Zr 0.01 to 0.5 atomic%, the balance is composed of Mg and inevitable impurities, Zn and Y, The composition ratio Zn / Y is in the range of 0.6 to 1.3, the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 phase are finely dispersed, and the long-period stacked structure phase is tertiary. A magnesium alloy formed in an original network shape can be obtained. The magnesium alloy is inexpensive because it does not require plastic working after casting, and is a heat-resistant magnesium alloy that combines high strength and high ductility in a high temperature environment of 200 to 250 ° C.

尚、本実施形態の耐熱性マグネシウム合金は、Yに代えてDy、Ho、Er、Gd、Tb、Tmからなる群から選択される金属を含むものであってもよく、Zrに代えてTiまたはHfを含むものであってもよい。   The heat-resistant magnesium alloy of this embodiment may include a metal selected from the group consisting of Dy, Ho, Er, Gd, Tb, and Tm instead of Y, and Ti or Ti instead of Zr. Hf may be included.

次に本発明の実施例、比較例、及び参考例を示す。   Next, examples of the present invention, comparative examples, and reference examples are shown.

本実施例では、全量に対して、Zn2原子%、Y2原子%、Zr0.2原子%、Mg95.8原子%からなる金属材料を、850℃の温度で溶融し、溶融合金を得た。前記溶融合金において、ZnとYとの組成比Zn/Yは1.0である。   In this example, a metal material composed of 2 atomic% Zn, 2 atomic% Y, 0.2 atomic% Zr, and 95.8 atomic% Mg was melted at a temperature of 850 ° C. to obtain a molten alloy. In the molten alloy, the composition ratio Zn / Y between Zn and Y is 1.0.

次に、得られた溶融合金を、重力鋳造方式により、無酸素銅(C1020、純度4N)からなる金型に鋳込んで耐熱性マグネシウム合金の鋳造物を得た。前記鋳造は、前記溶融合金を800〜850℃の範囲の温度に維持して行った。   Next, the obtained molten alloy was cast into a mold made of oxygen-free copper (C1020, purity 4N) by a gravity casting method to obtain a heat-resistant magnesium alloy casting. The casting was performed while maintaining the molten alloy at a temperature in the range of 800-850 ° C.

図1に示すように、本実施例で得られた鋳造物1は、平面視長方形であり、46mm×56mmの大きさを備えている。また、鋳造物1は、図2に示すように、長辺に沿って厚さがt〜tまで段階的に変化しており、t=2mm(実施例1)、t=4mm(実施例2)、t=8mm(実施例3)、t=16mm(実施例4)となっている。 As shown in FIG. 1, the casting 1 obtained in this example is rectangular in plan view and has a size of 46 mm × 56 mm. Further, as shown in FIG. 2, the casting 1 has a thickness that gradually changes from t 1 to t 4 along the long side, t 1 = 2 mm (Example 1), t 2 = 4 mm. (Example 2), t 3 = 8 mm (Example 3), and t 4 = 16 mm (Example 4).

本実施例で得られた鋳造物1は、前記厚さにより冷却速度が異なっており、厚さt=2mmの部分では668K/秒、厚さt=4mmの部分では166K/秒、厚さt=8mmの部分では55K/秒、厚さt=16mmの部分では21K/秒であった。 The casting 1 obtained in this example has a different cooling rate depending on the thickness, and the thickness t 1 = 2 mm is 668 K / second, and the thickness t 2 = 4 mm is 166 K / second. The thickness t 3 = 8 mm was 55 K / second, and the thickness t 4 = 16 mm was 21 K / second.

尚、前記冷却速度は次のようにして算出した。まず、前記金属材料に代えて、Al82.7原子%、Cu17.3原子%金属材料を用いた以外は、本実施例と全く同一にして、Al82.7Cu17.3共晶合金を鋳造し、該共晶合金の二次枝間距離(DAS、Dendrite Arm Spacing)を測定した。次に、前記共晶合金におけるDASと冷却速度との関係を示す実験式を求めた。そして、前記実験式に、本実施例の耐熱性マグネシウム合金のt〜tのそれぞれの厚さの部分におけるDASを代入し、各部分の冷却速度を求めた。 The cooling rate was calculated as follows. First, an Al 82.7 Cu 17.3 eutectic alloy was cast in the same manner as in this example except that Al 82.7 atomic% and Cu 17.3 atomic% were used instead of the metal material. Then, the distance between secondary branches (DAS, Dendrite Arm Spacing) of the eutectic alloy was measured. Next, an empirical formula showing the relationship between DAS and cooling rate in the eutectic alloy was obtained. Then, the in empirical formula, and substituting the DAS in the respective thickness part of t 1 ~t 4 of heat-resistant magnesium alloy of the present embodiment, to determine the cooling speed of each part.

次に、図3に本実施例で得られた耐熱性マグネシウム合金の合金組織の反射電子像を示す。図3(a)は、厚さt=2mm、冷却速度668K/秒の部分の合金組織の反射電子像、図3(b)は、厚さt=4mm、冷却速度166K/秒の部分の合金組織の反射電子像、図3(c)は、厚さt=8mm、冷却速度55K/秒の部分の合金組織の反射電子像、図3(d)は、厚さt=16mm、冷却速度21K/秒の部分の合金組織の反射電子像をそれぞれ示す。 Next, FIG. 3 shows a backscattered electron image of the alloy structure of the heat-resistant magnesium alloy obtained in this example. FIG. 3A shows a backscattered electron image of the alloy structure at a thickness t 1 = 2 mm and a cooling rate of 668 K / sec. FIG. 3B shows a portion at a thickness t 2 = 4 mm and a cooling rate of 166 K / sec. reflection electron image of the alloy structure, FIG. 3 (c), the thickness t 3 = 8 mm, the reflection electron image of the alloy structure of the portion of the cooling rate of 55K / sec, FIG. 3 (d), the thickness t 4 = 16 mm The reflected electron images of the alloy structure at the cooling rate of 21 K / second are shown.

図3から、厚さt〜tのいずれの部分についても、三次元網目状に形成された長周期積層構造相の間に、α−Mg相及び金属間化合物MgZn相の微細な粒子が存在していることが観察された。 From FIG. 3, the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 phase are present between the long-period laminated structure phases formed in a three-dimensional network for any of the thicknesses t 1 to t 4. The presence of fine particles was observed.

次に、図1及び図2に示す鋳造物1の厚さt〜tの各部分から、図4に示す形状の試験片2を切り出し、試験片2について機械的性質を評価した。前記試験片は、全長L=46mm、全幅d=12mm、厚さ2mmであり、中央に幅4mmの狭窄部を備え、該狭窄部の表裏両面にマグネシウム用ひずみゲージ3(ゲージ長さ2mm)が貼付されている。 Next, the test piece 2 having the shape shown in FIG. 4 was cut out from each part of the thicknesses t 1 to t 4 of the casting 1 shown in FIGS. 1 and 2, and the mechanical properties of the test piece 2 were evaluated. The test piece has an overall length L = 46 mm, an overall width d = 12 mm, and a thickness of 2 mm, and has a constricted portion with a width of 4 mm at the center. It is affixed.

本実施例では、試験片2を大気中で、誘導加熱により200℃及び250℃に加熱し、MTS社製電気油圧式疲労試験機を用いて、ひずみ速度5×10−4/秒(0.12mm/分、測定長4mm)で、引張強度及び伸びを測定した。尚、試験片2の加熱は、前記狭窄部の長手方向の長さ4mmの範囲が、200℃に加熱した場合は200±2℃の範囲の温度となるように、また250℃に加熱した場合は250±2℃の範囲の温度となるように管理した。結果を表1に示す。 In this example, the test piece 2 was heated to 200 ° C. and 250 ° C. by induction heating in the atmosphere, and a strain rate of 5 × 10 −4 / sec (0. The tensile strength and the elongation were measured at 12 mm / min and a measurement length of 4 mm. The test piece 2 is heated so that the length of the constricted portion in the longitudinal direction of 4 mm is 200 ° C. when heated to 200 ° C., and is heated to 250 ° C. Was controlled to a temperature in the range of 250 ± 2 ° C. The results are shown in Table 1.

また、本実施例では、試験片2を大気中で、誘導加熱により200℃に加熱し、MTS社製電気油圧式疲労試験機を用いて、応力比をR=−1(共振)、周波数を正弦波30〜60Hzとし、分離破断により寿命判定を行うと共に、繰り返し回数1×10回における応力振幅により疲労強度の判定を行った。尚、試験片2の加熱は、前記狭窄部の長手方向の長さ4mmの範囲が、200℃に加熱した場合は200±2℃の範囲の温度となるように管理した。結果を表1に示す。
〔比較例1〕
本比較例では、全量に対して、Zn2原子%、Y2原子%、Mg96原子%からなる金属材料を用いた以外は、前記実施例と全く同一にして、マグネシウム合金の鋳造物を得た。
In this example, the test piece 2 was heated to 200 ° C. by induction heating in the atmosphere, and the stress ratio was R = −1 (resonance) and the frequency was changed using an electrohydraulic fatigue tester manufactured by MTS. The sine wave was set to 30 to 60 Hz, the life was determined by separation fracture, and the fatigue strength was determined by the stress amplitude at the number of repetitions of 1 × 10 7 times. The heating of the test piece 2 was controlled so that the range of the length of 4 mm in the longitudinal direction of the narrowed portion was 200 ± 2 ° C. when heated to 200 ° C. The results are shown in Table 1.
[Comparative Example 1]
In this comparative example, a magnesium alloy casting was obtained in exactly the same manner as in the above example, except that a metal material composed of 2 atomic% Zn, 2 atomic% Y, and 96 atomic% Mg was used.

本比較例で得られた鋳造物の冷却速度は、厚さt=16mmの部分で21K/秒であった。 The cooling rate of the casting obtained in this comparative example was 21 K / sec at the portion of thickness t 4 = 16 mm.

次に、本比較例で得られたマグネシウム合金の合金組織の反射電子像を図5に示す。図5から、α−Mg相及び金属間化合物MgZn相の粒子が粗大化しており、長周期積層構造相の三次元網目状構造が崩れていることが観察された。 Next, FIG. 5 shows a backscattered electron image of the alloy structure of the magnesium alloy obtained in this comparative example. From FIG. 5, it was observed that the particles of the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 phase are coarsened, and the three-dimensional network structure of the long-period stacked structure phase is broken.

次に、本比較例で得られた鋳造物のt=16mmの部分から、図4に示す形状の試験片2を切り出し、試験片2について、前記実施例と全く同一にして、機械的性質を評価した。結果を表1に示す。
〔比較例2〕
本比較例では、全量に対して、Zn2原子%、Y2原子%、Zr0.2原子%、Mg95.8原子%からなる金属材料を、850℃の温度で溶融し、溶融合金を得た。前記溶融合金において、ZnとYとの組成比Zn/Yは1.0である。
Next, a test piece 2 having the shape shown in FIG. 4 is cut out from a portion of t 4 = 16 mm of the casting obtained in this comparative example, and the test piece 2 is made exactly the same as the above-described example, and has mechanical properties. Evaluated. The results are shown in Table 1.
[Comparative Example 2]
In this comparative example, a metal material composed of 2 atomic% Zn, 2 atomic% Y, 0.2 atomic% Zr, and 95.8 atomic% Mg was melted at a temperature of 850 ° C. to obtain a molten alloy. In the molten alloy, the composition ratio Zn / Y between Zn and Y is 1.0.

次に、得られた溶融合金(金属溶湯)を、内径320mm、高さ約1000mmの軟鋼からなる金型に注入し、該金型の縦軸を回転軸として、金属溶湯の最外周の周速が400〜1000mm/秒となるようにして、一方向に5〜60秒回転させた後、逆方向に5〜60秒回転させ、正逆の回転を繰り返して該金属溶湯を凝固させ、耐熱性マグネシウム合金の鋳造物を得た。本比較例で得られた鋳造物1の冷却速度は、1K/秒であった。   Next, the obtained molten alloy (molten metal) is poured into a mold made of mild steel having an inner diameter of 320 mm and a height of about 1000 mm, and the peripheral speed of the outermost circumference of the molten metal with the vertical axis of the mold as the rotation axis. Rotate in one direction for 5 to 60 seconds and then rotate in the opposite direction for 5 to 60 seconds, and repeat the forward and reverse rotation to solidify the molten metal, and heat resistance A magnesium alloy casting was obtained. The cooling rate of the casting 1 obtained in this comparative example was 1 K / second.

次に、本比較例で得られたマグネシウム合金の合金組織の反射電子像を図6に示す。図6から、α−Mg相及び金属間化合物MgZn相の粒子が粗大化しており、長周期積層構造相の三次元網目状構造が崩れていることが観察された。 Next, FIG. 6 shows a backscattered electron image of the alloy structure of the magnesium alloy obtained in this comparative example. From FIG. 6, it was observed that the particles of the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 phase are coarsened, and the three-dimensional network structure of the long-period stacked structure phase is broken.

次に、本比較例で得られた鋳造物から、図4に示す形状の試験片2を切り出し、試験片2について、前記実施例と全く同一にして、機械的性質を評価した。結果を表1に示す。
〔参考例1〕
本参考例では、従来公知のマグネシウム合金であるZE63A−T6材を用いた以外は、前記実施例と全く同一にして、該マグネシウム合金の200℃における引張強度を測定した。結果を表1に示す。
〔参考例2〕
本参考例では、従来公知のアルミニウム合金であるA4032−T6材を用いた以外は、前記実施例と全く同一にして、該アルミニウム合金の機械的性質を評価した。結果を表1に示す。
〔参考例3〕
本参考例では、従来公知のアルミニウム合金であるAC8B−T6材を用いた以外は、前記実施例と全く同一にして、該アルミニウム合金の機械的性質を評価した。結果を表1に示す。
Next, the test piece 2 having the shape shown in FIG. 4 was cut out from the casting obtained in this comparative example, and the test piece 2 was evaluated in the same manner as in the above example, and the mechanical properties were evaluated. The results are shown in Table 1.
[Reference Example 1]
In this reference example, the tensile strength at 200 ° C. of the magnesium alloy was measured in exactly the same manner as in the above example except that a ZE63A-T6 material, which is a conventionally known magnesium alloy, was used. The results are shown in Table 1.
[Reference Example 2]
In this reference example, the mechanical properties of the aluminum alloy were evaluated in exactly the same manner as in the above example except that the A4032-T6 material, which is a conventionally known aluminum alloy, was used. The results are shown in Table 1.
[Reference Example 3]
In this reference example, the mechanical properties of the aluminum alloy were evaluated in exactly the same manner as in the above example except that the AC8B-T6 material, which is a conventionally known aluminum alloy, was used. The results are shown in Table 1.

表1から、実施例の各耐熱性マグネシウム合金によれば、比較例1及び参考例1のマグネシウム合金に比較して強度及び伸びが大きく、200〜250℃での高温環境下において高強度と高延性とを兼ね備えていることが明らかである。   From Table 1, according to each heat-resistant magnesium alloy of an Example, intensity | strength and elongation are large compared with the magnesium alloy of the comparative example 1 and the reference example 1, and high intensity | strength and high in a high temperature environment at 200-250 degreeC. It is clear that it has ductility.

一方、冷却速度は、1K/秒とした比較例2の耐熱マグネシウム合金では、伸びは大きいものの、強度が十分とは言えず、冷却速度を10〜10K/秒とすることにより、実施例の各耐熱性マグネシウム合金のように200〜250℃での高温環境下において高強度と高延性とを兼ね備える耐熱性マグネシウム合金を得ることができることが明らかである。 On the other hand, in the heat-resistant magnesium alloy of Comparative Example 2 with a cooling rate of 1 K / second, although the elongation is large, the strength is not sufficient, and the cooling rate is set to 10 to 10 3 K / second. It is apparent that a heat-resistant magnesium alloy having both high strength and high ductility can be obtained in a high-temperature environment at 200 to 250 ° C. like each of the heat-resistant magnesium alloys.

また、表1から、実施例1の各耐熱性マグネシウム合金によれば、疲労強度に関しては参考例2のアルミニウム合金A4032−T6材に匹敵し、参考例3のアルミニウム合金AC8B−T6材を凌駕することが明らかである。また、表1から、本実施例の耐熱性マグネシウム合金によれば、引張強度に関しては、参考例2,3のアルミニウム合金のように200℃と250℃との間での大きな強度低下が無い上、250℃では参考例2,3のアルミニウム合金を大きく上回ることが明らかである。   Further, from Table 1, according to each heat-resistant magnesium alloy of Example 1, the fatigue strength is comparable to the aluminum alloy A4032-T6 material of Reference Example 2 and surpasses the aluminum alloy AC8B-T6 material of Reference Example 3. It is clear. Also, from Table 1, according to the heat-resistant magnesium alloy of this example, the tensile strength is not greatly reduced between 200 ° C. and 250 ° C. like the aluminum alloys of Reference Examples 2 and 3. At 250 ° C., it is clear that the aluminum alloys of Reference Examples 2 and 3 are greatly exceeded.

本発明に係るマグネシム合金の鋳造物の形状を示す平面図。The top view which shows the shape of the casting of the magnesium alloy which concerns on this invention. 図1のII−II線断面図。II-II sectional view taken on the line of FIG. 本発明に係る耐熱性マグネシウム合金の合金組織の反射電子像。The reflection electron image of the alloy structure of the heat-resistant magnesium alloy which concerns on this invention. 機械的性質を測定するために図1及び図2に示す鋳造物から切り出した試験片の形状を示す平面図。The top view which shows the shape of the test piece cut out from the casting shown in FIG.1 and FIG.2 in order to measure a mechanical property. 比較例の耐熱性マグネシウム合金の合金組織の反射電子像。The reflection electron image of the alloy structure of the heat-resistant magnesium alloy of a comparative example. 比較例の耐熱性マグネシウム合金の合金組織の反射電子像。The reflection electron image of the alloy structure of the heat-resistant magnesium alloy of a comparative example.

符号の説明Explanation of symbols

1…鋳造物、 2…試験片、 3…ひずみゲージ。   DESCRIPTION OF SYMBOLS 1 ... Casting, 2 ... Test piece, 3 ... Strain gauge.

Claims (2)

全量に対して、Zn1〜3原子%と、Y1〜3原子%と、Zr0.01〜0.5原子%とを含み、残部がMgと不可避の不純物とからなり、ZnとYとの組成比Zn/Yが0.6〜1.3の範囲にあると共に、α−Mg相及び金属間化合物MgZn相が微細に分散し、かつ、長周期積層構造相が三次元網目状に形成されていることを特徴とする耐熱性マグネシウム合金。 The composition ratio of Zn and Y includes Zn 1 to 3 atomic%, Y 1 to 3 atomic%, and Zr 0.01 to 0.5 atomic% with the balance being Mg and inevitable impurities. Zn / Y is in the range of 0.6 to 1.3, the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 phase are finely dispersed, and the long-period stacked structure phase is a three-dimensional network. A heat-resistant magnesium alloy characterized in that it is formed. 全量に対して、Zn1〜3原子%と、Y1〜3原子%と、Zr0.01〜0.5原子%とを含み、残部がMgと不可避の不純物とからなり、ZnとYとの組成比Zn/Yが0.6〜1.3の範囲にある金属材料を、650〜900℃の範囲の温度で溶融し、金型に鋳込んで10〜10K/秒の速度で冷却することを特徴とする耐熱性マグネシウム合金の製造方法。 The composition ratio of Zn and Y includes Zn 1 to 3 atomic%, Y 1 to 3 atomic%, and Zr 0.01 to 0.5 atomic% with the balance being Mg and inevitable impurities. A metal material having Zn / Y in the range of 0.6 to 1.3 is melted at a temperature in the range of 650 to 900 ° C., cast into a mold, and cooled at a rate of 10 to 10 3 K / sec. A method for producing a heat-resistant magnesium alloy.
JP2007329986A 2007-12-21 2007-12-21 Heat-resistant magnesium alloy and producing method therefor Pending JP2009149952A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007329986A JP2009149952A (en) 2007-12-21 2007-12-21 Heat-resistant magnesium alloy and producing method therefor
US12/338,747 US20090162242A1 (en) 2007-12-21 2008-12-18 Heat resistant magnesium alloy and production process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007329986A JP2009149952A (en) 2007-12-21 2007-12-21 Heat-resistant magnesium alloy and producing method therefor

Publications (1)

Publication Number Publication Date
JP2009149952A true JP2009149952A (en) 2009-07-09

Family

ID=40788872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007329986A Pending JP2009149952A (en) 2007-12-21 2007-12-21 Heat-resistant magnesium alloy and producing method therefor

Country Status (2)

Country Link
US (1) US20090162242A1 (en)
JP (1) JP2009149952A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222946A (en) * 2015-05-27 2016-12-28 本田技研工業株式会社 Heat resistant magnesium cast alloy and manufacturing method therefor
WO2017073502A1 (en) * 2015-10-28 2017-05-04 住友電気工業株式会社 Method for producing magnesium alloy plate material, method for producing magnesium alloy shaped material, magnesium alloy plate material and magnesium alloy shaped material
JP6313506B1 (en) * 2017-05-19 2018-04-18 ネクサス株式会社 Method for manufacturing magnesium substrate and method for manufacturing magnesium member

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878230B (en) * 2015-05-13 2017-07-07 昆明理工大学 A kind of preparation method of LPSO phases lamellar composite magnesium alloy materials
WO2017035072A1 (en) * 2015-08-21 2017-03-02 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Degradable magnesium-based implant devices for bone fixation
CN108425052A (en) * 2018-04-13 2018-08-21 上海海洋大学 A kind of heat-resistance high-strength wrought magnesium alloy and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3905115B2 (en) * 2003-11-26 2007-04-18 能人 河村 High strength and high toughness magnesium alloy and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3905115B2 (en) * 2003-11-26 2007-04-18 能人 河村 High strength and high toughness magnesium alloy and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222946A (en) * 2015-05-27 2016-12-28 本田技研工業株式会社 Heat resistant magnesium cast alloy and manufacturing method therefor
US10202672B2 (en) 2015-05-27 2019-02-12 Honda Motor Co., Ltd. Magnesium casting alloy and method of manufacturing same
WO2017073502A1 (en) * 2015-10-28 2017-05-04 住友電気工業株式会社 Method for producing magnesium alloy plate material, method for producing magnesium alloy shaped material, magnesium alloy plate material and magnesium alloy shaped material
JP2017080775A (en) * 2015-10-28 2017-05-18 住友電気工業株式会社 Production method of magnesium alloy plate material, production method of magnesium alloy shape, magnesium alloy plate material and magnesium alloy shape
JP6313506B1 (en) * 2017-05-19 2018-04-18 ネクサス株式会社 Method for manufacturing magnesium substrate and method for manufacturing magnesium member
JP2018192584A (en) * 2017-05-19 2018-12-06 ネクサス株式会社 Production method of magnesium base material and production method of magnesium member

Also Published As

Publication number Publication date
US20090162242A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
El-Daly et al. Effects of small addition of Ag and/or Cu on the microstructure and properties of Sn–9Zn lead-free solders
KR20180040513A (en) Ni-based superalloy powder for lamination molding
JP2009149952A (en) Heat-resistant magnesium alloy and producing method therefor
JP6860236B2 (en) Magnesium-based alloy wrought material and its manufacturing method
WO2017135463A1 (en) Aluminum alloy for casting, aluminum alloy member and method for producing aluminum alloy member
JP6723215B2 (en) Aluminum-zinc-copper (Al-Zn-Cu) alloy and method for producing the same
CN103328668A (en) High electric resistance aluminum alloy
CN107406926A (en) Magnesium lithium alloy, the rolling stock being made up of magnesium lithium alloy and contain processed product of the magnesium lithium alloy as raw material
JP6126235B2 (en) Semi-finished product obtained by deforming heat-resistant aluminum base alloy and method for producing the same
JP5623167B2 (en) Aluminum alloy foil and manufacturing method thereof, aluminum alloy foil molded container, food packaging body
JP2016505713A5 (en)
Guan et al. Interfacial bonding mechanism and pouring temperature effect on Al/Cu bimetal prepared by a novel compound casting process
JP7157158B2 (en) Magnesium alloy plate and manufacturing method thereof
JP6075513B1 (en) Quasicrystal-containing plated steel sheet and method for producing quasicrystal-containing plated steel sheet
JP2009203516A (en) Aluminum alloy
JP6596236B2 (en) Heat-resistant magnesium alloy and method for producing the same
Kim et al. Mold filling ability and hot cracking susceptibility of Al-Fe-Ni alloys for high conductivity applications
TWI264469B (en) Copper-nickel-alloy and production method for its container
Suksongkarm et al. Bismuth Formation in Lead-Free Cu–Zn–Si Yellow Brass with Various Bismuth–Tin Alloy Additions
CN109161767A (en) A kind of creep-resistant property magnesium alloy of the phase containing W and preparation method thereof
Paramsothy et al. Enhancement of compressive strength and failure strain in AZ31 magnesium alloy
Paramsothy et al. Heat-treating below recrystallization temperature to enhance compressive failure strain and work of fracture of magnesium
JP5856764B2 (en) Hypereutectic aluminum-silicon alloy rolled sheet molded product and method for producing the same
JP5700005B2 (en) Composite magnesium alloy member and manufacturing method thereof
RU2449047C1 (en) Method for obtaining superplastic sheet of high-strength aluminium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727