JP2009149576A - Process for preparing glycidol - Google Patents

Process for preparing glycidol Download PDF

Info

Publication number
JP2009149576A
JP2009149576A JP2007330041A JP2007330041A JP2009149576A JP 2009149576 A JP2009149576 A JP 2009149576A JP 2007330041 A JP2007330041 A JP 2007330041A JP 2007330041 A JP2007330041 A JP 2007330041A JP 2009149576 A JP2009149576 A JP 2009149576A
Authority
JP
Japan
Prior art keywords
glycidol
tubular reactor
carbonate
reactor
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007330041A
Other languages
Japanese (ja)
Inventor
Nobuhiro Nozawa
宜弘 野澤
Toru Sakamoto
透 坂本
Yuichiro Seki
雄一郎 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007330041A priority Critical patent/JP2009149576A/en
Publication of JP2009149576A publication Critical patent/JP2009149576A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for preparing glycidol from glycerin carbonate with a high selectivity without having an agitation device or the like in the reactor and without requiring a catalyst separation operation in the post-step. <P>SOLUTION: The process for preparing glycidol comprises decarboxylating glycerin carbonate with the use of a tubular reactor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、管型反応器を用いて、グリセリンカーボネートからグリシドールを製造する方法に関する。   The present invention relates to a method for producing glycidol from glycerin carbonate using a tubular reactor.

グリシドールは、ポリグリセリン、(ポリ)グリセリンエステル、ジヒドロキシプロピルアミン等や、香粧品、洗浄剤、医薬品、塗料、半導体用UV硬化剤等の原料として有用な物質である。
グリシドール類の製造方法として、特許文献1及び2には、グリセリンカーボネートを硫酸ナトリウム等の中性塩の存在下で脱炭酸する方法が開示されている。
また、特許文献3には、Aゼオライトやγ−アルミナ等の固体触媒を用いて、グリセリンカーボネートを脱炭酸する方法が開示されており、連続回分式装置や薄膜式装置が記載されている。
しかしながら、従来法では、反応器に撹拌装置等を備えることが必要であったり、また、後工程で触媒濾過等の分離操作が必要であったりして、工業生産上不利である。
Glycidol is a substance useful as a raw material for polyglycerin, (poly) glycerin ester, dihydroxypropylamine and the like, cosmetics, detergents, pharmaceuticals, paints, semiconductor UV curing agents and the like.
As a method for producing glycidols, Patent Documents 1 and 2 disclose a method of decarboxylating glycerin carbonate in the presence of a neutral salt such as sodium sulfate.
Patent Document 3 discloses a method of decarboxylating glycerin carbonate using a solid catalyst such as A zeolite or γ-alumina, and describes a continuous batch type apparatus and a thin film type apparatus.
However, the conventional method is disadvantageous in industrial production because it is necessary to equip the reactor with a stirrer or the like, or a separation operation such as catalyst filtration is required in a subsequent process.

特開平6−157509号公報JP-A-6-157509 米国特許第2856413号明細書U.S. Pat. No. 2,856,413 米国特許第6316641号明細書US Pat. No. 6,316,641

本発明は、反応器に撹拌装置等を備えることなく、また後工程での触媒分離操作の必要がなく、グリセリンカーボネートからグリシドールを高選択的に製造する方法を提供することを課題とする。   An object of the present invention is to provide a method for producing glycidol from glycerin carbonate with high selectivity without providing a reactor with a stirrer or the like and without the need for a catalyst separation operation in a subsequent step.

本発明は、管型反応器を用いて、グリセリンカーボネートを脱炭酸反応させることによるグリシドールの製造方法を提供する。   The present invention provides a method for producing glycidol by decarboxylating glycerin carbonate using a tubular reactor.

本発明によれば、グリセリンカーボネートを原料として、管型反応器という簡便な反応器を用いて、高選択的にグリシドールを製造することができる。また、撹拌装置や後工程での触媒濾過等の分離工程が不要であり、工業生産上有利である。   According to the present invention, glycidol can be produced with high selectivity using glycerol carbonate as a raw material and a simple reactor called a tubular reactor. In addition, a separation device such as a stirring device or catalyst filtration in a subsequent process is unnecessary, which is advantageous in industrial production.

本発明のグリシドールの製造方法は、管型反応器を用いて、グリセリンカーボネートを脱炭酸反応させるによってグリシドールを得ることを特徴とする。
(グリシドールの製造)
グリシドールは、下記の反応式で示されるように、管型反応器に下記式(1)で表されるグリセリンカーボネートを供給して脱炭酸反応させることにより、式(2)で表されるグリシドールが得られる。
The method for producing glycidol according to the present invention is characterized in that glycidol is obtained by decarboxylating glycerol carbonate using a tubular reactor.
(Manufacture of glycidol)
As shown in the following reaction formula, the glycidol represented by the formula (2) is obtained by supplying the glycerin carbonate represented by the following formula (1) to the tubular reactor and decarboxylating the glycidol. can get.

Figure 2009149576
Figure 2009149576

反応系の水分は、原料であるグリセリンカーボネート及びグリシドールの加水分解を引き起こすおそれがあるため、用いるグリセリンカーボネートは予め脱水し精製したものを用いることが好ましい。脱水方法は特に限定されないが、例えば金属水素化物等の乾燥剤を用いる等の常法により脱水乾燥することができる。   Since water in the reaction system may cause hydrolysis of glycerin carbonate and glycidol, which are raw materials, it is preferable to use glycerin carbonate that has been dehydrated and purified in advance. Although the dehydration method is not particularly limited, for example, it can be dehydrated and dried by a conventional method such as using a desiccant such as a metal hydride.

本発明においては、原料であるグリセリンカーボネートを管型反応器に供給し、管型反応器内で脱炭酸反応を行わせ、生成したグリシドールを冷却して取得する。
(管型反応器)
本発明で用いられる管型反応器に特に制限はない。例えば、所定の長さの直管又は曲折管からなる単管型式(反応管が1本)又は並列多管型式(反応管が複数)の反応器を用いることができるが、多管型式反応器がより好ましい。本発明においては、反応器に触媒を充填しない、管型触媒無充填反応器を用いることができるため、簡便でありながら、グリセリンカーボネートを脱炭酸反応させて、高選択的にグリシドールを製造することができる。また、撹拌装置や後工程での触媒濾過等の触媒分離工程が不要であり、工業生産上有利である。
管型反応器には、その内部を所望の温度及び圧力に保持するための加熱手段が設けられている。加熱形式に制限はなく、熱媒や高圧スチームを利用した2重管式加熱形式や電気ヒータ形式等を採用できる。
In the present invention, glycerin carbonate as a raw material is supplied to a tubular reactor, a decarboxylation reaction is carried out in the tubular reactor, and the produced glycidol is cooled and obtained.
(Tube type reactor)
There is no restriction | limiting in particular in the tubular reactor used by this invention. For example, a single-tube type reactor (one reaction tube) or a parallel multi-tube type (multiple reaction tubes) consisting of a straight tube or a bent tube of a predetermined length can be used. Is more preferable. In the present invention, it is possible to use a tubular catalyst-free reactor that does not charge the catalyst in the reactor, so that glycidol is highly selectively produced by decarboxylating glycerol carbonate while being simple. Can do. Moreover, a catalyst separation step such as a catalyst stirrer or catalyst filtration in a subsequent step is unnecessary, which is advantageous in industrial production.
The tubular reactor is provided with heating means for maintaining the inside at a desired temperature and pressure. There is no restriction on the heating type, and a double-pipe heating type or an electric heater type using a heat medium or high-pressure steam can be adopted.

管型反応器の材質は特に制限されないが、耐摩耗性、耐腐食性、加工性、経済性等の観点から、ステンレス鋼、ニッケル含有金属(ニッケル、モネルメタル、インコネル(登録商標)、ハステロイ(登録商標)等)、パラジウム合金、チタン合金、クロム/タングステン合金(ステライト(登録商標))等の金属、セラミック、ガラス等の材質が好ましい。
これらの中でも、特に加工性、耐腐食性、経済性等の観点からステンレス鋼が好ましい。ステンレス鋼としては、SUS−316L(オーステナイト系)、SUS−310S(オーステナイト系)、SUS−440(マルテンサイト系)、SUS−630(析出硬化系)等が挙げられる。
また、ニッケル含有金属等の触媒作用を有する管型反応器を用いると、転化率、選択率、収率をより向上させることができる。
The material of the tubular reactor is not particularly limited, but stainless steel, nickel-containing metals (nickel, monel metal, inconel (registered trademark), hastelloy (registered) from the viewpoint of wear resistance, corrosion resistance, workability, economy, etc. Etc.), metals such as palladium alloys, titanium alloys, chromium / tungsten alloys (Stellite (registered trademark)), ceramics, and glass are preferred.
Among these, stainless steel is particularly preferable from the viewpoints of workability, corrosion resistance, economy, and the like. Examples of stainless steel include SUS-316L (austenite), SUS-310S (austenite), SUS-440 (martensite), and SUS-630 (precipitation hardening).
Moreover, when a tubular reactor having a catalytic action such as a nickel-containing metal is used, the conversion rate, selectivity, and yield can be further improved.

(脱炭酸反応条件)
反応温度は200〜350℃が好ましく、240〜340℃がより好ましく、260〜330℃が更に好ましく、280〜320℃が特に好ましい。200℃以上の温度であれば、無触媒でも反応を迅速に行うことができる。また、350℃以下の温度であれば、原料のグリセリンカーボネートが完全にガス化しないために反応に必要な滞留時間を確保することができ、グリシドールの収率が低下しない。
反応圧力は特に限定はないが、好ましくは10〜200kPa、より好ましくは50〜150kPaである。
(Decarboxylation reaction conditions)
The reaction temperature is preferably 200 to 350 ° C, more preferably 240 to 340 ° C, still more preferably 260 to 330 ° C, and particularly preferably 280 to 320 ° C. If the temperature is 200 ° C. or higher, the reaction can be carried out rapidly even without a catalyst. Moreover, if it is the temperature of 350 degrees C or less, since the raw material glycerol carbonate will not be completely gasified, the residence time required for reaction can be ensured, and the yield of glycidol will not fall.
The reaction pressure is not particularly limited, but is preferably 10 to 200 kPa, more preferably 50 to 150 kPa.

管型反応器で連続的に反応を行う場合、グリセリンカーボネートから脱炭酸反応で生成したグリシドールを管型反応器外に迅速に移送して、ガス系中に取り出す観点から、またカーボネートの分圧を下げる観点から、カーボネートと共に不活性ガスを供給することが好ましい。不活性ガスを供給することによりグリシドールの選択性を向上させることができる。
不活性ガスの種類は特に限定されないが、経済性等の観点から窒素ガスが好ましい。不活性ガスの供給量は、反応温度、反応圧力等により異なるが、生成するグリシドールが反応系中に滞留せず略一定に留出する状態となる量であればよい。具体的には、上記観点から、カーボネートの流量に対して、0.1〜10モル倍が好ましく、0.5〜8モル倍がより好ましく、1〜6モル倍が更に好ましく、2〜4モル倍が特に好ましい。
When the reaction is carried out continuously in a tubular reactor, the glycidol produced by decarboxylation from glycerin carbonate is quickly transferred out of the tubular reactor and taken out into the gas system. From the viewpoint of lowering, it is preferable to supply an inert gas together with carbonate. The selectivity of glycidol can be improved by supplying an inert gas.
The type of the inert gas is not particularly limited, but nitrogen gas is preferable from the viewpoint of economy and the like. The supply amount of the inert gas varies depending on the reaction temperature, the reaction pressure, and the like, but may be an amount that allows the glycidol to be produced to stay in a substantially constant state without staying in the reaction system. Specifically, from the above viewpoint, the carbonate flow rate is preferably 0.1 to 10 mol times, more preferably 0.5 to 8 mol times, further preferably 1 to 6 mol times, and more preferably 2 to 4 mols. Double is particularly preferred.

管型反応器で連続的に脱炭酸反応を行う場合の液空間速度(LHSV)は、好ましくは0.02〜3.0/hrであり、より好ましくは0.2〜2.0/hr、更に好ましくは0.5〜1.8/hrである。LHSVが0.02/hr以上の条件で、反応器の単位体積あたりの高生産性が保持され、LHSVが3.0/hr以下の条件で十分な反応率を得ることができる。
本発明においては、原料であるグリセリンカーボネートを管型反応器に供給し、連続的に脱炭酸反応を行い、生成したグリシドール及び未反応のグリセリンカーボネートを常法により冷却して分別回収することができる。また、回収した未反応のグリセリンカーボネートは、本発明の原料として、再度、管型反応器に供給することができる。
The liquid space velocity (LHSV) when the decarboxylation reaction is continuously carried out in a tubular reactor is preferably 0.02 to 3.0 / hr, more preferably 0.2 to 2.0 / hr, More preferably, it is 0.5-1.8 / hr. High productivity per unit volume of the reactor is maintained under conditions where LHSV is 0.02 / hr or more, and a sufficient reaction rate can be obtained under conditions where LHSV is 3.0 / hr or less.
In the present invention, glycerin carbonate as a raw material is supplied to a tubular reactor and continuously decarboxylated, and the produced glycidol and unreacted glycerin carbonate can be cooled and collected separately by a conventional method. . The recovered unreacted glycerin carbonate can be supplied again to the tubular reactor as a raw material of the present invention.

実地例1
内径4.4mmφ、長さ200mmのSUS管(SUS−316)を管型反応器として使用した。原料であるグリセリンカーボネートを4.6g/hr(LHSV:1.54/hr)で供給し、グリセリンカーボネートに対し3モル倍の窒素を44cc/minで同時に供給した。管型反応器の温度を300℃、圧力を101kPaとして脱炭酸反応を行い、反応終了混合液(3.9g/hr)を補集し、グリシドールと未反応のグリセリンカーボネートに分離し、回収した。
得られた反応終了混合液を分析した結果、グリシドールの収率は8.4質量%であり、91.6質量%は未反応のグリセリンカーボネートと副生物であった。転化率は21質量%、選択率は40質量%であった。
Practical example 1
A SUS tube (SUS-316) having an inner diameter of 4.4 mmφ and a length of 200 mm was used as a tubular reactor. The raw material glycerol carbonate was supplied at 4.6 g / hr (LHSV: 1.54 / hr), and 3 moles of nitrogen was simultaneously supplied at 44 cc / min with respect to glycerol carbonate. A decarboxylation reaction was performed at a tube reactor temperature of 300 ° C. and a pressure of 101 kPa, and the reaction mixture (3.9 g / hr) was collected, separated into glycidol and unreacted glycerin carbonate, and collected.
As a result of analyzing the resulting reaction mixture, the yield of glycidol was 8.4% by mass, and 91.6% by mass was unreacted glycerin carbonate and by-products. The conversion was 21% by mass and the selectivity was 40% by mass.

比較例1
温度計及び機械的撹拌装置を備えた500mlの丸底フラスコに、250.2gのグリセリンカーボネートを入れ、フラスコの内容物をオイルバスで220℃の温度に加熱し、フラスコの圧力は減圧機を使用して8kPaまで減圧して、バッチ反応を行った。フラスコから留出する生成物は、そのまま冷却管を通って結露し捕集管に集められた。
得られた生成物を分析した結果、捕集管中のグリシドールの収率は0.24質量%であり、その他は未反応のグリセリンカーボネートと副生物であった。転化率は7.9質量%、選択率は3.0質量%であった。
Comparative Example 1
In a 500 ml round bottom flask equipped with a thermometer and mechanical stirrer, put 250.2 g of glycerin carbonate, and heat the contents of the flask to a temperature of 220 ° C. in an oil bath. Then, the pressure was reduced to 8 kPa, and a batch reaction was performed. The product distilled from the flask was condensed as it was through the cooling tube and collected in the collecting tube.
As a result of analyzing the obtained product, the yield of glycidol in the collecting tube was 0.24% by mass, and the others were unreacted glycerin carbonate and by-products. The conversion was 7.9% by mass, and the selectivity was 3.0% by mass.

実地例2
実施例1において、内径4.4mmφ、長さ200mmのニッケル管(ニッケル純度99.5質量%)を管型反応器として使用し、グリセリンカーボネートを4.6g/hr(LHSV:1.54/hr)で供給し、グリセリンカーボネートに対し3モル倍の窒素を44cc/minで同時に供給した。管型反応器の温度を300℃、圧力を101kPaとして脱炭酸反応を行い、反応終了混合液(3.9g/hr)を補集し、グリシドールと未反応のグリセリンカーボネートに分離、回収した。
得られた反応終了混合液を分析した結果、グリシドールの収率は35質量%であり、その他は未反応のグリセリンカーボネートと副生物であった。転化率は41質量%、選択率は87質量%であった。
Practical example 2
In Example 1, a nickel tube (nickel purity 99.5% by mass) having an inner diameter of 4.4 mmφ and a length of 200 mm was used as a tubular reactor, and glycerol carbonate was 4.6 g / hr (LHSV: 1.54 / hr). ), And 3 moles of nitrogen with respect to glycerin carbonate was simultaneously supplied at 44 cc / min. A decarboxylation reaction was performed at a tube reactor temperature of 300 ° C. and a pressure of 101 kPa, and the reaction mixture (3.9 g / hr) was collected, separated into glycidol and unreacted glycerin carbonate and collected.
As a result of analyzing the resulting reaction mixture, the yield of glycidol was 35% by mass, and the others were unreacted glycerin carbonate and by-products. The conversion was 41% by mass and the selectivity was 87% by mass.

Claims (5)

管型反応器を用いて、グリセリンカーボネートを脱炭酸反応させることによるグリシドールの製造方法。   A method for producing glycidol by decarboxylating glycerin carbonate using a tubular reactor. 脱炭酸反応を200〜350℃で行う、請求項1に記載のグリシドールの製造方法。   The method for producing glycidol according to claim 1, wherein the decarboxylation reaction is performed at 200 to 350 ° C. グリセリンカーボネートに対して0.1〜10モル倍の不活性ガスを導入して行う、請求項1又は2に記載のグリシドールの製造方法。   The manufacturing method of glycidol of Claim 1 or 2 performed by introduce | transducing 0.1-10 mol times inert gas with respect to glycerol carbonate. 管型反応器における液空間速度(LHSV)が0.02〜3.0/hrである、請求項1〜3のいずれかに記載のグリシドールの製造方法。   The manufacturing method of glycidol in any one of Claims 1-3 whose liquid space velocity (LHSV) in a tubular reactor is 0.02-3.0 / hr. 管型反応器の材質がステンレス鋼又はニッケル含有金属である、請求項1〜4のいずれかに記載のグリシドールの製造方法。   The manufacturing method of the glycidol in any one of Claims 1-4 whose material of a tubular reactor is stainless steel or a nickel containing metal.
JP2007330041A 2007-12-21 2007-12-21 Process for preparing glycidol Pending JP2009149576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007330041A JP2009149576A (en) 2007-12-21 2007-12-21 Process for preparing glycidol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007330041A JP2009149576A (en) 2007-12-21 2007-12-21 Process for preparing glycidol

Publications (1)

Publication Number Publication Date
JP2009149576A true JP2009149576A (en) 2009-07-09

Family

ID=40919172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007330041A Pending JP2009149576A (en) 2007-12-21 2007-12-21 Process for preparing glycidol

Country Status (1)

Country Link
JP (1) JP2009149576A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199675A (en) * 2014-04-04 2015-11-12 花王株式会社 Method of producing glycidol
GB2572385A (en) * 2018-03-28 2019-10-02 Green Lizard Tech Ltd Process for the preparation of glycidol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2856413A (en) * 1956-07-23 1958-10-14 Jefferson Chem Co Inc Method for preparing glycidol
JPH06157509A (en) * 1992-08-05 1994-06-03 Basf Ag Method of preparing glycerol polycarbonate
JP2000247967A (en) * 1999-02-24 2000-09-12 Kao Corp Production of glycerol carbonate
US6316641B1 (en) * 1997-03-12 2001-11-13 Organisation Nationale Interprofessionelle Des Oleagineux (O.N.I.D.Ol.) Method for producing an epoxide, in particular of glycidol, and installation for implementation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2856413A (en) * 1956-07-23 1958-10-14 Jefferson Chem Co Inc Method for preparing glycidol
JPH06157509A (en) * 1992-08-05 1994-06-03 Basf Ag Method of preparing glycerol polycarbonate
US6316641B1 (en) * 1997-03-12 2001-11-13 Organisation Nationale Interprofessionelle Des Oleagineux (O.N.I.D.Ol.) Method for producing an epoxide, in particular of glycidol, and installation for implementation
JP2000247967A (en) * 1999-02-24 2000-09-12 Kao Corp Production of glycerol carbonate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012058291; YOO,J.W. et al: 'The catalytic synthesis of glycidol from glycerol carbonate in presence of zeolite A' Studies in Surface Science and Catalysis Vol.135, 2001, p.238 *
JPN7012004545; 現代化学工学 初版, 2001, p.269-339, 産業図書株式会社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199675A (en) * 2014-04-04 2015-11-12 花王株式会社 Method of producing glycidol
GB2572385A (en) * 2018-03-28 2019-10-02 Green Lizard Tech Ltd Process for the preparation of glycidol
US11472783B2 (en) 2018-03-28 2022-10-18 Green Lizard Technologies Ltd. Process for the preparation of glycidol
GB2572385B (en) * 2018-03-28 2023-05-31 Green Lizard Tech Ltd Process for the preparation of glycidol

Similar Documents

Publication Publication Date Title
US8791311B2 (en) Process for preparing 1,1,2,3-tetrachloropropene
EP2485832B1 (en) Process for producing a chlorinated and/or fluorinated propene in an isothermal multitube reactors and
WO2011044522A2 (en) Adiabatic plug flow reactors and processes incorporating the same
EP0703205B1 (en) Synthesis of 1,1,1,3,3-pentafluoropropane
US8779217B2 (en) Method for preparing fluorine compounds
US8946493B2 (en) Method for producing pentafluoropropane
JP6183370B2 (en) Process for producing 1,2-dichloro-3,3,3-trifluoropropene
JP5143438B2 (en) Reaction device
JPH0357905B2 (en)
JP2019038850A (en) Method for producing cis-1-chloro-3,3,3-trifluoropropene
CN106220470B (en) Process for producing fluoroolefin compound
JP2009149576A (en) Process for preparing glycidol
JP2012126676A (en) Method for producing aldehyde
JP2012254943A (en) Method for producing polychloropropene
JP2007204388A (en) Method of recovering reaction heat
JP7177156B2 (en) Continuous production method for 2,3-butanediol
JP6968162B2 (en) Process for producing fluorinated cyclobutane
JP2021014410A (en) Production method of vinyl compound
JP4260133B2 (en) Process for producing 2-trifluoromethyl-6-fluorobenzal chloride and derivatives thereof
KR102358241B1 (en) Method for the preparation of (s)-2-acetyloxypropionic acid and derivatives thereof
CN112979409B (en) Method for preparing 3,3, 3-trichloro-1, 1, 1-trifluoropropane by gas-phase catalytic chlorination
JP2006213630A (en) Method for producing 2-trifluoromethyl-6-fluorobenzaldehyde and its derivative
JP2008184410A (en) Method for producing 2,2-difluoro-phenylacetoacetate
JP2024055301A (en) Hexafluoropropylene oxide production method and production apparatus
JP2016169192A (en) Method of producing 7-octenyl halide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

A02 Decision of refusal

Effective date: 20130129

Free format text: JAPANESE INTERMEDIATE CODE: A02