JP2009145097A - Chemical material identifying sensor and chemical material identifying method using it - Google Patents

Chemical material identifying sensor and chemical material identifying method using it Download PDF

Info

Publication number
JP2009145097A
JP2009145097A JP2007320535A JP2007320535A JP2009145097A JP 2009145097 A JP2009145097 A JP 2009145097A JP 2007320535 A JP2007320535 A JP 2007320535A JP 2007320535 A JP2007320535 A JP 2007320535A JP 2009145097 A JP2009145097 A JP 2009145097A
Authority
JP
Japan
Prior art keywords
chemical substance
region
hole
identification sensor
substance identification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007320535A
Other languages
Japanese (ja)
Other versions
JP2009145097A5 (en
JP5291923B2 (en
Inventor
Masaya Nakatani
将也 中谷
Yazbeck Daniel
ダニエル・ヤズベク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007320535A priority Critical patent/JP5291923B2/en
Publication of JP2009145097A publication Critical patent/JP2009145097A/en
Publication of JP2009145097A5 publication Critical patent/JP2009145097A5/ja
Application granted granted Critical
Publication of JP5291923B2 publication Critical patent/JP5291923B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chemical material identifying sensor for surely arranging, at a predetermined portion, a bead which has caused hybridization with a target material such as many chemical materials, with no need of a chemical bonding portion, and to provide a measuring method using it. <P>SOLUTION: This sensor includes a plate 1 where a recess 2 having a through-hole 3 is arranged and a first and a second region 4, 5 which are divided by the plate 1. While a micro particle 11 having a probe function is disposed at the recess 2 of the through-hole, a liquid is filled in one of the first, the second region 4, 5 and in the through-hole 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は化学物質などの試料を高精度に測定することができる化学物質同定センサおよびそれを用いた同定方法に関するものである。   The present invention relates to a chemical substance identification sensor capable of measuring a sample such as a chemical substance with high accuracy and an identification method using the same.

従来、溶液中に存在するタンパク質などを測定する方法として、ビーズの表面にタンパク質プローブを有する化学物質同定センサが知られており、この化学物質同定センサは例えばビーズの表面に生物活性剤であるプローブを吸着させ、溶液中に於いてこのプローブ部分とハイブリッタイゼーションを起こす標的物質を検出する技術が知られている。そして、この化学物質同定センサの一例としてはビーズが測定中に動かないようにビーズを基体の表面にある分離した部位に結合または付着させることのできる基体/ビーズのペアリングを使用した技術が開示されている(例えば、特許文献1参照)。   Conventionally, as a method for measuring a protein or the like present in a solution, a chemical substance identification sensor having a protein probe on the surface of a bead is known. For example, this chemical substance identification sensor is a probe that is a bioactive agent on the surface of a bead. There is known a technique for detecting a target substance that adsorbs and hybridizes with a probe portion in a solution. As an example of this chemical substance identification sensor, a technique using a substrate / bead pairing that can bind or attach a bead to a separated site on the surface of the substrate so that the bead does not move during measurement is disclosed. (For example, refer to Patent Document 1).

特表2002−533727号公報Special Table 2002-533727

しかしながら、前記従来の化学物質同定センサの構成では、ビーズを基体の特定の部位に配置させるため、混合、振動または攪拌などの方法によって行われ、基体と定着させるために化学物質による結合が行われるが、前記方法によって、アレイの全ての部位にビーズが配置できるとは限らず、反対に一つのアレイに複数のビーズが配置されてしまうという課題を有している。   However, in the configuration of the conventional chemical substance identification sensor, the beads are arranged at a specific portion of the substrate, so that the beads are arranged by a method such as mixing, vibration, or stirring, and the chemical substance is bonded to fix the substrate. However, the method described above does not always allow beads to be arranged at all sites of the array, and conversely has a problem that a plurality of beads are arranged in one array.

本発明は、前記従来の課題を解決するもので、多数の化学物質などの標的物質とハイブリタイゼーションを起こしたビーズを確実に所定の部位に配置することができるとともに、化学的結合部位の必要のない化学物質同定センサおよびそれを用いた測定方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and it is possible to reliably place beads hybridized with a target substance such as a large number of chemical substances at a predetermined site, and the need for a chemical binding site. It is an object of the present invention to provide a chemical substance identification sensor having no defect and a measurement method using the same.

前記課題を解決するため、本発明は、窪みを有した貫通孔を設けたプレートと、このプレートによって区画された第一、第二の領域を備え、前記貫通孔の窪みにプローブ機能を有した微小球を配置するとともに、前記第一、第二の領域のいずれか一方の内部および前記貫通孔の内部に液体を充填した構成とするものである。   In order to solve the above problems, the present invention includes a plate provided with a through hole having a depression and first and second regions partitioned by the plate, and the depression of the through hole has a probe function. The microspheres are arranged and the inside of any one of the first and second regions and the inside of the through hole are filled with a liquid.

前記構成により、ビーズを貫通孔の一部に設けた窪みに容易に配置することができるセンサ構造を実現していることから、ビーズを基体の特定の部位に化学的に結合または付着させる必要がなくなり、確実に一個のビーズを貫通孔の上部に設けた窪みに固定することができる化学物質同定センサおよびそれを用いた測定方法を提供することができる。   The above configuration realizes a sensor structure in which the beads can be easily arranged in a recess provided in a part of the through hole, and thus it is necessary to chemically bond or attach the beads to a specific portion of the substrate. Thus, it is possible to provide a chemical substance identification sensor capable of reliably fixing one bead to a recess provided in the upper part of the through hole, and a measurement method using the same.

(実施の形態1)
以下、本発明の実施の形態1における化学物質同定センサの構成について、図面を参照しながら説明する。図1は本発明の化学物質同定センサの一部切り欠き斜視図であり、図2は同断面図である。図1および図2において、1はシリコンからなるプレートであり、このプレート1の一部は肉薄部1aとなっている。
(Embodiment 1)
Hereinafter, the configuration of the chemical substance identification sensor according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a partially cutaway perspective view of a chemical substance identification sensor of the present invention, and FIG. 2 is a cross-sectional view thereof. 1 and 2, reference numeral 1 denotes a plate made of silicon, and a part of the plate 1 is a thin portion 1a.

さらに、第一の領域4と第二の領域5は肉薄部1aに設けられた窪み2を有した貫通孔3によってのみ連通されている。また、第一の領域4と第二の領域5の内部にはそれぞれ光ファイバーなどの光導入口8および光検出口9が設置されており、これら光導入口8および光検出口9は、さらに測定器(図示せず)へと接続されている。   Furthermore, the first region 4 and the second region 5 are communicated only by a through hole 3 having a recess 2 provided in the thin portion 1a. In addition, a light entrance 8 and a light detection port 9 such as an optical fiber are respectively installed in the first region 4 and the second region 5, and the light entrance 8 and the light detection port 9 are further measured. Connected to a vessel (not shown).

また、第一の領域4、第二の領域5および窪み2を有した貫通孔3の内部は液体10によって満たされている。ここで、液体10は測定する対象化学物質が存在する液体物質である。さらに、第一の領域4および第二の領域5には蓋板の一例としてキャップ6,7が当接されており、これによって第一の領域4および第二の領域5は外部雰囲気から遮断されており、その結果として内部圧力を制御することを可能としている。   Further, the inside of the through hole 3 having the first region 4, the second region 5, and the recess 2 is filled with the liquid 10. Here, the liquid 10 is a liquid substance in which the target chemical substance to be measured exists. Further, caps 6 and 7 are brought into contact with the first region 4 and the second region 5 as an example of a cover plate, thereby isolating the first region 4 and the second region 5 from the external atmosphere. As a result, the internal pressure can be controlled.

なお、本実施例では第一の領域4、第二の領域5を共に液体10によって満たすとしたが、これにより貫通孔3を通って第二の領域5へ通過した光は第二の領域5を満たす液体10の中を拡散するので、第二の領域5側に設置された光検出口9への導入が容易になるという利点も有している。しかしながら一方で、第二の領域5で光を拡散させることが好ましくない場合は第二の領域5側には液体を満たさなくてもよい。この場合は貫通孔3を通過した光は直接光検出口9へ到達する。   In the present embodiment, the first region 4 and the second region 5 are both filled with the liquid 10, but the light that has passed through the through hole 3 to the second region 5 is thereby in the second region 5. Since the liquid 10 satisfying the above condition is diffused, there is an advantage that introduction into the light detection port 9 installed on the second region 5 side becomes easy. However, on the other hand, if it is not preferable to diffuse light in the second region 5, the second region 5 side may not be filled with liquid. In this case, the light that has passed through the through-hole 3 reaches the light detection port 9 directly.

そして、窪み2の凹部には粒子(ビーズ)11を配置しており、この粒子11を介して化学物質の同定を行うものである。また、粒子(ビーズ)11の材質は特に限定するものではないが、好ましくは励起光14、検出光15に対して透明性を有していることが好ましく、このような透明性を有している材料としては、ガラス、セラミック材料などの無機材料、あるいはポリカーボネート、ポリスチレン、ポリオレフィン等の樹脂材料が適している。   Then, particles (beads) 11 are arranged in the recesses of the depressions 2, and chemical substances are identified through the particles 11. The material of the particles (beads) 11 is not particularly limited, but preferably has transparency with respect to the excitation light 14 and the detection light 15, and has such transparency. Suitable materials include inorganic materials such as glass and ceramic materials, or resin materials such as polycarbonate, polystyrene, and polyolefin.

また、粒子11の大きさは0.5〜100μm程度の直径を持つ球形であることにより、本発明のプレート1に設けた窪み2の内部へ安定した保持ができる。しかしながら、球形以外の形状について排除するものではなく、たとえば表面へのプローブ12の付着量を増やすため、表面に凹凸があるいびつな形状であっても本発明への適用は可能である。   Further, the size of the particles 11 is a spherical shape having a diameter of about 0.5 to 100 μm, so that the particles 11 can be stably held inside the recess 2 provided in the plate 1 of the present invention. However, the shape other than the spherical shape is not excluded. For example, in order to increase the adhesion amount of the probe 12 to the surface, the present invention can be applied even to an irregular shape having irregularities on the surface.

また、粒子11の表面にはプローブ12が付着されるが、このプローブ12は検出対象物質13に対応した特定の化合物として合成されたものである。例えば、DNAプローブは特定の塩基配列と結合する相補的塩基配列をもったDNAであり、溶液中に特定配列を持ったDNAの存在有無を判定したい場合、このDNAプローブと結合(ハイブリタイゼーション)を起こすかどうかによって測定できる。   A probe 12 is attached to the surface of the particle 11, and this probe 12 is synthesized as a specific compound corresponding to the detection target substance 13. For example, a DNA probe is a DNA having a complementary base sequence that binds to a specific base sequence. When it is desired to determine the presence or absence of DNA having a specific sequence in a solution, it binds to this DNA probe (hybridization). Can be measured by whether or not

特に、本発明ではプローブ12に蛍光標識を行っておき、検出対象物質13が結合した場合に、外部からの入力光である励起光14に対して蛍光を発するようにしておく。これにより、粒子11の表面を通過した検出光15はハイブリタイゼーションの有無によってその色調が変化するが、本発明のセンサでは検出光15は貫通孔3を通過したものだけを観察することができることから、他からのノイズが少なくすることが可能であり、これによって、より高精度な化学物質の同定が可能になる。   In particular, in the present invention, the probe 12 is fluorescently labeled, and when the detection target substance 13 is bound, fluorescence is emitted to the excitation light 14 that is input light from the outside. As a result, the color of the detection light 15 that has passed through the surface of the particle 11 changes depending on the presence or absence of hybridization, but with the sensor of the present invention, only the detection light 15 that has passed through the through-hole 3 can be observed. Therefore, it is possible to reduce noise from others, and this makes it possible to identify chemical substances with higher accuracy.

なお、プローブ12の種類はDNAの他にRNA,タンパク質等を用いることが可能である。   In addition, RNA, protein, etc. other than DNA can be used for the type of probe 12.

次に、前記本発明の化学物質同定センサを用いて、液体10に存在する化学物質を同定する方法について説明する。図3および図4は本発明の化学物質同定センサの使用方法を示す断面図である。ここで、図3に示す本実施の形態1の化学物質同定センサの第一の領域4においては、プレート1の窪み2の内部に、プローブ12が表面に形成された粒子11が保持されている。ここで、貫通孔3の開口部は粒子11より小さいので、この粒子11を保持する方法として第二の領域5側を減圧して貫通孔3を吸引することによって、強固な保持が容易に実現される。また、この保持方法は第一の領域4と第二の領域5の圧力差を利用したものであるので、窪み2に粒子11を吸着させるために化学的結合部位を別途設ける必要がないという利点を有している。   Next, a method for identifying a chemical substance present in the liquid 10 using the chemical substance identification sensor of the present invention will be described. 3 and 4 are cross-sectional views showing a method of using the chemical substance identification sensor of the present invention. Here, in the first region 4 of the chemical substance identification sensor according to the first embodiment shown in FIG. 3, the particles 11 having the probe 12 formed on the surface are held inside the recess 2 of the plate 1. . Here, since the opening of the through-hole 3 is smaller than the particle 11, as a method for holding the particle 11, the second region 5 side is decompressed and the through-hole 3 is sucked to easily realize strong holding. Is done. In addition, since this holding method uses the pressure difference between the first region 4 and the second region 5, there is no need to separately provide a chemical bonding site for adsorbing the particles 11 in the recess 2. have.

また、第一の領域4と第二の領域5はプレート1によって仕切られていることから、第一の領域4の内部を加圧手段(図示せず)によって加圧することによって、貫通孔3を介して第二の領域5へ液体10を移動させながら粒子11を窪み2へと移動させながら粒子11を窪み2に保持させることが可能となる。   Moreover, since the 1st area | region 4 and the 2nd area | region 5 are partitioned off with the plate 1, by pressing the inside of the 1st area | region 4 with a pressurization means (not shown), the through-hole 3 is made. Accordingly, the particles 11 can be held in the depressions 2 while moving the particles 11 into the depressions 2 while moving the liquid 10 to the second region 5.

このように、第一の領域4と第二の領域5を個別に制御できるような構成とすることによって、吸引あるいは加圧などの手段を用いて粒子11を容易に制御することができる。さらに、液体10を別の薬液などに容易に置換することも可能となるセンサ構造を実現することができる。   In this way, by adopting a configuration in which the first region 4 and the second region 5 can be individually controlled, the particles 11 can be easily controlled using means such as suction or pressurization. Furthermore, it is possible to realize a sensor structure that allows the liquid 10 to be easily replaced with another chemical solution or the like.

次に、図3に示すように第一の領域4側から励起光14を導入すると光は第一の領域4の内部を満たした液体10の内部を散乱しながら透過し、図に示すように窪み2を有した貫通孔3の内部へも進入する。このとき、窪み2に保持された粒子11は貫通孔3を確実に塞いでいるので、貫通孔3を透過してきた励起光15は粒子11の表面を透過してきた光である。そして、図のように、溶液4の内部に検査対象物質13が無い、あるいは濃度が低い場合、粒子11の表面に形成されたプローブ12が検査対象物質13とハイブリタイゼーションは起こらず、この状態での粒子11の表面を通過した光が検出光15として検出され、参照応答が測定される。   Next, when the excitation light 14 is introduced from the first region 4 side as shown in FIG. 3, the light is transmitted while being scattered inside the liquid 10 filling the inside of the first region 4, as shown in the figure. It also enters the inside of the through hole 3 having the depression 2. At this time, since the particles 11 held in the depressions 2 reliably block the through holes 3, the excitation light 15 transmitted through the through holes 3 is light transmitted through the surfaces of the particles 11. As shown in the figure, when the inspection target substance 13 is not present in the solution 4 or the concentration is low, the probe 12 formed on the surface of the particle 11 does not hybridize with the inspection target substance 13, and this state The light passing through the surface of the particle 11 is detected as the detection light 15 and the reference response is measured.

次に、図4に示すように溶液4中に検査対象物質13が存在する状態では、プローブ12が検査対象物質13とハイブリタイゼーションを起こし、この状態での粒子11の表面を通過した検出光15が検出される。この際、プローブ12と検査対象物質13がハイブリタイゼーションを起こしている状態では、プローブ12が蛍光を発するように修飾しておけば、通過した検出光15は蛍光を伴っており、前記参照応答と区別される。こうして、液体4の内部に検査対象物質13が存在するかどうかが判定できるのである。   Next, as shown in FIG. 4, in the state where the inspection target substance 13 is present in the solution 4, the probe 12 is hybridized with the inspection target substance 13, and the detection light that has passed through the surface of the particle 11 in this state 15 is detected. At this time, in the state where the probe 12 and the substance to be inspected 13 are hybridized, if the probe 12 is modified so as to emit fluorescence, the detected light 15 that has passed passes through the fluorescence, and the reference response Distinguished from In this way, it is possible to determine whether or not the inspection target substance 13 exists in the liquid 4.

このように、プレート1に貫通孔3を有する窪み2を設けたことによって、確実に、プローブ12を表面に有した粒子11を保持できる上、貫通孔3を通過した光は必ず粒子11の表面を通過しているので、より高精度な測定が可能である。従って、プレート1の材質は本実施の形態1にて説明したシリコン以外でも可能であるが、不透明であることがより望ましい。これによって、第二の領域5側に透過してくる光は貫通孔3を通過したものだけとなり、第二の領域5側での光検出がより高精度になる。なお、検出側である第二の領域5は必ずしも液体で満たされていなくても光検出はできるが、液体で満たされる場合には、貫通孔3を通過した光は第二の領域に存在する液体10の内部で散乱し、光検出口9への導入が簡単になるという利点を有している。   Thus, by providing the depression 2 having the through hole 3 in the plate 1, it is possible to reliably hold the particle 11 having the probe 12 on the surface, and light that has passed through the through hole 3 is always on the surface of the particle 11. Since it passes through, more accurate measurement is possible. Therefore, the material of the plate 1 can be other than the silicon described in the first embodiment, but is more preferably opaque. As a result, only the light transmitted to the second region 5 side passes through the through hole 3, and the light detection on the second region 5 side becomes more accurate. The second region 5 on the detection side can be detected even if it is not necessarily filled with liquid, but when it is filled with liquid, the light that has passed through the through hole 3 exists in the second region. It has the advantage that it is scattered inside the liquid 10 and can be easily introduced into the light detection port 9.

さらに、本実施の形態1における保持方法では第一の領域4側を減圧雰囲気にすれば、一度保持された粒子11でも再度、保持を解除することができることから、任意の時に粒子11を液体10の中に分散させて、プローブ12と検査対象物質13の反応を促進させることができる。例えば、検査対象物質13が液体中に無い状態で粒子11を窪み2に保持させて参照応答を測定した後、検査対象物質13が含まれる液体10を添加した後、粒子11の保持を解除すれば粒子11は液体10の中に容易に分散することで検査対象物質13とプローブ12の反応が促進し、再度吸引によって粒子11を保持した後に測定を行えば、参照応答との比較によって検査対象物質13の有無判定がより高精度になるという利点を有している。   Furthermore, in the holding method according to the first embodiment, if the first region 4 side is in a reduced pressure atmosphere, the holding of the particles 11 once held can be released again. It is possible to promote the reaction between the probe 12 and the substance 13 to be inspected. For example, after the reference response is measured by holding the particle 11 in the depression 2 without the inspection target substance 13 in the liquid, the liquid 10 containing the inspection target substance 13 is added, and then the holding of the particle 11 is released. For example, the particles 11 are easily dispersed in the liquid 10 to promote the reaction between the substance to be inspected 13 and the probe 12, and if the measurement is performed after the particles 11 are held again by suction, the object to be inspected is compared with the reference response. There is an advantage that the presence / absence determination of the substance 13 becomes more accurate.

また、プレート1および肉薄部1aはシリコンで構成されており、これによってプレート1および肉薄部1aの内部に形成された窪み2および貫通孔3の加工については、半導体プロセスを用いることによって効率良く、且つ高精度に作製することが可能となる。   Further, the plate 1 and the thin portion 1a are made of silicon, whereby the processing of the recess 2 and the through hole 3 formed inside the plate 1 and the thin portion 1a is efficiently performed by using a semiconductor process. And it becomes possible to produce with high precision.

なお、肉薄部1aに設けた窪み2を有した貫通孔3は複数個設けることによって、より確実な測定が可能である。   In addition, a more reliable measurement is possible by providing a plurality of through holes 3 having the recesses 2 provided in the thin portion 1a.

以上説明してきたように、本実施の形態1で説明してきた化学物質同定センサおよびこれを用いた化学物質の同定方法は、ウイルス、食料品産地などの特定DNA配列の検出を行うDNAセンサ、SNP(一塩基多型)配列を検出するSNPセンサ、アレルゲン(アレルギー抗原)の存在を検出する抗原センサ等、農業分野、医療分野、環境分野などに広く用いることができる。   As described above, the chemical substance identification sensor described in the first embodiment and the chemical substance identification method using the same are a DNA sensor that detects a specific DNA sequence such as a virus or a food production area, and an SNP. (Single nucleotide polymorphisms) SNP sensors for detecting sequences, antigen sensors for detecting the presence of allergens (allergic antigens), and the like can be widely used in the agricultural field, medical field, environmental field, and the like.

(実施の形態2)
本発明の実施の形態2における化学物質同定センサについて、図面を用いて説明する。
図5に示すように、プレート1の片側を外部雰囲気に開放した構造とすることもでき、この場合は化学物質同定センサを直接液体10につけることで、溶液10中に存在する検査対象物質の有無を測定できる。
(Embodiment 2)
A chemical substance identification sensor according to Embodiment 2 of the present invention will be described with reference to the drawings.
As shown in FIG. 5, it is possible to adopt a structure in which one side of the plate 1 is opened to the outside atmosphere. In this case, by attaching a chemical substance identification sensor directly to the liquid 10, The presence or absence can be measured.

本実施の形態2では、第一の領域4を開放空間にした構造であり、第二の領域5は圧力制御口16以外は外部雰囲気より閉じられている。この場合は、第一の領域4側が開放空間であるため、第一の領域4側の圧力を制御するために、液体10の中へ浸水させる化学物質同定センサの液面よりの沈み込み量を制御すればよい。つまりこれを深く沈めればより強い圧力で貫通孔3へ粒子11を保持させることができる。第二の領域5に接続された圧力制御口16による第二の領域5の圧力制御と合わせれば、第二の領域5側を陽圧にすることによって、一度窪み2に保持された粒子11を再度分散させることも可能である。   In the second embodiment, the first region 4 is an open space, and the second region 5 is closed from the outside atmosphere except for the pressure control port 16. In this case, since the first region 4 side is an open space, in order to control the pressure on the first region 4 side, the sinking amount from the liquid level of the chemical substance identification sensor to be submerged into the liquid 10 is set. Control is sufficient. That is, if this is submerged deeply, the particles 11 can be held in the through holes 3 with a stronger pressure. When combined with the pressure control of the second region 5 by the pressure control port 16 connected to the second region 5, the particles 11 once held in the depressions 2 are made by making the second region 5 side a positive pressure. It is also possible to disperse again.

また第一の領域4は開放空間であるため、第一の領域4側に分散させる粒子11の交換、液体10の交換等がより簡単であるという利点を有する。   Further, since the first region 4 is an open space, there is an advantage that the exchange of the particles 11 dispersed on the first region 4 side, the exchange of the liquid 10 and the like are easier.

以上のように、本発明にかかる化学物質同定センサおよびそれを用いた化学物質の同定方法は、例えば、液体中に存在する検査対象物質の有無や濃度を高精度に検出する用途に有用である。   As described above, the chemical substance identification sensor and the chemical substance identification method using the same according to the present invention are useful for, for example, the use of detecting the presence or absence and concentration of the test target substance present in the liquid with high accuracy. .

本発明の実施の形態1における化学物質同定センサの一部切り欠き斜視図1 is a partially cutaway perspective view of a chemical substance identification sensor according to Embodiment 1 of the present invention. 同化学物質同定センサの断面図Cross section of the chemical substance identification sensor 同化学物質同定センサの使用方法を示す断面図Sectional view showing how to use the chemical substance identification sensor 同断面図Sectional view 本発明の実施の形態2における化学物質同定センサの断面図Sectional drawing of the chemical substance identification sensor in Embodiment 2 of this invention

符号の説明Explanation of symbols

1 プレート
1a 肉薄部
2 窪み
3 貫通孔
4 第一の領域
5 第二の領域
6 キャップ
7 キャップ
8 光導入口
9 光検出口
10 液体
13 検査対象物質
14 励起光
15 検出光
16 圧力制御口
DESCRIPTION OF SYMBOLS 1 Plate 1a Thin part 2 Indentation 3 Through-hole 4 1st area | region 5 2nd area | region 6 Cap 7 Cap 8 Light inlet 9 Light detection port 10 Liquid 13 Test object substance 14 Excitation light 15 Detection light 16 Pressure control port

Claims (10)

窪みを有した貫通孔を設けたプレートと、このプレートによって区画された第一、第二の領域を備え、前記貫通孔の窪みにプローブ機能を有した微小球を配置するとともに、前記第一、第二の領域のいずれか一方の内部および前記貫通孔の内部に液体を充填した化学物質同定センサ。   A plate provided with a through hole having a depression, and first and second regions partitioned by the plate, and a microsphere having a probe function is disposed in the depression of the through hole, and the first, A chemical substance identification sensor in which a liquid is filled in any one of the second regions and the inside of the through hole. 第一の領域および第二の領域の内部に液体を充填した請求項1に記載の化学物質同定センサ。   The chemical substance identification sensor according to claim 1, wherein a liquid is filled in the first area and the second area. 第一の領域および第二の領域の圧力を個別に制御する請求項1に記載の化学物質同定センサ。   The chemical substance identification sensor according to claim 1, wherein the pressures in the first region and the second region are individually controlled. プレートを不透明とした請求項1に記載の化学物質同定センサ。   The chemical substance identification sensor according to claim 1, wherein the plate is opaque. プレートをシリコンとした請求項1に記載の化学物質同定センサ。   The chemical substance identification sensor according to claim 1, wherein the plate is made of silicon. 貫通孔の開口径をビ−ズの外形よりも小さくした請求項1に記載の化学物質同定センサ。   The chemical substance identification sensor according to claim 1, wherein the opening diameter of the through hole is smaller than the outer shape of the bead. 窪みを有していない貫通孔から吸引することによってビーズを吸引するための吸引手段を設けた請求項1に記載の化学物質同定センサ。   The chemical substance identification sensor according to claim 1, further comprising suction means for sucking beads by sucking from a through-hole having no depression. 窪みを有する貫通孔を形成したプレートの一面側である第一の領域を加圧することによってビーズを窪みに配置するための加圧手段を設けた請求項1に記載の化学物質同定センサ。   The chemical substance identification sensor according to claim 1, further comprising a pressurizing means for placing the beads in the depression by pressurizing the first region on one side of the plate in which the through hole having the depression is formed. プローブ機能として、検出する化学物質と結合することにより蛍光を発するように修飾されて微小球の表面に形成した請求項1に記載の化学物質同定センサ。   The chemical substance identification sensor according to claim 1, wherein the chemical substance identification sensor is formed on the surface of a microsphere by being modified to emit fluorescence by binding to a chemical substance to be detected as a probe function. 窪みを有した貫通孔を設けたプレートと、このプレートによって区画された第一、第二の領域を備え、前記貫通孔の窪みにプローブ機能を有した微小球を配置するとともに、前記第一、第二の領域の内部および前記窪みを有した貫通孔の内部に液体を充填した化学物質同定センサを用いて、前記二つの領域のいずれか一方より、光を照射し、他方の領域より窪みを有した貫通孔を通過してきた光の波長と光量を測定する化学物質の同定方法。   A plate provided with a through hole having a depression, and first and second regions partitioned by the plate, and a microsphere having a probe function is disposed in the depression of the through hole, and the first, Using a chemical substance identification sensor in which liquid is filled in the inside of the second region and the inside of the through hole having the depression, light is irradiated from one of the two regions, and the depression is formed from the other region. A method for identifying a chemical substance that measures the wavelength and amount of light that has passed through a through-hole.
JP2007320535A 2007-12-12 2007-12-12 Chemical substance identification sensor and chemical substance identification method using the same Expired - Fee Related JP5291923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007320535A JP5291923B2 (en) 2007-12-12 2007-12-12 Chemical substance identification sensor and chemical substance identification method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007320535A JP5291923B2 (en) 2007-12-12 2007-12-12 Chemical substance identification sensor and chemical substance identification method using the same

Publications (3)

Publication Number Publication Date
JP2009145097A true JP2009145097A (en) 2009-07-02
JP2009145097A5 JP2009145097A5 (en) 2011-01-06
JP5291923B2 JP5291923B2 (en) 2013-09-18

Family

ID=40915868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007320535A Expired - Fee Related JP5291923B2 (en) 2007-12-12 2007-12-12 Chemical substance identification sensor and chemical substance identification method using the same

Country Status (1)

Country Link
JP (1) JP5291923B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241985A (en) * 1993-02-19 1994-09-02 Kubota Corp Sample aligning device of sample stage for spectral analysis
JP2000249706A (en) * 1999-02-26 2000-09-14 Hokuto Kagaku Sangyo Kk New biological chip and analytical method
JP2005148048A (en) * 2003-04-25 2005-06-09 Jsr Corp Biochip, biochip kit, and method for manufacturing and using the same
JP2007159439A (en) * 2005-12-12 2007-06-28 Quantum 14:Kk Microreactor having high-density reaction space array formed by porous silicon
JP2007206062A (en) * 2006-01-06 2007-08-16 Central Res Inst Of Electric Power Ind Carrier, device and method for measuring immunoreaction
JP2007529001A (en) * 2003-07-15 2007-10-18 エクストレーム,シモン Apparatus and method for sample analysis using complex sample processing and sample holding apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241985A (en) * 1993-02-19 1994-09-02 Kubota Corp Sample aligning device of sample stage for spectral analysis
JP2000249706A (en) * 1999-02-26 2000-09-14 Hokuto Kagaku Sangyo Kk New biological chip and analytical method
JP2005148048A (en) * 2003-04-25 2005-06-09 Jsr Corp Biochip, biochip kit, and method for manufacturing and using the same
JP2007529001A (en) * 2003-07-15 2007-10-18 エクストレーム,シモン Apparatus and method for sample analysis using complex sample processing and sample holding apparatus
JP2007159439A (en) * 2005-12-12 2007-06-28 Quantum 14:Kk Microreactor having high-density reaction space array formed by porous silicon
JP2007206062A (en) * 2006-01-06 2007-08-16 Central Res Inst Of Electric Power Ind Carrier, device and method for measuring immunoreaction

Also Published As

Publication number Publication date
JP5291923B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP7009993B2 (en) Biomaterial detection method and biomaterial introduction method
JP2011196849A (en) Rotating analysis chip and measurement system using the same
JP5298718B2 (en) Centrifugal device for filling biological sample reaction chip with reaction solution
US8900528B2 (en) Disc-shaped analysis chip
WO2004074818A2 (en) Assay apparatus and method using microfluidic arrays
JP4556194B2 (en) Biological sample reaction method
JP2018531369A5 (en)
KR20190117128A (en) Fluid test cartiridge, fluid test apparatus including the same and method for contotolling thereof
WO2017031393A1 (en) Patterned plasmonic nanoparticle arrays for multiplexed, microfluidic biosensing assays
JP5994116B2 (en) Rotary analysis chip and measurement system
CA2782009C (en) Nanofluidic biosensor and its use for rapid measurement of biomolecular interactions in solution and methods
JP2011080769A (en) Disk-like analyzing chip and measuring system using the same
JP2006519384A5 (en)
JP2009270922A (en) Biosample reaction method
JP5291923B2 (en) Chemical substance identification sensor and chemical substance identification method using the same
JP2006254838A (en) Detection chip and method for detecting substance using the same
JP2017049151A (en) Biological material detection method
US20150316546A1 (en) Sensor chip
JP2006226752A (en) Plate for bio-sample discrimination device
CA2932577C (en) Gas evacuation system for nanofluidic biosensor
JP2009085818A (en) Liquid reagent built-in type microchip
JP5953128B2 (en) Method for producing capillary array for assay
JP7354749B2 (en) Analytical chip testing method, testing device, and analytical chip manufacturing method
JP2010063395A (en) Chip for reacting biological specimen, and method for reacting biological specimen
TWI615606B (en) Structure for integrating microfluidic devices and optical biosensors

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5291923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees