JP2009143771A - Method of manufacturing optical element, apparatus for manufacturing optical element - Google Patents

Method of manufacturing optical element, apparatus for manufacturing optical element Download PDF

Info

Publication number
JP2009143771A
JP2009143771A JP2007323493A JP2007323493A JP2009143771A JP 2009143771 A JP2009143771 A JP 2009143771A JP 2007323493 A JP2007323493 A JP 2007323493A JP 2007323493 A JP2007323493 A JP 2007323493A JP 2009143771 A JP2009143771 A JP 2009143771A
Authority
JP
Japan
Prior art keywords
optical element
diameter portion
temperature
regulating member
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007323493A
Other languages
Japanese (ja)
Other versions
JP4948378B2 (en
Inventor
Onori Honshi
大典 本司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007323493A priority Critical patent/JP4948378B2/en
Publication of JP2009143771A publication Critical patent/JP2009143771A/en
Application granted granted Critical
Publication of JP4948378B2 publication Critical patent/JP4948378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To surely release an optical element from a mold without complicating the structure of a molding mechanism. <P>SOLUTION: An interference part comprising a step formed by a large radial part 1b and a small radial part 1c on the outer circumference of the optical element 1a when being molded, by constituting a part of a molding space of the molding surface together with the molding surfaces of an upper mold 2 and lower mold 3, and by providing a different radial part 5a comprising a small projection part 5b and a large radial part 5c on the inner circumference surface of an outer circumference regulating member 5 creating the outer circumferential form of the optical element 1a. The outer circumference regulating member 5 has a linear expansion coefficient smaller than that of the optical element 1a, and its projection height of the small radial 5b from the large radial part 5c is set so that the inner diameter of the small radial projection part 5b is made to be the same as the outer diameter of the large radial part 1b of the optical element 1a, at the critical temperature lower than the molding temperature, and also when the upper mold 2 is released at a temperature higher than the critical temperature, the optical element 1a is surely held by the outer circumference regulating member 5 to perform sure mold release, thereby the take-out of the optical element 1a is made possible at a temperature lower than the critical temperature. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光学素子の製造技術に関し、たとえば、ガラス等の熱可塑性素材の型成形によって光学素子を得る技術に関する。   The present invention relates to a technique for manufacturing an optical element, for example, a technique for obtaining an optical element by molding a thermoplastic material such as glass.

たとえば、レンズ等の光学素子の製造技術として、光学ガラスの加熱成形による製造技術が知られている。
すなわち、対向する成形型の成形面の間で、成形温度に加熱されたガラス素材を挟圧することで、成形面の形状をガラス素材に転写して、所望の光学機能面を有する光学素子を製造するものである。
For example, as a technique for manufacturing an optical element such as a lens, a technique for manufacturing optical glass by heat molding is known.
That is, a glass material heated to a molding temperature is sandwiched between molding surfaces of opposing molds, whereby the shape of the molding surface is transferred to the glass material to produce an optical element having a desired optical function surface. To do.

ところで、このような光学素子の型成形においては、通常、成形型の成形面は鏡面加工等で高度に平坦化されているため、成形直後には、光学素子の表面(光学機能面)と成形型の成形面とが密着した状態となっている。   By the way, in the molding of such an optical element, since the molding surface of the molding die is usually highly flattened by mirror finishing or the like, immediately after molding, the surface of the optical element (optical functional surface) and molding are performed. The molding surface of the mold is in close contact.

このため、成形型から光学素子が剥離せず、容易に取り出せない場合がある。例えば、凹メニスカスレンズの成形では、ガラスの収縮により凹面側が凸形状の成形型に貼り付いてしまう。   For this reason, the optical element may not peel from the mold and may not be easily removed. For example, in molding of a concave meniscus lens, the concave surface side sticks to a convex mold due to shrinkage of glass.

この対策として、特許文献1では、上型および下型の対向部を取り囲むように配置され、光学素子の外周形状を規定するリング部材の、上型の変位方向における変位を規制する離型アームを配置し、上型が成形位置から後退する離型動作時におけるリング部材の変位を離型アームで規制し、当該リング部材と一体な光学素子を上型から確実に離脱させる構成が開示されている。   As a countermeasure, in Patent Document 1, a release arm that restricts the displacement in the displacement direction of the upper die of a ring member that is disposed so as to surround the opposing portions of the upper die and the lower die and that defines the outer peripheral shape of the optical element. A configuration is disclosed in which the displacement of the ring member during the releasing operation in which the upper die is retracted from the molding position is regulated by the release arm, and the optical element integrated with the ring member is reliably detached from the upper die. .

また、特許文献2には、上型および下型の対向部の周囲に、ガラスレンズの外周部を創成する下リングと、この下リングと上型の間隙に入り込むとともに、上型およびスリーブに連動する小径の上リングを配置し、成形後のガラスレンズと上型の剥離に際して、当該ガラスレンズの外周上面を上リングで固定することにより、ガラスレンズからの上型の離型が確実に行われるようにした構成が開示されている。   Further, Patent Document 2 describes a lower ring that creates an outer peripheral portion of a glass lens around an opposing portion of the upper die and the lower die, and enters a gap between the lower ring and the upper die, and interlocks with the upper die and the sleeve. The upper ring from the glass lens is surely released by fixing the outer peripheral upper surface of the glass lens with the upper ring at the time of peeling the glass lens after molding and the upper mold. Such a configuration is disclosed.

しかしながら、上述の特許文献1および特許文献2のいずれの場合も、光学素子の外周形状を規定する部材の他に、離型アームや上リング等の余分な機構を配置する必要があり、成形装置の機構が複雑になる、という技術的課題がある。   However, in both cases of Patent Document 1 and Patent Document 2 described above, it is necessary to dispose extra mechanisms such as a release arm and an upper ring in addition to the members that define the outer peripheral shape of the optical element. There is a technical problem that the mechanism is complicated.

さらに、特許文献2の場合には、上リングおよびスリーブの全体を、上型とともに退避させて下型を露出させてからガラスレンズの取り出しを行う必要があり、成形装置の構成は一層大掛かりになる。また、スリーブを不動にした場合は、上リングの存在によって、光学素子の取り出しが困難となる、という技術的課題もある。
特開2002−179429号公報 特開2007−31213号公報
Furthermore, in the case of Patent Document 2, it is necessary to take out the glass lens after the entire upper ring and sleeve are retracted together with the upper mold to expose the lower mold, and the configuration of the molding apparatus becomes larger. . Further, when the sleeve is fixed, there is a technical problem that it is difficult to take out the optical element due to the presence of the upper ring.
JP 2002-179429 A JP 2007-31213 A

本発明の目的は、成形機構の構造を複雑化することなく、確実に成形型からの光学素子の離型を行うことが可能な光学素子の製造技術を提供することにある。   An object of the present invention is to provide an optical element manufacturing technique capable of reliably releasing an optical element from a mold without complicating the structure of a molding mechanism.

本発明の第1の観点は、型成形によって熱可塑性素材から成形される光学素子の外周形状を創生する外周規制部材の内周に、温度変化に応じて、前記光学素子の外周部との干渉状態が変化する異径部を形成する光学素子の製造方法を提供する。   According to a first aspect of the present invention, an inner periphery of an outer periphery regulating member that creates an outer periphery shape of an optical element molded from a thermoplastic material by molding is formed with an outer peripheral portion of the optical element according to a temperature change. Provided is a method of manufacturing an optical element that forms a different diameter portion in which an interference state changes.

本発明の第2の観点は、第1および第2成形型と外周規制部材とで構成される成形空間に熱可塑性素材を充填して光学素子を得る光学素子の製造方法であって、
前記熱可塑性素材よりも線膨張係数の小さな前記外周規制部材の内周に異径部を設ける光学素子の製造方法を提供する。
According to a second aspect of the present invention, there is provided an optical element manufacturing method for obtaining an optical element by filling a thermoplastic material into a molding space constituted by first and second molding dies and an outer periphery regulating member.
Provided is a method for manufacturing an optical element in which a different diameter portion is provided on the inner periphery of the outer periphery regulating member having a smaller linear expansion coefficient than the thermoplastic material.

本発明の第3の観点は、対向する第1および第2成形型と、
前記第1および第2成形型とともに熱可塑性素材の成形空間を構成する外周規制部材と、を含み、
前記外周規制部材は、前記熱可塑性素材よりも線膨張係数が小さく、内周部に異径部を備えた光学素子の製造装置を提供する。
According to a third aspect of the present invention, there are opposed first and second molds,
An outer periphery regulating member that constitutes a molding space for the thermoplastic material together with the first and second molding dies,
The outer periphery regulating member has a linear expansion coefficient smaller than that of the thermoplastic material, and provides an optical element manufacturing apparatus having an inner diameter portion with a different diameter portion.

本発明によれば、成形機構の構造を複雑化することなく、確実に成形型からの光学素子の離型を行うことが可能な光学素子の製造技術を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing technology of the optical element which can perform the mold release of the optical element from a shaping | molding die reliably without complicating the structure of a shaping | molding mechanism can be provided.

本発明の実施の形態では、たとえば、ガラス素材から成形される光学素子を容易且つ確実に成形型から剥離させる目的で、光学素子の外周形状を創生する外周部規制材の一部を、形状創生部材に対して、成形型の間隔を広げる離型工程では干渉し、光学素子を取り出す取り出し工程では干渉しない突起形状にする。すなわち、外周規制部材の線膨張係数をガラス素材よりも小さく設定し、光学素子と外周部規制材の温度による収縮量の違いを利用して干渉を制御する。   In the embodiment of the present invention, for example, for the purpose of easily and surely peeling an optical element molded from a glass material from a mold, a part of the outer peripheral portion regulating material that creates the outer peripheral shape of the optical element is shaped. The forming member has a protruding shape that interferes with the mold release step that widens the distance between the molds and does not interfere with the removal step that takes out the optical element. That is, the linear expansion coefficient of the outer periphery regulating member is set to be smaller than that of the glass material, and interference is controlled using the difference in shrinkage due to the temperature of the optical element and the outer periphery regulating member.

より具体的には、一例として、光学素子の外周部を創生する外周規制部材の内周部に突起部や凹溝等の異径部を設け、熱膨張率の違いによって、この異径部と成形後の光学素子の外周部とを干渉させることで剥離を実現させる。   More specifically, as an example, a different diameter portion such as a protrusion or a groove is provided on the inner peripheral portion of the outer periphery regulating member that creates the outer peripheral portion of the optical element. Is made to interfere with the outer peripheral portion of the optical element after molding.

異径部は、離型工程では光学素子に干渉して、成形型から光学素子を剥離させ、取り出し工程では、収縮量の違いから光学素子は突起部に干渉せずに取り出せる。
以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
The different diameter part interferes with the optical element in the mold release step to peel the optical element from the mold, and in the take-out step, the optical element can be taken out without interfering with the protrusion due to the difference in shrinkage.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1は、本発明の一実施の形態である光学素子の製造方法を実施する製造装置の構成の一例を示す略断面図、図2は、本実施の形態の製造装置で用いられる外周規制部材の構成の一例を示す略断面、図3は、本実施の形態の製造装置の動作を示す略断面図、図4A、図4B、図5A、図5B、図6A、図6B、は、本実施の形態の作用の一例を工程順に例示した略断面図である。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing an example of a configuration of a manufacturing apparatus that performs an optical element manufacturing method according to an embodiment of the present invention, and FIG. 2 shows an outer periphery regulating member used in the manufacturing apparatus of the present embodiment. FIG. 3 is a schematic cross-sectional view showing an operation of the manufacturing apparatus according to the present embodiment, and FIGS. 4A, 4B, 5A, 5B, 6A, and 6B are shown in FIG. It is the schematic sectional drawing which illustrated an example of an operation of this form in order of a process.

図1に例示されるように、本実施の形態の製造装置Mは、上型2、下型3およびスリーブ4、外周規制部材5からなる成形型ユニットUと、成形炉8、ベース9、赤外線ヒーター6、加圧軸7を備えている。   As illustrated in FIG. 1, the manufacturing apparatus M according to the present embodiment includes a mold unit U including an upper mold 2, a lower mold 3 and a sleeve 4, and an outer periphery regulating member 5, a molding furnace 8, a base 9, and infrared rays. A heater 6 and a pressure shaft 7 are provided.

成形型ユニットUは、筒状のスリーブ4の内部で下型3および上型2が各々の成形面3aおよび成形面2aが軸方向に対向するように配置されている。
成形型ユニットUのスリーブ4および下型3は、ベース9に載置され、上型2は、背面に接続された加圧軸7によって上下方向に駆動される。
In the molding die unit U, the lower die 3 and the upper die 2 are arranged in the cylindrical sleeve 4 so that the molding surfaces 3a and 2a face each other in the axial direction.
The sleeve 4 and the lower mold 3 of the mold unit U are placed on the base 9, and the upper mold 2 is driven in the vertical direction by a pressure shaft 7 connected to the back surface.

成形型ユニットUの全体は、ベース9に密着して密閉空間を構成する成形炉8の内部に収容され、成形炉8の外部に設けられた赤外線ヒーター6によって所望の成形温度に加熱される。   The entire molding die unit U is housed in a molding furnace 8 that is in close contact with the base 9 and forms a sealed space, and is heated to a desired molding temperature by an infrared heater 6 provided outside the molding furnace 8.

なお、必要に応じて、成形型ユニットUが収容される成形炉8の内部を不活性ガスで置換したり、真空排気してもよい。
この場合、スリーブ4の底部に配置された下型3の成形面3aの周囲には、リング状の外周規制部材5が固定状態で配置されている。
If necessary, the inside of the molding furnace 8 in which the mold unit U is accommodated may be replaced with an inert gas or evacuated.
In this case, a ring-shaped outer periphery regulating member 5 is disposed in a fixed state around the molding surface 3 a of the lower mold 3 disposed at the bottom of the sleeve 4.

図2に例示されるように、この外周規制部材5の内周部には、下型3の成形面3aの外周径とほぼ等しい大内径W2の大径部5cと、このW2よりも小さい小内径W1の小径突起部5bが同軸に形成された異径部5aが設けられている。   As illustrated in FIG. 2, the inner peripheral portion of the outer periphery regulating member 5 includes a large diameter portion 5 c having a large inner diameter W 2 that is substantially equal to the outer peripheral diameter of the molding surface 3 a of the lower mold 3, and a small diameter smaller than W 2. A different-diameter portion 5a in which a small-diameter projection 5b having an inner diameter W1 is formed coaxially is provided.

なお、異径部5aの小径突起部5bは、外周規制部材5の内周の全周にわたって連続して突設された突起部でもよいし、周方向に間欠的に、たとえば、外周規制部材5の軸の回りに回転対称に配置された突起でもよい。   In addition, the small diameter protrusion part 5b of the different diameter part 5a may be a protrusion part continuously provided over the entire inner periphery of the outer periphery restricting member 5, or intermittently in the circumferential direction, for example, the outer periphery restricting member 5 Protrusions arranged in a rotationally symmetrical manner around the axis may be used.

この外周規制部材5の異径部5aは、後述のガラス素材1の成形時には、下型3の成形面3aおよび上型2の成形面2aとともに成形空間(キャビティ)を構成し、ガラス素材1から成形される光学素子1aの外周形状を創成する。   The different diameter portion 5a of the outer periphery regulating member 5 constitutes a molding space (cavity) together with the molding surface 3a of the lower mold 3 and the molding surface 2a of the upper mold 2 when the glass material 1 described later is molded. The outer peripheral shape of the optical element 1a to be molded is created.

この場合、外周規制部材5の線膨張係数αbは、光学素子1aの線膨張係数αgよりも小さい材料で構成され、後述の成形温度Tmよりも低い臨界温度Tcで、小径突起部5bの内径と光学素子1aの大径部1bの外径が等しくなるように小径突起部5bの大径部5cからの突出高さ(すなわち、小内径W1と大内径W2の差)が設定されている。   In this case, the linear expansion coefficient αb of the outer periphery regulating member 5 is made of a material smaller than the linear expansion coefficient αg of the optical element 1a, and has a critical temperature Tc lower than a molding temperature Tm described later, and the inner diameter of the small-diameter protrusion 5b. The protruding height of the small-diameter protrusion 5b from the large-diameter portion 5c (that is, the difference between the small inner diameter W1 and the large inner diameter W2) is set so that the outer diameter of the large-diameter portion 1b of the optical element 1a becomes equal.

これにより、臨界温度Tcよりも高い温度で上型2の離型を行う際には、光学素子1aの大径部1bが外周規制部材5の異径部5aに干渉して確実な離型が行われ、臨界温度Tcよりも低い温度では、外周規制部材5からの光学素子1aの取り出しを可能にしている。   As a result, when the upper mold 2 is released at a temperature higher than the critical temperature Tc, the large-diameter portion 1b of the optical element 1a interferes with the different-diameter portion 5a of the outer periphery regulating member 5 to ensure reliable release. At a temperature lower than the critical temperature Tc, the optical element 1a can be taken out from the outer periphery regulating member 5.

なお、外周規制部材5の異径部5aにおいて、小径突起部5bと大径部5cは90°の階段状の段差をなしているが、小径突起部5bと大径部5cの境界部を滑らかなテーパ面にしてもよい。   In the different diameter portion 5a of the outer periphery regulating member 5, the small diameter protrusion portion 5b and the large diameter portion 5c form a stepped step of 90 °, but the boundary between the small diameter protrusion portion 5b and the large diameter portion 5c is smooth. A tapered surface may be used.

本実施の形態の場合には、一例として、下型3の成形面3aは凹面からなり、上型2の成形面2aは凸面からなり、ガラス素材1からメニスカス型の凹レンズを光学素子1aとして成形する場合を例示する。   In the present embodiment, as an example, the molding surface 3a of the lower mold 3 is a concave surface, the molding surface 2a of the upper mold 2 is a convex surface, and a meniscus concave lens is molded from the glass material 1 as an optical element 1a. The case where it does is illustrated.

以下、本実施の形態の作用について説明する。
まず、図1に例示されるように、上型2がスリーブ4から上方に退避して開放された成形型ユニットUの下型3の上に、ガラス転移点Tgのガラス素材1を投入する。
Hereinafter, the operation of the present embodiment will be described.
First, as illustrated in FIG. 1, the glass material 1 having a glass transition point Tg is placed on the lower mold 3 of the mold unit U in which the upper mold 2 is opened upward by retracting from the sleeve 4.

(ステップ101) そして、赤外線ヒーター6により、成形可能な温度(Tg+20℃)までガラス素材1を加熱する。
(ステップ102) 次に、図3および図4A、図4Bに例示されるように、加圧軸7によって上型2をスリーブ4に圧入し、加熱された状態のガラス素材1を、下型3の成形面3aと上型2の成形面2aの間で加圧し、成形面3aと成形面2aとの距離、すなわち、ガラス素材1から成形される光学素子1aの光軸部分での厚さ寸法が所望の値となるまで変形させる。
(Step 101) And the glass raw material 1 is heated with the infrared heater 6 to the temperature (Tg + 20 degreeC) which can be shape | molded.
(Step 102) Next, as illustrated in FIG. 3, FIG. 4A, and FIG. 4B, the upper mold 2 is press-fitted into the sleeve 4 by the pressure shaft 7, and the glass material 1 in a heated state is replaced with the lower mold 3. Is pressed between the molding surface 3a of the upper mold 2 and the molding surface 2a of the upper mold 2, and the distance between the molding surface 3a and the molding surface 2a, that is, the thickness dimension of the optical element 1a molded from the glass material 1 at the optical axis portion. Until the value reaches a desired value.

これにより、上型2の成形面2aが光学機能面1dとして転写され、下型3の成形面3aが光学機能面1eとして転写された光学素子1aが成形される。
また、この際、図4Bのように、ガラス素材1は外周規制部材5の異径部5aに接するまで流動し、異径部5aの形状が、成形された光学素子1a(光学機能面1e)の外周部に転写される。
Thereby, the molding surface 2a of the upper mold 2 is transferred as the optical function surface 1d, and the optical element 1a having the molding surface 3a of the lower mold 3 transferred as the optical function surface 1e is molded.
At this time, as shown in FIG. 4B, the glass material 1 flows until it comes into contact with the different diameter portion 5a of the outer periphery regulating member 5, and the shape of the different diameter portion 5a is the molded optical element 1a (optical function surface 1e). Is transferred to the outer periphery of the.

すなわち、成形後の光学素子1aの外周部には、異径部5aの大径部5c(成形時大径部寸法W2m)に対応した大径部1b(成形時干渉部寸法Gm)と、小径突起部5b(成形時突起部寸法W1m)に対応した小径部1cが形成される。   That is, the outer peripheral portion of the optical element 1a after molding has a large-diameter portion 1b (interference portion size Gm during molding) corresponding to a large-diameter portion 5c of the different-diameter portion 5a (large-diameter portion dimension W2m during molding) and a small diameter. A small-diameter portion 1c corresponding to the protrusion 5b (projection dimension W1m at the time of molding) is formed.

(ステップ103) その後、ガラス素材1から成形された光学素子1aを成形型ユニットUの中で転移点以下(Tg−10℃)の離型温度Ts(>臨界温度Tc)まで冷却する。このとき、必要に応じて、加圧軸7から上型2に荷重を掛けて、冷却中の光学素子1aを一定の荷重で押圧してもよい。   (Step 103) Then, the optical element 1a molded from the glass material 1 is cooled in the mold unit U to a release temperature Ts (> critical temperature Tc) below the transition point (Tg-10 ° C.). At this time, if necessary, a load may be applied to the upper mold 2 from the pressing shaft 7 to press the optical element 1a being cooled with a constant load.

(ステップ104) 次に、離型温度Tsで図5Aおよび図5Bに例示されるように、上型2を上昇させて下型3から上型2を離間させる離型動作を行う。
この時、離型温度Ts>臨界温度Tcであるため、離型時突起部寸法W1s<離型時干渉部寸法Gsとなり、光学素子1aの外周部の大径部1bが、外周規制部材5の異径部5aの小径突起部5b(突起部)に干渉して下型3および外周規制部材5の側に固定された状態となり、上昇する上型2の成形面2aが、光学素子1aの光学機能面1dから剥離させられる。
(Step 104) Next, as illustrated in FIG. 5A and FIG. 5B at the mold release temperature Ts, a mold release operation for raising the upper mold 2 and separating the upper mold 2 from the lower mold 3 is performed.
At this time, since the mold release temperature Ts> the critical temperature Tc, the mold release protrusion dimension W1s <the mold release interference part dimension Gs, and the large diameter part 1b of the outer peripheral part of the optical element 1a is The molding surface 2a of the upper die 2 that rises by interfering with the small-diameter projection 5b (projection) of the different-diameter portion 5a and being fixed to the lower die 3 and the outer circumference regulating member 5 is the optical element 1a. It is made to peel from the functional surface 1d.

(ステップ105) その後、さらに、取り出し可能な温度(取り出し温度Te(<臨界温度Tc))まで冷却する。この時、図6Aおよび図6Bに例示されるように、外周規制部材5よりも熱収縮の大きな光学素子1aの大径部1bの外径(取り出し時干渉部寸法Ge)は、外周規制部材5の内径(取り出し時突起部寸法W1e)よりも小さくなる。   (Step 105) Thereafter, the temperature is further cooled to a temperature at which extraction is possible (extraction temperature Te (<critical temperature Tc)). At this time, as illustrated in FIGS. 6A and 6B, the outer diameter (interference part dimension Ge at the time of extraction) of the large-diameter portion 1 b of the optical element 1 a that is larger in thermal contraction than the outer periphery restricting member 5 is the outer periphery restricting member 5. Smaller than the inner diameter (projection dimension W1e at the time of removal).

(ステップ106) そして、光学素子1aを成形型ユニットUの下型3から取り出す。
その際、上述のように、光学素子1aの外径(取り出し時干渉部寸法Ge)は外周規制部材5の異径部5aにおける小径突起部5b(突起部)の取り出し時突起部寸法W1eより小さいため、外周規制部材5に干渉することなく、光学素子1aを、下型3から取り出すことが出来る。
(Step 106) Then, the optical element 1a is taken out from the lower mold 3 of the mold unit U.
At this time, as described above, the outer diameter of the optical element 1a (interference part dimension Ge when taking out) is smaller than the projection part dimension W1e when taking out the small-diameter protrusion part 5b (protrusion part) in the different diameter part 5a of the outer periphery regulating member 5. Therefore, the optical element 1 a can be taken out from the lower mold 3 without interfering with the outer periphery regulating member 5.

以下に、上述の寸法や物性値に関する具体的な値を設定した例を説明する。
ガラス素材1の外径φ18.8mmとし、硝材として、ガラス転移点Tgが506℃のものを用いる。
Below, the example which set the specific value regarding the above-mentioned dimension and physical-property value is demonstrated.
A glass material 1 having an outer diameter of φ18.8 mm and a glass material having a glass transition point Tg of 506 ° C. is used.

また、成形品としての光学素子1aは、光軸部分での肉厚が2mm、光学機能面1dおよび光学機能面1eの有効径範囲φ25mm、外径φ30mmの凹メニスカスレンズである。   The optical element 1a as a molded article is a concave meniscus lens having a thickness of 2 mm at the optical axis portion, an effective diameter range φ25 mm of the optical function surface 1d and the optical function surface 1e, and an outer diameter φ30 mm.

光学素子1aの全体の体積は、5376mm、大径部1bの外径G(成形時干渉部寸法Gm、離型時干渉部寸法Gs、取り出し時干渉部寸法Ge)とする。
また、ガラス素材1(光学素子1a)の硝材の線膨張係数αgは、7.2×10−6、とする。
The total volume of the optical element 1a is 5376 mm 3 , and the outer diameter G of the large-diameter portion 1b (molding interference portion dimension Gm, mold release interference portion dimension Gs, take-out interference portion dimension Ge).
Further, the linear expansion coefficient αg of the glass material 1 (optical element 1a) is set to 7.2 × 10 −6 .

一方、外周規制部材5は、異径部5aの小径突起部5bの小内径W1がφ29.990mm(25℃時)、大径部5cの大内径W2がφ30.000mm(25℃時)、線膨張係数αbが、4.8×10−6、である。 On the other hand, the outer periphery regulating member 5 has a small inner diameter W1 of the small diameter protrusion 5b of the different diameter portion 5a of φ29.990 mm (at 25 ° C.), a large inner diameter W2 of the large diameter portion 5c of φ30.000 mm (at 25 ° C.), The expansion coefficient αb is 4.8 × 10 −6 .

また、成形温度Tmが526℃、離型動作温度Tsが496℃、取り出し温度Teが100℃である。
上述のステップ101およびステップ102のように、ガラス素材1を成形温度まで加熱し、上型2および下型3によって所望の肉厚まで変形させる。
Further, the molding temperature Tm is 526 ° C., the mold release operating temperature Ts is 496 ° C., and the take-out temperature Te is 100 ° C.
As in Step 101 and Step 102 described above, the glass material 1 is heated to the molding temperature, and is deformed to a desired thickness by the upper mold 2 and the lower mold 3.

そのときの突起部の成形時突起部寸法W1mは、次式(1)で示される
W1m=(1+αb×(Tm−25))×W1 ……(1)
の関係から、W1m=30.062mm、となる。
The projection size W1m at the time of forming the projection is expressed by the following equation (1): W1m = (1 + αb × (Tm−25)) × W1 (1)
From this relationship, W1m = 30.062 mm.

同様に成形時大径部寸法W2mは、次式(2)で示される、
W2m=(1+αb×(Tm−25))×W2 ……(2)
の関係から、W2m=30.072mm、となる。
Similarly, the large diameter portion dimension W2m at the time of molding is represented by the following formula (2).
W2m = (1 + αb × (Tm−25)) × W2 (2)
From this relationship, W2m = 30.072 mm.

このとき、光学素子1aの大径部1bは、外周規制部材5の、大径部5c(W2m)が転写されるため、Gm=W2m=30.072mm、となる。
上述のステップ103で離型動作温度Tsまで冷却し、ステップ104で離型動作を行う。
At this time, the large diameter portion 1b of the optical element 1a is Gm = W2m = 30.072 mm because the large diameter portion 5c (W2m) of the outer periphery regulating member 5 is transferred.
In step 103 described above, the mold is cooled to the release operation temperature Ts, and in step 104, the release operation is performed.

このときの、外周規制部材5における小径突起部5b(突起部)の寸法は、次式(3)で示される、
W1s=(1+αb×(Tm−Ts))×W1m ……(3)
の関係から、W1s=30.058mm、となる。
At this time, the dimension of the small-diameter protrusion 5b (protrusion) in the outer periphery regulating member 5 is expressed by the following equation (3).
W1s = (1 + αb × (Tm−Ts)) × W1m (3)
From this relationship, W1s = 30.58 mm.

成形後の光学素子1aの大径部1bの寸法は、次式(4)で示される、
Gs=(1+αg×(Tm−Ts))×Gm ……(4)
の関係から、Gs=30.066mm、である。
The dimension of the large diameter portion 1b of the optical element 1a after molding is expressed by the following equation (4).
Gs = (1 + αg × (Tm−Ts)) × Gm (4)
Therefore, Gs = 30.066 mm.

このとき、W1s<Gs、となるため、光学素子1aは、上型2の離型動作の際に、外周規制部材5と干渉して、光学機能面1dを上型2の成形面2aから面から確実に剥離させることが可能となる。   At this time, since W1s <Gs, the optical element 1a interferes with the outer periphery regulating member 5 during the mold release operation of the upper mold 2, and the optical function surface 1d is surfaced from the molding surface 2a of the upper mold 2. Can be reliably peeled off.

上述のステップ105で冷却し、ステップ106で成形型ユニットUからの光学素子1aの取り出しを行う。
このときの外周規制部材5における異径部5aの突起部の寸法は、次式(5)で示される、
W1e=(1+αb×(Ts−25))×W1 ……(5)
の関係から、W1e=30.004mm、となる。
Cooling is performed in step 105 described above, and the optical element 1a is removed from the mold unit U in step 106.
The dimension of the protrusion part of the different diameter part 5a in the outer periphery control member 5 at this time is shown by following Formula (5).
W1e = (1 + αb × (Ts−25)) × W1 (5)
From this relationship, W1e = 30.004 mm.

一方、光学素子1aの大径部1bの寸法は、次式(6)で示される、
Ge=(1+αg×(Tm−Te))×Gm ……(6)
の関係から、Ge=29.980mm、となる。
On the other hand, the dimension of the large diameter portion 1b of the optical element 1a is expressed by the following equation (6).
Ge = (1 + αg × (Tm−Te)) × Gm (6)
From this relationship, Ge = 29.980 mm.

このとき、W1e>Geとなるため、光学素子1aは外周規制部材5に干渉せずに、成形型ユニットUから外部に取り出すことが可能である。
この場合の臨界温度Tc、すなわち、外周規制部材5の異径部5aの小径突起部5bの寸法と、異径部5aの大径部5cが転写された光学素子1aの大径部1bの寸法が等しくなる温度は、以下のようになる。
At this time, since W1e> Ge, the optical element 1a can be taken out from the mold unit U without interfering with the outer periphery regulating member 5.
In this case, the critical temperature Tc, that is, the size of the small-diameter protrusion 5b of the different-diameter portion 5a of the outer periphery regulating member 5, and the size of the large-diameter portion 1b of the optical element 1a to which the large-diameter portion 5c of the different-diameter portion 5a is transferred. The temperatures at which are equal are:

すなわち、この臨界温度Tcでの小径突起部5bの寸法W1cは、次式(7)で示されるように、
W1c=(1+αb×(Tm−Tc))×W1m ……(7)
で求められる。
That is, the dimension W1c of the small diameter protrusion 5b at the critical temperature Tc is expressed by the following equation (7):
W1c = (1 + αb × (Tm−Tc)) × W1m (7)
Is required.

同じく臨界温度Tcでの光学素子1aの大径部1bの寸法Gcは、次式(8)で示されるように、
Gc=(1+αg×(Tm−Tc))×Gm ……(8)
で表される。
Similarly, the dimension Gc of the large diameter portion 1b of the optical element 1a at the critical temperature Tc is expressed by the following equation (8):
Gc = (1 + αg × (Tm−Tc)) × Gm (8)
It is represented by

そして、臨界温度Tcでは、W1c=Gcであることから、次式(9)で示されるように、
(1+αb×(Tm−Tc))×W1m =(1+αg×(Tm−Tc))×Gm ……(9)
が成立する。
At the critical temperature Tc, since W1c = Gc, as shown by the following equation (9):
(1 + αb × (Tm−Tc)) × W1m = (1 + αg × (Tm−Tc)) × Gm (9)
Is established.

W1m,Gm,Tm,αb,αgが既知であることから、この式(9)を解いて、Tc=388℃、が得られる。また、この時、W1c=Gc=30.042mmとなる。
図7は、上述の本実施の形態の製造装置Mによる成形工程での温度プロファイルを示す線図である。
Since W1m, Gm, Tm, αb, and αg are known, Tc = 388 ° C. is obtained by solving this equation (9). At this time, W1c = Gc = 30.042 mm.
FIG. 7 is a diagram showing a temperature profile in the molding process by the manufacturing apparatus M of the present embodiment described above.

上述の成形温度Tm、離型動作温度Ts、臨界温度Tc、取り出し温度Teが、温度プロファイル内にプロットされている。
この図7に例示されるように、本実施の形態の場合には、離型動作は離型動作温度Tsが、Tm>Ts>Tcの間で行われる。
The molding temperature Tm, the mold release operating temperature Ts, the critical temperature Tc, and the take-out temperature Te are plotted in the temperature profile.
As illustrated in FIG. 7, in the case of the present embodiment, the release operation is performed at a release operation temperature Ts between Tm>Ts> Tc.

離型動作温度Tsの設定をより詳しく検討すると、以下のようになる。
すなわち、離型動作温度Tsを、Tm>Ts>Tcのように設定した場合には、光学素子1aから上型2を確実に離型させるという最低限の効果が得られる。
A more detailed examination of the setting of the mold release operating temperature Ts is as follows.
That is, when the mold release operating temperature Ts is set such that Tm>Ts> Tc, the minimum effect of reliably releasing the upper mold 2 from the optical element 1a is obtained.

また、より望ましい温度範囲として、Tg≧Ts≧(Tg−200℃)のように設定することもできる。この場合には、光学素子1aの形状精度及び外観品質を維持することができる、という効果がさらに得られる。   Further, a more desirable temperature range can be set such that Tg ≧ Ts ≧ (Tg−200 ° C.). In this case, the effect that the shape accuracy and appearance quality of the optical element 1a can be maintained is further obtained.

また、さらに望ましい温度範囲として、(Tg−10℃)≧Ts≧(Tg−100℃)に設定することもできる。この場合には、光学素子1aの形状精度及び外観品質をさらに良く維持できる、という効果が得られる。   Further, as a more desirable temperature range, (Tg−10 ° C.) ≧ Ts ≧ (Tg−100 ° C.) can also be set. In this case, the effect that the shape accuracy and appearance quality of the optical element 1a can be maintained better is obtained.

なお、光学素子1aを成形型ユニットUから取り出す時の取り出し温度Teは、臨界温度Tcよりも低ければ、光学素子1aの全体が外周規制部材5の異径部5aを通過できるので、Te<Tcであれば任意の取り出し温度Teで取り出しても良い。   In addition, if the taking-out temperature Te when taking out the optical element 1a from the shaping | molding die unit U is lower than the critical temperature Tc, since the whole optical element 1a can pass the different diameter part 5a of the outer periphery control member 5, Te <Tc If so, it may be taken out at any take-out temperature Te.

このように、本実施の形態1の場合には、ガラス素材1(光学素子1a)よりも線膨張係数の小さい外周規制部材5に異径部5aを設けたことにより、成形温度Tmから冷却中に臨界温度Tcよりも高い温度で離型動作を行うことにより、ガラス素材1から成形された光学素子1aを、成形型ユニットUから確実に離型する事が出来る。   Thus, in the case of this Embodiment 1, it is cooling from molding temperature Tm by providing the different diameter part 5a in the outer periphery control member 5 with a smaller linear expansion coefficient than the glass raw material 1 (optical element 1a). The optical element 1a molded from the glass material 1 can be reliably released from the mold unit U by performing the mold release operation at a temperature higher than the critical temperature Tc.

また、離型動作時に光学素子1aを固定するためのアーム等の複雑な可動機構が全く不要であり、製造装置Mの構成も簡単になる。
さらに、外周規制部材5の異径部5aは、臨界温度Tcよりも低い温度では、光学素子1aの通過を妨げないので、スリーブ4や外周規制部材5を下型3から取り除かずに、光学素子1aの取り出し動作が可能となり、スリーブ4や外周規制部材5を移動させる大掛かりな機構も不要となり、製造装置Mの構成が一層簡略化される。
Further, a complicated movable mechanism such as an arm for fixing the optical element 1a at the time of the mold release operation is completely unnecessary, and the configuration of the manufacturing apparatus M is simplified.
Further, the different diameter portion 5a of the outer periphery regulating member 5 does not prevent the optical element 1a from passing at a temperature lower than the critical temperature Tc. 1a can be taken out, and a large-scale mechanism for moving the sleeve 4 and the outer periphery regulating member 5 is not required, and the configuration of the manufacturing apparatus M is further simplified.

これにより、製造装置Mの製造コスト、ひいては製造装置Mを用いて製造される光学素子1aのコスト削減を実現できる。
また、成形型ユニットUからの光学素子1aの離型が確実に行われるので、たとえば、成形型ユニットUからの光学素子1aを自動的に行わせる等場合において、光学素子1aの離型の失敗がないので、光学素子1aの成形型ユニットUからの取り出しの有無を判定する等の冗長な制御機構も不要となる。
Thereby, the manufacturing cost of the manufacturing apparatus M, and the cost reduction of the optical element 1a manufactured by using the manufacturing apparatus M can be realized.
Further, since the optical element 1a is reliably released from the mold unit U, for example, when the optical element 1a from the mold unit U is automatically performed, the optical element 1a has failed to be released. Therefore, a redundant control mechanism such as determining whether or not the optical element 1a is removed from the mold unit U is also unnecessary.

(実施の形態2)
図8および図9は、本発明の他の実施の形態である外周規制部材の構成例を示す拡大断面図である。
(Embodiment 2)
8 and 9 are enlarged cross-sectional views showing a configuration example of an outer periphery regulating member which is another embodiment of the present invention.

なお、製造装置Mおよび成形型ユニットUの基本的な構成は、上述の実施の形態1と同様である。
この図8に例示されるように、本実施の形態1の外周規制部材5では、内周の中央部に小径突起部5eを突設し、その上下の両側に大径部5fが配置された異径部5dを備えている。
The basic configurations of the manufacturing apparatus M and the mold unit U are the same as those in the first embodiment.
As illustrated in FIG. 8, in the outer periphery regulating member 5 according to the first embodiment, a small-diameter protrusion 5e is provided in the center of the inner periphery, and large-diameter portions 5f are disposed on both upper and lower sides thereof. A different diameter portion 5d is provided.

これにより、成形時に異径部5dが転写される光学素子1aの外周部には、異径部5dの小径突起部5eに対応した溝状小径部1fと、大径部5fに対応した大径部1gが形成される。   Thereby, on the outer peripheral portion of the optical element 1a to which the different diameter portion 5d is transferred at the time of molding, a groove-shaped small diameter portion 1f corresponding to the small diameter protrusion portion 5e of the different diameter portion 5d and a large diameter corresponding to the large diameter portion 5f. Part 1g is formed.

これにより、異径部5dの小径突起部5eと、光学素子1aの溝状小径部1fが干渉した状態では、光学素子1aは、外周規制部材5に対して、上型2と下型3の対向方向(上下方向)のいずれにも拘束される状態となり、光学素子1aに対する上型2および下型3の離型動作を、離型動作温度Tsが臨界温度Tcより高い状態であれば、任意の順序で実行することが可能になる。   Thereby, in a state where the small-diameter protruding portion 5e of the different-diameter portion 5d and the groove-shaped small-diameter portion 1f of the optical element 1a interfere with each other, the optical element 1a has the upper mold 2 and the lower mold 3 with respect to the outer periphery regulating member 5. Any state can be used as long as the mold release operation temperature Ts is higher than the critical temperature Tc. It becomes possible to execute in order.

また、図9に例示される外周規制部材5の異径部5gは、上述の図8に例示された異径部5dの場合と凹凸を逆に設定した例である。
この異径部5gの場合、外周規制部材5の内周面の中央部に溝状の大径溝部5iが刻設され、その上下方向の両側に小径部5hが配置されている。
Moreover, the different diameter part 5g of the outer periphery control member 5 illustrated by FIG. 9 is an example which set the unevenness | corrugation contrary to the case of the different diameter part 5d illustrated by the above-mentioned FIG.
In the case of this different-diameter portion 5g, a groove-shaped large-diameter groove portion 5i is formed in the central portion of the inner peripheral surface of the outer periphery regulating member 5, and small-diameter portions 5h are disposed on both sides in the vertical direction.

これに対応して、光学素子1aの外周部には、大径溝部5iに対応した突起状大径部1hと、小径部5hに対応した小径部1jが創成される。
この外周規制部材5の異径部5gの場合にも、上述の異径部5dと同様の効果が得られる。
Correspondingly, a projecting large-diameter portion 1h corresponding to the large-diameter groove portion 5i and a small-diameter portion 1j corresponding to the small-diameter portion 5h are created on the outer peripheral portion of the optical element 1a.
Also in the case of the different diameter portion 5g of the outer periphery regulating member 5, the same effect as the above-described different diameter portion 5d can be obtained.

図10は、上述の外周規制部材5の異径部5aの場合において、たとえば、ガラス素材1の容積を減らし、光学素子1aの外周部には、異径部5aの大径部5cの部分のみが転写されるようにした変形例の場合を示している。   In the case of the different diameter portion 5a of the outer periphery regulating member 5 shown in FIG. 10, for example, the volume of the glass material 1 is reduced, and only the portion of the large diameter portion 5c of the different diameter portion 5a is provided on the outer periphery of the optical element 1a. This shows a case of a modification in which is transferred.

この場合には、光学素子1aの外周部の上端には、上述の異径部5aの小径突起部5bに対応した小径部1cは存在せず、臨界温度Tcよりも高い温度では、光学素子1aの外周部の大径部1bの端面が小径突起部5bに干渉する状態となることで、確実な離型が達成される。   In this case, there is no small-diameter portion 1c corresponding to the small-diameter protrusion 5b of the different-diameter portion 5a at the upper end of the outer peripheral portion of the optical element 1a. At a temperature higher than the critical temperature Tc, the optical element 1a As a result, the end surface of the large-diameter portion 1b of the outer peripheral portion of the outer peripheral portion interferes with the small-diameter protruding portion 5b, so that reliable release is achieved.

このように、本実施の形態2に例示した外周規制部材5の異径部5dおよび異径部5gの場合には、上型2および下型3の各々の成形面2aおよび成形面3aで光学素子1aの光学機能面1dおよび光学機能面1eの各々に対する離型のタイミングが異なる場合でも片面ずつ離型する事が出来るため、多様な離型動作を実現できるとともに、光学素子1aに安定した光学機能面1dおよび光学機能面1eの面形状を得ることが出来る。   As described above, in the case of the different-diameter portion 5d and the different-diameter portion 5g of the outer periphery regulating member 5 exemplified in the second embodiment, the optical surfaces are formed on the molding surfaces 2a and 3a of the upper die 2 and the lower die 3, respectively. Even when the release timings of the optical function surface 1d and the optical function surface 1e of the element 1a are different from each other, the release can be performed on each side, so that various release operations can be realized and the optical element 1a has a stable optical function. The surface shapes of the functional surface 1d and the optical functional surface 1e can be obtained.

また、図10に例示した異径部5aの変形例の場合には、光学素子1aの外周部に段差が生じないという利点がある。
(実施の形態3)
上述の実施の形態2に例示した外周規制部材5の異径部5g(または異径部5d)の上述の干渉部の特性を利用した離型および取り出し方法の例を、実施の形態3として以下に例示する。
Further, in the modified example of the different diameter portion 5a illustrated in FIG. 10, there is an advantage that no step is generated in the outer peripheral portion of the optical element 1a.
(Embodiment 3)
An example of a mold release and extraction method using the above-described characteristics of the interference portion of the different-diameter portion 5g (or different-diameter portion 5d) of the outer periphery regulating member 5 exemplified in the second embodiment will be described below as a third embodiment. This is illustrated in

図11は、本発明のさらに他の実施の形態である光学素子の製造方法における光学素子の離型方法の一例を示す略断面図であり、図12は、その取り出し方法の一例を示す説明図である。   FIG. 11 is a schematic cross-sectional view illustrating an example of a method for releasing an optical element in a method for manufacturing an optical element according to still another embodiment of the present invention, and FIG. 12 is an explanatory diagram illustrating an example of a method for taking out the optical element. It is.

図11および図12の例では、外周規制部材5に上述の図9に例示した異径部5gを設けた場合を示している。
この場合、ステップ101からステップ104までは、上述の実施の形態1と同様である。
In the example of FIG. 11 and FIG. 12, the case where the different diameter part 5g illustrated in the above-mentioned FIG.
In this case, Step 101 to Step 104 are the same as those in the first embodiment.

(ステップ105a) そして、本実施の形態3では、冷却中の光学素子1aの温度が、臨界温度Tcまで下がる前の下型離型温度Ts2(離型温度Ts>下型離型温度Ts2>臨界温度Tc)で、外周規制部材5を保持して、下型3の成形面3aからの光学素子1aの光学機能面1eの離型動作を行う。   (Step 105a) In the third embodiment, the lower mold release temperature Ts2 (the mold release temperature Ts> the lower mold release temperature Ts2> critical) before the temperature of the optical element 1a being cooled is lowered to the critical temperature Tc. At the temperature Tc), the outer peripheral regulating member 5 is held, and the mold release operation of the optical function surface 1e of the optical element 1a from the molding surface 3a of the lower mold 3 is performed.

この時、外周規制部材5の異径部5gは、光学素子1aの突起状大径部1hと干渉した状態にあるため、外周規制部材5と光学素子1aは一体のままで、スリーブ4の外部に取り出される。図11はこの状態を示している。   At this time, since the different diameter portion 5g of the outer periphery regulating member 5 interferes with the protruding large diameter portion 1h of the optical element 1a, the outer periphery regulating member 5 and the optical element 1a remain integrated, and the outside of the sleeve 4 To be taken out. FIG. 11 shows this state.

(ステップ106a) その後、光学素子1aの温度が臨界温度Tcよりも低い温度まで低下すると、図12に例示されるように、光学素子1aは、外周規制部材5から分離されて取り出される。   (Step 106a) Thereafter, when the temperature of the optical element 1a is lowered to a temperature lower than the critical temperature Tc, the optical element 1a is separated from the outer periphery regulating member 5 and taken out as illustrated in FIG.

このように、本実施の形態3によれば、成形後の光学素子1aを外周規制部材5と一体に成形型ユニットUから取り出して搬送できるので、高温の状態でレンズ等の光学素子1aに応力をかけずに搬送することが可能となる。   As described above, according to the third embodiment, the molded optical element 1a can be taken out of the mold unit U and transported integrally with the outer periphery regulating member 5, so that stress is applied to the optical element 1a such as a lens in a high temperature state. It becomes possible to carry without carrying out.

なお、本発明は、上述の実施の形態に例示した構成に限らず、その趣旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
(付記1) 光学素子の外周部に部材収縮差による離型を目的とした外径形状を有する光学素子の製造方法。
Needless to say, the present invention is not limited to the configuration exemplified in the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
(Additional remark 1) The manufacturing method of the optical element which has the outer-diameter shape aiming at the mold release by a member contraction difference in the outer peripheral part of an optical element.

(付記2) 所望の形状を得た後、高温時に離型動作を行うことを特徴とする成形装置。
(付記3) 外径変化を創生する外周部材をもつ光学素子の製造方法。
(Additional remark 2) After obtaining desired shape, the shaping | molding apparatus characterized by performing mold release operation | movement at high temperature.
(Additional remark 3) The manufacturing method of the optical element which has the outer periphery member which creates an outer diameter change.

(付記4) 光学素子の有無判定を行わない搬送装置。
(付記5) 外周部材やスリーブを動かさずに光学素子を取り出す搬送装置。
(付記6) 光学素子と収縮差の大きい外周部材を用いた光学素子の製造方法。
(Additional remark 4) The conveyance apparatus which does not determine the presence or absence of an optical element.
(Additional remark 5) The conveyance apparatus which takes out an optical element, without moving an outer peripheral member or a sleeve.
(Additional remark 6) The manufacturing method of the optical element using the outer peripheral member with a large shrinkage difference with an optical element.

(付記7) 高温時に外周部材と光学素子を一体で取り出して、冷却後に光学素子を外周部材から取り出す搬送方法。
(付記8) 低温時に光学素子とリングを一体で取り出して、光学素子を外周部材から取り出す搬送方法。
(Additional remark 7) The conveyance method which takes out an outer peripheral member and an optical element integrally at the time of high temperature, and takes out an optical element from an outer peripheral member after cooling.
(Additional remark 8) The conveyance method which takes out an optical element and a ring integrally at low temperature, and takes out an optical element from an outer peripheral member.

(付記9) 添付の数式(1)〜(9)を満たすことを特徴とする光学素子の製造方法。
(付記10) 部材の収縮差により離型動作温度でレンズを保持することを特徴とする光学素子の製造方法。
(Supplementary Note 9) A method for manufacturing an optical element, characterized by satisfying the attached mathematical formulas (1) to (9).
(Supplementary Note 10) A method for manufacturing an optical element, characterized in that the lens is held at a mold release operating temperature by a contraction difference of members.

(付記11) 部材の収縮差により上下の成形面の各々で別のタイミングで離型する光学素子の製造方法。   (Additional remark 11) The manufacturing method of the optical element which molds | releases at another timing in each of an upper and lower molding surface by the contraction difference of a member.

本発明の一実施の形態である光学素子の製造方法を実施する製造装置の構成の一例を示す略断面図である。It is a schematic sectional drawing which shows an example of the structure of the manufacturing apparatus which enforces the manufacturing method of the optical element which is one embodiment of this invention. 本発明の一実施の形態である製造装置で用いられる外周規制部材の構成の一例を示す略断面である。It is a rough section showing an example of the composition of the perimeter control member used with the manufacturing device which is one embodiment of the present invention. 本発明の一実施の形態である製造装置の動作を示す略断面図である。It is a schematic sectional drawing which shows operation | movement of the manufacturing apparatus which is one embodiment of this invention. 本発明の一実施の形態である作用の一例を工程順に例示した略断面図である。It is the schematic sectional view which illustrated an example of the operation which is one embodiment of the present invention in order of a process. 本発明の一実施の形態である作用の一例を工程順に例示した拡大断面図である。It is the expanded sectional view which illustrated an example of the operation which is one embodiment of the present invention in order of a process. 本発明の一実施の形態である作用の一例を工程順に例示した略断面図である。It is the schematic sectional view which illustrated an example of the operation which is one embodiment of the present invention in order of a process. 本発明の一実施の形態である作用の一例を工程順に例示した拡大断面図である。It is the expanded sectional view which illustrated an example of the operation which is one embodiment of the present invention in order of a process. 本発明の一実施の形態である作用の一例を工程順に例示した略断面図である。It is the schematic sectional view which illustrated an example of the operation which is one embodiment of the present invention in order of a process. 本発明の一実施の形態である作用の一例を工程順に例示した拡大断面図である。It is the expanded sectional view which illustrated an example of the operation which is one embodiment of the present invention in order of a process. 本発明の一実施の形態である製造装置Mによる成形工程での温度プロファイルを示す線図である。It is a diagram which shows the temperature profile in the shaping | molding process by the manufacturing apparatus M which is one embodiment of this invention. 本発明の他の実施の形態である外周規制部材の構成例を示す拡大断面図である。It is an expanded sectional view which shows the structural example of the outer periphery control member which is other embodiment of this invention. 本発明の他の実施の形態である外周規制部材の構成例を示す拡大断面図である。It is an expanded sectional view which shows the structural example of the outer periphery control member which is other embodiment of this invention. 本発明の実施の形態の変形例を示す拡大断面図である。It is an expanded sectional view showing a modification of an embodiment of the invention. 本発明のさらに他の実施の形態である光学素子の製造方法における光学素子の離型方法の一例を示す略断面図である。It is a schematic sectional drawing which shows an example of the mold release method of the optical element in the manufacturing method of the optical element which is further another embodiment of this invention. その取り出し方法の一例を示す説明図である。It is explanatory drawing which shows an example of the taking-out method.

符号の説明Explanation of symbols

1 ガラス素材
1a 光学素子
1b 大径部
1c 小径部
1d 光学機能面
1e 光学機能面
1f 溝状小径部
1g 大径部
1h 突起状大径部
1j 小径部
2 上型
2a 成形面
3 下型
3a 成形面
4 スリーブ
5 外周規制部材
5a 異径部
5b 小径突起部
5c 大径部
5d 異径部
5e 小径突起部
5f 大径部
5g 異径部
5h 小径部
5i 大径溝部
6 赤外線ヒーター
7 加圧軸
8 成形炉
9 ベース
M 製造装置
U 成形型ユニット
Tc 臨界温度
Te 取り出し温度
Tg ガラス転移点
Tm 成形温度
Ts 離型動作温度
DESCRIPTION OF SYMBOLS 1 Glass material 1a Optical element 1b Large diameter part 1c Small diameter part 1d Optical functional surface 1e Optical functional surface 1f Groove-shaped small diameter part 1g Large diameter part 1h Protruding large diameter part 1j Small diameter part 2 Upper mold | type 2a Molding surface 3 Lower mold 3a Molding Surface 4 Sleeve 5 Outer circumference regulating member 5a Different diameter portion 5b Small diameter projection portion 5c Large diameter portion 5d Different diameter portion 5e Small diameter projection portion 5f Large diameter portion 5g Different diameter portion 5h Small diameter portion 5i Large diameter groove portion 6 Infrared heater 7 Pressure shaft 8 Molding furnace 9 Base M Manufacturing device U Mold unit Tc Critical temperature Te Extraction temperature Tg Glass transition point Tm Molding temperature Ts Mold release operating temperature

Claims (11)

型成形によって熱可塑性素材から成形される光学素子の外周形状を創生する外周規制部材の内周に、温度変化に応じて、前記光学素子の外周部との干渉状態が変化する異径部を形成することを特徴とする光学素子の製造方法。   On the inner circumference of the outer circumference regulating member that creates the outer circumference shape of the optical element molded from the thermoplastic material by molding, a different diameter portion in which the interference state with the outer circumference of the optical element changes according to the temperature change. A method for producing an optical element, comprising: forming the optical element. 第1および第2成形型と外周規制部材とで構成される成形空間に熱可塑性素材を充填して光学素子を得る光学素子の製造方法であって、
前記熱可塑性素材よりも線膨張係数の小さな前記外周規制部材の内周に異径部を設けることを特徴とする光学素子の製造方法。
An optical element manufacturing method for obtaining an optical element by filling a thermoplastic material into a molding space constituted by first and second molding dies and an outer periphery regulating member,
A method for manufacturing an optical element, comprising providing a different-diameter portion on an inner periphery of the outer periphery regulating member having a linear expansion coefficient smaller than that of the thermoplastic material.
請求項1または請求項2記載の光学素子の製造方法において、
前記外周規制部材の前記異径部は、大径部および小径部からなり、
前記大径部が転写された前記光学素子の大径部の離型動作温度における寸法をGs、前記離型動作温度よりも低い取り出し温度における寸法をGeとし、
前記異径部の前記小径部の前記離型動作温度における寸法をW1s、前記取り出し温度における寸法をW1eとするとき、
Gs>W1s かつ Ge<W1e
を満たすことを特徴とする光学素子の製造方法。
In the manufacturing method of the optical element of Claim 1 or Claim 2,
The different diameter portion of the outer periphery regulating member is composed of a large diameter portion and a small diameter portion,
The dimension at the mold release operating temperature of the large diameter part of the optical element to which the large diameter part has been transferred is Gs, and the dimension at the take-out temperature lower than the mold release operating temperature is Ge.
When the dimension at the mold release operating temperature of the small diameter part of the different diameter part is W1s, and the dimension at the extraction temperature is W1e,
Gs> W1s and Ge <W1e
The manufacturing method of the optical element characterized by satisfy | filling.
請求項3記載の光学素子の製造方法において、
前記異径部で創成された前記光学素子の前記大径部の寸法と、前記異径部の前記小径部の寸法とが等しくなる臨界温度よりも高い前記離型動作温度において、前記第1および第2成形型の少なくとも一方を前記光学素子から離間させる離型動作を行うことを特徴とする光学素子の製造方法。
In the manufacturing method of the optical element according to claim 3,
In the mold release operating temperature higher than the critical temperature at which the size of the large diameter portion of the optical element created at the different diameter portion is equal to the size of the small diameter portion of the different diameter portion, the first and A method for producing an optical element, comprising performing a mold release operation for separating at least one of the second molds from the optical element.
請求項3記載の光学素子の製造方法において、
前記異径部で創成された前記光学素子の前記大径部の寸法と、前記異径部の前記小径部の寸法とが等しくなる臨界温度よりも高い前記離型動作温度において、前記外周規制部材の前記異径部に嵌合した状態の前記光学素子を、前記第1および第2成形型の双方から離脱させることを特徴とする光学素子の製造方法。
In the manufacturing method of the optical element according to claim 3,
In the release operation temperature higher than the critical temperature at which the size of the large diameter portion of the optical element created at the different diameter portion is equal to the size of the small diameter portion of the different diameter portion, the outer periphery regulating member A method of manufacturing an optical element, comprising: detaching the optical element fitted in the different diameter part from both the first and second molds.
請求項4または請求項5記載の光学素子の製造方法において、
前記離型動作温度Tsは、前記熱可塑性素材のガラス転移点Tgに対して、
Tg≧Ts≧(Tg−200℃)
の条件を満たすことを特徴とする光学素子の製造方法。
In the manufacturing method of the optical element of Claim 4 or Claim 5,
The mold release operating temperature Ts is relative to the glass transition point Tg of the thermoplastic material.
Tg ≧ Ts ≧ (Tg−200 ° C.)
The manufacturing method of the optical element characterized by satisfy | filling these conditions.
対向する第1および第2成形型と、
前記第1および第2成形型とともに熱可塑性素材の成形空間を構成する外周規制部材と、を含み、
前記外周規制部材は、前記熱可塑性素材よりも線膨張係数が小さく、内周部に異径部を備えたことを特徴とする光学素子の製造装置。
Opposing first and second molds;
An outer periphery regulating member that constitutes a molding space for the thermoplastic material together with the first and second molding dies,
The outer peripheral regulating member has a smaller linear expansion coefficient than the thermoplastic material, and has an inner diameter portion with a different diameter portion.
請求項7記載の光学素子の製造装置において、
前記外周規制部材の前記異径部は、大径部および小径部からなり、
前記大径部が転写された前記光学素子の大径部の離型動作温度における寸法をGs、前記離型動作温度よりも低い取り出し温度における寸法をGeとし、
前記異径部の前記小径部の前記離型動作温度における寸法をW1s、前記取り出し温度における寸法をW1eとするとき、
Gs>W1s かつ Ge<W1e
を満たすことを特徴とする光学素子の製造装置。
In the optical element manufacturing apparatus according to claim 7,
The different diameter portion of the outer periphery regulating member is composed of a large diameter portion and a small diameter portion,
The dimension at the mold release operating temperature of the large diameter part of the optical element to which the large diameter part has been transferred is Gs, and the dimension at the take-out temperature lower than the mold release operating temperature is Ge.
When the dimension at the mold release operating temperature of the small diameter part of the different diameter part is W1s, and the dimension at the extraction temperature is W1e,
Gs> W1s and Ge <W1e
An optical element manufacturing apparatus characterized by satisfying:
請求項8記載の光学素子の製造装置において、
前記異径部で創成された前記光学素子の前記大径部の寸法と、前記異径部の前記小径部の寸法とが等しくなる臨界温度よりも高い前記離型動作温度において、前記第1および第2成形型の少なくとも一方を前記光学素子から離間させる離型動作が行われることを特徴とする光学素子の製造装置。
In the optical element manufacturing apparatus according to claim 8,
In the mold release operating temperature higher than the critical temperature at which the size of the large diameter portion of the optical element created at the different diameter portion is equal to the size of the small diameter portion of the different diameter portion, the first and An apparatus for manufacturing an optical element, wherein a mold release operation for separating at least one of the second molds from the optical element is performed.
請求項8記載の光学素子の製造装置において、
前記異径部で創成された前記光学素子の前記大径部の寸法と、前記異径部の前記小径部の寸法とが等しくなる臨界温度よりも高い前記離型動作温度において、前記外周規制部材の前記異径部に嵌合した状態の前記光学素子を、前記第1および第2成形型の双方から離脱させることを特徴とする光学素子の製造装置。
In the optical element manufacturing apparatus according to claim 8,
In the release operation temperature higher than the critical temperature at which the size of the large diameter portion of the optical element created at the different diameter portion is equal to the size of the small diameter portion of the different diameter portion, the outer periphery regulating member The optical element manufacturing apparatus is characterized in that the optical element in a state of being fitted to the different diameter portion is separated from both the first and second molds.
請求項9または請求項10記載の光学素子の製造装置において、
前記離型動作温度Tsは、前記熱可塑性素材のガラス転移点Tgに対して、
Tg≧Ts≧(Tg−200℃)
の条件を満たすことを特徴とする光学素子の製造装置。
In the optical element manufacturing apparatus according to claim 9 or 10,
The mold release operating temperature Ts is relative to the glass transition point Tg of the thermoplastic material.
Tg ≧ Ts ≧ (Tg−200 ° C.)
An optical element manufacturing apparatus that satisfies the following condition:
JP2007323493A 2007-12-14 2007-12-14 Optical element manufacturing method and optical element manufacturing apparatus Active JP4948378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007323493A JP4948378B2 (en) 2007-12-14 2007-12-14 Optical element manufacturing method and optical element manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007323493A JP4948378B2 (en) 2007-12-14 2007-12-14 Optical element manufacturing method and optical element manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2009143771A true JP2009143771A (en) 2009-07-02
JP4948378B2 JP4948378B2 (en) 2012-06-06

Family

ID=40914848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007323493A Active JP4948378B2 (en) 2007-12-14 2007-12-14 Optical element manufacturing method and optical element manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4948378B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6609422B2 (en) * 2015-05-25 2019-11-20 オリンパス株式会社 Optical element molding die set and optical element manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345136A (en) * 1986-08-12 1988-02-26 Olympus Optical Co Ltd Forming method for optical element
JPH05193963A (en) * 1992-01-17 1993-08-03 Olympus Optical Co Ltd Method for forming glass optical element
JP2004351740A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Lens manufacturing method and mold assembly using in this method
JP2006143483A (en) * 2004-11-16 2006-06-08 Hoya Corp Mold press-forming die, its production method, and method of producing optical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345136A (en) * 1986-08-12 1988-02-26 Olympus Optical Co Ltd Forming method for optical element
JPH05193963A (en) * 1992-01-17 1993-08-03 Olympus Optical Co Ltd Method for forming glass optical element
JP2004351740A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Lens manufacturing method and mold assembly using in this method
JP2006143483A (en) * 2004-11-16 2006-06-08 Hoya Corp Mold press-forming die, its production method, and method of producing optical element

Also Published As

Publication number Publication date
JP4948378B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4064976B2 (en) Optical lens molding equipment
JP4948378B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
JP4717542B2 (en) Glass optical element molding equipment
US20120049395A1 (en) Mold set and manufacturing method for manufacturing optical element
TWI713699B (en) Stamping mould and manufacturing method of optical element
JP5114261B2 (en) Optical element manufacturing method
JP5638990B2 (en) Manufacturing method of glass optical element
JP2000095532A (en) Press-formed optical element, its production, die for press-forming optical element and device for press- forming optical element
TWI388415B (en) Molding method for an optical element and optical element molding apparatus
JP4054340B2 (en) Glass lens mold
EP1329756B1 (en) Metal ring-fitted optical device
JP2007125780A (en) Mold, method for producing mold, and method for molding thermoplastic material
JP4833258B2 (en) Optical element molding method
JP4751818B2 (en) Mold for forming and manufacturing method thereof
JP4059889B2 (en) Glass lens mold
JP4573678B2 (en) Glass forming equipment
KR102388656B1 (en) mold assembly for making a glass lens
JPH1029825A (en) Production of optical element with lens barrel
JP2008083190A (en) Method for molding optical element
JP6653135B2 (en) Method and apparatus for manufacturing optical element
JP2007284286A (en) Method for molding optical element
JP2002284535A (en) Mold for forming optical element and method for producing optical element
JP2007008751A (en) Glass element-shaping mold
JP2008297187A (en) Molding material of optical device, and its forming method
JP3862416B2 (en) Optical element molding method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4948378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250