JP2009144012A - Method for producing porous fine particle comprising biodegradable polyester-based resin - Google Patents

Method for producing porous fine particle comprising biodegradable polyester-based resin Download PDF

Info

Publication number
JP2009144012A
JP2009144012A JP2007321393A JP2007321393A JP2009144012A JP 2009144012 A JP2009144012 A JP 2009144012A JP 2007321393 A JP2007321393 A JP 2007321393A JP 2007321393 A JP2007321393 A JP 2007321393A JP 2009144012 A JP2009144012 A JP 2009144012A
Authority
JP
Japan
Prior art keywords
biodegradable polyester
fine particles
porous fine
polyester resin
based resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007321393A
Other languages
Japanese (ja)
Inventor
Mikio Akimoto
幹夫 秋本
Kazuyuki Nagasawa
和之 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Chemical Industry Co Ltd
Original Assignee
Toho Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Chemical Industry Co Ltd filed Critical Toho Chemical Industry Co Ltd
Priority to JP2007321393A priority Critical patent/JP2009144012A/en
Publication of JP2009144012A publication Critical patent/JP2009144012A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing porous fine particles comprising a biodegradable polyester-based resin by an industrially inexpensive process without using a special apparatus. <P>SOLUTION: The method for producing the porous fine particles comprising the biodegradable polyester-based resin, having an average particle diameter within the range of 1-500 μm, and having pores of from 50 nm to 5 μm on the surfaces of the particles includes adding a poor solvent to a solution obtained by dissolving a biodegradable polyester-based resin in 1,3-dioxolanes by heating, and cooling the resultant solution to ≤20°C at a rate of ≥0.5°C/min. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は生分解性ポリエステル系樹脂からなる多孔質微粒子の製造方法に関する。   The present invention relates to a method for producing porous fine particles comprising a biodegradable polyester resin.

ポリ乳酸等の生分解性ポリエステル樹脂の様々な用途への展開を図るべく、近年その加工技術の開発が進んでいる。例えば、塗料や接着剤、印刷分野に使用する場合には、該樹脂を微粒子化する技術が不可欠であり、特許文献1には生分解性ポリエステル系樹脂を特定の化合物に溶解し、これに貧溶媒を加える方法が開示されている。また、得られる微粒子が多孔質であれば、医薬や農薬の担体としての応用等が期待でき、特許文献2には生分解性ポリエステル系樹脂エマルションをパルス燃焼ガスに接触させることによる方法が開示されている。しかしながら、当該方法はパルス燃焼乾燥装置を使用しなければならず、製造プロセスが複雑になってコスト増につながるという問題があった。
特開2005−2302 特開2004−231760
In order to develop biodegradable polyester resins such as polylactic acid for various uses, development of processing techniques has been progressing in recent years. For example, in the case of use in the field of paints, adhesives, and printing, a technique for making the resin into fine particles is indispensable. Patent Document 1 discloses that a biodegradable polyester resin is dissolved in a specific compound and is poor. A method of adding a solvent is disclosed. Further, if the resulting fine particles are porous, application as a carrier for pharmaceuticals and agricultural chemicals can be expected. Patent Document 2 discloses a method by contacting a biodegradable polyester resin emulsion with a pulse combustion gas. ing. However, this method requires the use of a pulse combustion drying apparatus, and there is a problem that the manufacturing process becomes complicated and the cost increases.
JP20052302 JP-A-2004-231760

本発明が解決しようとする課題は、特殊な装置を使用することなく工業的に安価なプロセスで生分解性ポリエステル系樹脂の多孔質微粒子を製造する方法を提供することである。   The problem to be solved by the present invention is to provide a method for producing porous fine particles of a biodegradable polyester resin by an industrially inexpensive process without using a special apparatus.

本発明者らは鋭意検討の結果、生分解性ポリエステル系樹脂の良溶媒として1,3−ジオキソラン類を用いこれを該樹脂の多孔質微粒子化技術に応用するに至った。すなわち、本発明は、生分解性ポリエステル系樹脂を1,3−ジオキソランに加熱溶解した溶液に貧溶媒を加えた後、この溶液を0.5℃/分以上の速度で20℃以下まで冷却することを特徴とする、平均粒子径が1μm〜500μmの範囲内であり、且つ粒子表面に50nm〜5μmの孔を持つ多孔質生分解性ポリエステル系樹脂微粒子の製造方法に関する。   As a result of intensive studies, the present inventors have used 1,3-dioxolanes as good solvents for biodegradable polyester resins, and have applied them to the technology for making porous fine particles of the resins. That is, in the present invention, a poor solvent is added to a solution obtained by heating and dissolving a biodegradable polyester resin in 1,3-dioxolane, and then the solution is cooled to 20 ° C. or less at a rate of 0.5 ° C./min or more. The present invention relates to a method for producing porous biodegradable polyester resin fine particles having an average particle diameter in the range of 1 μm to 500 μm and having pores of 50 nm to 5 μm on the particle surface.

本発明は、前記多孔質微粒子の比表面積が10〜300m/gであることを特徴とする前記の多孔質微粒子の製造方法にも関する。 The present invention also relates to the method for producing porous fine particles, wherein the porous fine particles have a specific surface area of 10 to 300 m 2 / g.

本発明は、前記生分解性ポリエステル系樹脂がポリ乳酸であることを特徴とする前記の多孔質微粒子の製造方法にも関する。   The present invention also relates to the method for producing porous fine particles, wherein the biodegradable polyester resin is polylactic acid.

本発明に係る製造方法により特殊な装置を使用することなく工業的に安価なプロセスで生分解性ポリエステル系樹脂の多孔質微粒子を製造することができる。これにより、環境への負荷が低い樹脂微粒子が得られ、塗料、インキ、トナー、プライマー、接着剤、印刷分野や、医薬、農薬、化粧品その他広範囲な産業分野での利用が可能となる。   With the production method according to the present invention, porous fine particles of a biodegradable polyester resin can be produced by an industrially inexpensive process without using a special apparatus. Thereby, resin fine particles having a low environmental load can be obtained, and can be used in a wide range of industrial fields such as paints, inks, toners, primers, adhesives, printing, pharmaceuticals, agricultural chemicals, cosmetics and the like.

本発明において生分解性ポリエステル系樹脂の良溶媒として使用される1,3−ジオキソラン類には、1,3−ジオキソランの他、4−メチル−1,3−ジオキソラン、2−n−ブチル−1,3−ジオキソラン、2,2−ジ−n−プロピル−1,3−ジオキソラン、2−エチル−2−メチル−1,3−ジオキソラン、2,2−ジ−n−プロピル−4−メチル−1,3−ジオキソラン、2,2−ジイソプロピル−4−メチル−1,3−ジオキソラン、2−n−ブチル−4−メチル−1,3−ジオキソラン、2−n−プロピル−4−メチル−1,3−ジオキソラン、2−メチル−2−イソブチル−4−メチル−1,3−ジオキソラン、2−n−ブチル−4−エチル−1,3−ジオキソラン、2−n−プロピル−4−メチル−1,3−ジオキソラン、2−n−ブチル−4−メチル−1,3−ジオキサン、2,2−ジ−n−プロピル−4−メチル−1,3−ジオキソランが例示できる。これらは単独で使用しても2種以上を併用してもよい。これらのうち、1,3−ジオキソランは工業的に生産されており、実用上これを良溶媒として用いることで多孔質微粒子を経済的に得ることができるため好ましい。   The 1,3-dioxolanes used as a good solvent for the biodegradable polyester resin in the present invention include 1,3-dioxolane, 4-methyl-1,3-dioxolane, 2-n-butyl-1 , 3-dioxolane, 2,2-di-n-propyl-1,3-dioxolane, 2-ethyl-2-methyl-1,3-dioxolane, 2,2-di-n-propyl-4-methyl-1 , 3-dioxolane, 2,2-diisopropyl-4-methyl-1,3-dioxolane, 2-n-butyl-4-methyl-1,3-dioxolane, 2-n-propyl-4-methyl-1,3 -Dioxolane, 2-methyl-2-isobutyl-4-methyl-1,3-dioxolane, 2-n-butyl-4-ethyl-1,3-dioxolane, 2-n-propyl-4-methyl-1,3 -Dioxolane, 2- Examples thereof include n-butyl-4-methyl-1,3-dioxane and 2,2-di-n-propyl-4-methyl-1,3-dioxolane. These may be used alone or in combination of two or more. Of these, 1,3-dioxolane is industrially produced, and it is preferable because it can be used economically to obtain porous fine particles economically.

1,3−ジオキソラン類に加え、他の溶媒類を併用することにより粒子径、細孔径、粒度分布などが調整することができる。調整に使用できる溶媒類を例示すると、クロロホルム、ジクロロメタン、クロロエタン、トリクロロエタン、四塩化炭素などの塩素系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル、安息香酸エチル、蓚酸ジエチル、炭酸エチレン、炭酸プロピレン、γ―ブチルラクトンなどのエステル類、シクロヘキサノン、アセトニルアセトン、イソホロン等のケトン類、カプロン酸、カプリン酸、カプリル酸などの脂肪酸類、エチルエーテル、テトラヒドロフランなどのエーテル類、ヘキサン、ヘプタンなどのノルマルパラフィン系炭化水素類、イソパラフィン系の炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、ポリエチレングリコール系グリシジルエーテル類、ポリプロピレングリコール系グリシジルエーテルなどのエポキシ化合物類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ベンジルエーテル、ジヘキシルエーテルなどの各種のエーテル類、メチルセロソルブアセテート、エチルセロソルブアセテート等そのエステル類、エチレングリコール、プロピレングリコールのようなグリコール、ジオキサン、2−n−プロピル−1,3−ジオキセパン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジブチルエーテルなどのグライム類などが挙げられるが、これらに限定されるものではない。これらは単独で使用しても2種以上を併用してもよい。   In addition to 1,3-dioxolanes, the particle diameter, pore diameter, particle size distribution and the like can be adjusted by using other solvents in combination. Examples of solvents that can be used for the adjustment include chlorine solvents such as chloroform, dichloromethane, chloroethane, trichloroethane, and carbon tetrachloride, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, alcohols such as methanol, ethanol, and isopropyl alcohol, Esters such as ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, propyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate, ethyl benzoate, diethyl oxalate, ethylene carbonate, propylene carbonate, γ-butyllactone, cyclohexanone , Ketones such as acetonylacetone and isophorone, fatty acids such as caproic acid, capric acid and caprylic acid, ethers such as ethyl ether and tetrahydrofuran, and normal buffers such as hexane and heptane Fin hydrocarbons, isoparaffin hydrocarbons, aromatic hydrocarbons such as benzene, toluene, xylene, epoxy compounds such as polyethylene glycol glycidyl ether, polypropylene glycol glycidyl ether, ethylene glycol monomethyl ether, ethylene Various ethers such as glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, benzyl ether and dihexyl ether, esters such as methyl cellosolve acetate and ethyl cellosolve acetate, ethylene Glycol, glycols such as propylene glycol, dioxane, 2-n- Examples include glymes such as propyl-1,3-dioxepane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, ethylene glycol dibutyl ether, and diethylene glycol dibutyl ether. However, it is not limited to these. These may be used alone or in combination of two or more.

本発明において使用する貧溶媒として水を一部使用することも可能であるが、樹脂の加水分解による分子量低下などの原因ともなるため注意が必要である。好ましく使用できる貧溶媒を例示するとメチルアルコール、エチルアルコール、イソプロピルアルコール、ブチルアルコール、ペンチルアルコール、アリルアルコール、アミルアルコールなどのアルコール系溶剤、アセトン、メチルエチルケトンなどのケトン類、メチルエーテル、エチルプロピルエーテルなどのエーテル類、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルなどのグリコールエーテル類、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテルなどのジアルキルエーテル類、乳酸エチルなどのエステル類などが挙げられるが、これらに限定されるものではない。これらは単独で使用しても2種以上を併用してもよい。これらを適宜選定することにより粒子径や細孔径の調整も可能である。   Although it is possible to use a part of water as the poor solvent used in the present invention, care should be taken because it may cause a decrease in molecular weight due to hydrolysis of the resin. Examples of preferable poor solvents include alcohol solvents such as methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, pentyl alcohol, allyl alcohol, and amyl alcohol, ketones such as acetone and methyl ethyl ketone, methyl ether, ethyl propyl ether, and the like. Examples include ethers, glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether, dialkyl ethers such as ethylene glycol dimethyl ether and propylene glycol dimethyl ether, and esters such as ethyl lactate. It is not limited to. These may be used alone or in combination of two or more. The particle diameter and pore diameter can be adjusted by appropriately selecting these.

本発明に用いられる生分解性ポリエステル系樹脂としては例えばポリ乳酸(L−乳酸、D−乳酸、またはこれらの混合物を重合することにより得られるポリ乳酸、これらの混合物も含まれる)、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリブチレンサクシネートテレフタレート、ポリブチレンサクシネートカーボネート、ポリブチレンアジペートテレフタレート、ポリエチレンサクシネート、ポリエチレンサクシネートアジペート、ポリカプロラクトン、ポリグリコール酸等が挙げられる。また、分子内にヒドロキシル基とカルボキシル基を有する単量体、例えばグリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、4−ヒドロキシ吉草酸、5−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸などから選ばれる1種または2種以上の(共)重合体であってもよく、またこれらの単量体単位が化学修飾されたものであってもよい。その他、変性デンプン系、ポリビニルアルコール系なども必要に応じ配合使用することができる。   Examples of the biodegradable polyester resin used in the present invention include polylactic acid (including polylactic acid obtained by polymerizing L-lactic acid, D-lactic acid, or a mixture thereof, and a mixture thereof), polybutylene succin Nate, polybutylene succinate adipate, polybutylene succinate terephthalate, polybutylene succinate carbonate, polybutylene adipate terephthalate, polyethylene succinate, polyethylene succinate adipate, polycaprolactone, polyglycolic acid and the like. Further, monomers having a hydroxyl group and a carboxyl group in the molecule, such as glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, 5-hydroxyvaleric acid, 6-hydroxycaproic acid and the like are selected. One or two or more (co) polymers may be used, and those monomer units may be chemically modified. In addition, a modified starch type, a polyvinyl alcohol type, etc. can also be mix | blended and used as needed.

本発明で使用される生分解性ポリエステル系樹脂の製造方法は特に限定はしない。例えばポリ乳酸の場合、乳酸又は乳酸と他のヒドロキシカルボン酸から直接脱水重縮合で製造する方法、ラクタイド、グリコライド、ε―カプロラクトン又はそれらの混合物から開環重合で得る方法、その他エステル交換で得る方法が挙げられるが、これらに限定されるものではない。本発明で用いる生分解性ポリエステル樹脂を他の生分解性樹脂によって改質することもでき、例えば修飾デンプン系、酢酸セルロース系、ポリヒドロキシブチレート系、ポリヒドロキシブチレートバリレート系、さらにはポリエチレンオキサイド系、ポリビニルアルコール系、キトサン系などが使用でき、その特性を活用することで用途展開をより促進することができる。また、生分解性樹脂のみでなく必要に応じ通常の樹脂も併用することができる。   The method for producing the biodegradable polyester resin used in the present invention is not particularly limited. For example, in the case of polylactic acid, a method of producing by direct dehydration polycondensation from lactic acid or lactic acid and another hydroxycarboxylic acid, a method of obtaining by ring-opening polymerization from lactide, glycolide, ε-caprolactone or a mixture thereof, and other methods of transesterification Examples include, but are not limited to, methods. The biodegradable polyester resin used in the present invention can be modified with other biodegradable resins, such as modified starch, cellulose acetate, polyhydroxybutyrate, polyhydroxybutyrate, and polyethylene. Oxide-based, polyvinyl alcohol-based, chitosan-based and the like can be used, and application development can be further promoted by utilizing the characteristics. Further, not only biodegradable resins but also ordinary resins can be used in combination as required.

本発明における生分解性ポリエステル系樹脂からなる多孔質微粒子は、(i)生分解性ポリエステル系樹脂を1,3−ジオキソラン類に加熱溶解する工程、(ii)貧溶媒を添加後20℃以下まで冷却することにより粒子を析出させる工程、(iii)ろ過乾燥工程を経て得ることができる。これらの各工程は、通常の反応設備で実施可能である。ただし、生分解性ポリエステル系樹脂の粒子が加水分解性を有するため、温度、時間の管理下で行なうことが好ましい。   The porous fine particles comprising the biodegradable polyester resin in the present invention are (i) a step of heating and dissolving the biodegradable polyester resin in 1,3-dioxolanes, and (ii) up to 20 ° C. or less after adding the poor solvent. It can be obtained through a step of depositing particles by cooling, and (iii) a filtration drying step. Each of these steps can be performed with ordinary reaction equipment. However, since the biodegradable polyester resin particles are hydrolyzable, it is preferably carried out under temperature and time control.

(i)生分解性ポリエステル系樹脂を1,3−ジオキソラン類に加熱溶解する工程は、撹拌、加熱冷却、必要に応じコンデンサー又は密閉加圧が可能な設備で行うことができる。生分解性ポリエステル系樹脂は1,3−ジオキソラン類(他の溶媒を併用したものでもよい)に樹脂濃度として2〜40質量%以下の範囲で溶解状態または均一分散状とすることが望ましい。樹脂濃度が高すぎると増粘が著しく粗大粒子が多く発生し、逆に低すぎても多孔質微粒子は得られるが経済性に劣る。溶解温度は特に限定されるものではないが、樹脂を溶解状態または均一分散状態とするため50℃以上とすることが好ましく、60℃以上とすることがより好ましい。   (I) The step of heat-dissolving the biodegradable polyester resin in 1,3-dioxolanes can be carried out with equipment capable of stirring, heating and cooling, and if necessary, condenser or hermetic pressure. The biodegradable polyester resin is desirably dissolved or uniformly dispersed in 1,3-dioxolanes (which may be used in combination with other solvents) in a resin concentration range of 2 to 40% by mass or less. If the resin concentration is too high, the viscosity is remarkably increased and a large number of coarse particles are generated. Conversely, if the resin concentration is too low, porous fine particles can be obtained but the economy is inferior. Although melt | dissolution temperature is not specifically limited, In order to make resin into a dissolved state or a uniform dispersion state, it is preferable to set it as 50 degreeC or more, and it is more preferable to set it as 60 degreeC or more.

(ii)貧溶媒を添加後20℃以下まで冷却することにより粒子を析出させる工程において、貧溶媒添加時の温度については限定しないが、溶剤の還流温度で溶解、貧溶媒の添加を行うことが好ましい。貧溶媒の添加後、20℃以下まで冷却する際の冷却速度は0.5℃/分以上、好ましくは1.0℃/分以上である。冷却速度が0.5℃/分を下回ると多孔質の微粒子が得られない。このような冷却速度は工業スケールにおいても十分対応可能なものであるため、冷却設備については特に限定されず、既存設備を有効に活用することができる。又析出工程での撹拌方式は特に限定されず、ホモジナイザー等の一般的に使用される各種設備を使用することができる。   (Ii) In the step of precipitating particles by cooling to 20 ° C. or lower after the addition of the poor solvent, the temperature at the time of the poor solvent addition is not limited, but dissolution and addition of the poor solvent may be performed at the reflux temperature of the solvent. preferable. After the addition of the poor solvent, the cooling rate when cooling to 20 ° C. or lower is 0.5 ° C./min or higher, preferably 1.0 ° C./min or higher. When the cooling rate is less than 0.5 ° C./min, porous fine particles cannot be obtained. Since such a cooling rate can be sufficiently handled even on an industrial scale, the cooling equipment is not particularly limited, and existing equipment can be used effectively. Moreover, the stirring system in the precipitation step is not particularly limited, and various commonly used facilities such as a homogenizer can be used.

(iii)ろ過乾燥工程においては必要に応じ洗浄工程を加えてもよい。多孔質の保持に乾燥温度は150℃以下が好ましく、120℃以下がより好ましい。乾燥工程では溶媒の揮発の促進など必要に応じて加熱することができる。揮発除去できる条件であれば方法は問わないが、必要に応じ減圧下で行なうことが好ましい。   (Iii) In the filtration and drying step, a washing step may be added as necessary. For maintaining the porosity, the drying temperature is preferably 150 ° C. or lower, and more preferably 120 ° C. or lower. In the drying step, heating can be performed as necessary, such as promotion of volatilization of the solvent. The method is not limited as long as it can be volatilized and removed, but it is preferable to carry out under reduced pressure if necessary.

本発明のこの多孔質微粒子は平均粒子径が1μm〜500μmであるが、各分野において応用するためには5μm〜300μmであることが好ましい。また、該微粒子は表面に50nm〜5μmの細孔を有し、その比表面積は概ね10〜300m/gの範囲内となる。さらには樹脂の重量平均分子量は10,000〜500,000であり、好ましくは20,000〜400,000、特に好ましくは100,000〜200,000である。該分子量が10,000に満たないときは多孔質微粒子の強度が著しく低下し、500,000を超えると溶解時の粘度が高くなり多孔質化が困難となる場合がある。 The porous fine particles of the present invention have an average particle size of 1 μm to 500 μm, but preferably 5 μm to 300 μm for application in each field. The fine particles have pores of 50 nm to 5 μm on the surface, and the specific surface area is approximately in the range of 10 to 300 m 2 / g. Furthermore, the weight average molecular weight of the resin is 10,000 to 500,000, preferably 20,000 to 400,000, and particularly preferably 100,000 to 200,000. When the molecular weight is less than 10,000, the strength of the porous fine particles is remarkably lowered.

本発明の生分解性ポリエステル系樹脂には、光分解剤、生分解性促進剤、生分解性制御剤、熱安定剤、各種改質剤、可塑剤類、さらには必要に応じてフイラー類、分散剤、酸化防止剤、防錆剤、帯電防止剤、濡れ性改良剤、流動性調整剤、撥水剤、潤滑剤、着色剤、架橋剤、脱臭剤などを使用目的に合わせ配合することができる。   The biodegradable polyester resin of the present invention includes a photodegradation agent, a biodegradability accelerator, a biodegradability control agent, a heat stabilizer, various modifiers, plasticizers, and, if necessary, fillers, Dispersants, antioxidants, rust inhibitors, antistatic agents, wettability improvers, fluidity modifiers, water repellents, lubricants, colorants, crosslinkers, deodorizers, etc. it can.

本発明の生分解性ポリエステル系樹脂からなる多孔質微粒子は定法により色素、香料、農薬、医薬、酵素、生理活性物質、発熱物質、吸熱物質、帯電防止剤、防錆剤、防カビ剤、脱臭剤、界面活性剤などの担体として又は吸着剤として目的に応じて使用することができる。   Porous fine particles comprising the biodegradable polyester resin of the present invention are dyed, flavored, agricultural chemicals, pharmaceuticals, enzymes, physiologically active substances, exothermic substances, endothermic substances, antistatic agents, rust preventives, antifungal agents, deodorized by conventional methods. It can be used as a carrier such as an agent or a surfactant or as an adsorbent depending on the purpose.

以下実施例により本発明を説明する。ただし本発明は、これらの実施例により何ら制限をされるものではない。   The following examples illustrate the invention. However, the present invention is not limited to these examples.

(実施例1)
1,3−ジオキソラン100質量部にポリ乳酸(三井化学(株)社販売;レイシアH−100)10質量部を加え撹拌しながら70℃まで昇温した。完全に溶解した後、同温度で貧溶媒であるメチルアルコールを100質量部加え、撹拌しながら10℃まで冷却した。この間40分を要した。冷却後、析出した粒子を減圧ろ過し、減圧乾燥機で乾燥させ、多孔質微粒子を得た。
Example 1
To 100 parts by mass of 1,3-dioxolane, 10 parts by mass of polylactic acid (sold by Mitsui Chemicals, Inc .; Lacia H-100) was added, and the temperature was raised to 70 ° C. with stirring. After complete dissolution, 100 parts by mass of methyl alcohol, which is a poor solvent, was added at the same temperature, and the mixture was cooled to 10 ° C. with stirring. This took 40 minutes. After cooling, the precipitated particles were filtered under reduced pressure and dried with a vacuum dryer to obtain porous fine particles.

(実施例2)
1,3−ジオキソラン50質量部、ポリ乳酸(レイシアH−100)10質量部、貧溶媒にメチルアルコール50質量部用いた以外は実施例1と同様の方法で多孔質微粒子を得た。
(Example 2)
Porous fine particles were obtained in the same manner as in Example 1 except that 50 parts by mass of 1,3-dioxolane, 10 parts by mass of polylactic acid (Lacia H-100), and 50 parts by mass of methyl alcohol were used as a poor solvent.

(実施例3)
1,3−ジオキソラン30質量部、ポリ乳酸(レイシアH−100)10質量部、貧溶媒にメチルアルコール30質量部用いた以外は実施例1と同様の方法で多孔質微粒子を得た。
(Example 3)
Porous fine particles were obtained in the same manner as in Example 1 except that 30 parts by mass of 1,3-dioxolane, 10 parts by mass of polylactic acid (Lacia H-100), and 30 parts by mass of methyl alcohol were used as a poor solvent.

(実施例4)
1,3−ジオキソラン40質量部、アセトン10質量部の混合溶媒、ポリ乳酸(レイシアH−100)10質量部、貧溶媒にイソプロピルアルコール30質量部用いた以外は実施例1と同様の方法で多孔質微粒子を得た。
Example 4
Porous in the same manner as in Example 1 except that 40 parts by mass of 1,3-dioxolane, 10 parts by mass of acetone, 10 parts by mass of polylactic acid (Lacia H-100), and 30 parts by mass of isopropyl alcohol as a poor solvent were used. Fine particles were obtained.

(実施例5)
1,3−ジオキソラン100質量部、ポリ乳酸(レイシアH−400)10質量部、貧溶媒にイソプロピルアルコール100質量部用いた以外は実施例1と同様の方法で多孔質微粒子を得た。
(Example 5)
Porous fine particles were obtained in the same manner as in Example 1 except that 100 parts by mass of 1,3-dioxolane, 10 parts by mass of polylactic acid (Lacia H-400), and 100 parts by mass of isopropyl alcohol were used as the poor solvent.

(比較例1)
実施例1の冷却速度を0.2℃/分にした以外は同様な方法で粒子を得た。
(Comparative Example 1)
Particles were obtained in the same manner except that the cooling rate in Example 1 was changed to 0.2 ° C./min.

(比較例2)
実施例1の貧溶媒をイソプロピルアルコール100質量部に変え冷却速度を0.2℃/分にした以外は同様な方法で粒子を得た。
(Comparative Example 2)
Particles were obtained in the same manner except that the poor solvent in Example 1 was changed to 100 parts by mass of isopropyl alcohol and the cooling rate was 0.2 ° C./min.

実施例および比較例の溶媒組成、冷却速度を表1に示す。
Table 1 shows the solvent compositions and cooling rates of Examples and Comparative Examples.

表の説明
(生分解性ポリエステル系樹脂)
ポリ乳酸 H−100:LACEA(レイシア);三井化学(株)販売
H−400:LACEA(レイシア);三井化学(株)販売
Explanation of table (biodegradable polyester resin)
Polylactic acid H-100: LACEA (Lacia); sold by Mitsui Chemicals, Inc.
H-400: LACEEA (Lacia); sold by Mitsui Chemicals, Inc.

得られた微粒子の形態、平均粒子径及び比表面積について表2にまとまる。
Table 2 summarizes the morphology, average particle diameter, and specific surface area of the obtained fine particles.

微粒子の形態、平均粒子径及び比表面積は以下の装置、方法を用いて観察、測定した。
1.粒子の形態:超音波分散後、Ptスパッタを施し電界放射型走査電子顕微鏡(SEM;日立製作所製S−4700)で観察した。
2.平均粒子径:前記走査電子顕微鏡で観察し、粒子100個の平均粒子径を算出した。
3.比表面積:窒素吸着によるBET法で測定を行った。
The form, average particle diameter, and specific surface area of the fine particles were observed and measured using the following apparatuses and methods.
1. Particle morphology: After ultrasonic dispersion, Pt sputtering was performed and observed with a field emission scanning electron microscope (SEM; S-4700, manufactured by Hitachi, Ltd.).
2. Average particle diameter: observed with the scanning electron microscope, and the average particle diameter of 100 particles was calculated.
3. Specific surface area: Measured by the BET method by nitrogen adsorption.

実施例3で得られた多孔質微粒子の電子顕微鏡写真(500倍)である。4 is an electron micrograph (500 times) of the porous fine particles obtained in Example 3. FIG. 実施例3で得られた多孔質微粒子の電子顕微鏡写真(5000倍)である。4 is an electron micrograph (5000 times) of the porous fine particles obtained in Example 3. FIG. 比較例1で得られた多孔質微粒子の電子顕微鏡写真(500倍)である。2 is an electron micrograph (500 times) of the porous fine particles obtained in Comparative Example 1. FIG. 比較例1で得られた多孔質微粒子の電子顕微鏡写真(5000倍)である。4 is an electron micrograph (5000 times) of the porous fine particles obtained in Comparative Example 1.

Claims (3)

生分解性ポリエステル系樹脂を1,3−ジオキソラン類に加熱溶解した溶液に貧溶媒を加えた後、この溶液を0.5℃/分以上の速度で20℃以下まで冷却することを特徴とする、平均粒子径が1μm〜500μmの範囲内であり、且つ粒子表面に50nm〜5μmの孔を有する生分解性ポリエステル系樹脂からなる多孔質微粒子の製造方法。 A poor solvent is added to a solution obtained by heating and dissolving a biodegradable polyester resin in 1,3-dioxolanes, and then the solution is cooled to 20 ° C. or less at a rate of 0.5 ° C./min or more. A method for producing porous fine particles comprising a biodegradable polyester resin having an average particle diameter in the range of 1 μm to 500 μm and having pores of 50 nm to 5 μm on the particle surface. 前記多孔質微粒子の比表面積が10〜300m/gであることを特徴とする請求項1に記載の多孔質微粒子の製造方法。 2. The method for producing porous fine particles according to claim 1, wherein a specific surface area of the porous fine particles is 10 to 300 m 2 / g. 前記生分解性ポリエステル系樹脂がポリ乳酸であることを特徴とする請求項1又は2に記載の多孔質微粒子の製造方法。 The method for producing porous fine particles according to claim 1 or 2, wherein the biodegradable polyester resin is polylactic acid.
JP2007321393A 2007-12-12 2007-12-12 Method for producing porous fine particle comprising biodegradable polyester-based resin Pending JP2009144012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007321393A JP2009144012A (en) 2007-12-12 2007-12-12 Method for producing porous fine particle comprising biodegradable polyester-based resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007321393A JP2009144012A (en) 2007-12-12 2007-12-12 Method for producing porous fine particle comprising biodegradable polyester-based resin

Publications (1)

Publication Number Publication Date
JP2009144012A true JP2009144012A (en) 2009-07-02

Family

ID=40915006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007321393A Pending JP2009144012A (en) 2007-12-12 2007-12-12 Method for producing porous fine particle comprising biodegradable polyester-based resin

Country Status (1)

Country Link
JP (1) JP2009144012A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110225B2 (en) * 2011-01-31 2012-12-26 東レ株式会社 Method for producing polylactic acid resin fine particles, polylactic acid resin fine particles, and cosmetics using the same
JP2013527204A (en) * 2010-05-24 2013-06-27 マイクロ パウダーズ,インコーポレイテッド Composition comprising a biodegradable polymer for use in a cosmetic composition
WO2015037605A1 (en) 2013-09-10 2015-03-19 東洋製罐株式会社 Biodegradable resin composition having a porous structure and method for surface treatment of same
JP2015117309A (en) * 2013-12-18 2015-06-25 学校法人立教学院 Polylactic acid stereo complex composition porous body and manufacturing method thereof
WO2017056908A1 (en) * 2015-09-30 2017-04-06 積水化成品工業株式会社 Porous resin microparticles and manufacturing method for same
KR101942449B1 (en) * 2016-12-13 2019-01-28 주식회사 삼양바이오팜 Porous microparticles of biodegradable polymer, and polymeric filler comprising the same
WO2019022502A1 (en) * 2017-07-27 2019-01-31 주식회사 삼양바이오팜 Method for preparing biodegradable polymer microparticles, and biodegradable polymer microparticles prepared thereby
CN110753569A (en) * 2017-03-30 2020-02-04 博奥股份公司 Cosmetic composition comprising biodegradable polyester and oil phase
WO2020189485A1 (en) * 2019-03-15 2020-09-24 積水化成品工業株式会社 Biodegradable resin particles, biodegradable resin particle group comprising said particles, and use thereof
WO2023158251A1 (en) * 2022-02-17 2023-08-24 코오롱인더스트리(주) Biodegradable particles, manufacturing method thereof, and cosmetic composition comprising same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527204A (en) * 2010-05-24 2013-06-27 マイクロ パウダーズ,インコーポレイテッド Composition comprising a biodegradable polymer for use in a cosmetic composition
JP5110225B2 (en) * 2011-01-31 2012-12-26 東レ株式会社 Method for producing polylactic acid resin fine particles, polylactic acid resin fine particles, and cosmetics using the same
KR101382732B1 (en) * 2011-01-31 2014-04-08 도레이 카부시키가이샤 Method for producing microparticles of polylactic acid-based resin, microparticles of polylactic acid-based resin and cosmetic using same
WO2015037605A1 (en) 2013-09-10 2015-03-19 東洋製罐株式会社 Biodegradable resin composition having a porous structure and method for surface treatment of same
JP2015117309A (en) * 2013-12-18 2015-06-25 学校法人立教学院 Polylactic acid stereo complex composition porous body and manufacturing method thereof
CN108137822B (en) * 2015-09-30 2021-07-09 积水化成品工业株式会社 Porous resin fine particles and method for producing same
WO2017056908A1 (en) * 2015-09-30 2017-04-06 積水化成品工業株式会社 Porous resin microparticles and manufacturing method for same
CN108137822A (en) * 2015-09-30 2018-06-08 积水化成品工业株式会社 Porous resin microparticle and its manufacturing method
JPWO2017056908A1 (en) * 2015-09-30 2018-09-06 積水化成品工業株式会社 Porous resin fine particles and method for producing the same
US20180265663A1 (en) * 2015-09-30 2018-09-20 Sekisui Plastics Co., Ltd. Porous resin microparticles and manufacturing method for same
TWI612083B (en) * 2015-09-30 2018-01-21 積水化成品工業股份有限公司 Porous resin microparticle and method for producing the same
US11548995B2 (en) 2015-09-30 2023-01-10 Sekisui Plastics Co., Ltd. Porous resin microparticles and manufacturing method for same
KR101942449B1 (en) * 2016-12-13 2019-01-28 주식회사 삼양바이오팜 Porous microparticles of biodegradable polymer, and polymeric filler comprising the same
KR102259560B1 (en) * 2016-12-13 2021-06-03 주식회사 삼양홀딩스 Porous microparticles of biodegradable polymer, and polymeric filler comprising the same
US11406733B2 (en) 2016-12-13 2022-08-09 Samyang Holdings Corporation Porous microparticles of biodegradable polymer, and polymer filler comprising same
KR20190010692A (en) * 2016-12-13 2019-01-30 주식회사 삼양바이오팜 Porous microparticles of biodegradable polymer, and polymeric filler comprising the same
CN110753569A (en) * 2017-03-30 2020-02-04 博奥股份公司 Cosmetic composition comprising biodegradable polyester and oil phase
KR20190013552A (en) * 2017-07-27 2019-02-11 주식회사 삼양바이오팜 Process for preparing microparticles of biodegradable polymer and microparticles of biodegradable polymer prepared therefrom
KR102156646B1 (en) 2017-07-27 2020-09-16 주식회사 삼양바이오팜 Process for preparing microparticles of biodegradable polymer and microparticles of biodegradable polymer prepared therefrom
WO2019022502A1 (en) * 2017-07-27 2019-01-31 주식회사 삼양바이오팜 Method for preparing biodegradable polymer microparticles, and biodegradable polymer microparticles prepared thereby
WO2020189485A1 (en) * 2019-03-15 2020-09-24 積水化成品工業株式会社 Biodegradable resin particles, biodegradable resin particle group comprising said particles, and use thereof
JPWO2020189485A1 (en) * 2019-03-15 2021-12-02 積水化成品工業株式会社 Biodegradable resin particles, biodegradable resin particles containing the particles, and their uses.
JP7197681B2 (en) 2019-03-15 2022-12-27 積水化成品工業株式会社 Biodegradable resin particles, biodegradable resin particle group containing the particles, and uses thereof
WO2023158251A1 (en) * 2022-02-17 2023-08-24 코오롱인더스트리(주) Biodegradable particles, manufacturing method thereof, and cosmetic composition comprising same

Similar Documents

Publication Publication Date Title
JP2009144012A (en) Method for producing porous fine particle comprising biodegradable polyester-based resin
Ferreira et al. How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: A comprehensive review
JP5763402B2 (en) Biodegradable aliphatic polyester particles and method for producing the same
Goffin et al. From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites
Bellani et al. Morphological, thermal, and mechanical properties of poly (ε‐caprolactone)/poly (ε‐caprolactone)‐grafted‐cellulose nanocrystals mats produced by electrospinning
JP4243292B2 (en) Ultra-fine polylactic acid fiber, fiber structure, and production method thereof
JP2009114448A (en) Method of preparing degradable material and method of use in subterranean formation
JP4910270B2 (en) Foam and production method thereof
JP5119432B2 (en) Microfibrillated cellulose-containing resin molding with improved strength
KR20130089159A (en) Polylactic acid film
JP6365811B2 (en) Biodegradable resin composition having porous structure and surface treatment method thereof
JPWO2012029710A1 (en) Nanofiber excellent in biodegradability and biocompatibility and method for producing the same
JP4570855B2 (en) Biodegradable polyester resin fine particles and method for producing the same
JP2017504707A (en) Method for producing polydioxanone particles for filler
CN113292832A (en) Polylactic acid foaming composite material and preparation method and application thereof
CN110945058A (en) Method for preparing biodegradable polymer microparticles and biodegradable polymer microparticles prepared thereby
JP2009072113A (en) Agricultural mulching film
CN1204195C (en) Method for improving elasticity modulus of biodegradable resin compsn.
JP2009029757A (en) Depolymerization method of polylactic acid
JP3430125B2 (en) Aliphatic polyester composition for masterbatch and method for producing aliphatic polyester film using the composition
JP2005008733A (en) Polylactic acid resin aqueous dispersion and manufacturing method therefor
JP7014528B2 (en) Biodegradable resin particles
KR20180060646A (en) Organic zinc catalyst, preparation method of the catalyst and production method of poly(alkylene carbonate) resin over the catalyst
CN116867566A (en) Cellulose-based thermally expandable microspheres
WO2012012064A1 (en) Processes for producing thermostable polyhydroxyalkanoate and products produced therefrom