JP2009149876A - Moisture-permeable polyurethane resin comprising plant-derived component - Google Patents

Moisture-permeable polyurethane resin comprising plant-derived component Download PDF

Info

Publication number
JP2009149876A
JP2009149876A JP2008304320A JP2008304320A JP2009149876A JP 2009149876 A JP2009149876 A JP 2009149876A JP 2008304320 A JP2008304320 A JP 2008304320A JP 2008304320 A JP2008304320 A JP 2008304320A JP 2009149876 A JP2009149876 A JP 2009149876A
Authority
JP
Japan
Prior art keywords
polyurethane resin
moisture
component
plant
diol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008304320A
Other languages
Japanese (ja)
Other versions
JP5496496B2 (en
Inventor
Naotaka Nishimura
直隆 西村
Toru Osumi
徹 大角
Masanori Uemoto
雅則 上本
Kiyoshi Kawakami
清 川上
Takayuki Koketsu
貴之 纐纈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Coatex Co Ltd
Original Assignee
Toray Coatex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Coatex Co Ltd filed Critical Toray Coatex Co Ltd
Priority to JP2008304320A priority Critical patent/JP5496496B2/en
Publication of JP2009149876A publication Critical patent/JP2009149876A/en
Application granted granted Critical
Publication of JP5496496B2 publication Critical patent/JP5496496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyurethane resin excellent in moisture permeability using a plant-derived polymeric diol. <P>SOLUTION: The moisture-permeable polyurethane resin includes the plant-derived polymeric diol component, a polymeric diol containing oxyethylene groups, an organic diisocyanate component and a chain-extending component comprising a dihydric alcohol, wherein that the plant-derived polymeric diol component accounts for 25-65 wt.% of the resin components; the polymeric diol containing oxyethylene groups is a copolymer wherein the oxyethylene groups are randomly dispersed; an NCO/OH reaction equivalent ratio of a prepolymer of the organic diisocyanate component and the polymer diol is adjusted to ≥3/4 (≥0.75); the resin includes the plant-derived polymeric diol component having a structure in which soft segments are centralized, the polymeric diol component containing oxyethylene groups, the organic diisocyanate component, and the chain-extending component comprising the dihydric alcohol; and the content of the plant-derived polymeric diol component is 25-65 wt.% in the resin component. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は透湿性ポリウレタン樹脂に関するものであり、特に昨今の地球温暖化対策における環境負荷の低減のために、カーボンニュートラルに寄与する植物由来成分を含有する透湿性ポリウレタン樹脂に関するものである。   The present invention relates to a moisture-permeable polyurethane resin, and more particularly to a moisture-permeable polyurethane resin containing a plant-derived component that contributes to carbon neutral in order to reduce environmental burdens in recent global warming countermeasures.

従来、透湿性防水布帛に用いる透湿性材料としては、ポリテトラフルオロエチレン樹脂を延伸して多孔質化させたフイルム、ポリウレタン樹脂の湿式成膜フイルムのような微多孔質膜を利用するものや、親水性を有するポリウレタン樹脂の無孔質膜などが知られている。   Conventionally, as a moisture-permeable material used for a moisture-permeable waterproof fabric, a film obtained by stretching a polytetrafluoroethylene resin to make it porous, a microporous film such as a wet film-forming film of polyurethane resin, A non-porous membrane of a polyurethane resin having hydrophilicity is known.

植物由来成分よりなる防水加工布帛に関しては、例えば特許文献1(特開2002−20530号公報)に、植物由来成分としてポリ乳酸樹脂を用いた多孔質防水加工布帛が開示されている。しかしながら、無孔質膜については、未だ石油系の樹脂が主体であり、植物由来の透湿性樹脂は上市されていないのが現状である。   Regarding a waterproof fabric made of a plant-derived component, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2002-20530) discloses a porous waterproof fabric using a polylactic acid resin as a plant-derived component. However, as for non-porous membranes, petroleum-based resins are still mainly used, and plant-derived moisture-permeable resins are not yet on the market.

従来、無孔質膜の透湿性ポリウレタン樹脂としては、ポリウレタン樹脂中に親水性セグメントを含有させたものが使用されている。また、親水性を付与する方法として、例えば特許文献2,3(特開平3−203920号、特開2003−246832号公報)に示されたように、ポリオール成分にポリオキシエチレングリコールやポリオキシエチレンとポリオキシプロピレンの共重合体等を用いることが知られている。   Conventionally, as a moisture-permeable polyurethane resin of a nonporous film, a polyurethane resin containing a hydrophilic segment has been used. Further, as a method for imparting hydrophilicity, for example, as disclosed in Patent Documents 2 and 3 (Japanese Patent Laid-Open Nos. 3-203920 and 2003-246732), a polyoxyethylene glycol or polyoxyethylene is added to a polyol component. It is known to use a copolymer of polyoxypropylene and the like.

本発明者らは、従来の親水性ポリオールとヒマシ油ポリオールとを使用して無孔質膜の透湿性ポリウレタン樹脂を得ることを試みたが、単に両者を共重合させただけでは、疎水性の大きいヒマシ油の影響が現れ、所望の透湿性能が得られなかった。
特開2002−20530号公報 特開平3−203920号公報 特開2003−246832号公報
The present inventors tried to obtain a nonporous membrane moisture-permeable polyurethane resin by using a conventional hydrophilic polyol and castor oil polyol. The effect of large castor oil appeared, and the desired moisture permeability was not obtained.
JP 2002-20530 A Japanese Patent Laid-Open No. 3-203920 JP 2003-246832 A

本発明は、上記に鑑みてなされたものであり、地球温暖化対策における環境負荷の低減のために、カーボンニュートラルに寄与する植物由来成分を含有し、かつ透湿性も良好な透湿性ポリウレタン樹脂を提供することを目的とする。   The present invention has been made in view of the above, and includes a moisture-permeable polyurethane resin containing a plant-derived component contributing to carbon neutral and having good moisture permeability in order to reduce environmental burden in measures against global warming. The purpose is to provide.

本発明者らは上記の課題を解決するために、植物由来成分を25〜65%(重量%、以下同様)含有するポリウレタン樹脂を使用し、かつ透湿性能を向上させる為の分子構造・設計・重合方法について鋭意検討を行った結果、高分子ジオール中でのオキシエチレン基を分散させることにより、またプレポリマー合成時に高分子ジオールを集中させることにより透湿性能の向上が達成できることを見出し、本発明の完成に至った。   In order to solve the above problems, the present inventors use a polyurethane resin containing 25 to 65% (% by weight, the same applies hereinafter) of plant-derived components, and a molecular structure / design for improving moisture permeability.・ As a result of diligent investigation on the polymerization method, it was found that the moisture permeability can be improved by dispersing the oxyethylene groups in the polymer diol, and by concentrating the polymer diol during prepolymer synthesis, The present invention has been completed.

すなわち、本発明の透湿性ポリウレタン樹脂は、植物由来の高分子ジオール成分と、オキシエチレン基を含有する高分子ジオール成分と、有機ジイソシアネート成分と、二価アルコールである鎖伸長剤成分とを含有してなる透湿性ポリウレタン樹脂であって、前記植物由来の高分子ジオール成分の含有量が樹脂成分中25〜65重量%であり、前記オキシエチレン基を含有する高分子ジオール成分がオキシエチレン基がランダムに分散された共重合物であり、かつ前記有機ジイソシアネート成分と前記高分子ジオールとのプレポリマーNCO/OH反応当量比を3/4以上(0.75以上)とし、ソフトセグメントを集中させた構造を有するものとする。   That is, the moisture-permeable polyurethane resin of the present invention contains a plant-derived polymer diol component, a polymer diol component containing an oxyethylene group, an organic diisocyanate component, and a chain extender component that is a dihydric alcohol. The content of the plant-derived polymer diol component is 25 to 65% by weight in the resin component, and the polymer diol component containing the oxyethylene group is a random oxyethylene group. And a prepolymer NCO / OH reaction equivalent ratio of the organic diisocyanate component and the polymer diol of 3/4 or more (0.75 or more), and a soft segment is concentrated. It shall have.

上記植物由来の高分子ジオール成分としてはヒマシ油ジオールが好適に用いられる。   As the plant-derived polymer diol component, castor oil diol is preferably used.

ヒマシ油ジオールは、ヒマシ油系ポリエーテルポリエステルジオールであって、平均水酸基数が1.8〜2.1個であり、水酸基価が41〜85mgKOH/gであるものが特に好ましい。   Castor oil diol is a castor oil-based polyether polyester diol having an average hydroxyl number of 1.8 to 2.1 and a hydroxyl value of 41 to 85 mgKOH / g.

上記鎖伸長剤成分は、エチレングリコール及び1,4−ブチレングリコールから選択された直鎖グリコールであるか、または前記直鎖グリコールと、1,3−ブチレングリコール及び1,2−プロピレングリコールから選択された分岐グリコールとの組み合わせよりなることが好ましい。   The chain extender component is a linear glycol selected from ethylene glycol and 1,4-butylene glycol, or selected from the linear glycol and 1,3-butylene glycol and 1,2-propylene glycol. It is preferable to consist of a combination with a branched glycol.

本発明のポリウレタン樹脂は、厚み10μのフィルムのB−1透湿度が2,500g/m・24hrs以上であることが好ましい。 The polyurethane resin of the present invention preferably has a B-1 moisture permeability of a film having a thickness of 10 μm of 2,500 g / m 2 · 24 hrs or more.

本発明によれば、地球温暖化対策における環境負荷の低減のためのカーボンニュートラルを実現でき、かつ透湿性の良好な透湿性ポリウレタン樹脂無孔質膜を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the carbon neutral for reduction of the environmental load in a global warming countermeasure can be implement | achieved, and the moisture-permeable polyurethane resin nonporous film | membrane with favorable moisture permeability can be provided.

本発明の透湿性ポリウレタン樹脂は、植物、特にヒマシ油由来高分子ジオールとオキシエチレン基含有高分子ジオールと、有機ジイソシアネートと、グリコールからなる鎖伸長剤とを反応させて得られるポリウレタン樹脂である。   The moisture-permeable polyurethane resin of the present invention is a polyurethane resin obtained by reacting a plant, particularly a castor oil-derived polymer diol, an oxyethylene group-containing polymer diol, an organic diisocyanate, and a chain extender composed of glycol.

上記ポリウレタン樹脂に用いられる植物由来高分子ジオールとしては、ヒマシ油系ポリオールが挙げられる。ヒマシ油系ポリオールの分子量は通常400〜3,000、好ましくは900〜3,000である。   Examples of the plant-derived polymer diol used for the polyurethane resin include castor oil-based polyol. The molecular weight of the castor oil-based polyol is usually 400 to 3,000, preferably 900 to 3,000.

ヒマシ油は、主に次式で表されるリシノレイン酸のトリグリセライドである。

Figure 2009149876
Castor oil is a triglyceride of ricinoleic acid represented mainly by the following formula.
Figure 2009149876

リシノレイン酸は次式で表される構造を有する化合物である。

Figure 2009149876
Ricinoleic acid is a compound having a structure represented by the following formula.
Figure 2009149876

本発明でいうヒマシ油ジオールとはヒマシ油に由来するジオールであり、中でもヒマシ油系ポリエーテルポリエステルジオールであって、平均水酸基数が1.8〜2.1個であり、水酸基価が41〜85mgKOH/gであるものが好ましく、特に平均水酸基数が1.95〜2.05個のものを好適に用いることができる。水酸基数が2.1個を越えると3価のポリオールの分枝あるいは架橋構造の生成のために、樹脂膜を形成するためのコーティングに適したポリウレタン樹脂を得ることが困難となる。すなわち、分枝構造が増加し粘性が大きくなりすぎると、コーティングに適さなくなる。また、架橋構造になると極微量でも粘性変化が起こり、少量でも大きな粘性変化が生じ、さらに架橋量が増加するとウレタン樹脂溶液を得ることができなくなる。   The castor oil diol as referred to in the present invention is a diol derived from castor oil, among which castor oil-based polyether polyester diol has an average number of hydroxyl groups of 1.8 to 2.1, and a hydroxyl value of 41 to 41. Those having 85 mg KOH / g are preferred, and those having an average number of hydroxyl groups of 1.95 to 2.05 can be suitably used. When the number of hydroxyl groups exceeds 2.1, it is difficult to obtain a polyurethane resin suitable for coating for forming a resin film because of the generation of a trivalent polyol branch or crosslinked structure. That is, if the branch structure increases and the viscosity becomes too high, it becomes unsuitable for coating. Moreover, when it becomes a crosslinked structure, a viscosity change occurs even in a very small amount, a large viscosity change occurs even in a small amount, and if the amount of crosslinking further increases, a urethane resin solution cannot be obtained.

ポリウレタン樹脂中の植物由来高分子ジオールの含量は環境負荷の軽減の点では多い方が好ましいが、本発明の目的から、透湿性ポリウレタン樹脂機能を達成するためには25%〜65%とする。環境負荷、ポリウレタン樹脂性能の観点からは好ましくは35〜50%である。   The content of the plant-derived polymer diol in the polyurethane resin is preferably higher from the viewpoint of reducing the environmental load, but for the purpose of the present invention, it is 25% to 65% in order to achieve the moisture-permeable polyurethane resin function. From the viewpoint of environmental load and polyurethane resin performance, it is preferably 35 to 50%.

次に、オキシエチレン基含有高分子ジオールの例としては、ポリエチレングリコール(以下、PEGと略記)、ポリオキシエチレン−オキシプロピレンブロック又はランダム共重合ジオール;ポリオキシエチレン−オキシテトラメチレンブロック又はランダム共重合ジオール;エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサメチレングリコール、ビス(ヒドロキシメチル)シクロヘキサン、4,4’−ビス(2−ヒドロキシエトキシ)−ジフェニルプロパンなどの低分子グリコールのエチレンオキシド付加物;分子量1000以下のPEGとジカルボン酸(例えばコハク酸、アジピン酸、セバシン酸、テレフタル酸、イソフタル酸など)とを反応させて得られる縮合ポリエーテルエステルジオール;およびこれらの2種以上の混合物が挙げられる。   Next, examples of the oxyethylene group-containing polymer diol include polyethylene glycol (hereinafter abbreviated as PEG), polyoxyethylene-oxypropylene block or random copolymer diol; polyoxyethylene-oxytetramethylene block or random copolymer. Diols; low molecular weight glycols such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexamethylene glycol, bis (hydroxymethyl) cyclohexane, 4,4′-bis (2-hydroxyethoxy) -diphenylpropane An ethylene oxide adduct; a condensed polyetherester diol obtained by reacting a PEG having a molecular weight of 1000 or less with a dicarboxylic acid (for example, succinic acid, adipic acid, sebacic acid, terephthalic acid, isophthalic acid, etc.); And mixtures of two or more thereof.

これらオキシエチレン基含有高分子ジオール中のオキシエチレン基含有量は、通常40重量%以上、好ましくは60重量%以上である。また、オキシエチレン基含有高分子ジオールの分子量は通常300〜10,000、好ましくは300〜3,000である。   The oxyethylene group content in these oxyethylene group-containing polymer diols is usually 40% by weight or more, preferably 60% by weight or more. The molecular weight of the oxyethylene group-containing polymer diol is usually 300 to 10,000, preferably 300 to 3,000.

オキシエチレン基は高分子ジオール中にランダムに分散されていることが好ましい。オキシエチレン基の集中した部分に湿気や水分が集まっても他の疎水性の部分に全くない場合には、吸湿吸水・放湿放水の機能が劣った構造になっていると思われる。一方、ランダムに分散された構造は、全体的に吸湿吸水・放湿放水の機能を持ち、透湿度が向上すると考えられる。   It is preferable that the oxyethylene group is randomly dispersed in the polymer diol. If moisture or moisture collects in the concentrated oxyethylene group but does not have any other hydrophobic part, it is considered that the structure has poor function of absorbing and absorbing moisture. On the other hand, it is considered that the randomly dispersed structure has the function of moisture absorption / absorption and moisture discharge as a whole, and the moisture permeability is improved.

次に、有機ジイソシアネートの例としては、4,4’−ジフェニルメタンジイソシアネート(以下、MDIと略記する)、2,4−および/または2,6−トリレンジイソシアネート等の芳香族ジイソシアネート;ヘキサメチレンジイソシアネート、リジンジイソシアネート等の脂肪族ジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート等の脂環式ジイソシアネートが挙げられ、これらの2種以上の混合物も使用可能である。これらのうち好ましいものはMDIである。   Next, as examples of organic diisocyanates, aromatic diisocyanates such as 4,4′-diphenylmethane diisocyanate (hereinafter abbreviated as MDI), 2,4- and / or 2,6-tolylene diisocyanate; hexamethylene diisocyanate, Aliphatic diisocyanates such as lysine diisocyanate, isophorone diisocyanate, alicyclic diisocyanates such as dicyclohexylmethane-4,4′-diisocyanate, and a mixture of two or more of these can also be used. Of these, MDI is preferred.

鎖伸長剤の例としては、エチレングリコール、1,3−ブチレングリコール、1,4−ブチレングリコール、1,2−プロピレングリコール、ジエチレングリコール、1,6−ヘキサメチレングリコールが挙げられる。好ましい例としては、エチレングリコール、1,4−ブチレングリコールから選択された直鎖グリコールと、1,3−ブチレングリコール、1,2−プロピレングリコールから選択された分岐グリコールとの2種の組み合わせが挙げられる。   Examples of chain extenders include ethylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,2-propylene glycol, diethylene glycol, and 1,6-hexamethylene glycol. Preferred examples include two combinations of a linear glycol selected from ethylene glycol and 1,4-butylene glycol and a branched glycol selected from 1,3-butylene glycol and 1,2-propylene glycol. It is done.

分岐したグリコールの使用によりポリウレタンの結晶性が崩れ、ソフトセグメントに吸湿・吸水した後の放湿・放水時に、この結晶性の崩れた部分の効果で透湿性能が向上する。しかし、分岐グリコールを単独使用したものは軟化点が低く、用途によっては耐熱性に問題が生じる傾向がある。直鎖状グリコールと分岐状グリコールとの併用により、透湿度が向上し、耐熱性の問題も解決され、植物由来比率を向上させることができる。   Due to the use of the branched glycol, the crystallinity of the polyurethane collapses, and the moisture permeation performance is improved by the effect of the broken crystallinity at the time of moisture release / water discharge after moisture absorption / water absorption by the soft segment. However, the use of a branched glycol alone has a low softening point and tends to cause a problem in heat resistance depending on the application. The combined use of the linear glycol and the branched glycol improves moisture permeability, solves the problem of heat resistance, and can improve the plant-derived ratio.

本発明のポリウレタン樹脂を得る製造方法としては、従来の方法に準じて、まずプレポリマーを合成する方法を用いることができるが、プレポリマーの合成において、有機ジイソシアネートと高分子ジオールとの反応時に高分子ジオールを集中させる方法を用いることにより透湿性能を向上させることが可能となる。すなわち、ソフトセグメントの集中化であり、具体的には有機イソシアネートと高分子ジオールとの反応当量比を3/4〜9/10とすることが好ましい。この反応当量比が3/4より低いと透湿性能の向上が小さい。一方、この比が1に近い程、透湿性能は向上するが、9/10より大きくなると、場合によっては反応途中で固化するおそれがある。   As a production method for obtaining the polyurethane resin of the present invention, a method of first synthesizing a prepolymer can be used in accordance with a conventional method. However, in the synthesis of the prepolymer, a high reaction time is required during the reaction between the organic diisocyanate and the polymer diol. By using a method of concentrating molecular diols, moisture permeability can be improved. That is, the soft segment is concentrated, and specifically, the reaction equivalent ratio of the organic isocyanate and the polymer diol is preferably 3/4 to 9/10. When this reaction equivalent ratio is lower than 3/4, improvement in moisture permeability is small. On the other hand, as the ratio is closer to 1, the moisture permeation performance is improved. However, when the ratio is greater than 9/10, there is a possibility that the ratio may solidify during the reaction.

従来のプレポリマー方法では、ソフトセグメント間にハードセグメント部分が生じることにより、吸湿(吸水)による膨潤が抑えられ、よって吸湿・吸水量が抑えられると考えられるが、上記のように、ソフトセグメント間を長く(すなわち非結晶部分を大きく)することにより、吸湿・吸水量が大きくなり、かつ吸収した湿分・水分を非結晶部分から発散・放湿させ得るため、透湿度が向上すると考えられる。   In the conventional prepolymer method, it is considered that the hard segment portion is generated between the soft segments, so that the swelling due to moisture absorption (water absorption) is suppressed, and thus the moisture absorption / absorption amount is suppressed. It is considered that by increasing the length (that is, increasing the non-crystalline part), the moisture absorption / water absorption amount increases, and the absorbed moisture / moisture can be diffused / moisture-removed from the non-crystalline part.

またポリウレタン樹脂中のポリオキシエチレン基含量は通常10〜50重量%、好ましくは20〜40重量%である。10重量%未満では透湿性が乏しく、50重量%を超えると植物由来成分が減少するため、環境負荷軽減の観点から50%以下が好ましい。   The polyoxyethylene group content in the polyurethane resin is usually 10 to 50% by weight, preferably 20 to 40% by weight. If it is less than 10% by weight, moisture permeability is poor, and if it exceeds 50% by weight, plant-derived components are reduced. Therefore, 50% or less is preferable from the viewpoint of reducing environmental burden.

本発明で用いられるポリウレタン樹脂の有機ジイソシアネートと、植物由来含有高分子ジオール、オキシエチレン基含有高分子ジオールおよび鎖伸長剤との割合(NCO:OH当量比)は、通常、0.95:1〜1.05:1、好ましくは実質的に1:1である。NCO/OH当量比が上記範囲外の場合にはポリウレタン樹脂の分子量が高分子量にならず、実用的に有用な物性を有するポリウレタン樹脂を製造することが困難となる。本発明のポリウレタン樹脂の分子量はそれぞれ重量平均分子量で、通常50,000〜400,000程度であり、好ましくは100,000〜300,000である。   The ratio (NCO: OH equivalent ratio) of the organic diisocyanate of the polyurethane resin used in the present invention to the plant-derived polymer diol, the oxyethylene group-containing polymer diol and the chain extender is usually 0.95: 1 to 1.05: 1, preferably substantially 1: 1. When the NCO / OH equivalent ratio is outside the above range, the molecular weight of the polyurethane resin does not become high, and it becomes difficult to produce a polyurethane resin having practically useful physical properties. The molecular weight of the polyurethane resin of the present invention is a weight average molecular weight, and is usually about 50,000 to 400,000, preferably 100,000 to 300,000.

上記ポリウレタン樹脂の製造は、イソシアネート基に対して不活性な溶媒の存在下または不存在下で行うことができる。溶媒の存在下で行う場合の有機溶媒の例としては、ジメチルホルムアミド(以下、DMFと略記する)、ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;メチルエチルケトン等のケトン系溶媒;トルエン、キシレン等の芳香族系溶媒;ジオキサン、テトラヒドロフラン等のエーテル系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒、およびこれらの2種以上の混合物が挙げられる。これらのうち好ましいものは、アミド系溶媒、ケトン系溶媒、芳香族系溶媒およびこれらの2種以上の混合物である。   The polyurethane resin can be produced in the presence or absence of a solvent inert to isocyanate groups. Examples of organic solvents in the presence of a solvent include amide solvents such as dimethylformamide (hereinafter abbreviated as DMF) and dimethylacetamide; sulfoxide solvents such as dimethyl sulfoxide; ketone solvents such as methyl ethyl ketone; toluene And aromatic solvents such as xylene; ether solvents such as dioxane and tetrahydrofuran; ester solvents such as ethyl acetate and butyl acetate; and mixtures of two or more of these. Of these, amide solvents, ketone solvents, aromatic solvents and mixtures of two or more of these are preferred.

ポリウレタン樹脂の製造に際し、反応温度はポリウレタン化反応に通常採用される温度と同様でよく、溶媒を使用する場合は通常30〜90℃、無溶媒の場合は通常30〜220℃である。   In the production of the polyurethane resin, the reaction temperature may be the same as that usually employed in the polyurethane reaction, and is usually 30 to 90 ° C. when a solvent is used, and usually 30 to 220 ° C. when no solvent is used.

また、反応を促進させるため、ポリウレタン反応に通常使用される触媒、例えばトリエチルアミン、トリエチレンジアミン等のアミン系触媒を必要に応じて使用することができる。   Moreover, in order to accelerate | stimulate reaction, the catalyst normally used for a polyurethane reaction, for example, amine catalysts, such as a triethylamine and a triethylenediamine, can be used as needed.

また、必要に応じて、例えば1価アルコール(エタノール、ブタノールなど)、1価アミン(メチルアミン、ブチルアミンなど)等の重合停止剤を用いることもできる。   Further, if necessary, for example, a polymerization terminator such as monohydric alcohol (ethanol, butanol, etc.), monovalent amine (methylamine, butylamine, etc.) can be used.

このようにして製造されるポリウレタン樹脂は、30重量%(固形分)DMF溶液として測定した溶液粘度が通常10〜10000ポイズ/20℃であり、実用上好ましいのは100〜2000ポイズ/20℃である。   The polyurethane resin thus produced has a solution viscosity of 10 to 10000 poise / 20 ° C. measured as a 30 wt% (solid content) DMF solution, and is preferably 100 to 2000 poise / 20 ° C. in practice. is there.

本発明のポリウレタン樹脂は、上記例示列挙した有機溶媒を含有していてもよく、その量は、通常、ポリウレタン樹脂からなる樹脂固形分濃度が5〜50重量%となる量であり、好ましくは10〜40重量%となる量である。   The polyurethane resin of the present invention may contain the organic solvents enumerated above, and the amount thereof is usually an amount such that the resin solid content concentration of the polyurethane resin is 5 to 50% by weight, preferably 10 It is the amount which is ˜40% by weight.

本発明のポリウレタン樹脂を含む樹脂組成物中には、必要に応じて、耐候性、耐熱劣化等の向上のための各種安定剤や多官能イソシアネート化合物等の架橋剤、着色剤、無機充填剤、有機改質剤、その他の添加剤等を含有させることができる。   In the resin composition containing the polyurethane resin of the present invention, if necessary, various stabilizers for improving weather resistance, heat resistance deterioration and the like, crosslinking agents such as polyfunctional isocyanate compounds, colorants, inorganic fillers, An organic modifier, other additives, etc. can be contained.

上記ポリウレタン樹脂組成物を塗布して得られるポリウレタン樹脂膜の膜厚は、乾燥後において通常1〜100μであり、2〜20μであるのが好ましい。   The film thickness of the polyurethane resin film obtained by applying the polyurethane resin composition is usually 1 to 100 μm and preferably 2 to 20 μm after drying.

本発明のポリウレタン樹脂の熱軟化点は通常150℃以上であり、好ましくは170℃以上である。熱軟化点が150℃未満では耐熱ブロッキング性が乏しくなる。   The heat softening point of the polyurethane resin of the present invention is usually 150 ° C. or higher, preferably 170 ° C. or higher. When the heat softening point is less than 150 ° C., the heat blocking property is poor.

また、100%応力は、通常20〜100kg/cmであり、好ましくは30〜60kg/cmである。100%応力が20kg/cm未満では耐熱ブロッキング性が乏しくなる。 Moreover, 100% stress is 20-100 kg / cm < 2 > normally, Preferably it is 30-60 kg / cm < 2 >. When the 100% stress is less than 20 kg / cm 2 , the heat blocking property is poor.

以下、実施例により本発明を更に説明するが、本発明はこれに限定されるものではない。なお、実施例および比較例中の「部」は重量部、「%」は重量%を表す。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to this. In the examples and comparative examples, “parts” represents parts by weight, and “%” represents% by weight.

ポリウレタン樹脂を以下の製造例に示した方法で製造し、試験例中の熱軟化点、引張試験強度、吸水率、水膨潤度、透湿度の評価を行った。   A polyurethane resin was produced by the method shown in the following production examples, and the thermal softening point, tensile test strength, water absorption, water swelling degree, and moisture permeability in the test examples were evaluated.

〔製造例1(ポリウレタン樹脂1の製造)〕
攪拌機および温度計を備えた1L四つ口フラスコに、乾燥窒素雰囲気下にて、ヒマシ油ジオール1(伊藤製油(株)製、H−56、平均水酸基数:2.03個、水酸基価:83mgKOH/g)12gとヒマシ油ジオール2(伊藤製油(株)製、PH−5002、平均水酸基数:2.03個、水酸基価:43mgKOH/g)8gと、ポリエーテルポリオール(第一工業製薬(株)製、ポリハードナーD−300W、分子量3,700)80gとDMF150gを仕込み、攪拌し、均一に溶解させた。50℃の温度調節下、MDI7.2gを投入し(ソフトセグメント集約NCO/OH当量比:3/4)、1時間反応させた後、さらにMDI55.8gを添加し、プレポリマー最終反応を50℃にて0.5時間行った。続いてEG13.4gをDMF50gと混合し、添加後、60℃に昇温し、鎖長延長反応を行った。途中、粘度上昇を見ながらDMF212gを分割添加し、8時間反応させて、樹脂濃度30%、粘度20,000cps(30℃)のポリウレタン樹脂1溶液を得た。得られたポリウレタン樹脂1の固形分中植物由来成分含有比率は11.3%、オキシエチレン基含有比率は36.3%である。
[Production Example 1 (Production of polyurethane resin 1)]
In a 1 L four-necked flask equipped with a stirrer and a thermometer, castor oil diol 1 (manufactured by Ito Oil Co., Ltd., H-56, average number of hydroxyl groups: 2.03, hydroxyl value: 83 mgKOH under a dry nitrogen atmosphere / G) 12 g, castor oil diol 2 (manufactured by Ito Oil Co., Ltd., PH-5002, average number of hydroxyl groups: 2.03, hydroxyl value: 43 mg KOH / g), and polyether polyol (Daiichi Kogyo Seiyaku Co., Ltd.) ), Polyhardener D-300W, molecular weight 3,700) 80 g and DMF 150 g were charged, stirred and dissolved uniformly. Under temperature control of 50 ° C., 7.2 g of MDI was added (soft segment aggregated NCO / OH equivalent ratio: 3/4) and reacted for 1 hour, and then 55.8 g of MDI was further added, and the prepolymer final reaction was performed at 50 ° C. For 0.5 hour. Subsequently, 13.4 g of EG was mixed with 50 g of DMF, and after addition, the temperature was raised to 60 ° C. to carry out a chain extension reaction. In the middle, 212 g of DMF was added in portions while observing the increase in viscosity, and reacted for 8 hours to obtain a polyurethane resin 1 solution having a resin concentration of 30% and a viscosity of 20,000 cps (30 ° C.). In the solid content of the obtained polyurethane resin 1, the plant-derived component content ratio is 11.3% and the oxyethylene group content ratio is 36.3%.

〔製造例2(ポリウレタン樹脂2の製造)〕
攪拌機および温度計を備えた1L四つ口フラスコに、乾燥窒素雰囲気下にて、ヒマシ油ジオール1(伊藤製油(株)製、H−56、平均水酸基数:2.03個、水酸基価:83mgKOH/g)42gとヒマシ油ジオール2(伊藤製油(株)製、PH−5002、平均水酸基数:2.03個、水酸基価:43mgKOH/g)28gと、ポリエーテルポリオール(第一工業製薬(株)製、ポリハードナーD−300W、分子量3,700)30gとDMF150gを仕込み、攪拌し、均一に溶解させた。50℃の温度調節下、MDI9.5gを投入し(ソフトセグメント集約NCO/OH当量比:3/4)、1時間反応させた後、さらにMDI53.5gを添加し、プレポリマー最終反応を50℃にて0.5時間行った。続いてEG13.4gをDMF50gと混合し、添加後、60℃に昇温し鎖長延長反応を行った。途中、粘度上昇を見ながらDMF212gを分割添加し、8時間反応させて、樹脂濃度30%、粘度22,000cps(30℃)のポリウレタン樹脂2溶液を得た。得られたポリウレタン樹脂2の固形分中植物由来成分含有比率は39.9%、オキシエチレン基含有比率は13.7%である。
[Production Example 2 (Production of polyurethane resin 2)]
In a 1 L four-necked flask equipped with a stirrer and a thermometer, castor oil diol 1 (manufactured by Ito Oil Co., Ltd., H-56, average number of hydroxyl groups: 2.03, hydroxyl value: 83 mgKOH under a dry nitrogen atmosphere / G) 42 g, castor oil diol 2 (manufactured by Ito Oil Co., Ltd., PH-5002, average number of hydroxyl groups: 2.03, hydroxyl value: 43 mg KOH / g), and polyether polyol (Daiichi Kogyo Seiyaku Co., Ltd.) ), Polyhardener D-300W, molecular weight 3,700) 30 g and DMF 150 g were charged, stirred and dissolved uniformly. Under temperature control of 50 ° C., 9.5 g of MDI was added (soft segment aggregated NCO / OH equivalent ratio: 3/4), reacted for 1 hour, then 53.5 g of MDI was further added, and the prepolymer final reaction was performed at 50 ° C. For 0.5 hour. Subsequently, 13.4 g of EG was mixed with 50 g of DMF, and after addition, the temperature was raised to 60 ° C. to carry out chain extension reaction. In the middle, 212 g of DMF was added in portions while observing the increase in viscosity, and reacted for 8 hours to obtain a polyurethane resin 2 solution having a resin concentration of 30% and a viscosity of 22,000 cps (30 ° C.). In the solid content of the obtained polyurethane resin 2, the plant-derived component content ratio is 39.9%, and the oxyethylene group content ratio is 13.7%.

〔製造例3(ポリウレタン樹脂3の製造)〕
攪拌機および温度計を備えた1L四つ口フラスコに、乾燥窒素雰囲気下、ポリブチレンアジペート(日本ポリウレタン(株)製、ニッポランN−4010、分子量2,000)70gと、ポリエーテルポリオール(第一工業製薬(株)製、ポリハードナーD−300W、分子量3,700)30gとDMF150gを仕込み、攪拌し、均一に溶解させた。50℃に温度調節し、MDI63gを添加し、プレポリマー法にて反応を実施した。50℃で1時間プレポリマー合成後、EG12.8gをDMF50gと混合し、添加した。60℃に昇温し、鎖長延長反応を行った。途中、粘度上昇を見ながらDMF210gを分割添加しながら8時間反応させて、樹脂濃度30%、粘度18,000cps(30℃)のポリウレタン樹脂3溶液を得た。得られたポリウレタン樹脂3の固形分中植物由来成分含有比率は0%、オキシエチレン基含有比率は13.6%である。
[Production Example 3 (Production of polyurethane resin 3)]
In a 1 L four-necked flask equipped with a stirrer and a thermometer, 70 g of polybutylene adipate (manufactured by Nippon Polyurethane Co., Ltd., NIPPOLAN N-4010, molecular weight 2,000) and polyether polyol (Daiichi Kogyo Co., Ltd.) under a dry nitrogen atmosphere. 30 g of Polyhardener D-300W manufactured by Pharmaceutical Co., Ltd., molecular weight 3,700) and 150 g of DMF were charged, stirred and dissolved uniformly. The temperature was adjusted to 50 ° C., 63 g of MDI was added, and the reaction was carried out by the prepolymer method. After prepolymer synthesis at 50 ° C. for 1 hour, 12.8 g of EG was mixed with 50 g of DMF and added. The temperature was raised to 60 ° C. to carry out a chain length extension reaction. In the middle of the reaction, 210 g of DMF was added in portions while observing the increase in viscosity, and reacted for 8 hours to obtain a polyurethane resin 3 solution having a resin concentration of 30% and a viscosity of 18,000 cps (30 ° C.). In the solid content of the obtained polyurethane resin 3, the plant-derived component content ratio is 0%, and the oxyethylene group content ratio is 13.6%.

〔製造例4(ポリウレタン樹脂4の製造)〕
攪拌機および温度計を備えた1L四つ口フラスコにヒマシ油ジオール1(伊藤製油(株)製、H−56、平均水酸基数:2.03個、水酸基価:83mgKOH/g)42gと、ヒマシ油ジオール2(伊藤製油(株)製、PH−5002、平均水酸基数:2.03個、水酸基価:43mgKOH/g)28gと、ポリエーテルポリオール(第一工業製薬(株)製、ポリハードナーD−300W、分子量3,700)・30gと、DMF150gを仕込み、攪拌し溶解させた。乾燥窒素雰囲気下で50℃に温度調節し、MDI63gを添加し、プレポリマー法にて反応を行った。50℃で1時間後、EG12.5gをDMF50gと混合し添加した。60℃に昇温し鎖長延長反応を行った。途中、粘度上昇を見ながらDMF209gを分割添加しつつ8時間反応させて、樹脂濃度30%、粘度21,500cps(30℃)のポリウレタン樹脂4溶液を得た。得られたポリウレタン樹脂4の固形分中植物由来成分含有比率は39.9%、オキシエチレン基含有比率は13.7%である。
[Production Example 4 (Production of polyurethane resin 4)]
Castor oil diol 1 (manufactured by Ito Oil Co., Ltd., H-56, average number of hydroxyl groups: 2.03, hydroxyl value: 83 mgKOH / g) 42 g and castor oil in a 1 L four-necked flask equipped with a stirrer and a thermometer Diol 2 (produced by Ito Oil Co., Ltd., PH-5002, average number of hydroxyl groups: 2.03, hydroxyl value: 43 mg KOH / g) 28 g, polyether polyol (Daiichi Kogyo Seiyaku Co., Ltd., polyhardener D- 300 W, molecular weight 3,700) · 30 g and DMF 150 g were charged and stirred to dissolve. The temperature was adjusted to 50 ° C. in a dry nitrogen atmosphere, 63 g of MDI was added, and the reaction was performed by the prepolymer method. After 1 hour at 50 ° C., 12.5 g of EG was mixed with 50 g of DMF and added. The temperature was raised to 60 ° C. to carry out a chain extension reaction. In the middle of the reaction, 209 g of DMF was added in portions while observing the increase in viscosity, and reacted for 8 hours to obtain a polyurethane resin 4 solution having a resin concentration of 30% and a viscosity of 21,500 cps (30 ° C.). In the solid content of the obtained polyurethane resin 4, the plant-derived component content ratio is 39.9%, and the oxyethylene group content ratio is 13.7%.

〔製造例5(ポリウレタン樹脂5の製造)〕
攪拌機および温度計を備えた1L四つ口フラスコに乾燥窒素雰囲気下にて、ヒマシ油ジオール1(伊藤製油(株)製、H−56、平均水酸基数:2.03個、水酸基価:83mgKOH/g)42gとヒマシ油ジオール2(伊藤製油(株)製、PH−5002、平均水酸基数:2.03個、水酸基価:43mgKOH/g)28gと、ポリエーテルポリオール(第一工業製薬(株)製、ポリハードナーD−300W、分子量3,700)30gとDMF・150gを仕込み、攪拌し均一に溶解させた。50℃の温度調節下、MDI11.3gを投入し(ソフトセグメント集約NCO/OH当量比:9/10)、1時間反応させた後、さらにMDI51.7gを添加し、プレポリマ−最終反応を50℃にて0.5時間行った。続いてEG12.5gをDMF50gと混合し、添加後、60℃に昇温し鎖長延長反応を行った。途中粘度上昇を見ながらDMF209gを分割添加しつつ8時間反応させて、樹脂濃度30%、粘度20,000cps(30℃)のポリウレタン樹脂5溶液を得た。得られたポリウレタン樹脂5の固形分中植物由来成分含有比率は39.9%、オキシエチレン基含有比率は13.7%である。
[Production Example 5 (Production of polyurethane resin 5)]
In a 1 L four-necked flask equipped with a stirrer and a thermometer, castor oil diol 1 (manufactured by Ito Oil Co., Ltd., H-56, average number of hydroxyl groups: 2.03, hydroxyl value: 83 mgKOH / g) 42 g, castor oil diol 2 (manufactured by Ito Oil Co., Ltd., PH-5002, average number of hydroxyl groups: 2.03, hydroxyl value: 43 mg KOH / g) and polyether polyol (Daiichi Kogyo Seiyaku Co., Ltd.) Manufactured, polyhardener D-300W, molecular weight 3,700) 30 g and DMF 150 g were charged and stirred to dissolve uniformly. Under temperature control of 50 ° C., 11.3 g of MDI was added (soft segment aggregated NCO / OH equivalent ratio: 9/10) and reacted for 1 hour, then 51.7 g of MDI was further added, and the prepolymer-final reaction was conducted at 50 ° C. For 0.5 hour. Subsequently, 12.5 g of EG was mixed with 50 g of DMF, and after addition, the temperature was raised to 60 ° C. to carry out a chain extension reaction. While observing the increase in viscosity, 209 g of DMF was added in portions and reacted for 8 hours to obtain a polyurethane resin 5 solution having a resin concentration of 30% and a viscosity of 20,000 cps (30 ° C.). In the solid content of the obtained polyurethane resin 5, the plant-derived component content ratio is 39.9%, and the oxyethylene group content ratio is 13.7%.

〔製造例6(ポリウレタン樹脂6の製造)〕
攪拌機および温度計を備えた1L四つ口フラスコにヒマシ油ジオール1(伊藤製油(株)製、H−56、平均水酸基数:2.03個、水酸基価:83mgKOH/g)42gと、ヒマシ油ジオール2(伊藤製油(株)製、PH−5002、平均水酸基数:2.03個、水酸基価:43mgKOH/g)28gと、PEG(三洋化成工業(株)製、PEG−400、分子量400)10gと、ポリエーテルポリオール(第一工業製薬(株)製、ポリハードナーD−300W、分子量3,700)20gと、DMF150gを仕込み、均一に溶解させた。50℃の温度調節下、MDI16.2gを投入し(ソフトセグメント集約NCO/OH当量比9/10)、1時間反応させた後、MDI46.8gを添加しプレポリマ−最終反応を50℃にて0.5時間行った。続いてEG11.2gをDMF50gと混合し、添加後、60℃に昇温し鎖長延長反応を行った。途中、粘度上昇を見ながらDMF206gを分割添加しつつ8時間反応させて、樹脂濃度30%、粘度19,500(30℃)のポリウレタン樹脂6溶液を得た。得られたポリウレタン樹脂6の固形分中植物由来成分含有比率は40.2%、オキシエチレン基含有比率は14.9%である。
[Production Example 6 (Production of polyurethane resin 6)]
Castor oil diol 1 (manufactured by Ito Oil Co., Ltd., H-56, average number of hydroxyl groups: 2.03, hydroxyl value: 83 mgKOH / g) 42 g and castor oil in a 1 L four-necked flask equipped with a stirrer and a thermometer Diol 2 (manufactured by Ito Oil Co., Ltd., PH-5002, average number of hydroxyl groups: 2.03, hydroxyl value: 43 mgKOH / g) 28 g and PEG (manufactured by Sanyo Chemical Industries, Ltd., PEG-400, molecular weight 400) 10 g, 20 g of a polyether polyol (Daiichi Kogyo Seiyaku Co., Ltd., polyhardener D-300W, molecular weight 3,700) and 150 g of DMF were charged and dissolved uniformly. Under temperature control of 50 ° C., 16.2 g of MDI was added (soft segment aggregated NCO / OH equivalent ratio 9/10) and reacted for 1 hour, then 46.8 g of MDI was added and the prepolymer final reaction was brought to 0 ° C. at 50 ° C. For 5 hours. Subsequently, 11.2 g of EG was mixed with 50 g of DMF, and after addition, the temperature was raised to 60 ° C. to carry out a chain extension reaction. In the middle of the reaction, 206 g of DMF was added in portions while observing the increase in viscosity, and reacted for 8 hours to obtain a polyurethane resin 6 solution having a resin concentration of 30% and a viscosity of 19,500 (30 ° C.). The resulting polyurethane resin 6 has a plant-derived component content ratio of 40.2% in the solid content and an oxyethylene group content ratio of 14.9%.

〔製造例7(ポリウレタン樹脂7の製造)〕
攪拌機および温度計を備えた1L四つ口フラスコにヒマシ油ジオール1(伊藤製油(株)製、H−56、平均水酸基数:2.03個、水酸基価:83mgKOH/g)36gと、ヒマシ油ジオール2(伊藤製油(株)製、PH−5002、平均水酸基数:2.03個、水酸基価:43mgKOH/g)24gと、PEG(三洋化成工業(株)製、PEG−400、分子量400)20gと、ポリエーテルポリオール(第一工業製薬(株)製、ポリハードナーD−300W、分子量3,700)20gと、DMF150gを仕込み、均一に溶解させた。50℃の温度調節下、MDI20.5gを投入し(ソフトセグメント集約NCO/OH当量比:9/10)、1時間反応させた後、MDI42.5gを添加しプレポリマ−最終反応を50℃にて0.5時間行った。続いてEG10gをDMF50gと混合し、添加後、60℃に昇温し鎖長延長反応を行った。途中粘度上昇を見ながらDMF204gを分割添加しつつ8時間反応させて、樹脂濃度30%、粘度22,500cps(30℃)のポリウレタン樹脂7溶液を得た。得られたポリウレタン樹脂7の固形分中植物由来成分含有比率は34.7%、オキシエチレン基含有比率は20.8%である。
[Production Example 7 (Production of polyurethane resin 7)]
Castor oil diol 1 (manufactured by Ito Oil Co., Ltd., H-56, average number of hydroxyl groups: 2.03, hydroxyl value: 83 mgKOH / g) 36 g and castor oil in a 1 L four-necked flask equipped with a stirrer and a thermometer Diol 2 (produced by Ito Oil Co., Ltd., PH-5002, average number of hydroxyl groups: 2.03, hydroxyl value: 43 mg KOH / g) and 24 g PEG (manufactured by Sanyo Chemical Industries, Ltd., PEG-400, molecular weight 400) 20 g of polyether polyol (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., polyhardener D-300W, molecular weight 3,700) and 150 g of DMF were charged and dissolved uniformly. Under a temperature control of 50 ° C., 20.5 g of MDI was added (soft segment aggregated NCO / OH equivalent ratio: 9/10) and reacted for 1 hour, then 42.5 g of MDI was added, and the prepolymer final reaction was performed at 50 ° C. For 0.5 hours. Subsequently, 10 g of EG was mixed with 50 g of DMF, and after addition, the temperature was raised to 60 ° C. to carry out a chain extension reaction. The reaction was carried out for 8 hours while adding 204 g of DMF while observing the increase in viscosity in the middle, to obtain a polyurethane resin 7 solution having a resin concentration of 30% and a viscosity of 22,500 cps (30 ° C.). The plant-derived component content ratio in the solid content of the obtained polyurethane resin 7 is 34.7%, and the oxyethylene group content ratio is 20.8%.

〔製造例8(ポリウレタン樹脂8の製造)〕
攪拌機および温度計を備えた1L四つ口フラスコにヒマシ油ジオール1(伊藤製油(株)製、H−56、平均水酸基数:2.03個、水酸基価:83mgKOH/g)45gと、ヒマシ油ジオール2(伊藤製油(株)製、PH−5002、平均水酸基数:2.03個、水酸基価:43mgKOH/g)38gと、ポリエーテルポリオール(第一工業製薬(株)製、ポリハードナーD−300W、分子量3,700)25gと、DMF150gを仕込み、均一に溶解させた。50℃の温度調節下、MDI11.6gを投入し(ソフトセグメント集約NCO/OH当量比:9/10)、1時間反応させた後、MDI51.4gを添加し、プレポリマ−最終反応を50℃にて0.5時間行った。続いてEG12.4gをDMF50gと混合し、添加後、60℃に昇温し、鎖長延長反応を行った。途中、粘度上昇を見ながらDMF209gを分割添加しつつ8時間反応させて、樹脂濃度30%、粘度23,500cps(30℃)のポリウレタン樹脂8溶液を得た。得られたポリウレタン樹脂8の固形分中植物由来成分含有比率は42.8%、オキシエチレン基含有比率は11.4%である。
[Production Example 8 (Production of polyurethane resin 8)]
Castor oil diol 1 (manufactured by Ito Oil Co., Ltd., H-56, average number of hydroxyl groups: 2.03, hydroxyl value: 83 mgKOH / g) 45 g and castor oil in a 1 L four-necked flask equipped with a stirrer and a thermometer Diol 2 (manufactured by Ito Oil Co., Ltd., PH-5002, average hydroxyl group number: 2.03, hydroxyl group value: 43 mg KOH / g) 38 g and polyether polyol (Daiichi Kogyo Seiyaku Co., Ltd., polyhardener D-) 300 W, molecular weight 3,700) 25 g and DMF 150 g were charged and dissolved uniformly. Under a temperature control of 50 ° C., 11.6 g of MDI was added (soft segment aggregated NCO / OH equivalent ratio: 9/10) and reacted for 1 hour, then 51.4 g of MDI was added, and the prepolymer final reaction was brought to 50 ° C. For 0.5 hours. Subsequently, 12.4 g of EG was mixed with 50 g of DMF, and after addition, the temperature was raised to 60 ° C. to perform a chain extension reaction. In the middle of the reaction, 209 g of DMF was added in portions while observing the increase in viscosity, and reacted for 8 hours to obtain a polyurethane resin 8 solution having a resin concentration of 30% and a viscosity of 23,500 cps (30 ° C.). In the solid content of the obtained polyurethane resin 8, the plant-derived component content ratio is 42.8%, and the oxyethylene group content ratio is 11.4%.

〔製造例9(ポリウレタン樹脂9の製造)〕
攪拌機および温度計を備えた1L四つ口フラスコにヒマシ油ジオール1(伊藤製油(株)製、H−56、平均水酸基数:2.03個、水酸基価:83mgKOH/g)30gと、ヒマシ油ジオール2(伊藤製油(株)製、PH−5002、平均水酸基数:2.03個、水酸基価:43mgKOH/g)20gと、ポリエーテルポリオール(第一工業製薬(株)製、ポリハードナーD−300W、分子量3,700)50gと、DMF150gを仕込み、均一に溶解させた。50℃の温度調節下、MDI10.2gを投入し(ソフトセグメント集約NCO/OH当量比:9/10)、1時間反応させた後、MDI52.8gを添加し、プレポリマ−最終反応を50℃にて0.5時間行った。続いてEG12.8gをDMF50gと混合し、添加後、60℃に昇温し、鎖長延長反応を行った。途中、粘度上昇を見ながらDMF210gを分割添加しつつ8時間反応させて、樹脂濃度30%、粘度19,500cpsポイズ(30℃)のポリウレタン樹脂9溶液を得た。得られたポリウレタン樹脂9の固形分中植物由来成分含有比率は28.4%、オキシエチレン基含有比率は22.8%である。
[Production Example 9 (Production of polyurethane resin 9)]
Castor oil diol 1 (manufactured by Ito Oil Co., Ltd., H-56, average number of hydroxyl groups: 2.03, hydroxyl value: 83 mgKOH / g) and castor oil in a 1 L four-necked flask equipped with a stirrer and a thermometer Diol 2 (produced by Ito Oil Co., Ltd., PH-5002, average number of hydroxyl groups: 2.03, hydroxyl value: 43 mgKOH / g) 20 g, polyether polyol (Daiichi Kogyo Seiyaku Co., Ltd., polyhardener D- (300 W, molecular weight 3,700) 50 g and DMF 150 g were charged and dissolved uniformly. Under temperature control of 50 ° C., 10.2 g of MDI was added (soft segment aggregated NCO / OH equivalent ratio: 9/10) and reacted for 1 hour, then 52.8 g of MDI was added, and the prepolymer-final reaction was brought to 50 ° C. For 0.5 hours. Subsequently, 12.8 g of EG was mixed with 50 g of DMF, and after addition, the temperature was raised to 60 ° C. to carry out a chain extension reaction. In the middle of the reaction, 210 g of DMF was added in portions while observing the increase in viscosity, and reacted for 8 hours to obtain a polyurethane resin 9 solution having a resin concentration of 30% and a viscosity of 19,500 cps poise (30 ° C.). The resulting polyurethane resin 9 has a plant-derived component content ratio of 28.4% in the solid content and an oxyethylene group content ratio of 22.8%.

〔製造例10(ポリウレタン樹脂10の製造)〕
攪拌機および温度計を備えた1L四つ口フラスコにヒマシ油ジオール1(伊藤製油(株)製、H−56、平均水酸基数:2.03個、水酸基価:83mgKOH/g)42gと、ヒマシ油ジオール2(伊藤製油(株)製、PH−5002、平均水酸基数:2.03個、水酸基価:43mgKOH/g)28gと、ポリエーテルポリオール(第一工業製薬(株)製、ポリハードナーD−300W、分子量3,700)30gと、DMF150gを仕込み、均一に溶解させた。50℃の温度調節下、MDI11.3gを投入し(ソフトセグメント集約NCO/OH当量比:9/10)、1時間反応させた後、MDI51.7gを添加し、プレポリマ−最終反応を50℃にて0.5時間行った。続いて1,4−ブチレングリコール18.1gをDMF50gと混合し、添加後、60℃に昇温し、鎖長延長反応を行った。途中粘度上昇を見ながらDMF223gを分割添加しながら8時間反応させて樹脂濃度30%、粘度20,500cps(30℃)のポリウレタン樹脂10溶液を得た。得られたポリウレタン樹脂10の固形分中植物由来成分含有比率38.6%、オキシエチレン基含有比率は13.2%である。
[Production Example 10 (Production of polyurethane resin 10)]
Castor oil diol 1 (manufactured by Ito Oil Co., Ltd., H-56, average number of hydroxyl groups: 2.03, hydroxyl value: 83 mgKOH / g) 42 g and castor oil in a 1 L four-necked flask equipped with a stirrer and a thermometer Diol 2 (produced by Ito Oil Co., Ltd., PH-5002, average number of hydroxyl groups: 2.03, hydroxyl value: 43 mg KOH / g) 28 g, polyether polyol (Daiichi Kogyo Seiyaku Co., Ltd., polyhardener D- 300 W, molecular weight 3,700) 30 g and DMF 150 g were charged and dissolved uniformly. Under temperature control of 50 ° C., 11.3 g of MDI was added (soft segment aggregated NCO / OH equivalent ratio: 9/10) and reacted for 1 hour, then 51.7 g of MDI was added, and the prepolymer-final reaction was brought to 50 ° C. For 0.5 hours. Subsequently, 18.1 g of 1,4-butylene glycol was mixed with 50 g of DMF, and after addition, the temperature was raised to 60 ° C. to carry out a chain extension reaction. While observing the increase in viscosity, 223 g of DMF was added in portions while reacting for 8 hours to obtain a polyurethane resin 10 solution having a resin concentration of 30% and a viscosity of 20,500 cps (30 ° C.). The resulting polyurethane resin 10 has a plant-derived component content ratio of 38.6% in solid content and an oxyethylene group content ratio of 13.2%.

〔製造例11(ポリウレタン樹脂11の製造)〕
攪拌機および温度計を備えた1L四つ口フラスコにヒマシ油ジオール1(伊藤製油(株)製、H−56、平均水酸基数:2.03個、水酸基価:83mgKOH/g)42gと、ヒマシ油ジオール2(伊藤製油(株)製、PH−5002、平均水酸基数:2.03個、水酸基価:43mgKOH/g)28gと、ポリエーテルポリオール(第一工業製薬(株)製、ポリハードナーD−300W、分子量3,700)30gと、DMF150gを仕込み、均一に溶解させた。50℃の温度調節下、MDI11.3gを投入し(ソフトセグメント集約NCO/OH当量比:9/10)、1時間反応させた後、MDI51.7gを添加しプレポリマー最終反応を50℃にて0.5時間行った。続いて1,3−ブチレングリコール(以下、1,3−BGと略記する)18.1gをDMF50gと混合し、添加後、60℃に昇温して鎖長延長反応を行った。途中、粘度上昇を見ながらDMF223gを分割添加しながら8時間反応させて、樹脂濃度30%、粘度20,500cps(30℃)のポリウレタン樹脂11溶液を得た。得られたポリウレタン樹脂11の固形分中植物由来成分含有比率38.6%、オキシエチレン基含有比率は13.2%である。
[Production Example 11 (Production of polyurethane resin 11)]
Castor oil diol 1 (manufactured by Ito Oil Co., Ltd., H-56, average number of hydroxyl groups: 2.03, hydroxyl value: 83 mgKOH / g) 42 g and castor oil in a 1 L four-necked flask equipped with a stirrer and a thermometer Diol 2 (produced by Ito Oil Co., Ltd., PH-5002, average number of hydroxyl groups: 2.03, hydroxyl value: 43 mg KOH / g) 28 g, polyether polyol (Daiichi Kogyo Seiyaku Co., Ltd., polyhardener D- 300 W, molecular weight 3,700) 30 g and DMF 150 g were charged and dissolved uniformly. Under temperature control of 50 ° C., 11.3 g of MDI was added (soft segment aggregated NCO / OH equivalent ratio: 9/10) and reacted for 1 hour, then 51.7 g of MDI was added, and the prepolymer final reaction was performed at 50 ° C. For 0.5 hours. Subsequently, 18.1 g of 1,3-butylene glycol (hereinafter abbreviated as 1,3-BG) was mixed with 50 g of DMF, and after addition, the temperature was raised to 60 ° C. to carry out a chain extension reaction. In the middle of the reaction, 223 g of DMF was added in portions while observing the increase in viscosity, and reacted for 8 hours to obtain a polyurethane resin 11 solution having a resin concentration of 30% and a viscosity of 20,500 cps (30 ° C.). In the solid content of the obtained polyurethane resin 11, the plant-derived component content ratio is 38.6%, and the oxyethylene group content ratio is 13.2%.

〔製造例12(ポリウレタン樹脂12の製造)〕
攪拌機および温度計を備えた1L四つ口フラスコにヒマシ油ジオール1(伊藤製油(株)製、H−56、平均水酸基数:2.03個、水酸基価:83mgKOH/g)42gと、ヒマシ油ジオール2(伊藤製油(株)製、PH−5002、平均水酸基数:2.03個、水酸基価:43mgKOH/g)28gと、ポリエーテルポリオール(第一工業製薬(株)製、ポリハードナーD−300W、分子量3,700)30gと、DMF150gを仕込み、均一に溶解させた。50℃の温度調節下、MDI11.3gを投入し(ソフトセグメント集約NCO/OH当量比:9/10)、1時間反応させた後、MDI51.7gを添加し、プレポリマー最終反応を50℃にて0.5時間行った。続いて1,2−プロピレングリコール(以下、1,2−PGと略記する)15.5gをDMF50gと混合し添加後、60℃に昇温して鎖長延長反応を行った。途中、粘度上昇を見ながらDMF217gを分割添加しつつ8時間反応させて、樹脂濃度30%、粘度21,500cps(30℃)のポリウレタン樹脂12溶液を得た。得られたポリウレタン樹脂12の固形分中植物由来成分含有比率は39.2%、オキシエチレン基含有比率は13.4%である。
[Production Example 12 (Production of polyurethane resin 12)]
Castor oil diol 1 (manufactured by Ito Oil Co., Ltd., H-56, average number of hydroxyl groups: 2.03, hydroxyl value: 83 mgKOH / g) 42 g and castor oil in a 1 L four-necked flask equipped with a stirrer and a thermometer Diol 2 (produced by Ito Oil Co., Ltd., PH-5002, average number of hydroxyl groups: 2.03, hydroxyl value: 43 mg KOH / g) 28 g, polyether polyol (Daiichi Kogyo Seiyaku Co., Ltd., polyhardener D- 300 W, molecular weight 3,700) 30 g and DMF 150 g were charged and dissolved uniformly. Under temperature control of 50 ° C., 11.3 g of MDI was added (soft segment aggregated NCO / OH equivalent ratio: 9/10) and reacted for 1 hour, then 51.7 g of MDI was added, and the prepolymer final reaction was brought to 50 ° C. For 0.5 hours. Subsequently, 15.5 g of 1,2-propylene glycol (hereinafter abbreviated as 1,2-PG) was mixed with DMF 50 g, added, and then heated to 60 ° C. to carry out a chain extension reaction. In the middle of the reaction, 217 g of DMF was added in portions while observing the increase in viscosity, and reacted for 8 hours to obtain a polyurethane resin 12 solution having a resin concentration of 30% and a viscosity of 21,500 cps (30 ° C.). The plant-derived component content ratio in the solid content of the obtained polyurethane resin 12 is 39.2%, and the oxyethylene group content ratio is 13.4%.

〔製造例13(ポリウレタン樹脂13の製造)〕
攪拌機および温度計を備えた1L四つ口フラスコにヒマシ油ジオール1(伊藤製油(株)製、H−56、平均水酸基数:2.03個、水酸基価:83mgKOH/g)42gと、ヒマシ油ジオール2(伊藤製油(株)製、PH−5002、平均水酸基数:2.03個、水酸基価:43mgKOH/g)28gと、ポリエーテルポリオール(第一工業製薬(株)製、ポリハードナーD−300W、分子量3,700)30gと、DMF150gを仕込み、均一に溶解させた。50℃の温度調節下、MDI11.3gを投入し(ソフトセグメント集約NCO/OH当量比:9/10)、1時間反応させた後、MDI51.7gを添加し、プレポリマー最終反応を50℃にて0.5時間行った。続いてEG10.1gと1,3−BG3.5gをDMF50gと混合し添加後、60℃に昇温して鎖長延長反応を行った。途中、粘度上昇を見ながらDMF204gを分割添加しつつ8時間反応させて、樹脂濃度30%、粘度23,500cps(30℃)のポリウレタン樹脂13溶液を得た。得られたポリウレタン樹脂13の固形分中植物由来成分含有比率は39.6%、オキシエチレン基含有比率は13.6%である。
[Production Example 13 (Production of polyurethane resin 13)]
Castor oil diol 1 (manufactured by Ito Oil Co., Ltd., H-56, average number of hydroxyl groups: 2.03, hydroxyl value: 83 mgKOH / g) 42 g and castor oil in a 1 L four-necked flask equipped with a stirrer and a thermometer Diol 2 (produced by Ito Oil Co., Ltd., PH-5002, average number of hydroxyl groups: 2.03, hydroxyl value: 43 mg KOH / g) 28 g, polyether polyol (Daiichi Kogyo Seiyaku Co., Ltd., polyhardener D- 300 W, molecular weight 3,700) 30 g and DMF 150 g were charged and dissolved uniformly. Under temperature control of 50 ° C., 11.3 g of MDI was added (soft segment aggregated NCO / OH equivalent ratio: 9/10) and reacted for 1 hour, then 51.7 g of MDI was added, and the prepolymer final reaction was brought to 50 ° C. For 0.5 hours. Subsequently, 10.1 g of EG and 3.5 g of 1,3-BG were mixed with 50 g of DMF, added, and then heated to 60 ° C. to carry out a chain extension reaction. In the middle of the reaction, 204 g of DMF was added in portions while observing the increase in viscosity, and reacted for 8 hours to obtain a polyurethane resin 13 solution having a resin concentration of 30% and a viscosity of 23,500 cps (30 ° C.). The resulting polyurethane resin 13 has a plant-derived component content ratio of 39.6% and an oxyethylene group content ratio of 13.6% in the solid content.

〔製造例14(ポリウレタン樹脂14の製造)〕
攪拌機および温度計を備えた1L四つ口フラスコにヒマシ油ジオール1(伊藤製油(株)製、H−56、平均水酸基数:2.03個、水酸基価:83mgKOH/g)42gと、ヒマシ油ジオール2(伊藤製油(株)製、PH−5002、平均水酸基数:2.03個、水酸基価:43mgKOH/g)28gと、ポリエーテルポリオール(第一工業製薬(株)製、ポリハードナーD−300W、分子量3,700)30gと、DMF150gを仕込み、均一に溶解させた。50℃の温度調節下、MDI11.3gを投入し(ソフトセグメント集約NCO/OH当量比:9/10)、1時間反応させた後、MDI51.7gを添加しプレポリマー最終反応を50℃にて0.5時間行った。続いてEG9.7gと1,2−PG3.5gをDMF50gと混合し添加後、60℃に昇温して鎖長延長反応を行った。途中粘度上昇を見ながらDMF203gを分割添加しつつ8時間反応させて、樹脂濃度30%、粘度22,500cps(30℃)のポリウレタン樹脂14溶液を得た。得られたポリウレタン樹脂14の固形分中植物由来成分含有比率は39.6%、オキシエチレン基含有比率は13.6%である。
[Production Example 14 (Production of polyurethane resin 14)]
Castor oil diol 1 (manufactured by Ito Oil Co., Ltd., H-56, average number of hydroxyl groups: 2.03, hydroxyl value: 83 mgKOH / g) 42 g and castor oil in a 1 L four-necked flask equipped with a stirrer and a thermometer Diol 2 (produced by Ito Oil Co., Ltd., PH-5002, average number of hydroxyl groups: 2.03, hydroxyl value: 43 mg KOH / g) 28 g, polyether polyol (Daiichi Kogyo Seiyaku Co., Ltd., polyhardener D- 300 W, molecular weight 3,700) 30 g and DMF 150 g were charged and dissolved uniformly. Under temperature control of 50 ° C., 11.3 g of MDI was added (soft segment aggregated NCO / OH equivalent ratio: 9/10) and reacted for 1 hour, then 51.7 g of MDI was added, and the prepolymer final reaction was performed at 50 ° C. For 0.5 hours. Subsequently, 9.7 g of EG and 3.5 g of 1,2-PG were mixed with 50 g of DMF, added, and then heated to 60 ° C. to carry out a chain extension reaction. The reaction was allowed to proceed for 8 hours while adding 203 g of DMF in portions while observing the increase in viscosity in the middle of the process to obtain a polyurethane resin 14 solution having a resin concentration of 30% and a viscosity of 22,500 cps (30 ° C.). The obtained polyurethane resin 14 has a plant-derived component content ratio of 39.6% and an oxyethylene group content ratio of 13.6% in the solid content.

〔製造例15(ポリウレタン樹脂15の製造)〕
攪拌機および温度計を備えた1L四つ口フラスコにヒマシ油ジオール1(伊藤製油(株)製、H−56、平均水酸基数:2.03個、水酸基価:83mgKOH/g)48gと、ヒマシ油ジオール2(伊藤製油(株)製、PH−5002、平均水酸基数:2.03個、水酸基価:43mgKOH/g)32gと、ポリエーテルポリオール(第一工業製薬(株)製、ポリハードナーD−300W、分子量3,700)20gと、DMF150gを仕込み、均一に溶解させた。50℃の温度調節下、MDI11.9gを投入し(ソフトセグメント集約NCO/OH当量比:9/10)、1時間反応させた後、MDI51.1gを添加し、プレポリマー最終反応を50℃にて0.5時間行った。続いてEG9.9gと1,3−BG3.5gをDMF50gと混合し、添加後、60℃に昇温して鎖長延長反応を行った。途中粘度上昇を見ながらDMF204gを分割添加しつつ8時間反応させて、樹脂濃度30%、粘度20,500cps(30℃)のポリウレタン樹脂15溶液を得た。得られたポリウレタン樹脂15の固形分中植物由来成分含有比率46.3%、オキシエチレン基含有比率は9.3%である。
[Production Example 15 (Production of polyurethane resin 15)]
Castor oil diol 1 (manufactured by Ito Oil Co., Ltd., H-56, average number of hydroxyl groups: 2.03, hydroxyl value: 83 mgKOH / g) 48 g and castor oil in a 1 L four-necked flask equipped with a stirrer and a thermometer Diol 2 (manufactured by Ito Oil Co., Ltd., PH-5002, average number of hydroxyl groups: 2.03, hydroxyl value: 43 mgKOH / g) 32 g, polyether polyol (Daiichi Kogyo Seiyaku Co., Ltd., polyhardener D- 300 W, molecular weight 3,700) 20 g and DMF 150 g were charged and dissolved uniformly. Under temperature control of 50 ° C., 11.9 g of MDI was added (soft segment aggregated NCO / OH equivalent ratio: 9/10) and reacted for 1 hour, then 51.1 g of MDI was added, and the prepolymer final reaction was brought to 50 ° C. For 0.5 hours. Subsequently, 9.9 g of EG and 3.5 g of 1,3-BG were mixed with 50 g of DMF, and after addition, the temperature was raised to 60 ° C. to perform a chain extension reaction. The reaction was carried out for 8 hours while adding 204 g of DMF while observing the increase in viscosity in the middle, to obtain a polyurethane resin 15 solution having a resin concentration of 30% and a viscosity of 20,500 cps (30 ° C.). The polyurethane resin 15 obtained has a plant-derived component content ratio of 46.3% and an oxyethylene group content ratio of 9.3% in the solid content.

熱軟化点、引張試験、水膨潤度、吸水率、透湿度の評価は以下の方法により行った。結果を、表1、表2、表3に示す。   Evaluation of thermal softening point, tensile test, degree of water swelling, water absorption rate, and moisture permeability was carried out by the following methods. The results are shown in Table 1, Table 2, and Table 3.

(1)熱軟化点測定方法
試料片の作成:試験用塗膜の作成樹脂濃度が20%になるようにDMFで調整し、脱泡した。次に、ガラス板上に1.0mm厚みに塗布し、80℃の循風乾燥機で2時間乾燥し、更に140℃の乾燥機で30分乾燥し、膜厚約150μの塗膜を作成した。この塗膜を40mm四方にカットし、ガラス板から剥がした。
(1) Thermal softening point measurement method Preparation of sample piece: Preparation of coating film for test Adjustment was made with DMF so that the resin concentration was 20%, and defoaming was performed. Next, it was applied to a glass plate to a thickness of 1.0 mm, dried for 2 hours with a circulating dryer at 80 ° C., and further dried for 30 minutes with a dryer at 140 ° C. to form a coating film having a thickness of about 150 μm. . This coating film was cut into a 40 mm square and peeled off from the glass plate.

熱軟化点の測定:得られた塗膜について、100g分銅を膜上に置き、各設定温度の乾燥機中に60分放置したのちに取り出し、分銅を除いたときに膜上に分銅跡が残らない温度を軟化点(℃)とした。   Measurement of thermal softening point: About the obtained coating film, a 100 g weight is placed on the film, left in a dryer at each set temperature for 60 minutes, and then taken out. When the weight is removed, a trace of weight remains on the film. The softening point (° C.) was defined as the temperature at which no temperature was present.

(2)引張強度測定方法
上記(1)項の試料作成方法で得られた塗膜を使用した。20mm×80mmの大きさにカットされた試験片をオリエンテック社製STA−1225引張試験機を使って引っ張り速度100mm/分で、室温で、100%応力(kg/cm)、300%応力(kg/cm)、抗張力(kg/cm)、及び破断伸度を測定した。
(2) Tensile strength measuring method The coating film obtained by the sample preparation method of the said (1) term was used. A test piece cut to a size of 20 mm × 80 mm was pulled at 100 mm / min using an Orientec STA-1225 tensile tester at room temperature, 100% stress (kg / cm 2 ), 300% stress ( kg / cm 2 ), tensile strength (kg / cm 2 ), and elongation at break.

(3)吸水率(%)及び水膨潤度(%)の測定方法
上記(1)項の試料作成方法で得られた塗膜を使用した。得られた塗膜(約150μ)を10cm×10cm片に切り取り、20℃×65%RH雰囲気中に3時間放置後基準重量(W0)を測定した。次に25℃恒温水槽に5時間放置した後、取り出し、水分をふき取った塗膜の重量(W1)を測定し、次式を用いて算出した。
吸水量(%)=(W1−W0)×100/W0
(3) Measuring method of water absorption rate (%) and water swelling degree (%) The coating film obtained by the sample preparation method of the said (1) term was used. The obtained coating film (about 150 μm) was cut into 10 cm × 10 cm pieces, allowed to stand in a 20 ° C. × 65% RH atmosphere for 3 hours, and then the reference weight (W0) was measured. Next, after leaving it in a constant temperature water bath at 25 ° C. for 5 hours, it was taken out, and the weight (W1) of the coating film from which water had been wiped off was measured and calculated using the following formula.
Water absorption (%) = (W1-W0) × 100 / W0

また水膨潤度は重量測定時に寸法(L1)を測定し、次式を用いて算出した。
(元寸法は10cm)◎
水膨潤度(%)=(L1−10)×100/10
Further, the degree of water swelling was calculated by using the following equation after measuring the dimension (L1) during weight measurement.
(Original size is 10cm)
Water swelling degree (%) = (L1-10) × 100/10

(4)透湿度測定方法
試験用塗膜試料の作成:樹脂濃度が15%になるようにDMFで調整した樹脂溶液を脱泡した。次に、離型紙上に0.1mm厚みに塗布し、100℃の循風乾燥機で1時間乾燥した後に放冷し、塗膜を離型紙から剥がした。厚み10μの塗膜が得られた。
(4) Moisture permeability measurement method Preparation of test coating film sample: The resin solution adjusted with DMF was degassed so that the resin concentration was 15%. Next, it was applied to a release paper to a thickness of 0.1 mm, dried with a circulating dryer at 100 ° C. for 1 hour, allowed to cool, and the coating film was peeled off from the release paper. A coating film having a thickness of 10 μm was obtained.

透湿度はJIS規格L−1099のB−1法に従って測定した。なお透湿度の評価としては、2500g/m・24Hr以上は透湿性能があると判断した。 The moisture permeability was measured according to the B-1 method of JIS standard L-1099. In addition, as evaluation of moisture permeability, it was judged that 2500 g / m 2 · 24Hr or more has moisture permeability.

Figure 2009149876
Figure 2009149876

Figure 2009149876
Figure 2009149876

Figure 2009149876
Figure 2009149876

表1から分かるように、オキシエチレン基の導入を多くする事により、大きな透湿性能が得られるが、ヒマシ油含有率が25%以上でないとカーボンニュートラルという目標が達成できない。また、アジペート系のポリエステルジオールに比べ、ヒマシ油ポリオール共重合物は透湿性が低く、通常のプレポリマー重合方法ではヒマシ油成分(植物由来成分)が多くなると所望の透湿性能が得られないが、本発明では、ソフトセグメント間を長く(すなわち非結晶部分を大きく)することにより、吸湿・吸水量を大きくし、非結晶部分から発散・放湿させることにより、透湿度が向上すると考えられる。   As can be seen from Table 1, a large moisture permeability can be obtained by increasing the introduction of oxyethylene groups, but the target of carbon neutral cannot be achieved unless the castor oil content is 25% or more. In addition, castor oil polyol copolymer has low moisture permeability compared to adipate-based polyester diol, and the desired moisture permeability performance cannot be obtained if the amount of castor oil component (plant-derived component) is increased by a normal prepolymer polymerization method. In the present invention, it is considered that the moisture permeability is improved by increasing the moisture absorption / water absorption amount by increasing the distance between the soft segments (that is, by increasing the non-crystalline portion), and divergence / moisture release from the amorphous portion.

表2に示された結果からは、オキシエチレン基を分散させるほど透湿度が向上できることが分かる。ポリオキシエチレン/ポリオキシプロピレンの共重合物(以下、PO/EOと略記)とポリオキシエチレン重合物(PEG)の分子鎖への導入では、PEGの導入によりオキシエチレン基の量は増えるが、PO/EOに比べると、透湿度の向上が劣ることからソフトセグメント中にオキシエチレン基がより分散されていた方が良いことが分かる。オキシエチレン基の集中した部分に湿気・水分が集まっても他の疎水性の部分には全くない場合、吸湿吸水・放湿放水の機能が劣った構造になるが、分散された構造は全体的に吸湿吸水・放湿放水の機能を持ち、透湿度が良好になると考えられる。   From the results shown in Table 2, it can be seen that the moisture permeability can be improved as the oxyethylene group is dispersed. When polyoxyethylene / polyoxypropylene copolymer (hereinafter abbreviated as PO / EO) and polyoxyethylene polymer (PEG) are introduced into the molecular chain, the amount of oxyethylene groups increases due to the introduction of PEG. Compared to PO / EO, the improvement in moisture permeability is inferior, so it can be seen that oxyethylene groups should be more dispersed in the soft segment. If moisture or moisture collects in the concentrated oxyethylene group, but there is no other hydrophobic part at all, the function of absorbing and absorbing moisture is poor, but the dispersed structure is overall It has a function of moisture absorption / absorption / moisture discharge, and moisture permeability is considered to be good.

表3に示された結果からは、分岐したグリコールの使用により透湿性能が向上することが分かる。これは、ポリウレタンの結晶性が崩れ、ソフトセグメントに吸湿・吸水した後の放湿・放水時に、この結晶性の崩れた部分の効果で透湿性能が向上する(直鎖状グリコールより透湿度が高い)ためと考えられる。   From the results shown in Table 3, it can be seen that the use of branched glycol improves the moisture permeability. This is because the crystallinity of the polyurethane collapses, and the moisture permeation performance is improved by the effect of the part where the crystallinity is lost during moisture release / water discharge after moisture absorption / water absorption by the soft segment (the moisture permeability is higher than that of the linear glycol). High).

但し、鎖伸長剤として分岐グリコールを単独使用したものは軟化点が低く、用途によっては耐熱性(耐熱ブロッキング性)に問題が生じる場合があるが、直鎖状グリコールと分岐グリコールとの併用により、この耐熱性の問題も解決されることが分かる。   However, the use of a branched glycol alone as a chain extender has a low softening point and may cause a problem in heat resistance (heat blocking resistance) depending on the use, but by using a linear glycol and a branched glycol in combination, It can be seen that this problem of heat resistance is also solved.

Claims (5)

植物由来の高分子ジオール成分と、オキシエチレン基を含有する高分子ジオール成分と、有機ジイソシアネート成分と、二価アルコールである鎖伸長剤成分とを含有してなる透湿性ポリウレタン樹脂であって、
前記植物由来の高分子ジオール成分の含有量が樹脂成分中25〜65重量%であり、
前記オキシエチレン基を含有する高分子ジオール成分がオキシエチレン基がランダムに分散された共重合物であり、かつ
前記有機ジイソシアネート成分と前記高分子ジオールとのプレポリマーNCO/OH反応当量比を3/4以上(0.75以上)とし、ソフトセグメントを集中させた構造を有することを特徴とする透湿性ポリウレタン樹脂。
A moisture-permeable polyurethane resin comprising a plant-derived polymer diol component, a polymer diol component containing an oxyethylene group, an organic diisocyanate component, and a chain extender component that is a dihydric alcohol,
The content of the plant-derived polymer diol component is 25 to 65% by weight in the resin component,
The polymer diol component containing the oxyethylene group is a copolymer in which oxyethylene groups are randomly dispersed, and the prepolymer NCO / OH reaction equivalent ratio of the organic diisocyanate component and the polymer diol is 3 / A moisture-permeable polyurethane resin characterized by having a structure in which soft segments are concentrated to 4 or more (0.75 or more).
植物由来の高分子ジオール成分としてヒマシ油ジオールを用いたことを特徴とする、請求項1に記載の透湿性ポリウレタン樹脂。   The moisture-permeable polyurethane resin according to claim 1, wherein castor oil diol is used as a plant-derived polymer diol component. 前記ヒマシ油ジオールがヒマシ油系ポリエーテルポリエステルジオールであって、平均水酸基数が1.8〜2.1個であり、水酸基価が41〜85mgKOH/gであることを特徴とする、請求項2に記載の透湿性ポリウレタン樹脂。   The castor oil diol is a castor oil-based polyether polyester diol having an average number of hydroxyl groups of 1.8 to 2.1 and a hydroxyl value of 41 to 85 mgKOH / g. The moisture-permeable polyurethane resin described in 1. 前記鎖伸長剤成分が、エチレングリコール及び1,4−ブチレングリコールから選択された直鎖グリコールであるか、または前記直鎖グリコールと、1,3−ブチレングリコール及び1,2−プロピレングリコールから選択された分岐グリコールとの組み合わせよりなることを特徴とする、請求項1〜3のいずれか1項に記載の透湿性ポリウレタン樹脂。   The chain extender component is a linear glycol selected from ethylene glycol and 1,4-butylene glycol, or selected from the linear glycol and 1,3-butylene glycol and 1,2-propylene glycol. The moisture-permeable polyurethane resin according to any one of claims 1 to 3, comprising a combination with a branched glycol. 厚み10μのフィルムのB−1透湿度が2,500g/m・24hrs以上であることを特徴とする、請求項1〜4のいずれか1項に記載の透湿性ポリウレタン樹脂。 The moisture-permeable polyurethane resin according to any one of claims 1 to 4, wherein the B-1 moisture permeability of a film having a thickness of 10 µm is 2,500 g / m 2 · 24 hrs or more.
JP2008304320A 2007-11-30 2008-11-28 Moisture permeable polyurethane resin composed of plant-derived components Expired - Fee Related JP5496496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304320A JP5496496B2 (en) 2007-11-30 2008-11-28 Moisture permeable polyurethane resin composed of plant-derived components

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007311037 2007-11-30
JP2007311037 2007-11-30
JP2008304320A JP5496496B2 (en) 2007-11-30 2008-11-28 Moisture permeable polyurethane resin composed of plant-derived components

Publications (2)

Publication Number Publication Date
JP2009149876A true JP2009149876A (en) 2009-07-09
JP5496496B2 JP5496496B2 (en) 2014-05-21

Family

ID=40919370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304320A Expired - Fee Related JP5496496B2 (en) 2007-11-30 2008-11-28 Moisture permeable polyurethane resin composed of plant-derived components

Country Status (1)

Country Link
JP (1) JP5496496B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105595A1 (en) 2010-02-23 2011-09-01 セーレン株式会社 Moisture-permeable water-proofing cloth
KR20200144489A (en) * 2019-06-18 2020-12-29 주식회사 비 에스 지 Biopolyurethane resin having high-temperature durability, Bio polyurethane film and Manufacturing method thereof
WO2021044852A1 (en) * 2019-09-06 2021-03-11 Dic株式会社 Urethane resin composition and moisture-permeable film
CN115232286A (en) * 2021-04-22 2022-10-25 深圳市优妮家新材料有限公司 Bio-based aliphatic polyurethane composition and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296017A (en) * 1985-06-24 1986-12-26 Dai Ichi Kogyo Seiyaku Co Ltd Flame-retardant insulating material
JPS62135512A (en) * 1985-12-09 1987-06-18 Sanyo Chem Ind Ltd Elastomer-forming composition
JPS649213A (en) * 1987-02-24 1989-01-12 Mitsubishi Chem Ind Preparation of polyurethane resin and non-porous film
JPH03203920A (en) * 1989-12-29 1991-09-05 Dainichiseika Color & Chem Mfg Co Ltd Moisture-permeable polyurethane resin film
JP2003246832A (en) * 2001-12-21 2003-09-05 Mitsubishi Heavy Ind Ltd Moisture-permeable polyurethane, moisture-permeable molded product and moisture-permeable tube
JP2005306892A (en) * 2004-03-25 2005-11-04 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous waterproof material composition
JP2007045866A (en) * 2005-08-08 2007-02-22 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous polyurethane resin composition for nonporous film type moisture-permeable, waterproof finish and method for producing moisture-permeable, waterproof finish fabric
JP2007191628A (en) * 2006-01-20 2007-08-02 Mitsui Chemicals Polyurethanes Inc Thermoplastic polyurethane resin composition and moisture-permeable film
JP2007269849A (en) * 2006-03-30 2007-10-18 Dainippon Ink & Chem Inc Method of manufacturing hard polyurethane foam and heat insulating material for construction

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296017A (en) * 1985-06-24 1986-12-26 Dai Ichi Kogyo Seiyaku Co Ltd Flame-retardant insulating material
JPS62135512A (en) * 1985-12-09 1987-06-18 Sanyo Chem Ind Ltd Elastomer-forming composition
JPS649213A (en) * 1987-02-24 1989-01-12 Mitsubishi Chem Ind Preparation of polyurethane resin and non-porous film
JPH03203920A (en) * 1989-12-29 1991-09-05 Dainichiseika Color & Chem Mfg Co Ltd Moisture-permeable polyurethane resin film
JP2003246832A (en) * 2001-12-21 2003-09-05 Mitsubishi Heavy Ind Ltd Moisture-permeable polyurethane, moisture-permeable molded product and moisture-permeable tube
JP2005306892A (en) * 2004-03-25 2005-11-04 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous waterproof material composition
JP2007045866A (en) * 2005-08-08 2007-02-22 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous polyurethane resin composition for nonporous film type moisture-permeable, waterproof finish and method for producing moisture-permeable, waterproof finish fabric
JP2007191628A (en) * 2006-01-20 2007-08-02 Mitsui Chemicals Polyurethanes Inc Thermoplastic polyurethane resin composition and moisture-permeable film
JP2007269849A (en) * 2006-03-30 2007-10-18 Dainippon Ink & Chem Inc Method of manufacturing hard polyurethane foam and heat insulating material for construction

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105595A1 (en) 2010-02-23 2011-09-01 セーレン株式会社 Moisture-permeable water-proofing cloth
CN102762792A (en) * 2010-02-23 2012-10-31 世联株式会社 Moisture-permeable water-proofing cloth
CN102762792B (en) * 2010-02-23 2014-06-25 世联株式会社 Moisture-permeable water-proofing cloth
KR20200144489A (en) * 2019-06-18 2020-12-29 주식회사 비 에스 지 Biopolyurethane resin having high-temperature durability, Bio polyurethane film and Manufacturing method thereof
KR102207612B1 (en) 2019-06-18 2021-01-26 주식회사 비에스지 Biopolyurethane resin having high-temperature durability, Bio polyurethane film and Manufacturing method thereof
WO2021044852A1 (en) * 2019-09-06 2021-03-11 Dic株式会社 Urethane resin composition and moisture-permeable film
CN115232286A (en) * 2021-04-22 2022-10-25 深圳市优妮家新材料有限公司 Bio-based aliphatic polyurethane composition and preparation method and application thereof
CN115232286B (en) * 2021-04-22 2023-09-26 深圳市优妮家新材料有限公司 Bio-based aliphatic polyurethane composition and preparation method and application thereof

Also Published As

Publication number Publication date
JP5496496B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
RU2412215C2 (en) Polyurethaneurea solutions
EP3590986B1 (en) Polyurethane resin for synthetic leather
JP6591189B2 (en) Polyurethane aqueous dispersion and synthetic leather
EP3263614A1 (en) Waterborne hybrid polyurethane/polysiloxane dispersions
JP5496496B2 (en) Moisture permeable polyurethane resin composed of plant-derived components
WO2011105595A1 (en) Moisture-permeable water-proofing cloth
JPWO2013008593A1 (en) Polyurethane resin and polyurethane resin composition for moisture permeable and waterproof material
JP3410378B2 (en) Non-porous membrane type moisture-permeable waterproof coating agent for fabric and moisture-permeable waterproof fabric
TWI437014B (en) Anionic water-based polyurethane resin and method of producing the same
JP3940013B2 (en) Leather-like sheet material
EP1688447B1 (en) Polyurethane resin for artificial leather and porous sheet material
JP4177318B2 (en) Polyurethane resin for synthetic leather and porous sheet material
JP4964458B2 (en) Polyurethane resin aqueous dispersion for fiber processing agent and resin processed fiber substrate
JP4061138B2 (en) Synthetic leather-forming coating agent and synthetic leather
JPS61155417A (en) Production of polyurethane
JP2006316127A (en) Solventless curable urethane resin composition and sheet-like product obtained using the same
JPH1017764A (en) Polyurethane resin composition for nonporous-type moisture-permeable waterproof fabric
JP2000086740A (en) Production of polyurethane-urea resin for synthetic leather or elastic yarn
JP2010229224A (en) Aqueous polyurethane dispersion and aqueous coating using the same
JP2008255196A (en) Aqueous polyurethane resin composition
JP2005171228A (en) Polyurethane resin composition for synthetic leather and porous sheet material
JP2001002752A (en) Flame retardant polyurethane foamed sheet and synthetic leather using the same
JP4616977B2 (en) Method for producing polyurethane resin solution
JP2003119314A (en) Porous sheet material and method for producing the same
JP2010155879A (en) Method for producing polyurethane resin aqueous dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140305

R150 Certificate of patent or registration of utility model

Ref document number: 5496496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees