JP2009142021A - Leakage relay - Google Patents

Leakage relay Download PDF

Info

Publication number
JP2009142021A
JP2009142021A JP2007314426A JP2007314426A JP2009142021A JP 2009142021 A JP2009142021 A JP 2009142021A JP 2007314426 A JP2007314426 A JP 2007314426A JP 2007314426 A JP2007314426 A JP 2007314426A JP 2009142021 A JP2009142021 A JP 2009142021A
Authority
JP
Japan
Prior art keywords
circuit
leakage
voltage
output
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007314426A
Other languages
Japanese (ja)
Other versions
JP4926015B2 (en
Inventor
Nobuo Miyoshi
伸郎 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007314426A priority Critical patent/JP4926015B2/en
Priority to CN2008101299509A priority patent/CN101453114B/en
Publication of JP2009142021A publication Critical patent/JP2009142021A/en
Application granted granted Critical
Publication of JP4926015B2 publication Critical patent/JP4926015B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a leakage relay that performs leakage test without winding a test winding around a zero-phase current transformer and can detect disconnection from the zero-phase current transformer or a missing line without increasing the circuit scale. <P>SOLUTION: A leakage relay includes a first detection resistor 41 for converting an output current obtained by a zero-phase current transformer 20 into a voltage, a leakage detection circuit 46 for determining the level of the voltage, an output circuit 47 for driving a leakage indication element 48 in response to the output from the leakage detection circuit, a circuit 56 for generating a simulation waveform being determined to have a level equivalent to occurrence of leakage in a main circuit by the leakage detection circuit when a test button 55 is pushed, an amplifier circuit 50 interposed between the first detection resistor and the leakage detection circuit and receiving a voltage obtained by dividing the voltage of the first detection resistor 41 when a connection lead wire is disconnected, and a comparator 52 for comparing a signal amplified by the amplifier circuit with a reference potential to input the comparison output to the output circuit. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、零相変流器と組み合わせて主回路の漏電を検出し、この漏電の発生を外部に出力する漏電リレーに関し、詳しくは、その機能を確認するテスト装置の改良に関するものである。   The present invention relates to a leakage relay that detects a leakage of a main circuit in combination with a zero-phase current transformer and outputs the occurrence of the leakage to the outside. More specifically, the present invention relates to an improvement of a test apparatus for confirming the function.

回路遮断器の一つである漏電遮断器は、この漏電遮断器に、例えば集積回路で構成された漏電検出回路、零相変流器、および電磁石装置を内蔵し、漏電検出回路にて零相変流器で検出された信号のレベル判定を行い、所定値を超えれば電磁石装置に対し駆動信号を出力させ、主回路を開放することは周知の通りである。また、この漏電検出機能が正常に動作し得るかどうか確認するテスト装置(テストボタン)が搭載されていることも周知の通りである。   An earth leakage breaker, which is one of the circuit breakers, incorporates an earth leakage detection circuit, a zero-phase current transformer, and an electromagnet device, for example, configured by an integrated circuit. As is well known, the level of the signal detected by the current transformer is determined, and if it exceeds a predetermined value, the drive signal is output to the electromagnet device and the main circuit is opened. It is also well known that a test device (test button) is installed to check whether this leakage detection function can operate normally.

この漏電遮断器は、感電防止、あるいは漏電火災保護の観点から、電気設備技術基準などの規則にしたがい設置されることになるが、一部、漏電火災保護において、主回路を直ちに開放したのでは都合の悪い箇所(例えば、病院の手術室や排煙装置など)では主回路の通電は継続させ、漏電が発生している旨の警報を発するに留め、例えば、主回路を開放しても差し支えのない時間帯にて、しかるべき処置を施すことが知られている。
この警報を発する手段として、主回路に配設した別体の零相変流器と、この零相変流器からの信号線が接続される漏電リレーが使用されているが、この漏電リレーについては、「漏電監視」という点を鑑みた場合、主回路から離れた、例えば電気管理室などに設置されていることが一般的である。
This earth leakage breaker will be installed in accordance with the electrical equipment technical standards from the viewpoint of electric shock prevention or earth leakage fire protection, but in some cases, the main circuit was not opened immediately in earth leakage fire protection. In inconvenient locations (eg hospital operating rooms and smoke evacuation devices), keep the main circuit energized and only give an alarm that a leakage has occurred. For example, the main circuit may be opened. It is known to take appropriate measures in the absence of time.
As a means for issuing this alarm, a separate zero-phase current transformer disposed in the main circuit and a leakage relay to which a signal line from this zero-phase current transformer is connected are used. In view of the “leakage monitoring”, it is generally installed in an electrical management room, for example, away from the main circuit.

ところで、この漏電リレーにもテスト装置が搭載されているが、以下の点で前述した漏電遮断器のテスト装置との違いがあった。すなわち、漏電リレーは、これ単独でテストが可能となっており、このテストにより、内蔵する集積回路やリレー(漏電遮断器における電磁石装置に相当)の機能あるいは動作を確認することができるようになっている。つまり、零相変流器からの信号線を接続する前であっても、漏電リレー単体としての確認が可能であり、これは、配電施工において、必ずしも零相変流器と漏電リレーを同時に設置するとは限らない点、さらには、前述したように、集積回路など漏電検出機能に係わる核となる部品が漏電リレーに搭載されていることから、その万が一の故障をいち早く把握できる点、といったことが背景にあるものと考えられている。しかしながら、このことは、言い換えると、実使用、すなわち、零相変流器との接続状態下であっても、テストによる零相変流器そのものの確認はできていないことになる。つまり、仮に信号線の断線や欠線があったとしても、漏電リレー内部にさえ問題なければ、テストボタンの押動による漏電警報が発せられることになり、この結果、漏電リレーであっても、漏電遮断器並みのテスト装置の信頼性向上が求められるわけである。   By the way, although this earth leakage relay is also equipped with a test device, it differs from the above-described earth leakage circuit breaker test device in the following points. In other words, the earth leakage relay can be tested alone, and this test makes it possible to confirm the function or operation of a built-in integrated circuit or relay (equivalent to an electromagnetic device in an earth leakage breaker). ing. In other words, even before connecting the signal line from the zero-phase current transformer, it can be confirmed as a single earth leakage relay. This is not necessarily the case when installing the zero-phase current transformer and the earth leakage relay at the same time in distribution construction. In addition, as mentioned above, since the core components related to the leakage detection function such as an integrated circuit are mounted on the leakage relay as described above, it is possible to quickly grasp the emergency failure. It is thought to be in the background. However, in other words, this means that the zero-phase current transformer itself cannot be confirmed by a test even in actual use, that is, in a connected state with the zero-phase current transformer. In other words, even if there is a disconnection or breakage of the signal line, if there is no problem even within the leakage relay, a leakage alarm will be issued by pushing the test button. As a result, even if it is a leakage relay, Therefore, it is necessary to improve the reliability of the test equipment equivalent to the earth leakage breaker.

尤も、漏電リレーであっても、テストボタンの押動によってテスト電流を通電させるテスト巻線を零相変流器に貫通させておけば、その限りではない(例えば、特許文献1参照)。さらに、この特許文献1では、テストボタンの押動による漏電警報の不動作が、内蔵する集積回路やリレーの不具合か、あるいは断線や欠線に因るものなのかが容易に判別できるよう、零相変流器によって得られる出力電流を電圧に変換する検出抵抗が、断線診断中に限り、トランジスタ回路により切り離され、その間に、零相変流器との接続ラインに抵抗を接続し、この抵抗で得られる電位差を判定し、所定値を越えていれば、断線(あるいは未接続)と判断し、漏電警報(この場合、断線警報)を発することが知られている。   However, even if it is an earth leakage relay, it is not limited as long as a test winding for supplying a test current by pushing a test button is passed through the zero-phase current transformer (for example, refer to Patent Document 1). Further, in this Patent Document 1, it is possible to easily determine whether the malfunction of the earth leakage alarm due to the pressing of the test button is due to a malfunction of the built-in integrated circuit or relay, or due to disconnection or disconnection. The detection resistor that converts the output current obtained by the phase current transformer into a voltage is disconnected by the transistor circuit only during disconnection diagnosis, and in the meantime, a resistor is connected to the connection line with the zero-phase current transformer. It is known that the potential difference obtained in step (1) is determined, and if it exceeds a predetermined value, it is determined that the circuit is disconnected (or not connected), and a leakage alarm (in this case, a disconnection alarm) is issued.

特開2002−44856号公報(第5欄第24行〜第30行)JP 2002-44856 A (column 5, lines 24 to 30)

従来の漏電リレーのテスト装置は、そのテスト動作を零相変流器に巻回したテスト巻線に委ねている点、また、漏電リレー自身に、零相変流器との断線あるいは未接続を検出する、いわゆる自己チェック機能を装備している点、を鑑みれば、その信頼性はより向上されていることは言うまでもない。しかしながら、この実現にあたっては、言うまでもなく、漏電リレーからのテスト巻線を零相変流器に巻回することの煩わしさ、さらには、零相変流器と漏電検出回路間の信号ラインへの、検出抵抗を含めた抵抗の接続を切り替えるトランジスタ回路や漏電検出回路のリセット回路、それらのタイミングを制御する波形発生回路、といった機能を必要とすることでの回路規模アップという課題に直面していた。また、性能面においては、検出抵抗に直列にトランジスタを挿入することで、このトランジスタの温度などによるインピーダンスの変化が感度電流へ影響を与えるなど、まだまだ改善の余地があった。   The conventional earth leakage relay test equipment entrusts the test operation to the test winding wound around the zero-phase current transformer, and the earth leakage relay itself is disconnected or disconnected from the zero-phase current transformer. Needless to say, the reliability is further improved in view of the point of detecting a so-called self-check function. However, in realizing this, it goes without saying that it is troublesome to wind the test winding from the leakage relay around the zero-phase current transformer, and further to the signal line between the zero-phase current transformer and the leakage detection circuit. Faced with the challenge of increasing the circuit scale by requiring functions such as a transistor circuit that switches the connection of resistors, including a detection resistor, a reset circuit for a leakage detection circuit, and a waveform generation circuit that controls their timing . Further, in terms of performance, there is still room for improvement, for example, by inserting a transistor in series with the detection resistor, a change in impedance due to the temperature of the transistor affects the sensitivity current.

この発明は、上述のような課題を解決するためになされたもので、確実な漏電監視を実行する信頼性の高い漏電リレーを提供することを目的とするものである。   The present invention has been made in order to solve the above-described problems, and an object thereof is to provide a highly reliable leakage relay that performs reliable leakage monitoring.

この発明に係る漏電リレーは、主回路に設置された零相変流器と接続リード線を介して接続され、上記零相変流器によって得られる出力電流を電圧に変換する第一の検出抵抗と、上記電圧のレベル判定を行う漏電検出回路と、この漏電検出回路の出力に応動して漏電表示素子を駆動する出力回路と、テストボタンの押動により、上記漏電検出回路で上記主回路における漏電発生と同等のレベルと判定される模擬波形を発生する模擬波形発生回路と、上記第一の検出抵抗と上記漏電検出回路との間に介在し、上記接続リード線の断線時に上記第一の検出抵抗の電圧を分圧した電圧を入力される増幅回路と、この増幅回路で増幅された信号を基準電位と比較し、その比較出力を上記出力回路に入力する比較器とを備えている。   The earth leakage relay according to the present invention is a first detection resistor that is connected to a zero-phase current transformer installed in the main circuit via a connection lead wire and converts an output current obtained by the zero-phase current transformer into a voltage. A leakage detection circuit for determining the level of the voltage, an output circuit for driving the leakage display element in response to the output of the leakage detection circuit, and the leakage detection circuit in the main circuit by pressing the test button. A simulated waveform generating circuit that generates a simulated waveform that is determined to have a level equivalent to the occurrence of leakage, and the first detection resistor and the leakage detection circuit are interposed between the first detection resistor and the leakage detection circuit. An amplifier circuit to which a voltage obtained by dividing the voltage of the detection resistor is input, and a comparator for comparing a signal amplified by the amplifier circuit with a reference potential and inputting the comparison output to the output circuit.

この発明によれば、零相変流器にテスト巻線を巻回することなく、漏電テストが行えるとともに、回路規模をアップさせることなく、零相変流器との断線あるいは欠線を検出することができる漏電リレーを得ることができる。   According to the present invention, a leakage test can be performed without winding a test winding around the zero-phase current transformer, and a disconnection or a broken line with the zero-phase current transformer can be detected without increasing the circuit scale. An earth leakage relay can be obtained.

実施の形態1.
図1はこの発明の実施の形態1における漏電リレーを含む回路図を示すものである。種回路の電路10に設置された零相変流器20の出力電流は、この零相変流器20と漏電リレー40間を接続する接続リード線30を介して、第一の検出抵抗41により電圧入力に変換し、漏電検出回路46に入力され、基準レベルに達すると出力回路47により漏電表示LED48を点灯させるとともに、漏電警報出力リレー49を駆動する。
Embodiment 1 FIG.
1 is a circuit diagram including a leakage relay in Embodiment 1 of the present invention. The output current of the zero-phase current transformer 20 installed in the electric circuit 10 of the seed circuit is caused by the first detection resistor 41 via the connection lead wire 30 connecting the zero-phase current transformer 20 and the leakage relay 40. When converted to voltage input and input to the leakage detection circuit 46 and reaches the reference level, the leakage circuit LED 48 is turned on by the output circuit 47 and the leakage alarm output relay 49 is driven.

ここで、第一の検出抵抗41で得られる電圧(図中A点の電位)が漏電検出回路46に注入される過程を詳しく説明する。A点の電位は、増幅回路50を構成するオペアンプ43の非反転入力端子に入力される。このオペアンプ43の反転入力端子が電圧増幅率1倍の定電圧回路となることを利用し、A点の電位、すなわち、漏電検出のレベル電圧は、分圧抵抗を構成する第一及び第二の抵抗44,45を経て、漏電検出回路46に入力される。   Here, the process in which the voltage (potential at point A in the figure) obtained by the first detection resistor 41 is injected into the leakage detection circuit 46 will be described in detail. The potential at point A is input to the non-inverting input terminal of the operational amplifier 43 constituting the amplifier circuit 50. Utilizing the fact that the inverting input terminal of the operational amplifier 43 becomes a constant voltage circuit having a voltage amplification factor of 1, the potential at the point A, that is, the level voltage of leakage detection, is the first and second constituting the voltage dividing resistor. It is input to the leakage detection circuit 46 through the resistors 44 and 45.

