JP2009148653A - Photocatalyst device - Google Patents

Photocatalyst device Download PDF

Info

Publication number
JP2009148653A
JP2009148653A JP2007326360A JP2007326360A JP2009148653A JP 2009148653 A JP2009148653 A JP 2009148653A JP 2007326360 A JP2007326360 A JP 2007326360A JP 2007326360 A JP2007326360 A JP 2007326360A JP 2009148653 A JP2009148653 A JP 2009148653A
Authority
JP
Japan
Prior art keywords
light
base member
photocatalyst
photocatalytic
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007326360A
Other languages
Japanese (ja)
Inventor
Kazuya Kogure
一也 木暮
Osamu Miyoshi
理 三好
Takeshi Aoki
武 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Mediatec Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Mediatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Mediatec Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007326360A priority Critical patent/JP2009148653A/en
Publication of JP2009148653A publication Critical patent/JP2009148653A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst device which can display photocatalytic function under exposure to light and be properly manufactured. <P>SOLUTION: This photocatalyst device 100 comprises: a base member 40 which has a plurality of projections 44 formed on at least, one surface S1 of the first surface S1 and a second surface S2 which are opposed to each other, and a third surface S3 which forms a solid by almost crossing the first surface S1 and the second surface S2, and receives an incident light; and a photocatalytic layer 42 which is formed on at least, the one surface S1 having the projections 44 and allows diffraction for irradiation with the light coming into the third surface S3 to the layer 42 by the projections 44. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光触媒装置に関する。   The present invention relates to a photocatalytic device.

居住空間や作業空間における消臭(生活悪臭の低減、新建材からのVOC(Volatile Organic Compounds)ガス分解等)、抗菌(大腸菌、黄色ブドウ球菌、MRSA(Methicillin-resistant Staphylococcus Aureus)等に対する抗菌性)、防汚(手垢、指紋、煙草のヤニ汚れ等の低減)を目的として、光触媒物質により構成される光触媒装置が用いられている。尚、光触媒装置とは、バンドギャップ以上のエネルギーを有した光を照射してスーパーオキシドアニオンラジカル(O )やヒドロキシルラジカル(OH)といった活性酸素を誘起させるものである。この活性酸素によって、居住空間や作業空間に漂う悪臭や汚れ等の原因となる有機物が水(HO)又は二酸化炭素(CO)に分解され、前述した消臭、抗菌、防汚の目的を達成することができる。 Deodorization in living and working spaces (reduction of bad odors in living, VOC (Volatile Organic Compounds) gas decomposition from new building materials), antibacterial (antibacterial properties against Escherichia coli, Staphylococcus aureus, MRSA (Methicillin-resistant Staphylococcus Aureus), etc.) For the purpose of antifouling (reducing hand dirt, fingerprints, tobacco stains, etc.), a photocatalytic device composed of a photocatalytic substance is used. The photocatalytic device is an apparatus that induces active oxygen such as superoxide anion radical (O 2 ) or hydroxyl radical (OH ) by irradiating light having energy higher than the band gap. This active oxygen decomposes organic matter that causes foul odors and dirt in living spaces and work spaces into water (H 2 O) or carbon dioxide (CO 2 ). Can be achieved.

光触媒物質としては、酸化チタン等の酸化物半導体が一般的に用いられるが、この酸化物半導体は紫外線領域(波長200nm〜波長360nm)の光いわゆる紫外線が照射されたときに光触媒機能を発揮させる紫外光応答型光触媒物質である。このため、光触媒装置に向けて活性酸素を誘起させるべく紫外線を照射させる光源としては、主にUV(Ultraviolet)ランプが用いられている。   As the photocatalytic substance, an oxide semiconductor such as titanium oxide is generally used. This oxide semiconductor is an ultraviolet light that exhibits a photocatalytic function when irradiated with light in the ultraviolet region (wavelength 200 nm to wavelength 360 nm). Photoresponsive photocatalytic substance. For this reason, a UV (Ultraviolet) lamp is mainly used as a light source for irradiating ultraviolet rays so as to induce active oxygen toward the photocatalytic device.

例えば、低温雰囲気でも効果的に光触媒作用を得ることができる蛍光ランプ、光触媒装置、照明装置および物品が提案されている(例えば、特許文献1参照。)。
一方、UVランプ等の紫外線を放射させるための光源の中には、可視光領域(例えば波長380nm〜波長770nm)の光いわゆる可視光を放射するものが多い。このような光源を利用する場合、エネルギー利用効率の観点から、可視光の有効利用が望まれている。そこで、図7に示す光触媒装置500のように、紫外線のみならず、自然光(太陽光)や安価な光源(一般の蛍光灯や白熱灯)から放射される可視光を照射させても光触媒機能を発揮することが可能な可視光応答型光触媒物質を用いた光触媒装置が開発されている。
特開平9−129184号公報(第1−2頁、第1−13図)
For example, a fluorescent lamp, a photocatalyst device, a lighting device, and an article that can effectively obtain a photocatalytic action even in a low-temperature atmosphere have been proposed (see, for example, Patent Document 1).
On the other hand, among light sources for emitting ultraviolet rays such as UV lamps, there are many that emit light in the visible light region (for example, wavelength 380 nm to wavelength 770 nm), that is, visible light. When such a light source is used, effective use of visible light is desired from the viewpoint of energy use efficiency. Therefore, as in the photocatalyst device 500 shown in FIG. 7, the photocatalytic function can be achieved by irradiating not only ultraviolet rays but also natural light (sunlight) or visible light emitted from an inexpensive light source (general fluorescent lamp or incandescent lamp). A photocatalytic device using a visible light responsive photocatalytic substance that can be exhibited has been developed.
JP-A-9-129184 (page 1-2, FIG. 1-13)

ところで、光触媒装置向けの光源としてUVランプを用いた場合には、UVランプは寿命が短く比較的コストが高いので、経済面で不利である。また、光触媒装置は、光の照射を待って光触媒機能を発揮させる受動的な使われ方をするものが一般的である。これに対し、UVランプによって積極的に紫外線を照射させて光触媒機能を発揮させる場合には、光エネルギーへの変換効率低いため、紫外線の照射時間が継続している分、無駄なエネルギーを消費してしまうことになる。   By the way, when a UV lamp is used as a light source for a photocatalyst device, the UV lamp is disadvantageous in terms of economy because it has a short life and a relatively high cost. In general, the photocatalyst apparatus is passively used in order to exhibit the photocatalytic function after waiting for light irradiation. On the other hand, when UV light is actively irradiated by a UV lamp and the photocatalytic function is exerted, since the conversion efficiency to light energy is low, unnecessary energy is consumed as long as the irradiation time of ultraviolet light continues. It will end up.

一方、光触媒装置向けの光源として自然光を用いた場合には、光触媒機能を発揮させる程のバンドギャップ以上のエネルギーを持った自然光が十分に得られない等、自然現象による不確実性が絶えずつきまとう。   On the other hand, when natural light is used as a light source for a photocatalyst device, uncertainties due to natural phenomena are steadily ceased. For example, natural light having an energy exceeding a band gap sufficient to exert a photocatalytic function cannot be obtained.

以上のように、UVランプを用いた場合であっても、自然光を用いた場合であっても、光触媒装置向けの光源としては利用しづらいものであった。   As described above, even when a UV lamp is used or when natural light is used, it is difficult to use as a light source for a photocatalytic device.

前述した課題を解決するための主たる本発明の光触媒装置は、互いに向かい合う第1の面と第2の面のうち少なくとも一方の面が複数の突起部を有し、前記第1の面及び前記第2の面と略直交して立体を形成させる第3の面に光が入射される基盤部材と、前記複数の突起部を有する少なくとも前記一方の面側に設けられ、前記第3の面に入射された前記光が前記複数の突起部により回折されて照射される光触媒層と、を備えることを特徴とする。   In the photocatalyst device of the present invention for solving the above-described problem, at least one of the first surface and the second surface facing each other has a plurality of protrusions, and the first surface and the first surface A base member on which light is incident on a third surface that forms a solid substantially orthogonal to the surface of 2, and is provided on at least one surface side having the plurality of protrusions and is incident on the third surface And a photocatalyst layer irradiated with the diffracted light diffracted by the plurality of protrusions.

本発明によれば、光の照射によって光触媒機能を発揮させる光触媒装置を適切に実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the photocatalyst apparatus which exhibits a photocatalytic function by light irradiation is appropriately realizable.

[実施例1]
<<<光触媒装置の構成>>>
本発明の一実施形態に係る光触媒装置100は、可視光の自然な入射を待って光触媒機能を発揮させる受動的な使われ方をするものではなく、光触媒層42に対して積極的に可視光を当てて能動的に光触媒機能を発揮させる使われ方をするものである。具体的には、レーザ光源10により照射した可視光領域のレーザ光により光触媒層42に活性酸素を誘起させ、この活性酸素によって居住空間や作業空間に気流にのって漂う有機物を水(HO)又は二酸化炭素(CO)に分解させることで、消臭、抗菌、防汚の目的を達成できる。このような光触媒装置100は、空気清浄機、加湿器、エアコン等に搭載する部材として好適である。
[Example 1]
<<< Configuration of photocatalyst device >>>
The photocatalyst device 100 according to an embodiment of the present invention is not passively used to exhibit the photocatalytic function after waiting for natural incident of visible light. It is used in such a way that it actively exerts the photocatalytic function. Specifically, active oxygen is induced in the photocatalyst layer 42 by laser light in the visible light region irradiated by the laser light source 10, and the organic matter floating in the airflow in the living space or the working space is water (H 2). The purpose of deodorizing, antibacterial, and antifouling can be achieved by decomposing into O) or carbon dioxide (CO 2 ). Such a photocatalytic device 100 is suitable as a member mounted on an air cleaner, a humidifier, an air conditioner, or the like.

光触媒装置100の構成は、図1Aに示す平面図や図1Bに示す側面図に示されているように、レーザ光源10と、シート光SLを生成するためのシリンドリカルレンズ20、30と、光触媒層42が例えば積層等されて設けられている基盤部材40と、を備えて構成される。以下では、図2、図3を適宜参照しつつ、図1をもとに光触媒装置100の構成を逐次説明していく。尚、図2は後述のエンボス構造の基盤部材40の製造工程を示す図であり、図3は後述のシート光SLを生成する光学系について説明する図である。また、図1A、図1Bに示すX−Y−Z座標軸は、下面S2から上面S1へ向かう下面S2の法線方向をZ軸の正方向とし、側面S3から側面S5へ向かう側面S3の法線方向をX軸の正方向とし、側面S4から側面S6へ向かう側面S4の法線方向をY軸の正方向としている。図3に示すX−Y−Z座標軸についても同様である。   As shown in the plan view shown in FIG. 1A and the side view shown in FIG. 1B, the configuration of the photocatalyst device 100 includes a laser light source 10, cylindrical lenses 20 and 30 for generating sheet light SL, and a photocatalyst layer. 42 is configured to include, for example, a base member 40 provided by being laminated or the like. Hereinafter, the configuration of the photocatalyst device 100 will be sequentially described with reference to FIG. 1 and FIG. 3 as appropriate. 2 is a diagram illustrating a manufacturing process of a base member 40 having an embossed structure, which will be described later, and FIG. 3 is a diagram illustrating an optical system that generates sheet light SL, which will be described later. The XYZ coordinate axes shown in FIGS. 1A and 1B have the normal direction of the lower surface S2 from the lower surface S2 toward the upper surface S1 as the positive direction of the Z axis, and the normal line of the side surface S3 from the side surface S3 toward the side surface S5. The direction is the positive direction of the X axis, and the normal direction of the side surface S4 from the side surface S4 to the side surface S6 is the positive direction of the Y axis. The same applies to the XYZ coordinate axes shown in FIG.

===光触媒層===
光触媒装置100の一部を構成する光触媒層42について説明する。
光触媒層42は、可視光領域(例えば波長380nm以上波長780nm未満、基準波長400nmを超え770nm以下)において高い光触媒活性を持つ可視光応答型光触媒物質によって構成される。尚、可視光応答型光触媒物質とは、アナターゼ型、ルチル型、又はそれらの混晶である酸化チタン(TiO)を主成分とした紫外線応答型光触媒物質に対して、その結晶の酸素原子(O)の一部を窒素原子(N)で置換したもの、その結晶の格子間に窒素原子をドーピングしたもの、その結晶の多結晶集合体の粒界に窒素原子を配したもの、のうち少なくとも1種類以上のもので構成される。
=== Photocatalyst layer ===
The photocatalyst layer 42 constituting a part of the photocatalyst device 100 will be described.
The photocatalyst layer 42 is composed of a visible light responsive photocatalytic substance having high photocatalytic activity in a visible light region (for example, a wavelength of 380 nm or more and less than 780 nm, a reference wavelength exceeding 400 nm and 770 nm or less). The visible light responsive photocatalytic substance is an anatase type, a rutile type, or an ultraviolet responsive photocatalytic substance mainly composed of titanium oxide (TiO 2 ), which is a mixed crystal thereof, with an oxygen atom ( O) a part of which is substituted with a nitrogen atom (N), a nitrogen atom doped between lattices of the crystal, a nitrogen atom arranged at the grain boundary of the polycrystalline aggregate of the crystal, at least Consists of one or more types.

可視光応答型光触媒物質のベース材料となる紫外線応答型光触媒物資は、前述した酸化チタンの他に、酸化タングステン(WO)、酸化鉄(Fe)、酸化亜鉛(ZnO)、チタン酸ストロンチウム(SrTiO)、酸化ニオブ(Nb、Nb)等の各種酸化物や、硫化カドミウム(CdS)、硫化亜鉛(ZnS)等の硫化物、若しくはリン化ガリウム(GaP)、ガリウムヒ素(GaAs)、セレン化カドミウム(CdSe)等のうち少なくとも1種類以上の成分で構成してもよい。さらに、白金(Pt)、パラジウム(Pd)、金(Au)等の貴金属や、ニッケル(Ni)、クロム(Cr)、銅(Cu)、コバルト(Co)等の遷移金属、ランタン(La)、セリウム(Ce)、プラセオジウム(Pr)、ネオジウム(Nd)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ルテチウム(Lu)等の希土類元素のうち少なくとも1種類を組み合わせもよい。これによって、光触媒活性がより向上することが知られている。 UV-responsive photocatalyst materials as the base material of the visible-light-responsive photocatalytic material, in addition to titanium oxide described above, tungsten oxide (WO 3), iron oxide (Fe 2 O 3), zinc oxide (ZnO), titanate Various oxides such as strontium (SrTiO 3 ) and niobium oxide (Nb 2 O 3 , Nb 2 O 5 ), sulfides such as cadmium sulfide (CdS) and zinc sulfide (ZnS), or gallium phosphide (GaP), You may comprise at least 1 or more types of components among gallium arsenide (GaAs), cadmium selenide (CdSe), etc. Furthermore, noble metals such as platinum (Pt), palladium (Pd), gold (Au), transition metals such as nickel (Ni), chromium (Cr), copper (Cu), cobalt (Co), lanthanum (La), At least one kind of rare earth elements such as cerium (Ce), praseodymium (Pr), neodymium (Nd), dysprosium (Dy), holmium (Ho), erbium (Er), and lutetium (Lu) may be combined. This is known to further improve the photocatalytic activity.

本実施形態では、前述したとおり光触媒活性が高い酸化チタンを主成分として、紫外線応答型光触媒物質などの可視光応答型光触媒物質が構成されるものとする。尚、酸化チタンは水に溶けない性質があるので、可視光応答型光触媒物質をアルコール等に混合させて熱処理することで、基盤部材40に光触媒層42として形成させる。光触媒層42は、例えば単層とされてもよく、また、複数の層を有する例えば積層とされてもよい。   In this embodiment, as described above, a visible light responsive photocatalyst material such as an ultraviolet responsive photocatalyst material is composed of titanium oxide having a high photocatalytic activity as a main component. Since titanium oxide does not dissolve in water, the visible light responsive photocatalytic substance is mixed with alcohol or the like and heat treated to form the photocatalytic layer 42 on the base member 40. The photocatalyst layer 42 may be a single layer, for example, or may be a laminate having a plurality of layers.

===エンボス構造(凹凸構造)===
基盤部材40は、図1A、図1Bに示すように、互いに向かい合って平行な上面S1(第1の面)並びに下面S2(第2の面)と、上面S1並びに下面S2と略直交しており上面S1並びに下面S2の周囲を取り囲む複数(4つ)の側面S3〜S6(第3の面)と、を有しており、例えば立体である直方体をした略板状本体を備えている。尚、基盤部材40の素材としては、本実施形態では透明なガラス素材を採用するが、その他にアクリル素材等の光を透過する素材であればよい。
=== Embossed structure (uneven structure) ===
As shown in FIGS. 1A and 1B, the base member 40 is substantially orthogonal to the upper surface S1 (first surface) and the lower surface S2 (second surface) facing each other and parallel to the upper surface S1 and the lower surface S2. It has a plurality of (four) side surfaces S3 to S6 (third surface) surrounding the upper surface S1 and the lower surface S2, and includes a substantially plate-like main body having a rectangular parallelepiped shape, for example. In addition, although the transparent glass material is employ | adopted as a raw material of the base member 40 in this embodiment, what is necessary is just a material which permeate | transmits light, such as an acrylic material.

基盤部材40の上面S1の方には面全体にわたって配設された複数の突起部44を有する例えばエンボス構造(凸凹構造)を備えている。尚、この場合、基盤部材40の厚さ方向(Z軸方向)の強度を鑑みて、基盤部材40の下面S2の方を堅い板状の素材で固定することで、厚さ方向の強度を高くするのが好ましい。突起部44は、例えば略円柱状をした突出部44として形成されている。このように、基盤部材40の上面S1に設けた複数の突起部44を有する例えばエンボス構造によって、複数の突起部44による凸凹の分だけ、光触媒層42を形成させる基盤部材40の表面積が拡大され、単位面積当たりの光触媒活性を向上させることができる。勿論、基盤部材40の上面S1の方ではなく下面S2の方に複数の突起部44を設けて光触媒層42を形成させても、上記と同様の効果が得られる。   The upper surface S1 of the base member 40 is provided with, for example, an embossed structure (concave / convex structure) having a plurality of protrusions 44 disposed over the entire surface. In this case, in view of the strength in the thickness direction (Z-axis direction) of the base member 40, the lower surface S2 of the base member 40 is fixed with a hard plate-like material, thereby increasing the strength in the thickness direction. It is preferable to do this. The protruding portion 44 is formed as a protruding portion 44 having a substantially cylindrical shape, for example. As described above, the surface area of the base member 40 that forms the photocatalyst layer 42 is increased by the unevenness of the plurality of protrusions 44 by, for example, the embossed structure having the plurality of protrusions 44 provided on the upper surface S1 of the base member 40. The photocatalytic activity per unit area can be improved. Of course, even if the photocatalyst layer 42 is formed by providing the plurality of protrusions 44 on the lower surface S2 instead of the upper surface S1 of the base member 40, the same effect as described above can be obtained.

例えばエンボス構造は、高精度な微細加工が可能な所謂電鋳技術によって実現できる。図2は、その電鋳技術による例えばエンボス構造の製造工程を説明する図である。同図に示すように、まず、エンボス構造などの凹凸構造をした基盤部材40の原型モデル142を製作し、更に原型モデル142をもとに電鋳母型となる入槽モデル144を製作する。そして、入槽モデル144の表面に導電部材146を塗布させる等の前処理を施した上で、電解質溶液が入った電鋳槽150に入れて電鋳処理を施す。尚、電鋳処理とは、目的の金属(今回の場合はガラス素材)のイオンを含んだ電解質溶液に電流を流して当該目的の金属を入槽モデル144の表面に析出させる処理のことである。この電鋳処理を実行した結果、入槽モデル144に型組されて基盤部材40が形成される。そして、入槽モデル144から基盤部材40を乖離することで、例えばエンボス構造の基盤部材40が得られる。   For example, the embossed structure can be realized by a so-called electroforming technique capable of high-precision fine processing. FIG. 2 is a diagram for explaining a manufacturing process of, for example, an embossed structure by the electroforming technique. As shown in the figure, first, a prototype model 142 of the base member 40 having an uneven structure such as an embossed structure is manufactured, and further, a basin model 144 serving as an electroforming mother mold is manufactured based on the prototype model 142. Then, after pretreatment such as applying a conductive member 146 to the surface of the tank model 144, it is placed in the electroforming tank 150 containing the electrolyte solution and subjected to electroforming. The electroforming process is a process in which a current is passed through an electrolyte solution containing ions of a target metal (in this case, a glass material) to deposit the target metal on the surface of the bathing model 144. . As a result of executing this electroforming process, the base member 40 is formed by being assembled into the tank model 144. And the base member 40 of an embossed structure is obtained by separating the base member 40 from the tank model 144, for example.

===光源===
光触媒装置100に対して積極的にUVランプ光を照射させる方式の場合、効率の悪さから無駄なエネルギーが失われる。そこで、本実施形態では、この欠点を補完する目的として、従来のUVランプと対比して、低コスト、長寿命且つエネルギー変換効率の高いレーザ光(LASER:light amplification by stimulated emission of radiation)および/またはLED光(LED:light emitting diode)の光源10を、光触媒装置100に照射させる光源として採用している。エネルギー変換効率の観点から言えば、次世代光ディスクの「HD DVD」(登録商標)規格や「Blu−ray Disc」(登録商標)規格で採用された青紫色レーザ光(例えば波長380nm以上450nm以下、基準波長405nm)を出射する青紫色半導体レーザ素子が好ましい。又は、エネルギー変換効率とコスト面とのバランスを考慮して、「DVD」(登録商標)規格で用いられる赤色レーザ光(波長630nm〜波長685nm)を出射する赤色半導体レーザ素子や、「CD」(「Compact Disc」(登録商標)の略称)規格で用いられる赤外線レーザ光(波長765nm〜波長830nm)を出射する赤外半導体レーザ素子を用いても良い。また、例えば波長380nm〜波長830nmの帯域のいずれかの領域波長を出射するLED発光素子や、基準波長400nmを超え770nm以下の帯域のいずれかの領域波長を出射するLED発光素子であってもよい。
=== Light source ===
In the case of a method in which the photocatalytic device 100 is positively irradiated with UV lamp light, useless energy is lost due to poor efficiency. Therefore, in the present embodiment, in order to compensate for this drawback, laser light (LASER: light amplification by stimulated emission of radiation) and / or low cost, long life, and high energy conversion efficiency compared with the conventional UV lamp and / or Or the light source 10 of LED light (LED: light emitting diode) is employ | adopted as a light source which irradiates the photocatalyst apparatus 100. FIG. From the viewpoint of energy conversion efficiency, blue-violet laser light (for example, a wavelength of 380 nm to 450 nm, which is adopted in the “HD DVD” (registered trademark) standard and the “Blu-ray Disc” (registered trademark) standard of next-generation optical disks, A blue-violet semiconductor laser element emitting a reference wavelength of 405 nm is preferable. Alternatively, in consideration of the balance between energy conversion efficiency and cost, a red semiconductor laser element that emits red laser light (wavelength 630 nm to wavelength 685 nm) used in the “DVD” (registered trademark) standard, or “CD” ( An infrared semiconductor laser element that emits infrared laser light (wavelength 765 nm to wavelength 830 nm) used in the “Compact Disc” (registered trademark) standard may be used. Further, for example, it may be an LED light emitting element that emits any region wavelength in the wavelength band of 380 nm to 830 nm, or an LED light emitting element that emits any region wavelength in the band exceeding the reference wavelength of 400 nm and not more than 770 nm. .

===シート光===
光源10から出射させる光は、基盤部材40の複数(4つ)の側面S3〜S6のうちいずれか一つに対して入射される。本実施形態の場合では、基盤部材40の側面S3を光の入射面としており、光源10から出射した光をシート光SL(帯状光束)に変形(整形)した上で、基盤部材40の側面S3に入射させる必要がある。そこで、図1A、図1B、図3に示すように、複数(2つ)のシリンドリカルレンズ20、30(第1のレンズ、第2のレンズ)を組み合わせて、光をシート光SLに変形させるための光学系が、光源10と基盤部材40との間に設けられている。尚、図3では、シート光の生成を説明する都合上、光源10と、2つのシリンドリカルレンズ20、30と、基盤部材40との間に空間が存在する場合を示しているが、実際には光触媒装置のコンパクト化や光の有効利用のために、図1A、図1Bに示すように、光源10と2つのシリンドリカルレンズ20、30と基盤部材40とは、それぞれ接着材で固定されているか若しくは補助的な部品を用いて一体化されている。
=== Sheet light ===
The light emitted from the light source 10 is incident on any one of the plurality (four) side surfaces S3 to S6 of the base member 40. In the case of the present embodiment, the side surface S3 of the base member 40 is used as the light incident surface, and the light emitted from the light source 10 is deformed (shaped) into the sheet light SL (band-shaped light flux), and then the side surface S3 of the base member 40 is used. It is necessary to make it incident on. Therefore, as shown in FIGS. 1A, 1B, and 3, a plurality of (two) cylindrical lenses 20 and 30 (first lens and second lens) are combined to transform light into sheet light SL. The optical system is provided between the light source 10 and the base member 40. FIG. 3 shows a case where a space exists between the light source 10, the two cylindrical lenses 20 and 30, and the base member 40 for the convenience of explaining the generation of the sheet light. In order to make the photocatalytic device compact and to effectively use light, as shown in FIGS. 1A and 1B, the light source 10, the two cylindrical lenses 20, 30 and the base member 40 are each fixed by an adhesive or It is integrated using auxiliary parts.

詳述すると、シリンドリカルレンズ20、30は、例えば円柱を円柱軸の方向に真っ二つに割った形をしており、一方向のみに曲率を持つレンズである。本実施形態の場合、図3に示すように、シリンドリカルレンズ20の断面(平面)の方に光源10からの光を入射させる。この配置によって、シリンドリカルレンズ20は、光源10から出射したレーザ光を拡大させる機能を持つ。一方、シリンドリカルレンズ30は、自身の曲面がシリンドリカルレンズ20の曲面と向かい合うように配置する。この配置によって、シリンドリカルレンズ30は、シリンドリカルレンズ20により拡大された光をシート光SLに変形させる機能を持つ。尚、シリンドリカルレンズ20、30両者の焦点距離とそれぞれの配置を変えることによって、シート光SLの幅Hや厚さTを基盤部材40の側面S3に応じた任意の長さに調整することができる。   More specifically, the cylindrical lenses 20 and 30 are lenses having a shape obtained by dividing a cylinder into two in the direction of the cylinder axis and having a curvature only in one direction. In the case of this embodiment, as shown in FIG. 3, light from the light source 10 is incident on the cross section (plane) of the cylindrical lens 20. With this arrangement, the cylindrical lens 20 has a function of expanding the laser light emitted from the light source 10. On the other hand, the cylindrical lens 30 is arranged so that its curved surface faces the curved surface of the cylindrical lens 20. With this arrangement, the cylindrical lens 30 has a function of deforming the light expanded by the cylindrical lens 20 into the sheet light SL. Note that the width H and the thickness T of the sheet light SL can be adjusted to any length according to the side surface S3 of the base member 40 by changing the focal lengths and the arrangement of the cylindrical lenses 20 and 30. .

以上のように、本実施形態によれば、シート光SLを採用したことによって、簡易な光学系と最小限の焦点距離を実現し、光触媒装置100のコンパクト化を図ることができる。尚、シート光SLを生成するための光学系としては、上記のとおりシリンドリカルレンズ20、30を用いる手法の他に、例えば、ポリゴンミラーやガルバノミラーを用いて、光を当該ミラーで振って空間をスキャニングし、擬似的にシート光SLを生成する手法を採用してもよい。   As described above, according to the present embodiment, by adopting the sheet light SL, a simple optical system and a minimum focal length can be realized, and the photocatalytic device 100 can be made compact. As an optical system for generating the sheet light SL, in addition to the method using the cylindrical lenses 20 and 30 as described above, for example, a polygon mirror or a galvano mirror is used to shake the light with the mirror, and the space is made. A method of scanning and generating the sheet light SL in a pseudo manner may be employed.

===フレネル回折===
シート光SLを基盤部材40の側面S3に入射させると、シート光SLは光触媒装置100の側面S3から側面S5(X軸の正方向)に向かって進行する。このシート光SLの進行過程で、上面S1に設けられた例えばエンボス構造の各突起部44の下面S2側とされる根元部近傍を光SLが通過すると、フレネル回折が誘発される。例えば、側面S3から側面S5に向かって進行するシート光SLは、複数の突起部44により例えば基盤部材40の下面S2側から上面S1側に向けて回折する。この結果、例えば複数の突起部44による回折光(面状光束)が、複数の突起部44を覆う光触媒層42に照射され、光触媒層42に活性酸素が誘起される。例えば、基盤部材40は、光触媒層42に向けて上面S1からの面状光束を照射させる面発光体として機能する。
=== Fresnel diffraction ===
When the sheet light SL is incident on the side surface S3 of the base member 40, the sheet light SL travels from the side surface S3 of the photocatalyst device 100 toward the side surface S5 (the positive direction of the X axis). In the course of this sheet light SL, Fresnel diffraction is induced when the light SL passes through the vicinity of the base portion on the lower surface S2 side of each protrusion 44 of the embossed structure provided on the upper surface S1. For example, the sheet light SL traveling from the side surface S3 toward the side surface S5 is diffracted by the plurality of protrusions 44, for example, from the lower surface S2 side to the upper surface S1 side of the base member 40. As a result, for example, diffracted light (planar light flux) by the plurality of protrusions 44 is irradiated to the photocatalyst layer 42 covering the plurality of protrusions 44, and active oxygen is induced in the photocatalyst layer 42. For example, the base member 40 functions as a surface light emitter that irradiates the planar light beam from the upper surface S <b> 1 toward the photocatalytic layer 42.

また、光触媒装置100の側面S3から側面S5(X軸の正方向)に向けて進行するシート光SLの進行過程において、上面S1に設けられた例えばエンボス構造の各突起部44の根元部近傍を光SLが通過すると、例えばフレネル回折が誘発される。例えば、側面S3から側面S5に向かって進行するシート光SLは、複数の突起部44の根元部により上面S1側の方向(略Z軸の正方向)に回折する。この結果、例えば複数の突起部44による回折光が、複数の突起部44を覆う光触媒層42に照射され、光触媒層42に活性酸素が誘起される。   Further, in the progress of the sheet light SL traveling from the side surface S3 to the side surface S5 (the positive direction of the X axis) of the photocatalyst device 100, the vicinity of the root portion of each projection 44 of, for example, the embossed structure provided on the upper surface S1 When the light SL passes, for example, Fresnel diffraction is induced. For example, the sheet light SL traveling from the side surface S3 toward the side surface S5 is diffracted in the direction on the upper surface S1 side (substantially the positive direction of the Z axis) by the root portions of the plurality of protrusions 44. As a result, for example, diffracted light from the plurality of protrusions 44 is irradiated to the photocatalyst layer 42 covering the plurality of protrusions 44, and active oxygen is induced in the photocatalyst layer 42.

以上のように、例えばエンボス構造などの凹凸構造に起因したフレネル回折を利用することで、光触媒層42への光の照射に際して特別な光学系を設ける必要がなく、光触媒装置100のコンパクト化を実現することができる。   As described above, for example, by using Fresnel diffraction due to an uneven structure such as an embossed structure, it is not necessary to provide a special optical system when irradiating the photocatalyst layer 42 with light, and the photocatalytic device 100 can be made compact. can do.

[実施例2]
===両面型===
図4は、基盤部材40の上面S1並びに下面S2の双方に突起部44を設けて光触媒層42を形成させる両面型の光触媒装置102の側面図を示した図である。尚、図4に示すX−Y−Z座標軸は、図1A、図1Bに示したX−Y−Z座標軸と同じ定義である。両面型の光触媒装置102を採用することで、図1Bに示したような基盤部材40の上面S1又は下面S2の一方の面(片面)のみに突起部44を設けて光触媒層42を形成させる片面型の場合と対比して、単位面積当たりの光触媒活性を更に向上させることができる。
[Example 2]
=== Double-sided type ===
FIG. 4 is a side view of the double-sided photocatalyst device 102 in which the protrusions 44 are provided on both the upper surface S1 and the lower surface S2 of the base member 40 to form the photocatalyst layer 42. The XYZ coordinate axes shown in FIG. 4 have the same definition as the XYZ coordinate axes shown in FIGS. 1A and 1B. By adopting the double-sided photocatalyst device 102, the single-sided surface on which the protrusion 44 is provided only on one surface (one surface) of the upper surface S1 or the lower surface S2 of the base member 40 as shown in FIG. Compared with the mold, the photocatalytic activity per unit area can be further improved.

[実施例3]
===六角柱型===
図5は、六角柱型の光触媒装置200の構成を示した図である。尚、図5に示すX−Y−Z座標軸は、同図中の紙面上方向をZ軸の正方向、同図中の紙面右方向をX軸の正方向とし、同図中の紙面表方向をY軸の正方向としている。
[Example 3]
=== Hexagonal column type ===
FIG. 5 is a diagram showing a configuration of a hexagonal column type photocatalyst device 200. The XYZ coordinate axes shown in FIG. 5 are defined as the Z axis positive direction on the paper surface in FIG. 5 and the X axis positive direction on the paper right direction in FIG. Is the positive direction of the Y-axis.

光触媒装置200は、光源10と同様の光源205と、例えば微細なエンボス構造を持つ六角柱外壁面並びに六角柱内壁面とそれらの壁面と略直交した上面並びに下面とを有して六角柱の筒型構造を呈する基盤部材210と、基盤部材210の六角柱外壁面に形成された光触媒層220と、基盤部材210の六角柱内壁面に形成された光触媒層230と、を備えて構成される。尚、微細なエンボス構造は、六角柱外壁面又は六角柱内壁面の一方のみに持たせる実施形態でもよいが、両壁面に持たせる方が単位面積当たりの光触媒活性を向上することができる。   The photocatalyst device 200 includes a light source 205 similar to the light source 10, a hexagonal cylinder outer wall surface having a fine embossed structure, a hexagonal cylinder inner wall surface, an upper surface and a lower surface substantially orthogonal to the wall surfaces, and a hexagonal cylinder. The base member 210 having a mold structure, the photocatalyst layer 220 formed on the outer wall surface of the hexagonal column of the base member 210, and the photocatalyst layer 230 formed on the inner wall surface of the hexagonal column of the base member 210 are configured. Note that the fine embossed structure may be provided on only one of the outer wall surface of the hexagonal column or the inner wall surface of the hexagonal column, but the photocatalytic activity per unit area can be improved by providing it on both wall surfaces.

光触媒装置200を使用する際には、自然対流を得るために、基盤部材210の角柱軸が水平面(X軸と平行した面)に対して垂直となるように配置される。また、光源205より出射した光が、基盤部材210の上面(Z軸の正方向の面)若しくは下面(Z軸の負方向の面)から入射されるように、光源205が配置される。このような配置によって、光源205より基盤部材210の上面若しくは下面の一方に対して不図示の光学系を介して入射された光が、基盤部材210の内部で全反射をしながら進行する。この進行過程において、基盤部材210の六角柱内壁面並びに六角柱外壁面には例えば微細なエンボス構造が形成されているので、フレネル回折が誘発される。すると、基盤部材210から外壁面側の光触媒層220並びに内壁面側の光触媒層230に向けて光が照射され、光触媒層230に活性酸素が誘起される。   When using the photocatalyst device 200, in order to obtain natural convection, the prismatic axis of the base member 210 is disposed so as to be perpendicular to the horizontal plane (a plane parallel to the X axis). The light source 205 is arranged so that light emitted from the light source 205 is incident from the upper surface (surface in the positive direction of the Z axis) or the lower surface (surface in the negative direction of the Z axis) of the base member 210. With such an arrangement, light incident from the light source 205 on one of the upper surface and the lower surface of the base member 210 via an optical system (not shown) travels while being totally reflected inside the base member 210. In this progressing process, for example, a fine emboss structure is formed on the inner wall surface of the hexagonal column and the outer wall surface of the hexagonal column of the base member 210, so that Fresnel diffraction is induced. Then, light is irradiated from the base member 210 toward the photocatalyst layer 220 on the outer wall surface side and the photocatalyst layer 230 on the inner wall surface side, and active oxygen is induced in the photocatalyst layer 230.

以上のように、前述した光触媒装置100、102と同じく光により光触媒機能を発揮させる第3の実施形態に係る光触媒装置200を、光源205と基盤部材210と光触媒層220、230とを有するシンプルで且つコンパクトな構成で実現することができる。また、光触媒装置200は、基盤部材210の六角柱内壁面側に存在する空洞によってその空洞を循環する自然対流が得られるので、光触媒機能の利用効率をより向上させることができる。   As described above, the photocatalyst device 200 according to the third embodiment that exhibits the photocatalytic function by light, as in the photocatalyst devices 100 and 102 described above, is simple and includes the light source 205, the base member 210, and the photocatalyst layers 220 and 230. In addition, it can be realized with a compact configuration. Moreover, since the natural convection which circulates through the cavity is obtained by the cavity which exists in the hexagonal column inner wall surface side of the base member 210, the photocatalyst apparatus 200 can improve the utilization efficiency of a photocatalyst function more.

[実施例4]
===円柱型===
図6は、円柱型の光触媒装置300の構成を示した図である。尚、図6に示すX−Y−Z座標軸は、図5に示すX−Y−Z座標軸と同様の定義である。
[Example 4]
=== Cylindrical type ===
FIG. 6 is a diagram showing a configuration of a cylindrical photocatalytic device 300. Note that the XYZ coordinate axes shown in FIG. 6 have the same definition as the XYZ coordinate axes shown in FIG.

光触媒装置300は、円柱型の構造である以外、六角柱型の光触媒装置200と基本的には同じ仕組みである。例えば、光源305より円柱型の基盤部材310の上面又は下面の一方に対して不図示の光学系を介して入射された光が、基盤部材310の内部で全反射をしながら進行する。この進行過程において、基盤部材310の円柱内壁面並びに円柱外壁面には例えば微細なエンボス構造が形成されているので、フレネル回折が誘発される。すると、基盤部材310から外壁面側の光触媒層320並びに内壁面側の光触媒層330に向けて光が照射され、光触媒層320に活性酸素が誘起される。尚、六角柱型の光触媒装置200と同様に、微細なエンボス構造は、円柱外壁面又は円柱内壁面の一方のみに持たせる実施形態でもよいが、両壁面に持たせる方が単位面積当たりの光触媒活性を向上することができる。   The photocatalyst device 300 has basically the same mechanism as the hexagonal column type photocatalyst device 200 except for a cylindrical structure. For example, light incident from the light source 305 to one of the upper surface and the lower surface of the columnar base member 310 through an optical system (not shown) travels while being totally reflected inside the base member 310. In this progression, Fresnel diffraction is induced because, for example, a fine emboss structure is formed on the inner wall surface and the outer wall surface of the cylinder of the base member 310. Then, light is irradiated from the base member 310 toward the photocatalyst layer 320 on the outer wall surface side and the photocatalyst layer 330 on the inner wall surface side, and active oxygen is induced in the photocatalyst layer 320. As with the hexagonal column type photocatalyst device 200, the fine embossed structure may be provided on only one of the outer wall surface of the cylinder or the inner wall surface of the cylinder, but the photocatalyst per unit area is provided on both wall surfaces. The activity can be improved.

以上のように、前述した光触媒装置100、102と同じく光により光触媒機能を発揮させる第4の実施形態に係る光触媒装置300を、光源305と基盤部材310と光触媒層320、330とを有するシンプルで且つコンパクトな構成で実現することができる。また、光触媒装置300は、六角柱型の光触媒装置200と同様に、基盤部材310の円柱内壁面側に存在する空洞によってその空洞を循環する自然対流が得られるので、光触媒機能の利用効率をより向上させることができる。   As described above, the photocatalyst device 300 according to the fourth embodiment that exhibits the photocatalytic function by light as in the above-described photocatalyst devices 100 and 102 is simple and includes the light source 305, the base member 310, and the photocatalyst layers 320 and 330. In addition, it can be realized with a compact configuration. Moreover, since the photocatalytic device 300 can obtain natural convection circulating through the cavity by the cavity existing on the cylindrical inner wall surface side of the base member 310, like the hexagonal column type photocatalytic device 200, the utilization efficiency of the photocatalytic function is further improved. Can be improved.

===その他の立体構造===
また、前述した六角柱型や円柱型に限らず、例えば、三角柱型や四角柱型といった六角柱以外の多角柱型や、球体や錐体を鉛直方向にくり貫いて自然対流を可能とした種々の立体構造を光触媒装置の基盤部材として採用することができる。
=== Other three-dimensional structure ===
In addition to the hexagonal column type and the cylindrical type described above, for example, a polygonal column type other than a hexagonal column such as a triangular column type and a quadrangular column type, and various types that allow natural convection by penetrating a sphere or cone vertically. These three-dimensional structures can be employed as the base member of the photocatalytic device.

<<<光触媒装置のその他の実施形態>>>
以上、本発明の実施形態について説明したが、前述した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく変更/改良され得るとともに、本発明にはその等価物も含まれる。
<<< Other Embodiments of Photocatalyst Apparatus >>>
As mentioned above, although embodiment of this invention was described, embodiment mentioned above is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed / improved without departing from the gist thereof, and the present invention includes equivalents thereof.

本発明の第一実施形態に係る光触媒装置の平面図である。It is a top view of the photocatalyst device concerning a first embodiment of the present invention. 本発明の第一実施形態に係る光触媒装置の側面図である。It is a side view of the photocatalyst device concerning a first embodiment of the present invention. 本発明の第一実施形態に係るエンボス構造を持つ基盤部材の製造工程を示す図である。It is a figure which shows the manufacturing process of the base | substrate member with the embossing structure which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係るシート光を生成するための光学系を示す図である。It is a figure which shows the optical system for producing | generating the sheet | seat light concerning 1st embodiment of this invention. 本発明の第二実施形態に係る光触媒装置の側面図である。It is a side view of the photocatalyst device concerning a second embodiment of the present invention. 本発明の第三実施形態に係る光触媒装置の構造を示す図である。It is a figure which shows the structure of the photocatalyst apparatus which concerns on 3rd embodiment of this invention. 本発明の第四実施形態に係る光触媒装置の構造を示す図である。It is a figure which shows the structure of the photocatalyst apparatus which concerns on 4th embodiment of this invention. 従来の光触媒装置の機能を説明するための図である。It is a figure for demonstrating the function of the conventional photocatalyst apparatus.

符号の説明Explanation of symbols

10、205、305 光源
20 シリンドリカルレンズ(第1のレンズ)
30 シリンドリカルレンズ(第2のレンズ)
40、210、310 基盤部材
42、220、230、320、330 光触媒層
44 突出部(突起部)
100、102、200、300、500 光触媒装置
142 原型モデル
144 入槽モデル
146 導電部材
150 電鋳槽
S1 上面(第1の面)
S2 下面(第2の面)
S3、S4、S5、S6 側面(第3の面)
SL シート光(光)
10, 205, 305 Light source 20 Cylindrical lens (first lens)
30 Cylindrical lens (second lens)
40, 210, 310 Base member 42, 220, 230, 320, 330 Photocatalyst layer 44 Projection (projection)
100, 102, 200, 300, 500 Photocatalyst device 142 Prototype model 144 Entrance tank model 146 Conductive member 150 Electroforming tank S1 Upper surface (first surface)
S2 Lower surface (second surface)
S3, S4, S5, S6 Side surface (third surface)
SL sheet light (light)

Claims (6)

互いに向かい合う第1の面と第2の面のうち少なくとも一方の面が複数の突起部を有し、前記第1の面及び前記第2の面と略直交して立体を形成させる第3の面に光が入射される基盤部材と、
前記複数の突起部を有する少なくとも前記一方の面側に設けられ、前記第3の面に入射された光が前記複数の突起部により回折されて照射される光触媒層と、
を備えることを特徴とする光触媒装置。
A third surface on which at least one of the first surface and the second surface facing each other has a plurality of protrusions and forms a solid substantially orthogonal to the first surface and the second surface. A base member on which light is incident,
A photocatalyst layer that is provided on at least the one surface side having the plurality of protrusions, and is irradiated with the light incident on the third surface diffracted by the plurality of protrusions;
A photocatalytic device comprising:
請求項1に記載の光触媒装置において、前記複数の突起部は、前記第1の面及び前記第2の面の双方に備わっていること、を特徴とする光触媒装置。   2. The photocatalytic device according to claim 1, wherein the plurality of protrusions are provided on both the first surface and the second surface. 3. 請求項1又は2に記載の光触媒装置において、前記光はレーザ光および/またはLED光であること、を特徴とする光触媒装置。   3. The photocatalytic device according to claim 1, wherein the light is laser light and / or LED light. 4. 請求項1乃至3のいずれか1項に記載の光触媒装置において、
前記光を出射する光源と前記基盤部材との間に、前記光源より出射した前記光を拡大させる第1のレンズと、前記第1のレンズによって拡大された前記光をシート光に変形させる第2のレンズと、を備え、
前記基盤部材は、前記第1の面と、前記第2の面と、複数の前記第3の面と、を有する略板状本体を備え、前記複数の第3の面のうちの一つに前記シート光が入射されること、
を特徴とする光触媒装置。
In the photocatalyst device according to any one of claims 1 to 3,
A first lens that expands the light emitted from the light source between the light source that emits the light and the base member, and a second lens that transforms the light expanded by the first lens into sheet light. A lens, and
The base member includes a substantially plate-shaped main body having the first surface, the second surface, and the plurality of third surfaces, and one of the plurality of third surfaces. The sheet light is incident;
A photocatalytic device characterized by the above.
請求項1乃至3のいずれか1項に記載の光触媒装置において、
前記基盤部材は、前記第1の面を多角柱外壁面、前記第2の面を多角柱内壁面、前記第3の面を前記多角柱外壁面並びに前記多角柱内壁面と略直交する2つの面とする多角柱の筒型構造であり、前記2つの面のうち少なくとも一方の面に前記光が入射されること、を特徴とする光触媒装置。
In the photocatalyst device according to any one of claims 1 to 3,
The base member has two outer surfaces substantially orthogonal to the polygonal column outer wall surface, the second surface to the polygonal column inner wall surface, the third surface to the polygonal column outer wall surface, and the polygonal column inner wall surface. A photocatalytic device having a polygonal cylindrical structure as a surface, wherein the light is incident on at least one of the two surfaces.
請求項1乃至3のいずれか1項に記載の光触媒装置において、
前記基盤部材は、前記第1の面を円柱外壁面、前記第2の面を円柱内壁面、前記第3の面を前記円柱外壁面並びに前記円柱内壁面と略直交する2つの面とする円柱の筒型構造であり、前記2つの面のうち少なくとも一方の面に前記光が入射されること、を特徴とする光触媒装置。
In the photocatalyst device according to any one of claims 1 to 3,
The base member is a cylinder having the first surface as a cylindrical outer wall surface, the second surface as a cylindrical inner wall surface, and the third surface as two surfaces substantially orthogonal to the cylindrical outer wall surface and the cylindrical inner wall surface. The photocatalytic device is characterized in that the light is incident on at least one of the two surfaces.
JP2007326360A 2007-12-18 2007-12-18 Photocatalyst device Pending JP2009148653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007326360A JP2009148653A (en) 2007-12-18 2007-12-18 Photocatalyst device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326360A JP2009148653A (en) 2007-12-18 2007-12-18 Photocatalyst device

Publications (1)

Publication Number Publication Date
JP2009148653A true JP2009148653A (en) 2009-07-09

Family

ID=40918485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326360A Pending JP2009148653A (en) 2007-12-18 2007-12-18 Photocatalyst device

Country Status (1)

Country Link
JP (1) JP2009148653A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000189A (en) * 2014-05-21 2016-01-07 株式会社フジコー Air purification device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000189A (en) * 2014-05-21 2016-01-07 株式会社フジコー Air purification device

Similar Documents

Publication Publication Date Title
JP2007335164A (en) Lighting fixture excellent in air cleaning performance
US8815169B2 (en) Air purification apparatus and method of forming the same
KR102184694B1 (en) Air Cleaning Filter Using Visible Light Excitation Photocatalyst and Manufacturing Method Thereof
JP2009181914A (en) Surface light emitter of ultraviolet rays, photocatalystic device, and air purification method
CN106477901A (en) Membranous system and forming method thereof
JP2013027665A (en) Cleaning unit and deodorizing apparatus
US20170259254A1 (en) Photocatalyst apparatus and system
JP2006237563A (en) Surface emitting device
JP2009148653A (en) Photocatalyst device
KR101249885B1 (en) Photocatalyst water purifier using plasmon
CN114630686A (en) Ultraviolet irradiation apparatus, method of using ultraviolet irradiation apparatus, and method of irradiating ultraviolet light
CN112675351A (en) Ultrafast laser light curtain and air purification system
US20130156649A1 (en) Purification unit and deodoriding device
JP2004290724A (en) Cleaning apparatus
JP7176948B2 (en) air purifier
EP3356864B1 (en) Extraction structure for a uv lamp
CN202074256U (en) LED photocatalyst area light source device
JP2009066865A (en) Decorative sheet
JP2005312768A (en) Ultraviolet lamp unit and air conditioner equipped with the same
JP2000037615A (en) Light source-integrated type photocatalytic apparatus and manufacture thereof
JP2009148654A (en) Photocatalyst device
JPH10235202A (en) Photocatalytic body and air cleaner
CN103657401A (en) Photocatalyst air filter and manufacturing method thereof
KR101409449B1 (en) Visible lay lighting apparatus for air conditioning
CN106390968B (en) A kind of method and its application enhancing titanium oxide films photocatalysis performance by controllable micrographics