JP2009144870A - 変速制御構造 - Google Patents

変速制御構造 Download PDF

Info

Publication number
JP2009144870A
JP2009144870A JP2007325058A JP2007325058A JP2009144870A JP 2009144870 A JP2009144870 A JP 2009144870A JP 2007325058 A JP2007325058 A JP 2007325058A JP 2007325058 A JP2007325058 A JP 2007325058A JP 2009144870 A JP2009144870 A JP 2009144870A
Authority
JP
Japan
Prior art keywords
transmission
sub
speed
vehicle speed
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007325058A
Other languages
English (en)
Inventor
Koji Kiyooka
晃司 清岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2007325058A priority Critical patent/JP2009144870A/ja
Publication of JP2009144870A publication Critical patent/JP2009144870A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】副変速変速機構として機械式副変速機構を用いることによりコスト低廉化を図りつつ、作業車輌を停止することなく副変速機構の変速操作を行うことができる変速制御構造を提供する。
【解決手段】制御装置300の副変速モードにおいて、副変速回転センサ320により検出された副変速開始時点における副変速機構187の出力回転数R2に基づいて副変速操作完了時点の予想車速R2Aが算出され、予想車速R2Aと変速操作後の副変速機構の変速比Tとに基づいて副変速操作完了時点において副変速機構187が入力すべき副変速目標入力回転数R1Bが算出される。そして、副変速機構187における係合中の伝動経路が動力伝達解除状態になった後、算出された副変速目標入力回転数R1Bに前記出力回転数R1が一致する方向に主変速作動装置が作動制御される。
【選択図】図8

Description

本発明は、走行用HST及び副変速機構が直列接続された作業車輌に適用される変速制御構造に関する。
コンバイン等の作業車輌においては、走行系伝動経路の変速範囲を広げるために走行用HST及び副変速機構が直列接続されている(例えば、下記特許文献1参照)。
前記副変速機構は、入力軸及び出力軸に支持された変速比の異なる複数の変速ギヤ列を有しており、前記複数の変速ギヤ列を選択的に動力伝達状態とすることによって、前記出力軸に所望回転数の動力を得るようになっている。
ところで、前記副変速機構には、機械式変速機構及び油圧式変速機構が存在する。
前記機械式変速機構は、一又は複数のシフタを備えており、前記シフタを一の変速ギヤ列に凹凸係合(爪係合)させることによって、前記一の変速ギヤ列を動力伝達状態とするように構成されている。
一方、前記油圧式変速機構は、複数の摩擦板群を有しており、一の摩擦板群を油圧の作用を利用して摩擦係合させることによって、前記一の摩擦板群に対応した変速ギヤ列を動力伝達状態とするように構成されている。
前記機械式変速機構は、前記油圧式変速機構に比して構造が簡素であり、コストの低廉化を図り得る点で有用であるが、変速操作に際し前記シフタを対応する前記変速ギヤ列に凹凸係合させる必要があるため、前記作業車輌を停止させなければ変速操作を行うことができないという問題があった。
前記油圧式変速機構は、前記作業車輌を停止させることなく変速操作を行うことができるが、前記摩擦板群に加えて、作動油の油圧源となるポンプ、作動油の給排油路、前記給排油路の切換弁や油圧制御弁を備える必要があるため、コスト高を招くという問題があった。
特開2004−73103号公報
本発明は、前記従来技術に鑑みなされたものであり、走行用HST及び副変速機構が直列接続された作業車輌に適用される変速制御構造であって、前記副変速変速機構として機械式副変速機構を用いることによりコスト低廉化を図りつつ、前記作業車輌を停止することなく前記副変速機構の変速操作を行うことができる変速制御構造の提供を、一の目的とする。
本発明に係る変速制御構造は、前記課題を解決するべくなされたものであり、駆動源から作動的に入力される駆動力を出力調整部材への操作に応じた出力回転数に変速させて出力する走行用HSTと、前記走行用HSTに作動連結される入力軸及び駆動車軸に作動連結される出力軸の間で多段変速を行う機械式副変速機構であって、軸線方向移動可能とされ且つ係合部が設けられたシフタと、前記係合部と凹凸係合可能な被係合部が設けられた変速比が異なる複数の伝動経路とを有し、前記シフタの軸線方向移動に応じて前記シフタの前記係合部が一の前記伝動経路の前記被係合部に凹凸係合することによって前記一の伝動経路の変速比に応じて前記入力軸から前記出力軸へ動力が伝達される機械式副変速機構とを備えた作業車輌に適用される変速制御構造である。具体的には、前記変速制御構造は、前記出力調整部材を操作するための人為操作可能な主変速操作部材と、前記シフタを操作するための人為操作可能な副変速操作部材と、前記出力調整部材を移動させる主変速作動装置と、前記シフタを移動させる副変速作動装置と、前記主変速作動装置及び前記副変速作動装置を制御する制御装置と、前記走行用HSTの出力回転数を検出するHST回転センサと、前記機械式副変速機構の出力回転数を検出する副変速回転センサとを備え、前記制御装置は、前記主変速操作部材への人為操作に応じて前記出力調整部材が移動するように前記主変速作動装置を制御する通常モードと、前記副変速操作部材への人為操作時に起動される副変速モードとを有している。そして、前記副変速モードは、前記副変速回転センサによって副変速操作開始時点における前記副変速機構の出力回転数を副変速操作開始時点の車速として検出し、前記車速に基づいて副変速操作完了時点の予想車速を算出し、前記予想車速と変速操作後の前記副変速機構の変速比とに基づき副変速操作完了時点において前記副変速機構が入力すべき副変速目標入力回転数を算出するとともに、前記副変速操作部材への人為操作に応じて前記副変速機構における係合中の伝動経路が動力伝達解除状態となるように前記副変速作動装置を作動させ、前記走行用HSTの出力回転数が前記副変速目標入力回転数に一致する方向へ前記主変速作動装置を作動制御した状態で、前記副変速操作部材への人為操作に応じた前記伝動経路を介して前記入力軸から前記出力軸へ動力が伝達されるように前記副変速作動装置を作動させることを特徴とするものである。
上記構成の変速制御構造によれば、主変速作動装置及び副変速作動装置を制御する制御装置において、副変速操作部材が人為操作されると、主変速操作部材への人為操作に応じて出力調整部材が移動するように主変速作動装置を制御する通常モードから、副変速モードに切り換えられる。
この副変速モードが起動すると、副変速回転センサによって、副変速開始時点における副変速機構の出力回転数が副変速操作開始時点の車速として検出される。そして、制御装置により前記車速に基づいて副変速操作完了時点の予想車速が算出され、前記予想車速と変速操作後の副変速機構の変速比とに基づいて副変速操作完了時点において副変速機構が入力すべき副変速目標入力回転数が算出される。加えて、前記副変速操作部材への人為操作に応じて副変速機構における係合中の伝動経路が動力伝達解除状態となるように前記副変速作動装置を作動させる。そして、算出された副変速目標入力回転数に走行用HSTの出力回転数が一致する方向に主変速作動装置が作動制御された上で、副変速作動装置が前記副変速操作部材への人為操作に応じた前記伝動経路を介して前記入力軸から前記出力軸へ動力が伝達されるように作動制御される。
以上のように、予め副変速操作完了時点の予想車速、即ち、動力伝達前(シフタ非係合時)の出力軸の回転数を算出し、副変速操作後の動力伝達時における出力軸の回転数、即ち、走行用HSTの出力回転数及び変速操作後の前記副変速機構の変速比に基づいて得られる出力軸の回転数が、前記動力伝達前の出力軸の回転数に可及的に近い回転数となるように、主変速作動装置(走行用HSTの出力回転数)を作動制御することにより、副変速操作完了時点における変速ショックを可及的に低減させることができる。
従って、副変速変速機構として機械式副変速機構を用いることによりコスト低廉化を図りつつ、作業車輌を停止させることなく副変速機構の変速操作をスムーズに行うことができる。
好ましくは、前記作業車輌の傾斜角を検出する傾斜角センサをさらに備え、前記制御装置は、副変速操作期間における傾斜角に対する車速変化の割合に関する車速変化データを有し、前記副変速モードは、前記傾斜角センサからの信号と前記車速変化データとに基づき前記副変速操作期間における車速変化を算出し、前記車速変化を加えて前記予想車速を算出する。
この場合、制御装置の副変速モードが算出する予想車速には、副変速操作期間における傾斜角センサから検出された作業車輌の傾斜角を予め記憶されている所定の副変速操作期間における傾斜角に対する車速変化の割合に関する車速変化データと照合することにより算出された前記副変速操作期間における車速変化が加えられる。
これにより、作業車輌の走行状況(下り、登り又は平地)に応じた副変速操作期間(特に、副変速機構が動力伝達解除状態であるときの空走期間)における車速変化を予想車速に加味することができるため、副変速操作後の車速を前記動力伝達前(空走後)の車速により近い回転数となるように主変速作動装置を作動制御することができ、副変速操作完了時点における変速ショックをより低減させることができる。
好ましくは、前記副変速モードは、前記予想車速が前記走行用HSTの定格上限出力回転時における変速操作後の副変速最大車速を超えている場合には、前記動力伝達解除状態となるように前記副変速装置を作動させる前に、前記副変速最大車速を目標車速とし、前記目標車速と変速操作前の前記副変速機構の変速比とに基づいて副変速操作前に前記副変速機構が入力すべき変速前目標入力回転数を算出し、前記走行用HSTの出力回転数が前記変速前目標入力回転数以下になる方向へ前記主変速作動装置を作動制御する。
この場合、算出された予想車速が走行用HSTの定格上限出力回転時における変速操作後の副変速最大車速を超えていると判定された際、前記副変速最大車速を目標車速に設定し、前記目標車速と変速操作前の副変速機構の変速比とに基づいて副変速操作前に副変速機構が入力すべき変速前目標入力回転数が算出される。その後、制御装置により、走行用HSTの出力回転数が算出された変速前目標入力回転数以下になる方向へ主変速作動装置が作動制御され、走行用HSTの出力回転数が変速前目標入力回転数以下になった時点で副変速装置が動力伝達解除状態となるように作動する。
このように、副変速操作による変速比の変化によって副変速操作後において走行用HSTの出力回転数が副変速最大車速を超える(オーバーレブする)出力とならないように、副変速操作前に予め走行用HSTの出力回転数を調整する(減速調整する)ことにより、副変速操作完了時点における変速ショックをより低減させることができるとともに、副変速機構に過剰な負荷をかけることを防止することができる。
より好ましくは、前記作業車輌の傾斜角を検出する傾斜角センサをさらに備え、前記制御装置は、副変速操作機構における傾斜角に対する車速変化の割合に関する車速変化データを有し、前記副変速モードは、前記傾斜角センサからの信号と前記車速変化データとに基づき前記副変速操作期間における車速変化を算出し、前記車速変化を前記目標車速に加えて前記目標入力回転数を算出する。
この場合、制御装置の副変速モードが変速前目標入力回転数を算出する際には、前記目標車速に、副変速操作期間における傾斜角センサから検出された作業車輌の傾斜角を予め記憶されている所定の副変速操作期間における傾斜角に対する車速変化の割合に関する車速変化データと照合することにより算出された前記副変速操作期間における車速変化が考慮される。
これにより、作業車輌の走行状況(下り、登り又は平地)に応じた副変速操作期間(特に、副変速機構が動力伝達解除状態であるときの空走期間)における車速変化を目標入力回転数に加味することができるため、副変速操作後の車速を前記動力伝達前(空走後)の車速により近い回転数となるように主変速作動装置を作動制御することができ、副変速操作完了時点における変速ショックをより低減させることができる。
好ましくは、前記副変速モードは、前記走行用HSTの出力回転数が前記変速前目標入力回転数以下になる方向へ前記主変速作動装置を作動制御させる際、前記走行用HSTの出力回転数が所定回転数減速するように構成され、前記所定回転数減速後の前記副変速機構の出力回転数を前記副変速操作開始時点の車速として前記予想車速を算出する。
この場合、制御装置の副変速モードにおいて、走行用HSTの出力回転数が算出された変速前目標入力回転数以下になる方向へ主変速作動装置が作動制御される際、走行用HSTの出力回転数が所定回転数減速される。そして、当該減速された走行用HSTの出力回転数における副変速機構の出力回転数を副変速捜査開始時点の車速として予想車速が再度算出される。さらにその度ごとに、前記予想車速が前記走行用HSTの定格上限出力回転時における変速操作後の副変速最大車速以下になったか否かを判定し、前記副変速最大車速以下となった時点で副変速装置が動力伝達解除状態となるように作動する。
走行用HSTの出力回転数と変速前目標入力回転数との差の多少に関わらず走行用HSTの出力回転数を所定の回転数減じるフィードバック制御を行うことにより、制御装置における演算処理を簡素化して、処理速度をより速めることができ、結果として変速操作期間をより短縮することができる。
本発明に係る変速制御構造によれば、予め副変速操作完了時点の予想車速、即ち、動力伝達前(シフタ非係合時)の出力軸の回転数を算出し、副変速操作後の動力伝達時における出力軸の回転数、即ち、走行用HSTの出力回転数及び変速操作後の前記副変速機構の変速比に基づいて得られる出力軸の回転数が、前記動力伝達前の出力軸の回転数に可及的に近い回転数となるように、主変速作動装置(走行用HSTの出力回転数)を作動制御することにより、副変速操作完了時点における変速ショックを可及的に低減させることができる。
従って、副変速変速機構として機械式副変速機構を用いることによりコスト低廉化を図りつつ、作業車輌を停止させることなく副変速機構の変速操作をスムーズに行うことができる。
以下、本発明の好ましい実施の形態につき、添付図面を参照しつつ説明する。
図1及び図2は、それぞれ、本発明の一実施形態の変速制御構造が適用されたコンバイン1の斜視図及び右側面図である。
本実施形態の変速制御構造が適用された作業車輌であるコンバイン1は、図1及び図2に示すように、本機フレーム3と、前記本機フレーム3に支持された駆動源であるエンジン21と、前記本機フレーム3に連結された左右一対のクローラ式走行部2と、前記エンジン21からの回転動力を変速して前記一対の走行部2へ出力する走行系トランスミッション100と、前記本機フレーム3の前方において該本機フレーム3に昇降可能に支持された刈取部7と、前記刈取部7を昇降させる刈取昇降用油圧機構11と、前記刈取部7によって刈り取られた穀稈を前記本機フレーム3の左側方において後方へ搬送するフィードチェーン部5と、扱胴6を有し、前記フィードチェーン部5によって搬送される穀稈に対して脱穀処理を行うように、前記本機フレーム3の左部分に配設された脱穀部4と、前記脱穀部4の下方に配設された揺動選別部(図示せず)と、前記刈取部7、前記脱穀部4及び前記揺動選別部に前記エンジン21からの動力を伝達する作業機系トランスミッション(図示せず)と、前記本機フレーム3の右前方部分に配設された運転部18と、前記揺動選別部によって選別された穀粒を収容する貯留部15であって、前記運転部18の後方に配設された貯留部15と、前記貯留部15内の穀粒を外部に排出する排出オーガ17とを備えている。
前記作業機系トランスミッションは、前記エンジン21からの定速回転動力及び後述する走行用HST120からの車速同調回転動力を入力し、前記脱穀部4及び前記揺動選別部に対しては定速回転動力を出力し、且つ、前記刈取部7及び前記フィードチェーン部5に対しては定速回転動力又は車速同調回転動力を選択的に出力し得るように構成されている。
図3〜図5に、前記走行系トランスミッション100の伝動模式図、平面図及び縦断背面図を示す。
図3〜図5に示すように、前記走行系トランスミッション100は、前記エンジン21に作動連結された走行系HST(走行用HST120及び旋回用HST130)と、前記両HST120,130の出力を合成して駆動車軸である一対の走行系出力軸55a,55bに伝達する走行系伝動機構と、前記走行系伝動機構を収容する油貯留可能なミッションケース110とを備えている。
前記走行用HST120及び前記旋回用HST130は、図4及び図5に示すように、前記エンジン21に作動連結された状態で前記ミッションケース110に支持されている。
図6に、前記走行系トランスミッション100の油圧回路図を示す。
前記走行用HST120は、図3〜図6に示すように、駆動源であるエンジン21から作動的に入力される駆動力を出力調整部材である下記走行用可動斜板125への操作に応じた出力回転数に変速させて出力するものであって、走行用ポンプ軸121と、前記走行用ポンプ軸121に相対回転不能に支持された走行用油圧ポンプ本体122と、前記走行用油圧ポンプ本体122と一対の走行用油圧ライン400を介して流体接続された走行用油圧モータ本体123と、前記走行用油圧モータ本体123を相対回転不能に支持する走行用油圧モータ軸124と、前記走行用油圧ポンプ本体122及び前記走行用油圧モータ本体123の少なくとも一方の給排油量を変更させる出力調整部材として機能する走行用可動斜板125とを備えている。
なお、本実施の形態においては、前記走行用油圧ポンプ本体122及び前記走行用油圧モータ本体123の双方共に可変容積型とされている。従って、該走行用HST120は、前記走行用可動斜板125として、走行用ポンプ側可動斜板125a及び走行用モータ側可動斜板125bを有している。
前記旋回用HST130は、図3〜図6に示すように、旋回用ポンプ軸131と、前記旋回用ポンプ軸131に相対回転不能に支持された旋回用油圧ポンプ本体132と、前記旋回用油圧ポンプ本体132と一対の旋回用油圧ライン410を介して流体接続された旋回用油圧モータ本体133と、前記旋回用油圧モータ本体133を相対回転不能に支持する旋回用油圧モータ軸134と、前記旋回用油圧ポンプ本体132及び前記旋回用油圧モータ本体134の少なくとも一方(図示の形態においては、前記旋回用油圧ポンプ本体132)の給排油量を変更させる旋回用可動斜板135とを備えている。
走行用HST120を作動させる変速制御構造としては、前記走行用可動斜板125を操作するための人為操作可能な主変速操作部材35と、前記走行用可動斜板125を移動(傾転)させる主変速作動装置としての走行用油圧サーボ機構30と、前記走行用油圧サーボ機構30を制御する制御装置300とを有しており、前記制御装置300の通常モードにおいて、前記走行用油圧サーボ機構30を作動制御することにより、前記主変速操作部材35への人為操作に応じて前記各走行用可動斜板125a,125bを傾転させる。
また、旋回用HST130を作動させる構成としては、前記旋回用可動斜板135を操作するための人為操作可能な旋回操作部材45と、前記旋回用可動斜板135を移動(傾転)させる旋回用油圧サーボ機構40とを有している。
本実施形態におけるコンバイン1は、図6に示すように、前記一対の走行用作動油ライン400のそれぞれ及び前記一対の旋回用作動油ライン410のそれぞれに作動油を補給するためのチャージライン420であって、チャージ圧設定用リリーフ弁425によって所定圧に調圧されたチャージライン420と、前記旋回用油圧サーボ機構45に対する作動油の給排を司る旋回用油圧サーボ機構440とをさらに備えている。
なお、前記走行用油圧サーボ機構35及び前記旋回用油圧サーボ機構45は、前記チャージライン420の圧油を利用して作動するように構成されている。また、前記チャージライン420へは、ミッションケース110内の貯留油を油源とするチャージポンプ810から圧油が供給されるように構成されている。
前記走行用HST120及び前記旋回用HST130は、前記ポンプ軸121,131及び前記モータ軸123,133が前記ミッションケース110の内部空間に突入された状態で、該ミッションケース110の外側面に支持されている。
詳しくは、前記走行系トランスミッション100は、図3に示すように、前記構成に加えて、前記エンジン21に作動連結された状態で前記ミッションケース110に支持された入力軸140と、前記入力軸140を前記走行用ポンプ軸121に作動連結するように前記ミッションケース110に収容された走行用入力伝動機構150と、前記入力軸140を前記旋回用ポンプ軸131に作動連結する旋回用入力伝動機構160とを備えている。
前記走行系伝動機構は、図3に示すように、一対の第1及び第2遊星ギヤ機構170a,170bと、前記走行用モータ軸124の回転動力を前記第1及び第2遊星ギヤ機構170a,170bに同一回転方向で伝達する走行用出力伝動機構180と、前記旋回用モータ軸134の回転動力を前記第1及び第2遊星ギヤ機構170a,170bの一方に正転方向で伝達し且つ他方に逆転方向で伝達する旋回用出力伝動機構190とを備えている。
前記第1及び第2遊星ギヤ機構170a,170bは前記走行用出力伝動機構180及び前記旋回用出力伝動機構190からの回転動力を、それぞれ、第1及び第2走行系出力軸55a,55bに伝達するように構成されている。
詳しくは、前記第1及び第2遊星ギヤ機構170a,170bは、それぞれ、サンギヤ171と、前記サンギヤ171の回りを公転し得るように該サンギヤ171に噛合された遊星ギヤ172と、前記遊星ギヤ172を相対回転自在に支持するとともに、前記遊星ギヤ172とともに前記サンギヤ171の回りを公転するキャリア173と、前記遊星ギヤ172と噛合するインターナルギヤ174とを備えている。
本実施の形態においては、前記インターナルギヤ174に前記走行用出力伝動機構180が作動連結され且つ前記サンギヤ171に前記旋回用出力伝動機構190が作動連結されており、前記キャリア173に対応する前記走行系出力軸55a,55bが作動連結されている。
前記旋回用出力伝動機構190は、前記旋回用モータ軸134に作動連結された旋回用出力軸191と、前記旋回用出力軸191に作動連結された共通軸192と、前記共通軸192の回転動力を前記第1遊星ギヤ機構170aの前記サンギヤ171に伝達する第1旋回用出力ギヤ列193aと、前記共通軸192の回転動力を前記第2遊星ギヤ機構170bの前記サンギヤ171に伝達する第2旋回用出力ギヤ列193bとを有している。
前記第1及び第2旋回用出力ギヤ列193a,193bは、伝動比は同一であるが、伝動方向は互いに対して反対となるように構成されている。
なお、図3中の符号194は、前記旋回用モータ軸134に作動的に制動力を付加し得る旋回用ブレーキ装置であり、符号195は、前記旋回用出力軸134から前記共通軸192への動力伝達を係合又は遮断させるクラッチ装置である。
前記走行用出力伝動機構180は、前記走行用モータ軸124に作動連結された走行用出力軸181と、前記走行用出力軸181に作動連結された分岐軸185と、前記分岐軸185の回転動力を前記第1遊星ギヤ機構170aの前記インターナルギヤ174に伝達する第1走行用出力ギヤ列186aと、前記分岐軸185の回転動力を前記第2遊星ギヤ機構170bの前記インターナルギヤ174に伝達する第2走行用出力ギヤ列186bとを有している。
前記第1及び第2走行用出力ギヤ列186a,186bは、伝動方向及び伝動比が互いに同一とされている。
なお、本実施の形態においては、前記走行用出力伝動機構180は、前記構成に加えて、前記走行用モータ軸124に作動的に制動力を付加し得る走行用ブレーキ装置182を備えている。
本実施の形態においては、前記走行用ブレーキ装置182は、動力伝達方向に関し前記走行用出力軸181及び前記分岐軸185の間に配設されている。
具体的には、前記走行用ブレーキ装置182は、前記走行用出力軸181から回転動力を受け且つ前記分岐軸185へ出力するブレーキ軸183と、前記ブレーキ軸183に対して選択的に制動力を付加し得るブレーキユニット184とを備えている。
さらに、本実施の形態においては、前記走行用出力伝動機構180は、前記走行用モータ軸124の回転動力を多段変速させる機械式副変速機構187を備えている。
本実施の形態においては、前記副変速機構187は、前記走行用出力軸181と前記走行用ブレーキ軸183を介した前記分岐軸185との間で多段変速可能に構成されている。即ち、前記走行用出力軸181は、前記副変速機構187の入力軸であり、前記分岐軸185は、前記副変速機構187の出力軸と言える。
前記副変速機構187は、入力軸である走行用出力軸181に固定された変数段分(ここでは三段分)の歯車181H,181M,181Lと、前記走行用出力軸181に平行に配列された従動軸189と、前記歯車181H,181M,181Lにそれぞれ噛合された状態で前記従動軸189に遊嵌された歯車189H,189M,189Lと、前記従動軸189の軸線方向移動可能とされ且つ歯車189H,189M,189Lの何れかを、選択的に、前記従動軸189に対して当該従動軸189回り相対回転不能に結合するシフタ196H,196Lとを有している。歯車181H,189Hが高速ギヤ列(高速段Hの伝動経路)を構成し、歯車181M,189Mが中速ギヤ列(中速段Mの伝動経路)を構成し、歯車181L,189Lが低速ギヤ列(低速段Lの伝動経路)を構成している。
本実施形態においては、前記シフタ196Hの軸線移動により歯車189H及び歯車189Lの係合を選択的に切り替え、前記シフタ196Lの軸線移動により歯車189Lの係合を切り替えるように構成されている。
副変速機構187を作動させる変速制御構造としては、前記シフタ196H,196Lを操作するための人為操作可能な副変速操作部材36と、前記シフタ196H,196Lを移動させる油圧シリンダ機構91H,91Lと、前記油圧シリンダ機構91H,91Lへの油圧の給排を切り替える副変速油圧切替弁機構92H,92Lと、前記副変速油圧切替弁機構92H,92Lを制御する前記制御装置300とを有しており、前記油圧シリンダ機構91H,91Lおよび前記副変速油圧切替弁機構92H,92Lが前記シフタ196H,196Lを作動させる副変速作動装置として機能する。
図7に、前記副変速機構187の部分縦断背面図を示す。
前記シフタ196H,196Lには、係合部197が設けられる一方、前記歯車189H,189M,189Lには、前記係合部197と凹凸係合可能な被係合部198が設けられている。一方、前記歯車181H,181M,181Lとそれに噛合する歯車189H,189M,189Lとによって異なる変速比(ギヤ比)を有する複数の伝動経路が形成されている。そして、前記シフタ196H,196Lの軸線方向移動に応じて前記シフタ196H,196Lび係合部197が一の前記歯車189H,189M,189Lの被係合部198に凹凸係合することによって、凹凸係合された前記歯車189H,189M,189Lと噛合された歯車181H,181M,181Lとで形成される伝動経路を通じて、当該伝動経路の変速比(噛合する歯車のギヤ比)に応じて前記走行用出力軸181から前記分岐軸185へ動力が伝達される。前記シフタ196Hは、歯車189Hに係合する高速位置、歯車189Mに係合する中速位置及び何れにも係合しない中立位置を取り得る。また、前記シフタ196Lは、歯車189Lに係合する低速位置及び係合しない中立位置を取り得る。
前記副変速機構187は、油貯留可能なカウンターケース210に、前記走行用出力軸181及び前記従動軸189が支持されている。
前記油圧シリンダ機構91Hは、図6及び図7に示すように、シリンダ911Hと、該シリンダ911Hに軸線方向摺動可能に収容された2重構造ピストン912Hとを備えており、2重構造ピストン912Hにより軸線方向一方側の第1油室913H及び軸線方向他方側の第2油室914Hに区画されている。
前記2重構造ピストン912Hは、図7に示すように、互いに別体とされたピストン本体915H及びリングピストン916Hを有している。
前記ピストン本体915Hは、ヘッド部917Hと、前記ヘッド部917Hよりも小径となるように該ヘッド部917Hから段差を伴って軸線方向一方側へ延びるロッド部918Hと、前記ヘッド部917Hよりも小径となるように該ヘッド部917Hから段差を伴って軸線方向他方側へ延びる背圧ロッド部919Hとを有している。
前記リングピストン916Hは、前記ヘッド部917Hより大径なリング状とされており、前記背圧ロッド919Hに軸線方向相対移動可能で且つ液密に外挿されている。
前記シリンダ911Hは、前記リングピストン916Hが軸線方向摺動可能且つ液密に収容される大径空間と、前記大径空間よりも小径となるように段差を伴って軸線方向一方側へ延びる小径空間であって、前記ヘッド部917Hが軸線方向摺動可能且つ液密に収容される小径空間とを有している。
即ち、前記小径空間のうち前記ヘッド部917Hより軸線方向一方側に位置する部分が前記第1油室913Hとされ、且つ、前記大径空間のうち前記リングピストン916Hより軸線方向他方側に位置する部分が前記第2油室914Hとされている。
本実施の形態においては、図7に示すように、前記シリンダ911Hは、油路ブロック215、詳しくは、前記カウンターケース210の内部空間に臨む第1シリンダブロック215bに形成されている。
また、前記油圧シリンダ機構91Lは、図6に示すように、シリンダ911Lと、該シリンダ911Lに軸線方向摺動可能に収容されたピストン912Lとを備えており、ピストン912Lにより軸線方向一方側の第1油室913L及び軸線方向他方側の第2油室914Lに区画されている。
なお、本実施の形態においては、前記シリンダ911Lも前記シリンダ911Hと同様に前記油路ブロック215に形成されている。
本実施の形態に係るコンバイン1は、図6に示すように、前記油圧シリンダ機構91H,91Lへは前記カウンターケース210内の貯留油を油源として作動する補助ポンプ820から圧油が供給される。
より具体的には、前記補助ポンプ820及び前記副変速油圧切換弁機構92H,92Lを流体接続する供給油路510と、前記油圧シリンダ機構91H,91Lからの排油をドレンするドレン油路520と、前記油圧シリンダ機構91Hの前記第1油室913Hに流体接続される第1作動油路511Hと、前記油圧シリンダ機構91Hの前記第2油室914Hに流体接続される第2作動油路512Hと、前記油圧シリンダ機構91Lの前記第1油室913Lに流体接続される第3作動油路511Lと、前記油圧シリンダ機構91Lの前記第2油室914Lに流体接続される中立油路512Lとを有している。
そして、前記油圧シリンダ機構91Hは、前記制御装置300の前記副変速操作部材36への人為操作時に起動される副変速モードにより、当該副変速操作部材36への人為操作に応じて、前記供給油路510を前記第1及び第2作動油路511H,512Hの双方に流体接続させる中立位置と、前記供給油路510を前記第1作動油路511Hに流体接続させ且つ前記第2作動油路512Hを前記ドレン油路520に流体接続させる中速位置と、前記供給油路510を前記第2作動油路512Hに流体接続させ且つ前記第1作動油路511Hを前記ドレン油路520に流体接続させる高速位置とをとり得るように構成されている。
同様に、前記油圧シリンダ機構91Lは、前記制御装置300の前記副変速操作部材36への人為操作時に起動される副変速モードにより、当該副変速操作部材36への人為操作に応じて、前記供給油路510を前記第1作動油路511Hに流体接続させ且つ前記第2作動油路512Hを前記ドレン油路520に流体接続させる低速位置と、前記供給油路510を前記第2作動油路512Hに流体接続させ且つ前記第1作動油路511Hを前記ドレン油路520に流体接続させる中立位置とをとり得るように構成されている。
かかる構成の副変速作動装置は、以下のように作動する。
まず、油圧シリンダ機構91Hに関する油圧動作について説明する。
即ち、前記第1油室913Hに作動油が供給され且つ前記第2油室914Hがドレンされると、前記第1油室913Hの圧油によって前記ピストン本体915Hが前記リングピストン916Hを押動しながら前記第2油室914Hを縮小させる方向へ移動する。そして、前記2重構造ピストン912Hは、前記第1油室913Hの油圧によって、前記ロッド部918Hに連係された前記シフタ196Hを前記高速位置又は前記中速位置の一方(図示の形態においては中速位置)に位置させる第1作動状態に保持される。
これとは逆に、前記第1油室913Hがドレンされ且つ前記第2油室914Hに作動油が供給されると、前記第2油室914Hの圧油によって前記ピストン本体915Hは前記第1油室913Hを縮小させる方向へ移動する。そして、前記2重構造ピストン912Hは、前記第2油室914Hの油圧によって、前記ロッド部918Hに連係された前記シフタ196Hを前記高速位置又は前記中速位置の他方(図示の形態においては高速位置)に位置させる第2作動状態に保持される。
さらに、前記第1油室913H及び前記第2油室914Hの双方に作動油が供給されると、前記第2油室914Hの圧油によって前記リングピストン916Hが前記大径空間及び前記小径空間の間の前記段差に当接する位置まで押動され且つ前記第1油室913Hの圧油によって前記ピストン本体915Hは前記ヘッド部917Hが前記リングピストン916Hに当接する位置まで押動される。
即ち、前記第1及び第2油室913H,914Hの双方に作動油が供給される状態においては、前記2重構造ピストン912Hは、前記第1及び第2油室913H,914Hの油圧によって、前記ロッド部918Hに連係された前記シフタを前記中立位置に位置させる中間状態に保持される。
なお、前記油路ブロック215には、図7に示すように、一端部が前記大径空間及び前記小径空間の間の前記段差を跨ぐ位置で前記シリンダ911H内に開口し且つ他端部が大気に開放された開放油路514Hが形成されており、前記開放油路514Hによって、前記ピストン本体915H及び前記リングピストン916Hの一方を移動させることなく、他方のみの移動が許容されている。
次に、油圧シリンダ機構91Lの油圧動作について説明する。
即ち、前記第1油室913Lに作動油が供給され且つ前記第2油室914Lがドレンされると、前記第1油室913Lの圧油によって前記ピストン912Lが押動され前記第2油室914Lを縮小させる方向へ移動する。そして、前記ピストン912Lは、前記第1油室913Lの油圧によって、前記ピストン912Lのロッド部に連係された前記シフタ196Lを前記低速位置又は前記中立位置の一方(図示の形態においては低速位置)に位置させる第3作動状態に保持される。
これとは逆に、前記第1油室913Lがドレンされ且つ前記第2油室914Lに作動油が供給されると、前記第2油室914Lの圧油によって前記ピストン912Lが押動され前記第1油室913Lを縮小させる方向へ移動する。そして、前記ピストン912Lは、前記第2油室914Lの油圧によって、前記ピストン912Lのロッド部に連係された前記シフタ196Lを前記低速位置又は前記中立位置の他方(図示の形態においては中立位置)に位置させる中立状態に保持される。
続いて、前記副変速機構187の副変速制御について説明する。
本実施形態の変速制御構造においては、前記副変速機構187の副変速制御を行うために、図3に示すように、前記走行用HST120の出力回転数を検出するHST回転センサ310と、前記副変速機構187の出力回転数を検出する副変速回転センサ320と、前記コンバイン1の傾斜角を検出する傾斜角センサ330とを備えている。
本実施形態において、前記HST回転センサ310は、前記走行用油圧モータ軸124の回転数(以下、入力軸回転数R1と称する)を計測し、当該計測値を前記制御装置300へ送信している。また、前記副変速回転センサ320は、前記分岐軸185の回転数(以下、出力軸回転数R2と称する)を計測し、当該計測値を前記制御装置300へ送信している。なお、HST回転センサ310及び副変速回転センサ320が計測する対象は、これに限られず、HST回転センサ310であれば、副変速機構187の入力側の何れかの軸を採用可能であり、副変速回転センサ320であれば、副変速機構187の出力側の何れかの軸を採用可能である。
また、前記傾斜角センサ330は、前記コンバイン1の前後方向傾斜角(即ち、コンバイン1が坂を登っている又は下っているのかあるいは水平に進んでいるのか)を計測し、当該計測値を前記制御装置300へ送信している。なお、前記傾斜角センサ330の設置位置については、コンバイン1の前後方向についての傾斜角が測定可能である限り、特に限定されない。
図8に、本実施形態における副変速制御に関するフローチャートを示す。
本実施形態の変速制御構造によれば、図8に示すように、副変速操作部材36が人為操作される(ステップS1でYes)と、前記制御装置300において、主変速操作部材35への人為操作に応じて出力調整部材である走行用可動斜板125が傾転するように走行用HST120を制御する通常モードから、副変速モードに切り換えられる。
ここで、前記制御装置300には、各変速段(ここでは、前記シフタ196Hが高速位置となる高速段H、前記シフタ196Hが中速位置となる中速段M、及び前記シフタ196Lが低速位置となる低速段L)における変速比(ギヤ比)T及び最高回転数RM(走行用HST120の定格上限出力回転時における副変速最大車速)が予め記憶されている。
また、前記制御装置300には、副変速操作部材36の人為操作を検出してから副変速操作が完了するまでの副変速操作時間が予め記憶されているとともに、当該副変速操作期間における傾斜角に対する車速変化の割合に関する車速変化データが予め記憶されている。前記車速変化データは、具体的には、例えば、傾斜角5°の登り勾配では副変速操作時間経過時に5km/h減速され、傾斜角10°の登り勾配では、副変速操作時間経過時に10km/h減速され、傾斜角10°の下り勾配では、副変速操作時間経過時に7km/h増速される等の予め得られたデータの集合である。
副変速モードの前記制御装置300は、まず、副変速操作後の変速段(前記シフタ196H,196Lの位置)が検出される(ステップS2)。このとき、副変速操作後の変速段における最高回転数(最高速)RM及び副変速後の変速段における変速比(ギヤ比)Tが読み出される。
また、副変速操作時における入力軸回転数R1がHST回転センサ310により検出され、同じく副変速操作時における出力軸回転数R2が副変速回転センサ320により検出される(ステップS3及びS4)。検出された出力軸回転数R2は、副変速操作開始時の車速と等価である。
その上で、前記副変速操作開始時の車速(出力軸回転数R2)に基づいて副変速操作完了時点の予想車速R2Aが算出される(ステップS5)。
本実施形態においては、前記傾斜角センサ330からの信号と前記車速変化データとに基づき前記副変速操作期間における車速変化を算出し、前記車速変化を加えて前記予想車速を算出する。即ち、本実施形態において、前記予想車速R2Aの車速変化量Rtは、副変速機構187の動力伝達解除状態における空走時による速度変化(等速時あるいは加減速時によっても異なる)に加えて、路面の傾斜による重力加速度に基づく速度変化も考慮される。
算出された予想車速R2Aは、前記副変速操作後の変速段における最高回転数RMと比較され(ステップS6)、前記予想車速R2Aが前記最高回転数RM以下であれば(ステップS6でYes)、制御装置300は、副変速機構187における係合中の伝動経路が動力伝達解除状態となるように前記副変速作動装置を作動させる(ステップS7)。即ち、前記シフタ91Hが中間位置に位置し且つ前記シフタ91Lが中立位置に位置するように前記副変速油圧切替弁機構92H,92Lを制御する。
ここで、前記予想車速R2Aが前記最高回転数RMを超えている場合には(ステップS6でNo)、前記副変速最高回転数RMを目標車速とし、前記目標車速RMと変速操作前の前記副変速機構187の変速比T’とに基づいて副変速操作前に前記副変速機構187が入力すべき変速前目標入力回転数R1Aが算出される(ステップS10)。
本実施形態において、前記変速前目標入力回転数R1Aは、前記目標車速RMに記副変速操作期間における車速変化Rtを加えた(考慮した)上で算出される。例えば、前記変速前目標入力回転数R1A=(RM−Rt)/T’とすることができる(即ち、R1A×T’+Rt=RMのときのR1Aを算出すればよい)。
そして、走行用HST120の出力回転数即ち前記入力軸回転数R1が算出された変速前目標入力回転数R1A以下になる方向へ前記走行用HST120の走行用可動斜板125が(主変速作動部材35の人為操作の有無に関わらず)作動制御される。
本実施形態においては、前記入力軸回転数R1が前記変速前目標入力回転数R1A以下になる方向へ前記走行用可動斜板125が作動制御される際、前記入力軸回転数R1が所定回転数Rc減速される(ステップS11)。そして、前記所定回転数減速後の前記出力軸回転数を前記副変速操作開始時点の車速R2として前記予想車速R2Aが再度算出される(ステップS3−S5)。
さらにその度ごとに、前記予想車速R2Aが前記最高回転数RM以下になったか否かが判定され(ステップS6)、前記予想車速R2Aが前記最高回転数RM以下になるまで前記ステップS10−S11及びS3−S6が繰り返される。
このように前記入力軸回転数R1と変速前目標入力回転数R1Aとの差の多少に関わらず前記入力軸回転数R1を所定の回転数Rc減じるフィードバック制御を行うことにより、制御装置300における演算処理を簡素化して、処理速度をより速めることができ、結果として変速操作期間をより短縮することができる。
前記ステップS7により副変速機構187における係合中の伝動経路が動力伝達解除状態となった後、前記制御装置300は、前記予想車速R2Aと変速操作後の変速段における前記副変速機構187の変速比Tとに基づき副変速操作完了時点において前記副変速機構187が入力すべき副変速目標入力回転数R1Bを算出し、前記入力軸回転数R1が前記副変速目標入力回転数R1Bに一致する方向へ前記走行用HST120の走行用可動斜板125が(主変速作動部材35の人為操作の有無に関わらず)作動制御される。
本実施形態においては、前記予想車速R2Aと前記入力軸回転数R1において副変速機構187が副変速操作後に動力伝達状態となった際の出力軸回転数の算出値R1×Tとの差が許容値以内か否かが判定され(ステップS8)、許容値を超える場合には(ステップS8でNo)、副変速操作完了時点において前記副変速機構187が入力すべき副変速目標入力回転数R1Bが算出される(ステップS12)。前記副変速目標入力回転数R1Bは、例えば、前記許容値が0となる場合の入力軸回転数R1、即ち、R1B=R2A/Tを採用可能である。
この後、前記走行用HST120の出力回転数即ち前記入力軸回転数R1が算出された前記副変速目標入力回転数R1Bに近づく方向へ前記走行用HST120の走行用可動斜板125が(主変速作動部材35の人為操作の有無に関わらず)作動制御される。
本実施形態においては、前記入力軸回転数R1が前記副変速目標入力回転数R1Bに近づく方向へ前記走行用可動斜板125が作動制御される際、前記入力軸回転数R1が所定回転数Rdだけ増速/減速される(ステップS13)。そして、前記所定回転数増速/減速後の前記入力軸回転数R1に基づいて前記予想車速R2Aと前記入力軸回転数R1において副変速機構187が副変速操作後に動力伝達状態となった際の出力軸回転数の算出値R1×Tとの差が許容値以内か否かが再度判定され(ステップS8)、前記差が前記許容値以内になるまで前記ステップS12−S13及びS8が繰り返される。
前記予想車速R2Aと前記入力軸回転数R1において副変速機構187が副変速操作後に動力伝達状態となった際の出力軸回転数の算出値R1×Tとの差が許容値以内である場合には(ステップS8でYes)、前記制御装置300は、前記副変速油圧切替弁機構92H,92Lを介して前記シフタ196H,196Lを作動制御して、前記副変速操作部材36への人為操作に応じた前記伝動経路を介して入力軸(前記走行用油圧モータ軸124)から出力軸(前記分岐軸185)への動力の伝達を可能にさせる(ステップS9)。
副変速操作完了後は、前記制御部300は、再び通常モードを起動し、主変速操作部材35の人為操作に基づいて走行用HST120を作動制御する。
ここで、前記副変速モードの具体例を示す。
本実施形態の走行用HST120の定格上限出力による入力軸回転数を50、低速段Lの変速比(入力側歯車181Lに対する出力側歯車189Lのギヤ比)TL=1/1、中速段Mの変速比(入力側歯車181Mに対する出力側歯車189Mのギヤ比)TM=2/1、高速段Lの変速比(入力側歯車181Hに対する出力側歯車189Hのギヤ比)TH=4/1とする。このとき、低速段Lにおける最高回転数RML=50、中速段Mにおける最高回転数RMM=100、高速段Hにおける最高回転数RMH=200となる。
以下の例では、副変速操作前の走行用HST120の出力回転数(入力軸回転数)R1=40とし、等速移動中(加速度0)であることとしている。
<第1の例:中速段M→低速段L(下り)>
まず、第1の例として、下り勾配において中速段Mから低速段Lへのシフトダウンの例を示す。
副変速操作を受けると、ステップS2において変速操作後の変速段Lが検出される。このときの入力軸回転数R1=40、出力軸回転数R2=80がそれぞれ検出される(ステップS3,S4)。
制御装置300は、出力回転数R2及び検出される傾斜角から導かれる車速変化データに基づいて予想車速R2Aを演算する。ここでは、下り状況で変速期間に車速変化Rt=10だけ増速されるとする。即ち、予想車速R2A=R2+Rt=90となる。
副変速操作後の変速段Lにおける最高回転数RML=50であることから、予想車速R2A=90が副変速操作後の最高回転数RM=50を超えていると判定される(ステップS6でNo)。
従って、制御装置300により前記RM=50を目標車速とし、副変速操作前に走行用HST120が出力すべき変速前目標入力回転数R1Aが算出される(ステップS10)。ここでは、前述した式を用いて、R1A=(RM−Rt)/T’=(50−10)/2=20が算出される。ここで、T’=TM=2/1である。
この後、制御装置300は、前記入力軸回転数R1が算出された変速前目標入力回転数R1A以下になるように、前記走行用HST120を作動制御する(ステップS11)。ここでは、所定回転数Rc=10だけ減速させるように作動制御する。
従って、このときの入力軸回転数R1=30、出力軸回転数R2=60、予想車速R2A=70(車速変化Rt=10は変化しないものとする)となる(ステップS3−5)。
しかしながら、この場合でもR2A≦RMを満たさないため、さらに、ステップS11において前記走行用HST120が前記所定回転数Rc=10だけ減速されるように作動制御される。
これにより、入力軸回転数R1=20、出力軸回転数R2=40、予想車速R2A=50となり、予想車速R2Aが前記最高回転数RM以下になると判定され(ステップS6でYes)、制御装置300により副変速機構187における係合中の伝動経路が動力伝達解除状態となるように(前記シフタ196Hが中速位置から中立位置へ移動するように)作動制御される(ステップS7)。
前記動力伝達解除状態において、予想車速R2A=50と前記副変速機構187が副変速操作後に動力伝達状態となった際の出力軸回転数の算出値R1×T=20との差が許容値C以内か否かが判定される(ステップS8)。
ここで、前記許容値C=10とすると、|R2A−R1×T|=30>C=10となり、許容値を超えるため(ステップS8でNo)、副変速操作完了時点において前記副変速機構187が入力すべき副変速目標入力回転数R1Bが算出される(ステップS12)。ここでは、前述した式を用いて、R1B=R2A/T=50(>R1=20)と算出される。
この後、制御装置300は、前記入力軸回転数R1が算出された副変速目標入力回転数R1Bに近づく方向へ、前記走行用HST120を作動制御する(ステップS13)。ここでは、所定回転数Rd=10だけ増速させるように作動制御する。
従って、このときの入力軸回転数R1=30となり、|R2A−R1×T|=20となる。
しかしながら、この場合でもステップS8の条件を満たさないため、さらに、ステップS13において前記走行用HST120が前記所定回転数Rd=10だけ増速されるように作動制御される。
これにより、入力軸回転数R1=40となり、|R2A−R1×T|=10≦C=10となるため(ステップS8でYes)、制御装置300により、前記副変速油圧切替弁機構92Lを介して前記シフタ196Lが作動制御され、前記シフタ196Lが中立位置から低速位置に位置することにより、低速段Lにおける動力伝達が開始され(ステップS9)、制御装置300は、副変速モードから通常モードへ復帰する。
<第2の例:中速段M→低速段L(平地/登り)>
次に、第2の例として、平地/登り勾配において中速段Mから低速段Lへのシフトダウンの例を示す。
まず、副変速操作を受けて、ステップS2において変速操作後の変速段Lが検出される。このときの入力軸回転数R1=40、出力軸回転数R2=80がそれぞれ検出される(ステップS3,S4)。
制御装置300は、出力回転数R2及び検出される傾斜角から導かれる車速変化データに基づいて予想車速R2Aを演算する。ここでは、平地/登り状況で変速期間に10だけ減速される(車速変化Rt=−10)とする。即ち、予想車速R2A=R2+Rt=70となる。
副変速操作後の変速段Lにおける最高回転数RML=50であることから、予想車速R2A=70が副変速操作後の最高回転数RM=50を超えていると判定される(ステップS6でNo)。
従って、制御装置300により前記RM=50を目標車速とし、副変速操作前に走行用HST120が出力すべき変速前目標入力回転数R1Aが算出される(ステップS10)。ここでは、前述した式を用いて、R1A=(RM−Rt)/T’=(50+10)/2=30が算出される。ここで、T’=TM=2/1である。
この後、制御装置300は、前記入力軸回転数R1が算出された変速前目標入力回転数R1A以下になるように、前記走行用HST120を作動制御する(ステップS11)。ここでは、所定回転数Rc=10だけ減速させるように作動制御する。
これにより、入力軸回転数R1=30、出力軸回転数R2=60、予想車速R2A=50(ステップS3−S5)となり、予想車速R2Aが前記最高回転数RM以下になると判定され(ステップS6でYes)、制御装置300により副変速機構187における係合中の伝動経路が動力伝達解除状態となるように(前記シフタ196Hが中速位置から中立位置へ移動するように)作動制御される(ステップS7)。
前記動力伝達解除状態において、予想車速R2A=50と前記副変速機構187が副変速操作後に動力伝達状態となった際の出力軸回転数の算出値R1×T=30との差が許容値C以内か否かが判定される(ステップS8)。
ここで、前記許容値C=10とすると、|R2A−R1×T|=20>C=10となり、許容値を超えるため(ステップS8でNo)、副変速操作完了時点において前記副変速機構187が入力すべき副変速目標入力回転数R1Bが算出される(ステップS12)。ここでは、前述した式を用いて、R1B=R2A/T=50(>R1=30)と算出される。
この後、制御装置300は、前記入力軸回転数R1が算出された副変速目標入力回転数R1Bに近づく方向へ、前記走行用HST120を作動制御する(ステップS13)。ここでは、所定回転数Rd=10だけ増速させるように作動制御する。
従って、このときの入力軸回転数R1=40となり、|R2A−R1×T|=10≦C=10となるため(ステップS8でYes)、制御装置300により、前記副変速油圧切替弁機構92Lを介して前記シフタ196Lが作動制御され、前記シフタ196Lが中立位置から低速位置に位置することにより、低速段Lにおける動力伝達が開始され(ステップS9)、制御装置300は、副変速モードから通常モードへ復帰する。
<第3の例:中速段M→低速段L(下り)>
続いて、第3の例として、下り勾配において中速段Mから高速段Hへのシフトアップの例を示す。
副変速操作を受けて、ステップS2において変速操作後の変速段Hが検出される。このときの入力軸回転数R1=40、出力軸回転数R2=80がそれぞれ検出される(ステップS3,S4)。
制御装置300は、出力回転数R2及び検出される傾斜角から導かれる車速変化データに基づいて予想車速R2Aを演算する。ここでは、下り状況で変速期間に車速変化Rt=10だけ増速されるとする。即ち、予想車速R2A=R2+Rt=90となる。
副変速操作後の変速段Hにおける最高回転数RMH=200であることから、予想車速R2A=90が副変速操作後の最高回転数RM=200以下であると判定される(ステップS6でYes)。
従って、制御装置300により副変速機構187における係合中の伝動経路が動力伝達解除状態となるように(前記シフタ196Hが中速位置から中間位置へ移動するように)作動制御される(ステップS7)。
前記動力伝達解除状態において、予想車速R2A=90と前記副変速機構187が副変速操作後に動力伝達状態となった際の出力軸回転数の算出値R1×T=160との差が許容値C以内か否かが判定される(ステップS8)。
ここで、前記許容値C=10とすると、|R2A−R1×T|=70>C=10となり、許容値を超えるため(ステップS8でNo)、副変速操作完了時点において前記副変速機構187が入力すべき副変速目標入力回転数R1Bが算出される(ステップS12)。ここでは、前述した式を用いて、R1B=R2A/T=22.5(<R1=40)と算出される。
この後、制御装置300は、前記入力軸回転数R1が算出された副変速目標入力回転数R1Bに近づく方向へ、前記走行用HST120を作動制御する(ステップS13)。ここでは、所定回転数Rd=10だけ減速させるように作動制御する。
従って、このときの入力軸回転数R1=30となり、|R2A−R1×T|=30となる。
しかしながら、この場合でもステップS8の条件を満たさないため、さらに、ステップS13において前記走行用HST120が前記所定回転数Rd=10だけ減速されるように作動制御される。
これにより、入力軸回転数R1=20となり、|R2A−R1×T|=10≦C=10となるため(ステップS8でYes)、制御装置300により、前記副変速油圧切替弁機構92Hを介して前記シフタ196Hが作動制御され、前記シフタ196Hが中立位置から高速位置に位置することにより、高速段Hにおける動力伝達が開始され(ステップS9)、制御装置300は、副変速モードから通常モードへ復帰する。
<第4の例:中速段M→高速段H(平地/登り)>
さらに、第4の例として、平地/登り勾配において中速段Mから高速段Hへのシフトアップの例を示す。
副変速操作を受けて、ステップS2において変速操作後の変速段Hが検出される。このときの入力軸回転数R1=40、出力軸回転数R2=80がそれぞれ検出される(ステップS3,S4)。
制御装置300は、出力回転数R2及び検出される傾斜角から導かれる車速変化データに基づいて予想車速R2Aを演算する。ここでは、平地/登り状況で変速期間に10だけ減速される(車速変化Rt=−10)とする。即ち、予想車速R2A=R2+Rt=70となる。
副変速操作後の変速段Hにおける最高回転数RMH=200であることから、予想車速R2A=70が副変速操作後の最高回転数RM=200以下であると判定される(ステップS6でYes)。
従って、制御装置300により副変速機構187における係合中の伝動経路が動力伝達解除状態となるように(前記シフタ196Hが中速位置から中間位置へ移動するように)作動制御される(ステップS7)。
前記動力伝達解除状態において、予想車速R2A=70と前記副変速機構187が副変速操作後に動力伝達状態となった際の出力軸回転数の算出値R1×T=160との差が許容値C以内か否かが判定される(ステップS8)。
ここで、前記許容値C=10とすると、|R2A−R1×T|=90>C=10となり、許容値を超えるため(ステップS8でNo)、副変速操作完了時点において前記副変速機構187が入力すべき副変速目標入力回転数R1Bが算出される(ステップS12)。ここでは、前述した式を用いて、R1B=R2A/T=17.5(<R1=40)と算出される。
この後、制御装置300は、前記入力軸回転数R1が算出された副変速目標入力回転数R1Bに近づく方向へ、前記走行用HST120を作動制御する(ステップS13)。ここでは、所定回転数Rd=10だけ減速させるように作動制御する。
従って、このときの入力軸回転数R1=30となり、|R2A−R1×T|=50となる。
しかしながら、この場合でもステップS8の条件を満たさないため、さらに、ステップS13において前記走行用HST120が前記所定回転数Rd=10だけ減速されるように作動制御される。
これにより、入力軸回転数R1=20となり、|R2A−R1×T|=10≦C=10となるため(ステップS8でYes)、制御装置300により、前記副変速油圧切替弁機構92Hを介して前記シフタ196Hが作動制御され、前記シフタ196Hが中立位置から高速位置に位置することにより、高速段Hにおける動力伝達が開始され(ステップS9)、制御装置300は、副変速モードから通常モードへ復帰する。
以上のように、予め副変速操作完了時点の予想車速R2A、即ち、動力伝達前(シフタ106H,196L非係合時)の出力軸の回転数を算出し、副変速操作後の動力伝達時における出力軸の回転数、即ち、走行用HST120の出力回転数(入力軸回転数R1)及び変速操作後の前記副変速機構187の変速比Tに基づいて得られる出力軸の回転数(R1×T)が、前記動力伝達前の出力軸の回転数(予想車速R2A)に可及的に近い回転数となるように、主変速作動装置(走行用HST120の出力回転数)を作動制御することにより、副変速操作完了時点における変速ショックを可及的に低減させることができる。
従って、副変速変速機構として機械式副変速機構187を用いることによりコスト低廉化を図りつつ、コンバイン1を停止させることなく副変速機構187の変速操作をスムーズに行うことができる。
加えて、副変速操作による変速比の変化によって副変速操作後において走行用HST120の出力回転数(入力軸回転数R1)が副変速最大車速RMを超える(オーバーレブする)出力とならないように、副変速操作前に予め走行用HST120の出力回転数(入力軸回転数R1)を調整する(減速調整する)ことにより、副変速操作完了時点における変速ショックをより低減させることができるとともに、副変速機構187に過剰な負荷をかけることを防止することができる。
また、前記予想車速R2Aや前記変速前目標入力回転数R1Aの算出にあたって、コンバイン1の走行状況(下り、登り又は平地)に応じた副変速操作期間(特に、副変速機構187が動力伝達解除状態であるときの空走期間)における車速変化Rtを加味することにより、副変速操作後の車速を前記動力伝達前(空走後)の車速により近い回転数となるように前記走行用HST120の走行用可動斜板125を作動制御することができ、副変速操作完了時点における変速ショックをより低減させることができる。
以上、本発明に係る実施の形態を説明したが、本発明は上記実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の改良、変更、修正が可能である。
例えば、前記走行用HST120の出力回転数(入力軸回転数R1)が前記副変速目標入力回転数R1Bに一致する方向へ前記主変速作動装置を作動制御する態様として、両者の差異に応じて、予め記憶された作動量データに基づき作動させる構成としてもよい。即ち、前記第1の例において、ステップS12で副変速目標入力回転数R1B=50と算出されたのを受けて、制御装置300は、前記入力軸回転数R1をR1=50となるように走行用HST120の走行用可動斜板125を作動制御させることとしてもよい。
また、同様に、前記走行用HST120の出力回転数(入力軸回転数R1)が前記変速前目標入力回転数R1A以下になる方向へ前記主変速作動装置を作動制御する態様として、両者の差異に応じて、予め記憶された作動量データに基づき作動させる構成としてもよい。即ち、前記第1の例において、ステップS10で変速前目標入力回転数R1A=20と算出されたのを受けて、制御装置300は、前記入力軸回転数R1をR1=20となるように走行用HST120の走行用可動斜板125を作動制御させることとしてもよい。
さらに、副変速操作前に走行用HST120の出力回転数を変更する制御(ステップS6,S10−S11)を行わないこととしてもよい。この場合、入力軸回転数R1が副変速操作後の最高回転数RM以下となるまで副変速機構187の動力伝達を解除することなく待機することとしてもよいし、副変速操作後の最高回転数RMを超える場合は変速しないこととしてもよい。
図1は、本発明の一実施の形態が適用されたコンバインの斜視図である。 図2は、前記コンバインの右側面図である。 図3は、前記走行系トランスミッションの伝動模式図である。 図4は、前記走行系トランスミッションの平面図である。 図5は、前記走行系トランスミッションの縦断背面図である。 図6は、前記走行系トランスミッションの油圧回路図である。 図7は、前記走行系トランスミッションの部分縦断背面図である。 図8は、前記コンバインの副変速制御に関するフローチャートである。
符号の説明
1 コンバイン(作業車輌)
21 エンジン(駆動源)
30 走行用油圧サーボ機構(主変速作動装置)
35 主変速操作部材
36 副変速操作部材
91H,91L 油圧シリンダ機構(副変速作動装置)
92H,92L 副変速油圧切替弁機構(副変速作動装置)
120 走行用HST
125 走行用可動斜板(出力調整部材)
181 走行用出力軸(入力軸)
181H,181M,181L 入力側歯車(伝動経路)
185 分岐軸(出力軸)
187 副変速機構
189H,189M,189L 出力側歯車(伝動経路)
196H,196L シフタ
197 係合部
198 被係合部
300 制御装置
310 HST回転センサ
320 副変速回転センサ
330 傾斜角センサ
R1 入力軸回転数(走行用HSTの出力回転数)
R1A 変速前目標入力回転数
R1B 副変速目標入力回転数
R2 出力軸回転数(副変速機構の出力回転数)
R2A 予想車速
Rt 車速変化
RM 目標車速(走行用HSTの定格上限出力回転時における副変速最大車速)
T 副変速操作後の変速比
T’ 副変速操作前の変速比

Claims (5)

  1. 駆動源から作動的に入力される駆動力を出力調整部材への操作に応じた出力回転数に変速させて出力する走行用HSTと、前記走行用HSTに作動連結される入力軸及び駆動車軸に作動連結される出力軸の間で多段変速を行う機械式副変速機構であって、軸線方向移動可能とされ且つ係合部が設けられたシフタと、前記係合部と凹凸係合可能な被係合部が設けられた変速比が異なる複数の伝動経路とを有し、前記シフタの軸線方向移動に応じて前記シフタの前記係合部が一の前記伝動経路の前記被係合部に凹凸係合することによって前記一の伝動経路の変速比に応じて前記入力軸から前記出力軸へ動力が伝達される機械式副変速機構とを備えた作業車輌に適用される変速制御構造であって、
    前記出力調整部材を操作するための人為操作可能な主変速操作部材と、
    前記シフタを操作するための人為操作可能な副変速操作部材と、
    前記出力調整部材を移動させる主変速作動装置と、
    前記シフタを移動させる副変速作動装置と、
    前記主変速作動装置及び前記副変速作動装置を制御する制御装置と、
    前記走行用HSTの出力回転数を検出するHST回転センサと、
    前記機械式副変速機構の出力回転数を検出する副変速回転センサとを備え、
    前記制御装置は、前記主変速操作部材への人為操作に応じて前記出力調整部材が移動するように前記主変速作動装置を制御する通常モードと、前記副変速操作部材への人為操作時に起動される副変速モードとを有し、
    前記副変速モードは、前記副変速回転センサによって副変速操作開始時点における前記副変速機構の出力回転数を副変速操作開始時点の車速として検出し、
    前記車速に基づいて副変速操作完了時点の予想車速を算出し、
    前記予想車速と変速操作後の前記副変速機構の変速比とに基づき副変速操作完了時点において前記副変速機構が入力すべき副変速目標入力回転数を算出するとともに、
    前記副変速操作部材への人為操作に応じて前記副変速機構における係合中の伝動経路が動力伝達解除状態となるように前記副変速作動装置を作動させ、
    前記走行用HSTの出力回転数が前記副変速目標入力回転数に一致する方向へ前記主変速作動装置を作動制御した状態で、前記副変速操作部材への人為操作に応じた前記伝動経路を介して前記入力軸から前記出力軸へ動力が伝達されるように前記副変速作動装置を作動させることを特徴とする変速制御構造。
  2. 前記作業車輌の傾斜角を検出する傾斜角センサをさらに備え、
    前記制御装置は、副変速操作期間における傾斜角に対する車速変化の割合に関する車速変化データを有し、
    前記副変速モードは、前記傾斜角センサからの信号と前記車速変化データとに基づき前記副変速操作期間における車速変化を算出し、前記車速変化を加えて前記予想車速を算出することを特徴とする請求項1に記載の変速制御構造。
  3. 前記副変速モードは、前記予想車速が前記走行用HSTの定格上限出力回転時における変速操作後の副変速最大車速を超えている場合には、前記動力伝達解除状態となるように前記副変速装置を作動させる前に、前記副変速最大車速を目標車速とし、前記目標車速と変速操作前の前記副変速機構の変速比とに基づいて副変速操作前に前記副変速機構が入力すべき変速前目標入力回転数を算出し、前記走行用HSTの出力回転数が前記変速前目標入力回転数以下になる方向へ前記主変速作動装置を作動制御することを特徴とする請求項1又は2に記載の変速制御構造。
  4. 前記作業車輌の傾斜角を検出する傾斜角センサをさらに備え、
    前記制御装置は、副変速操作機構における傾斜角に対する車速変化の割合に関する車速変化データを有し、
    前記副変速モードは、前記傾斜角センサからの信号と前記車速変化データとに基づき前記副変速操作期間における車速変化を算出し、前記車速変化を前記目標車速に加えて前記目標入力回転数を算出することを特徴とする請求項3に記載の変速制御構造。
  5. 前記副変速モードは、前記走行用HSTの出力回転数が前記変速前目標入力回転数以下になる方向へ前記主変速作動装置を作動制御させる際、前記走行用HSTの出力回転数が所定回転数減速するように構成され、前記所定回転数減速後の前記副変速機構の出力回転数を前記副変速操作開始時点の車速として前記予想車速を算出することを特徴とする請求項3又は4に記載の変速制御構造。
JP2007325058A 2007-12-17 2007-12-17 変速制御構造 Withdrawn JP2009144870A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007325058A JP2009144870A (ja) 2007-12-17 2007-12-17 変速制御構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007325058A JP2009144870A (ja) 2007-12-17 2007-12-17 変速制御構造

Publications (1)

Publication Number Publication Date
JP2009144870A true JP2009144870A (ja) 2009-07-02

Family

ID=40915690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007325058A Withdrawn JP2009144870A (ja) 2007-12-17 2007-12-17 変速制御構造

Country Status (1)

Country Link
JP (1) JP2009144870A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069416A (ja) * 2009-09-24 2011-04-07 Kubota Corp 刈取収穫機の走行変速装置
KR20120121848A (ko) 2011-04-27 2012-11-06 가부시끼 가이샤 구보다 콤바인의 변속 장치
JP2014114914A (ja) * 2012-12-11 2014-06-26 Hitachi Constr Mach Co Ltd 作業車両の変速装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069416A (ja) * 2009-09-24 2011-04-07 Kubota Corp 刈取収穫機の走行変速装置
KR20120121848A (ko) 2011-04-27 2012-11-06 가부시끼 가이샤 구보다 콤바인의 변속 장치
KR101965448B1 (ko) * 2011-04-27 2019-04-03 가부시끼 가이샤 구보다 콤바인의 변속 장치
JP2014114914A (ja) * 2012-12-11 2014-06-26 Hitachi Constr Mach Co Ltd 作業車両の変速装置

Similar Documents

Publication Publication Date Title
KR20100026975A (ko) 차량의 주행계 전동 구조
KR102038787B1 (ko) 작업차량
JP2009144870A (ja) 変速制御構造
KR101998497B1 (ko) 작업 차량
JP4181048B2 (ja) 最小旋回装置を備えたトランスミッション
JP2011110020A5 (ja)
CN101606007B (zh) Cvt控制系统
KR102039282B1 (ko) 작업차량
JP2002139125A (ja) Hmt式トランスミッションを備えるトラクタの駆動モード切換機構
JP6435284B2 (ja) 作業車両
KR101995149B1 (ko) 작업 차량
JP6487869B2 (ja) 作業車両
JP6470158B2 (ja) 作業車両
JP5316636B2 (ja) 作業車両
JPH09315337A (ja) 作業車両の操向装置
JP6487868B2 (ja) 作業車両
JP2008179198A (ja) 作業車両の走行装置
JP6515044B2 (ja) 作業車両
JP4507721B2 (ja) コンバイン用旋回制御装置
JP5054478B2 (ja) 作業車の旋回制御装置
JP2004189017A (ja) 走行装置の伝動機構
JPH09315336A (ja) 作業車両の走行装置
JP2003276460A (ja) 走行装置の伝動機構
JP2005229888A (ja) コンバイン
JP2011149462A (ja) 作業車両

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110301