テストボタン55を押動すると、模擬波形発生回路56から、主回路における漏電発生と同等のレベルと判定される模擬波形が漏電検出回路46に入力され、上述と同様、出力回路47より出力される。
以上の説明は、接続リード線30の断線や欠線がない、いわゆる正常状態であり、然るに、主回路の漏電、あるいはテストボタン55を押動しない限り、漏電表示LED48および漏電警報出力リレー49は駆動しない。また、図からも明らかなように、模擬波形発生回路56からの模擬波形は、零相変流器20には注入されていない。すなわち、漏電リレー40と零相変流器20間は、接続リード線30のみで接続されていることになる。
When the test button 55 is pressed, a simulated waveform that is determined to have a level equivalent to the occurrence of leakage in the main circuit is input from the simulated waveform generation circuit 56 to the leakage detection circuit 46 and output from the output circuit 47 as described above. .
The above description is a so-called normal state in which the connection lead wire 30 is not disconnected or broken, but the earth leakage display LED 48 and the earth leakage alarm output relay 49 are not affected unless the main circuit leakage or the test button 55 is pushed. Do not drive. Further, as is apparent from the figure, the simulated waveform from the simulated waveform generation circuit 56 is not injected into the zero-phase current transformer 20. That is, the earth leakage relay 40 and the zero-phase current transformer 20 are connected only by the connection lead wire 30.

次に、接続リード線30で断線や欠線があった場合、あるいは、未接続状態であった場合(以下、これらを総称して接続リード線の断線時という)での漏電リレー40の動作を説明する。
オペアンプ43の非反転入力端子と接地間には、接続リード線の断線時に第一の検出抵抗41とによって分圧された電圧をオペアンプ43の非反転入力端子に入力する第二の検出抵抗42が接続されている。
そして、零相変流器20の内部インピーダンス、第一の検出抵抗41及び第二の検出抵抗42の関係は下記の通り設定されている。
内部インピーダンス(数10Ω程度)<第一の検出抵抗41(数kΩ)<第二の検出抵抗42(数百kΩ)
すなわち、正常時においては、内部インピーダンスと第一の検出抵抗41の合成抵抗により、A点の電位とB点の電位(漏電検出回路46から出力されている基準電位:VREF(例えば、2.5V))はほぼ同等である(零相変流器20の内部インピーダンスが極端に低いため)。一方、接続リード線断線時では、上記合成抵抗に内部インピーダンスが寄与しなくなる、すなわち、A点の電位は、第一の検出抵抗41と第二の検出抵抗42とで分圧されるため、A点の電位は、B点の電位より低くなる。この電位差の差異を活用して、後述する通り、断線時に漏電表示LED48および漏電警報出力リレー49を駆動させ、使用者に断線状態であることを知らしめる。
Next, the operation of the earth leakage relay 40 when the connection lead wire 30 is disconnected or broken or when it is not connected (hereinafter collectively referred to as the disconnection of the connection lead wire). explain.
Between the non-inverting input terminal of the operational amplifier 43 and the ground, there is a second detection resistor 42 for inputting the voltage divided by the first detection resistor 41 to the non-inverting input terminal of the operational amplifier 43 when the connection lead wire is disconnected. It is connected.
The relationship between the internal impedance of the zero-phase current transformer 20, the first detection resistor 41, and the second detection resistor 42 is set as follows.
Internal impedance (several tens of Ω) <first detection resistor 41 (several kΩ) <second detection resistor 42 (several hundred kΩ)
That is, under normal conditions, the potential at point A and the potential at point B (reference potential output from the leakage detection circuit 46: VREF (for example, 2.5 V) by the combined impedance of the internal impedance and the first detection resistor 41 )) Is almost equivalent (because the internal impedance of the zero-phase current transformer 20 is extremely low). On the other hand, when the connection lead wire is disconnected, the internal impedance does not contribute to the combined resistance, that is, the potential at the point A is divided by the first detection resistor 41 and the second detection resistor 42. The potential at the point is lower than the potential at the point B. By utilizing this difference in potential difference, as will be described later, the earth leakage display LED 48 and the earth leakage alarm output relay 49 are driven at the time of the disconnection, and the user is informed of the disconnection state.

この電位差の差異を活用するにあたり、その差異を明瞭にするには、零相変流器20の2次側全体を高インピーダンスにすればよいが、それでは、サージ・ノイズ性能に劣るため、2次側全体は低インピーダンスにならざるを得ず、それ故に、正常時と断線時の電位差の差異が小さい。そこで、本発明では、増幅回路50を具備、詳述すると、オペアンプ43に加え、接続リード線の断線時の微小電圧(数10mV)を反転入力端子の第一の抵抗44に流れる電流により増幅させる第二の抵抗45(帰還抵抗)にて、この微小電圧を増幅(例えば、数V)させている(これにより断線検出用の信号は増幅回路50にて、ゲイン1+第二の抵抗45/第一の抵抗44として処理される)。   In making use of the difference in potential difference, in order to clarify the difference, the entire secondary side of the zero-phase current transformer 20 may be made to have a high impedance. The entire side must be low impedance, and therefore the difference in potential difference between normal and disconnected is small. Therefore, in the present invention, the amplifier circuit 50 is provided. More specifically, in addition to the operational amplifier 43, a minute voltage (several tens of mV) at the time of disconnection of the connection lead wire is amplified by a current flowing through the first resistor 44 of the inverting input terminal. The minute voltage is amplified (for example, several V) by the second resistor 45 (feedback resistor) (with this, the signal for detecting the disconnection is gained by the amplifier circuit 50, gain 1 + second resistor 45 / second resistor. Treated as a single resistor 44).

この増幅された電圧は、当然ながら漏電による交流分を含んでいるため、ローパスフィルタ51にて、交流分を取り除いた直流分が、比較器52に入力される。比較器52では、この直流電圧と、基準電位決定抵抗53、54にて設定される基準電位と比較することで、比較器52の出力がHi(ハイ)となる。すなわち、このHi出力を出力回路47に出力し、漏電表示LED48および漏電警報出力リレー49を駆動させることになる。なお、正常時においては、比較器52の出力がLo(ロー)となるよう、基準電位が設定されていることは言うまでもない。   Since the amplified voltage naturally includes an AC component due to leakage, the DC component obtained by removing the AC component by the low-pass filter 51 is input to the comparator 52. In the comparator 52, the output of the comparator 52 becomes Hi (high) by comparing the DC voltage with the reference potential set by the reference potential determining resistors 53 and 54. That is, this Hi output is output to the output circuit 47, and the leakage indicator LED 48 and the leakage alarm output relay 49 are driven. Needless to say, the reference potential is set so that the output of the comparator 52 becomes Lo (low) during normal operation.

このように、増幅回路50の使用方法を工夫し、さらに、第二の検出抵抗42、ローパスフィルタ51、比較器52、といった部品、あるいは小規模な回路を追加するだけで、リアルタイムに断線有無を検出することが可能となる。   In this way, the method of using the amplifier circuit 50 is devised, and the presence or absence of disconnection can be confirmed in real time only by adding parts such as the second detection resistor 42, the low-pass filter 51, the comparator 52, or a small circuit. It becomes possible to detect.

実施の形態2.
実施の形態1では、接続リード線の断線発生とともに、漏電表示LED48や漏電警報出力リレー49を、「断線警報」として駆動させることで、その断線を使用者に知らしめることができるという効果がある一方、主回路の通電開始前の仮設置、すなわち、未だ漏電リレー40と零相変流器20が接続されていない状態で、漏電リレー40に電源電圧を印加すると、(これを断線と見做し)やはり断線警報が駆動されることになる。特に、漏電警報出力リレー49に使用者側にてブザーなどの報知手段が配線・活線状態であるならば、その影響を見過ごせない。これを改善したものを実施の形態2として説明する。
Embodiment 2. FIG.
In the first embodiment, when the connection lead wire is disconnected, the leakage indicator LED 48 and the leakage alarm output relay 49 are driven as a “break alarm”, so that the disconnection can be notified to the user. On the other hand, if a power supply voltage is applied to the earth leakage relay 40 in a temporary installation before the start of energization of the main circuit, that is, in a state where the earth leakage relay 40 and the zero-phase current transformer 20 are not yet connected, this is regarded as a disconnection. The disconnection alarm is also activated. In particular, if alarm means such as a buzzer is in the wiring / live line state on the user side in the leakage alarm output relay 49, the influence cannot be overlooked. An improvement of this will be described as a second embodiment.

図2はこの発明の実施の形態2を示す回路図である。
図2に示すように、模擬波形発生回路56の模擬信号は、スイッチ手段、例えば、トランジスタ57を介して、漏電検出回路46に注入されるように構成し、トランジスタ57のベースは比較器52の出力に接続させたことが、実施の形態1との相違点である。
すなわち、正常時では、比較器52の出力はLoであるため、トランジスタ57はオンとなり、テストボタン55を押動すれば、漏電表示LED48および漏電警報出力リレー49は駆動する。一方、断線時においては、実施の形態1と同様、比較器52の出力はHiとなり、その結果、トランジスタ57がオフとなることで、テストボタン55を押動しても、漏電表示LED48および漏電警報出力リレー49は駆動しないことから、使用者は断線を認識することが可能となる。
FIG. 2 is a circuit diagram showing Embodiment 2 of the present invention.
As shown in FIG. 2, the simulation signal of the simulation waveform generation circuit 56 is configured to be injected into the leakage detection circuit 46 via the switch means, for example, the transistor 57, and the base of the transistor 57 is the comparator 52. The connection to the output is the difference from the first embodiment.
In other words, since the output of the comparator 52 is Lo at normal time, the transistor 57 is turned on, and if the test button 55 is pushed, the leakage indicator LED 48 and the leakage alarm output relay 49 are driven. On the other hand, at the time of disconnection, as in the first embodiment, the output of the comparator 52 becomes Hi, and as a result, the transistor 57 is turned off. Since the alarm output relay 49 is not driven, the user can recognize the disconnection.

なお、この場合、零相変流器未接続時での、漏電リレー40への電源印加、即、断線警報駆動という点は回避されるが、言うまでもなく、テストボタン55を押動しない限り、断線か否かが認識できないため、テストボタン55の押動による日常の点検が欠かせない。   In this case, the application of power to the earth leakage relay 40 when the zero-phase current transformer is not connected, and the instant of disconnection alarm drive are avoided. Therefore, daily inspection by pressing the test button 55 is indispensable.

なお、一般に、漏電リレーも漏電遮断器と同様、その設置箇所での負荷機器までの長さ、配線と大地と間の距離、あるいは法令などの設置基準によって、使用者は定格感度電流を選定していることになるが、この定格感度電流を設定するにあたり、製造者側において、その利便性を考慮し、定格感度電流固定式に加え、定格感度電流選択式も用意している(例えば、100・200・500mA切換式)。
これまでの説明では、分圧抵抗を構成する第一の抵抗44を固定とした、いわゆる定格感度電流固定式として説明したが、図1あるいは図2に示すように、第一の抵抗44を可変式にして、例えば、ロータリースイッチを漏電リレー40の外郭に配設できるように、電子回路の構成を考慮すれば、第一の抵抗44で得られる分圧された可変電圧を漏電検出回路46に入力することで、定格感度電流選択式も可能となり、さらに使い勝手の良い漏電リレーを得ることができる。
In general, the leakage relay is the same as the leakage breaker, the user selects the rated sensitivity current according to the length to the load device at the installation location, the distance between the wiring and the ground, or the installation standards such as laws and regulations. However, in setting the rated sensitivity current, in consideration of the convenience, the manufacturer also provides a rated sensitivity current selection type in addition to the rated sensitivity current fixed type (for example, 100). -200/500 mA switching type).
In the above description, the first resistor 44 constituting the voltage dividing resistor is fixed as a so-called rated sensitivity current fixed type. However, as shown in FIG. 1 or 2, the first resistor 44 is variable. In consideration of the configuration of the electronic circuit so that, for example, a rotary switch can be arranged outside the leakage relay 40, the divided variable voltage obtained by the first resistor 44 is supplied to the leakage detection circuit 46. By inputting, a rated sensitivity current selection type is also possible, and a more convenient leakage relay can be obtained.

この発明の実施の形態1における漏電リレーを含む回路図である。It is a circuit diagram containing the earth-leakage relay in Embodiment 1 of this invention. この発明の実施の形態2における漏電リレーを含む回路図である。It is a circuit diagram containing the earth-leakage relay in Embodiment 2 of this invention.

符号の説明Explanation of symbols

10 電路、20 零相変流器、30 接続リード線、40 漏電リレー、41 第一の検出抵抗、42 第二の検出抵抗、43 オペアンプ、44 第一の抵抗、45 第二の抵抗、46 漏電検出回路、47 出力回路、48 漏電表示LED、49 漏電警報出力リレー、50 増幅回路、51 ローパスフィルタ、52 比較器、53,54 基準電位決定抵抗、55 テストボタン、56 模擬波形発生回路、57 トランジスタ 10 circuit, 20 zero-phase current transformer, 30 connection lead, 40 earth leakage relay, 41 first detection resistor, 42 second detection resistor, 43 operational amplifier, 44 first resistor, 45 second resistor, 46 earth leakage Detection circuit, 47 Output circuit, 48 Earth leakage display LED, 49 Earth leakage alarm output relay, 50 Amplifier circuit, 51 Low pass filter, 52 Comparator, 53, 54 Reference potential determination resistor, 55 Test button, 56 Simulated waveform generation circuit, 57 Transistor

Claims (5)

主回路に設置された零相変流器と接続リード線を介して接続され、上記零相変流器によって得られる出力電流を電圧に変換する第一の検出抵抗と、上記電圧のレベル判定を行う漏電検出回路と、この漏電検出回路の出力に応動して漏電表示素子を駆動する出力回路と、テストボタンの押動により、上記漏電検出回路で上記主回路における漏電発生と同等のレベルと判定される模擬波形を発生する模擬波形発生回路と、上記第一の検出抵抗と上記漏電検出回路との間に介在し、上記接続リード線の断線時に上記第一の検出抵抗の電圧を分圧した電圧を入力される増幅回路と、この増幅回路で増幅された信号を基準電位と比較し、その比較出力を上記出力回路に入力する比較器とを備えたことを特徴とする漏電リレー。   A first detection resistor that is connected to a zero-phase current transformer installed in the main circuit via a connecting lead, converts the output current obtained by the zero-phase current transformer into a voltage, and determines the level of the voltage. The leakage detection circuit to be performed, the output circuit that drives the leakage display element in response to the output of the leakage detection circuit, and the test button being pressed, the leakage detection circuit determines that the level is equivalent to the occurrence of leakage in the main circuit. A simulated waveform generating circuit for generating a simulated waveform, and interposed between the first detection resistor and the leakage detection circuit, and dividing the voltage of the first detection resistor when the connection lead wire is disconnected An earth leakage relay comprising: an amplifier circuit to which a voltage is input; and a comparator that compares a signal amplified by the amplifier circuit with a reference potential and inputs a comparison output to the output circuit. 主回路に設置された零相変流器と接続リード線を介して接続され、上記零相変流器によって得られる出力電流を電圧に変換する第一の検出抵抗と、上記電圧のレベル判定を行う漏電検出回路と、この漏電検出回路の出力に応動して漏電表示素子を駆動する出力回路と、テストボタンの押動により、上記漏電検出回路で上記主回路における漏電発生と同等のレベルと判定される模擬波形を発生する模擬波形発生回路と、上記第一の検出抵抗と上記漏電検出回路との間に介在し、上記接続リード線の断線時に上記第一の検出抵抗の電圧を分圧した電圧を入力される増幅回路と、この増幅回路で増幅された信号を基準電位と比較する比較器と、上記比較器の比較出力により上記模擬波形発生回路から上記漏電検出回路への信号注入のオンオフを行うスイッチ手段とを備えたことを特徴とする漏電リレー。   A first detection resistor that is connected to a zero-phase current transformer installed in the main circuit via a connecting lead, converts the output current obtained by the zero-phase current transformer into a voltage, and determines the level of the voltage. The leakage detection circuit to be performed, the output circuit that drives the leakage display element in response to the output of the leakage detection circuit, and the test button being pressed, the leakage detection circuit determines that the level is equivalent to the occurrence of leakage in the main circuit. A simulated waveform generating circuit for generating a simulated waveform, and interposed between the first detection resistor and the leakage detection circuit, and dividing the voltage of the first detection resistor when the connection lead wire is disconnected An amplifier circuit to which a voltage is input, a comparator for comparing a signal amplified by the amplifier circuit with a reference potential, and on / off of signal injection from the simulated waveform generation circuit to the leakage detection circuit by a comparison output of the comparator I do Leakage relay, characterized in that a switch means. 上記増幅回路の入力側に接続され、上記第一の検出抵抗の電圧を分圧して上記増幅回路に入力する第二の検出抵抗を備え、上記第二の検出抵抗は、上記零相変流器の内部インピーダンス及び第一の検出抵抗に対して
内部インピーダンス<第一の検出抵抗の抵抗値<第二の検出抵抗の抵抗値の関係を有するように設定されていることを特徴とする請求項1または2記載の漏電リレー。
A second detection resistor connected to the input side of the amplifier circuit and dividing the voltage of the first detection resistor and inputting the divided voltage to the amplifier circuit; and the second detection resistor comprises the zero-phase current transformer The internal impedance of the first detection resistor and the first detection resistor are set so as to have a relationship of internal impedance <resistance value of the first detection resistor <resistance value of the second detection resistor. Or the earth leakage relay of 2.
上記増幅回路は、オペアンプと、このオペアンプの出力を分圧する分圧抵抗とで構成されるとともに、上記オペアンプの出力を上記比較器に入力し、上記分圧抵抗で得られる電位を上記漏電検出回路に入力するように構成されていることを特徴とする請求項1または2記載の漏電リレー。   The amplifier circuit includes an operational amplifier and a voltage dividing resistor that divides the output of the operational amplifier, inputs the output of the operational amplifier to the comparator, and supplies the potential obtained by the voltage dividing resistor to the leakage detection circuit. The ground-fault relay according to claim 1 or 2, wherein the ground-fault relay is configured to input to the relay. 上記分圧抵抗は可変抵抗で構成されていることを特徴とする請求項4記載の漏電リレー。   5. The earth leakage relay according to claim 4, wherein the voltage dividing resistor comprises a variable resistor.
JP2007314426A 2007-12-05 2007-12-05 Earth leakage relay Expired - Fee Related JP4926015B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007314426A JP4926015B2 (en) 2007-12-05 2007-12-05 Earth leakage relay
CN2008101299509A CN101453114B (en) 2007-12-05 2008-07-24 Electric leakage breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007314426A JP4926015B2 (en) 2007-12-05 2007-12-05 Earth leakage relay

Publications (2)

Publication Number Publication Date
JP2009142021A true JP2009142021A (en) 2009-06-25
JP4926015B2 JP4926015B2 (en) 2012-05-09

Family

ID=40735187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007314426A Expired - Fee Related JP4926015B2 (en) 2007-12-05 2007-12-05 Earth leakage relay

Country Status (2)

Country Link
JP (1) JP4926015B2 (en)
CN (1) CN101453114B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288862A (en) * 2011-07-18 2011-12-21 山西潞安环保能源开发股份有限公司 Electric leakage shutting detection circuit
US8941957B2 (en) 2010-07-30 2015-01-27 Panasonic Intellectual Property Management Co., Ltd. Battery charger for an electrically-driven vehicle and method of confirming earth leakage applicable thereto
CN104426131A (en) * 2013-08-22 2015-03-18 三菱电机株式会社 Leakage circuit breaker
CN106773994A (en) * 2017-01-09 2017-05-31 浙江新涛电子科技股份有限公司 The circuit and control method of a kind of SECO PE ground wires
CN111934280A (en) * 2020-09-09 2020-11-13 南方电网数字电网研究院有限公司 Electric leakage fault detection method and device, storage medium and power distribution gateway
KR20210043869A (en) * 2019-10-14 2021-04-22 모트랩 (주) Apparatus for Controlling Charging Cable for Electronic Vehicle and the Method Thereof
JP7417737B2 (en) 2019-12-12 2024-01-18 エルエス、エレクトリック、カンパニー、リミテッド Protective relay and its disconnection detection method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008088A1 (en) * 2010-07-13 2012-01-19 パナソニック株式会社 Leakage breaker
CN103077816B (en) * 2013-01-30 2016-03-30 江苏博斯特科技电力有限公司 Intelligent voltage transformer
CN107681630A (en) * 2016-08-01 2018-02-09 施耐德电气工业公司 Earth leakage circuit-breaker, related operating method and electric power system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143220A (en) * 1989-10-26 1991-06-18 Toshiba Corp Digital type protective controller
JPH08162332A (en) * 1994-12-07 1996-06-21 Meidensha Corp Wiring breaking test circuit for instrument current transformer
JP2002044856A (en) * 2000-07-25 2002-02-08 Mitsubishi Electric Corp Leakage current relay
JP2007110889A (en) * 2005-09-16 2007-04-26 Schneider Electric Industries Sas Electronic trip device equipped with monitoring means, circuit breaker equipped with such trip device, and monitoring method
JP2008206360A (en) * 2007-02-22 2008-09-04 Mitsubishi Electric Corp Earth leakage relay

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3537140A1 (en) * 1985-10-18 1987-04-23 Turck Werner Kg SELF-MONITORING FAULT CURRENT SWITCH
JP2003045312A (en) * 2001-07-26 2003-02-14 Mitsubishi Electric Corp Ground-fault circuit interrupter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143220A (en) * 1989-10-26 1991-06-18 Toshiba Corp Digital type protective controller
JPH08162332A (en) * 1994-12-07 1996-06-21 Meidensha Corp Wiring breaking test circuit for instrument current transformer
JP2002044856A (en) * 2000-07-25 2002-02-08 Mitsubishi Electric Corp Leakage current relay
JP2007110889A (en) * 2005-09-16 2007-04-26 Schneider Electric Industries Sas Electronic trip device equipped with monitoring means, circuit breaker equipped with such trip device, and monitoring method
JP2008206360A (en) * 2007-02-22 2008-09-04 Mitsubishi Electric Corp Earth leakage relay

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941957B2 (en) 2010-07-30 2015-01-27 Panasonic Intellectual Property Management Co., Ltd. Battery charger for an electrically-driven vehicle and method of confirming earth leakage applicable thereto
CN102288862A (en) * 2011-07-18 2011-12-21 山西潞安环保能源开发股份有限公司 Electric leakage shutting detection circuit
CN104426131A (en) * 2013-08-22 2015-03-18 三菱电机株式会社 Leakage circuit breaker
CN106773994A (en) * 2017-01-09 2017-05-31 浙江新涛电子科技股份有限公司 The circuit and control method of a kind of SECO PE ground wires
CN106773994B (en) * 2017-01-09 2023-08-04 浙江新涛电子科技有限公司 Circuit for controlling PE ground wire in time sequence and control method
KR20210043869A (en) * 2019-10-14 2021-04-22 모트랩 (주) Apparatus for Controlling Charging Cable for Electronic Vehicle and the Method Thereof
KR102338533B1 (en) * 2019-10-14 2021-12-15 모트랩(주) Apparatus for Controlling Charging Cable for Electronic Vehicle and the Method Thereof
JP7417737B2 (en) 2019-12-12 2024-01-18 エルエス、エレクトリック、カンパニー、リミテッド Protective relay and its disconnection detection method
CN111934280A (en) * 2020-09-09 2020-11-13 南方电网数字电网研究院有限公司 Electric leakage fault detection method and device, storage medium and power distribution gateway

Also Published As

Publication number Publication date
JP4926015B2 (en) 2012-05-09
CN101453114B (en) 2011-12-28
CN101453114A (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4926015B2 (en) Earth leakage relay
US11349293B2 (en) Processor-based circuit interrupting devices
US20190324075A1 (en) Monitoring service current for arc fault detection in electrical branch circuits
US6952150B2 (en) Protective device with end of life indicator
US8907678B2 (en) Methods and apparatus for sensing ground leakage and automated self testing thereof
US20150109077A1 (en) Apparatus, System And Method For Total Protection From Electrical Faults
US10840698B2 (en) Leakage current detection and protection device for power cord
US20090287430A1 (en) System and Method for Detecting Leak Current
CN1842951B (en) Method and safety device for ground fault protection circuit
CN105210168B (en) For the GFCI self-testing softwares function program monitored automatically and the blocking of failure safe electric power operates
US10557883B2 (en) Leakage current detection and protection device for power cord
JP2009081928A (en) Apparatus for detecting leakage current
CN102893477B (en) Residual current device
CN107810422B (en) System for detecting and indicating partial discharges and voltages
JP4869103B2 (en) Earth leakage relay
JP2003294803A (en) Tester for verifying integrity of insulation of electric circuit wiring
US6307725B1 (en) Fault-current protective switchgear
JP3602904B2 (en) Alarm detection test equipment for insulation monitoring equipment
JP3139756B2 (en) Protective relay
KR200342993Y1 (en) A sensing circuit Of circuit Breaker trip coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4926015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees