JP2009142020A - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
JP2009142020A
JP2009142020A JP2007314378A JP2007314378A JP2009142020A JP 2009142020 A JP2009142020 A JP 2009142020A JP 2007314378 A JP2007314378 A JP 2007314378A JP 2007314378 A JP2007314378 A JP 2007314378A JP 2009142020 A JP2009142020 A JP 2009142020A
Authority
JP
Japan
Prior art keywords
voltage
circuit
thyristor
power supply
mosfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007314378A
Other languages
Japanese (ja)
Inventor
Daisuke Fujisaki
大輔 藤崎
Kei Sato
圭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Lambda Corp
Original Assignee
TDK Lambda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Lambda Corp filed Critical TDK Lambda Corp
Priority to JP2007314378A priority Critical patent/JP2009142020A/en
Publication of JP2009142020A publication Critical patent/JP2009142020A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply device wherein excessive voltage is not applied to between the ends of a switching element of a boost circuit in whatever phase alternating-current voltage is. <P>SOLUTION: Before rectified voltage from a rectifying circuit 2 reaches a certain level and MOSFET 5 starts operation, a rush current prevention circuit 31 turns off a thyristor 20. Even though a rush current occurs immediately after the power is turned on, therefore, the rush current can be effectively limited by a rush current prevention resistor 21. When the rectified voltage thereafter reaches the certain level and the MOSFET 5 starts operation and driving voltage for turning on the thyristor 20 is given by induced voltage from auxiliary winding 12, the following takes place: a holding circuit 36 utilizes the induced voltage from the auxiliary winding 12 to keep the thyristor 20 on regardless of fluctuation in the rectified voltage. For this reason, a surge current to the power supply device goes through the thyristor 20 and voltage rise in the rush current prevention resistor 21 due to surge current can be avoided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、昇圧回路のチョークコイルに補助巻線を巻回し、この補助巻線に発生する電圧を利用して突入電流を防止する電源装置に関し、特に雷サージの耐量を改善するための電源装置に関する。   The present invention relates to a power supply device in which an auxiliary winding is wound around a choke coil of a booster circuit, and an inrush current is prevented by using a voltage generated in the auxiliary winding, and in particular, a power supply device for improving lightning surge resistance About.

一般に、この種の電源装置として、例えば特許文献1には、交流入力電圧を整流する整流回路と、この整流回路からの整流電圧よりも高い昇圧直流電圧を得るための昇圧回路と、スイッチ素子と突入電流防止用抵抗との並列回路を含み、電源投入時における突入電流を抑制する突入電流防止回路とを備えたものが知られている。   In general, as a power supply device of this type, for example, Patent Document 1 discloses a rectifier circuit that rectifies an AC input voltage, a booster circuit that obtains a boosted DC voltage that is higher than the rectified voltage from the rectifier circuit, and a switch element. A device including a parallel circuit with an inrush current preventing resistor and including an inrush current preventing circuit for suppressing an inrush current when power is turned on is known.

また特に、前記昇圧回路のチョークコイルに補助巻線を巻回し、この補助巻線に発生する電圧を利用して、突入電流防止回路のスイッチ素子を制御するものが、別な特許文献2や特許文献3に開示されている。   In particular, there is another patent document 2 or patent in which an auxiliary winding is wound around the choke coil of the booster circuit and the switch element of the inrush current prevention circuit is controlled using the voltage generated in the auxiliary winding. It is disclosed in Document 3.

図4は、そうした従来技術における電源装置の一例を示したものである。同図において、1は電源装置に交流入力電圧を供給する交流電源、2は交流電源1からの交流入力電圧を全波整流する整流回路であり、これは周知のブリッジ接続された4個のダイオード2A〜2Dにより構成される。3は整流回路2からの整流出力を昇圧して、後段のDC−DCコンバータ9に直流電圧を供給する昇圧回路であり、これはチョークコイル4とスイッチング素子であるMOSFET5との直列回路を、前記整流回路2の出力端間に接続し、ダイオード6と平滑コンデンサ7との直列回路を、MOSFET5の両端すなわちドレイン・ソース間に接続して構成される。また、ここには図示していないが、昇圧回路3にはMOSFET5のゲートに駆動信号を供給する制御手段が設けられており、この制御手段は、前記整流回路2からの整流電圧を受けて、昇圧回路3への入力電流波形が正弦波状になるように、MOSFET5のオン/オフを制御する。つまりここでの昇圧回路3は、DC−DCコンバータ9に高力率の直流電圧を供給する力率改善回路としての機能を有している。電圧変換部としてのDC−DCコンバータ9は、昇圧回路3からの直流電圧を受けて、これを適切な直流出力電圧に変換して、図示しない負荷に供給するものである。   FIG. 4 shows an example of such a power supply device in the prior art. In the figure, reference numeral 1 is an AC power supply for supplying an AC input voltage to the power supply device, and 2 is a rectifier circuit for full-wave rectification of the AC input voltage from the AC power supply 1, which includes four known bridge-connected diodes. It is comprised by 2A-2D. 3 is a booster circuit that boosts the rectified output from the rectifier circuit 2 and supplies a DC voltage to the DC-DC converter 9 in the subsequent stage. This circuit comprises a series circuit of the choke coil 4 and the MOSFET 5 serving as a switching element. A series circuit of a diode 6 and a smoothing capacitor 7 is connected between the output terminals of the rectifier circuit 2 and connected between both ends of the MOSFET 5, that is, between the drain and source. Although not shown here, the booster circuit 3 is provided with control means for supplying a drive signal to the gate of the MOSFET 5, and this control means receives the rectified voltage from the rectifier circuit 2, On / off of the MOSFET 5 is controlled so that the input current waveform to the booster circuit 3 becomes a sine wave. That is, the booster circuit 3 here has a function as a power factor correction circuit that supplies a DC voltage with a high power factor to the DC-DC converter 9. The DC-DC converter 9 as a voltage converter receives the DC voltage from the booster circuit 3, converts it to an appropriate DC output voltage, and supplies it to a load (not shown).

11は、電源投入時に昇圧回路3ひいてはDC−DCコンバータ9への突入電流を防止する突入電流防止回路である。この突入電流防止回路11は、昇圧回路3のチョークコイル4と磁気的に結合する補助巻線12と、抵抗13,14,15と、コンデンサ16,17と、逆流防止用のダイオード18,19と、スイッチ素子たるサイリスタ(SCR)20と、限流素子としての突入電流防止用抵抗21とからなり、補助巻線の一端(ドット側端子)に、抵抗13,15およびコンデンサ17の一端がそれぞれ接続され、抵抗13の他端にダイオード18のアノードが接続され、ダイオード18のカソードに別なダイオード19のアノードが接続され、ダイオード18,19の接続点と補助巻線の他端(非ドット側端子)との間にコンデンサ16が挿入接続される。また、ダイオード19のカソードに抵抗14の一端が接続され、この抵抗14の他端にサイリスタ20のゲートが共通に接続され、サイリスタ20のゲートアブソーバとして設けた抵抗15およびコンデンサ17の並列回路が、サイリスタ20のゲートとカソードとの間に接続されると共に、サイリスタ20の両端であるアノードとカソードが、整流回路2からDC−DCコンバータ9に至る電圧供給ラインに挿入接続され、このサイリスタ20のアノードとカソードとの間に、突入電流防止用抵抗21が並列に接続される。   Reference numeral 11 denotes an inrush current prevention circuit for preventing an inrush current to the booster circuit 3 and thus the DC-DC converter 9 when the power is turned on. The inrush current prevention circuit 11 includes an auxiliary winding 12 that is magnetically coupled to the choke coil 4 of the booster circuit 3, resistors 13, 14, and 15, capacitors 16 and 17, and backflow prevention diodes 18 and 19; The thyristor (SCR) 20 as a switching element and an inrush current preventing resistor 21 as a current limiting element are connected to one end of the auxiliary winding (dot side terminal) and one end of the resistors 13 and 15 and the capacitor 17 respectively. The anode of the diode 18 is connected to the other end of the resistor 13, the anode of another diode 19 is connected to the cathode of the diode 18, and the connection point between the diodes 18 and 19 and the other end of the auxiliary winding (non-dot side terminal) ) And the capacitor 16 are inserted and connected. Further, one end of the resistor 14 is connected to the cathode of the diode 19, the gate of the thyristor 20 is connected in common to the other end of the resistor 14, and a parallel circuit of the resistor 15 and the capacitor 17 provided as a gate absorber of the thyristor 20 is The thyristor 20 is connected between the gate and the cathode, and the anode and the cathode which are both ends of the thyristor 20 are inserted and connected to a voltage supply line extending from the rectifier circuit 2 to the DC-DC converter 9. Between the cathode and the cathode, an inrush current preventing resistor 21 is connected in parallel.

そして、電源投入直後において、交流電源1からの交流入力電圧が整流回路2により全波整流され、その整流電圧が昇圧回路3のチョークコイル4に印加されると共に、MOSFET5に駆動電圧が供給されて動作を開始すると、チョークコイル4の印加電圧に比例した電圧が補助巻線12の両端間に誘起される。それにより、補助巻線12から直接サイリスタ20のゲートに電流が流れる。そのため、前記整流電圧が一定レベルに達し、MOSFET5が動作を始めるまでは、サイリスタ20をターンオンするに十分な電流がゲートに流れず、当該サイリスタ20はオフ状態となるため、昇圧回路3に侵入しようとする突入電流は、突入電流防止用抵抗21によって制限される。その後、整流電圧が一定レベル以上に達し、MOSFET5が動作を始めると、サイリスタ20をターンオンするに十分な電流がゲートに流れて、突入電流防止用抵抗21を短絡し、サイリスタ20を通して昇圧回路3からDC−DCコンバータ9に入力電流が流れるようになっている。
特開平10−155272号公報 実用新案登録第2600225号公報 特開2006−121808号公報
Immediately after the power is turned on, the AC input voltage from the AC power source 1 is full-wave rectified by the rectifier circuit 2, and the rectified voltage is applied to the choke coil 4 of the booster circuit 3 and the drive voltage is supplied to the MOSFET 5. When the operation is started, a voltage proportional to the applied voltage of the choke coil 4 is induced across the auxiliary winding 12. Thereby, a current flows directly from the auxiliary winding 12 to the gate of the thyristor 20. Therefore, until the rectified voltage reaches a certain level and the MOSFET 5 starts to operate, a current sufficient to turn on the thyristor 20 does not flow to the gate, and the thyristor 20 is turned off. The inrush current is limited by the inrush current preventing resistor 21. Thereafter, when the rectified voltage reaches a certain level or more and the MOSFET 5 starts to operate, a current sufficient to turn on the thyristor 20 flows to the gate, the inrush current preventing resistor 21 is short-circuited, and the boost circuit 3 passes through the thyristor 20. An input current flows through the DC-DC converter 9.
JP 10-155272 A Utility Model Registration No. 2600225 JP 2006-121808 A

上述したように、図4に示す電源装置は、整流回路2からの整流電圧を受けて、昇圧回路3が動作し始めると、補助巻線12からサイリスタ20のゲートに電流を流し、所定時間後にサイリスタ20をターンオンさせる回路構成となっている。   As described above, the power supply device shown in FIG. 4 receives the rectified voltage from the rectifier circuit 2 and starts the operation of the booster circuit 3. Then, a current flows from the auxiliary winding 12 to the gate of the thyristor 20, and after a predetermined time. The circuit configuration is such that the thyristor 20 is turned on.

ところが、交流入力電圧の位相が0°若しくは180°付近になると、整流電圧のレベルが0V付近にまで低下し、補助巻線12に誘起する電圧もほぼ無くなるため、サイリスタ20のアノード・カソード間およびゲートに流れる電流を保持できず、結局は突入電流防止回路11のサイリスタ20がオフしてしまう。この状態をあらわしたのが、図5に示す波形図であり、上段に示すサイリスタ20のゲート電圧Vgは、その下方にある交流入力電圧Vacの位相が0°若しくは180°付近で低下するため、サイリスタ20は一定のオフ区間Toffが繰り返し発生する。   However, when the phase of the AC input voltage is close to 0 ° or 180 °, the level of the rectified voltage is reduced to near 0 V, and the voltage induced in the auxiliary winding 12 is almost eliminated. The current flowing through the gate cannot be held, and eventually the thyristor 20 of the inrush current prevention circuit 11 is turned off. This state is shown in the waveform diagram of FIG. 5, and the gate voltage Vg of the thyristor 20 shown in the upper stage is lowered when the phase of the AC input voltage Vac below it is around 0 ° or 180 °. In the thyristor 20, a certain off section Toff is repeatedly generated.

このオフ区間Toffのタイミングでは、サイリスタ20がオフ状態となっているので、定常電流が突入電流防止用抵抗21を介して昇圧回路3の平滑コンデンサ7に流れ込み、突入電流防止用抵抗21の両端間には、突入電流防止用抵抗21の抵抗値と定常電流とを積算した電圧が発生する。この定常動作時において、突入電流防止用抵抗21の両端間に発生する電圧Vbを、図5の下段に示す。   At the timing of this off section Toff, the thyristor 20 is in an off state, so that a steady current flows into the smoothing capacitor 7 of the booster circuit 3 via the inrush current preventing resistor 21 and between both ends of the inrush current preventing resistor 21. A voltage is generated by integrating the resistance value of the inrush current preventing resistor 21 and the steady current. The voltage Vb generated between both ends of the inrush current preventing resistor 21 during the steady operation is shown in the lower part of FIG.

さらにこのオフ区間Toffで、電源装置にサージ電圧が印加されると、サージ電流は突入電流防止用抵抗21を介して昇圧回路3の平滑コンデンサ7に流れ込み、突入電流防止用抵抗21の両端間には、突入電流防止用抵抗21の抵抗値とサージ電流とを積算した電圧が発生する。このときの突入電流防止用抵抗21の両端間電圧Vbは、図5に示す定常動作時に比べてはるかに大きな値となり、昇圧回路3に組み込まれたMOSFET5のドレイン・ソース間は、突入電流防止用抵抗21の抵抗値とサージ電流とを積算した両端間電圧Vbに、平滑コンデンサ7の両端間電圧すなわち昇圧電圧と、ダイオード6の電圧降下分とを加えた電圧が発生し、MOSFET5の定格電圧を超えてしまう虞れがある。   Further, when a surge voltage is applied to the power supply device in the off section Toff, the surge current flows into the smoothing capacitor 7 of the booster circuit 3 via the inrush current prevention resistor 21 and is inserted between both ends of the inrush current prevention resistor 21. Generates a voltage obtained by integrating the resistance value of the inrush current preventing resistor 21 and the surge current. The voltage Vb between both ends of the inrush current preventing resistor 21 at this time is much larger than that in the steady operation shown in FIG. 5, and the between the drain and source of the MOSFET 5 incorporated in the booster circuit 3 is for preventing inrush current. A voltage obtained by adding the voltage across both ends of the smoothing capacitor 7, that is, the boosted voltage and the voltage drop of the diode 6, to the voltage Vb between both ends obtained by integrating the resistance value of the resistor 21 and the surge current is generated, and the rated voltage of the MOSFET 5 is obtained. There is a risk of exceeding.

そこで本発明の目的は、交流入力電圧がどのような位相にあっても、昇圧回路のスイッチング素子の両端間に過大な電圧が加わらない電源装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a power supply device in which an excessive voltage is not applied between both ends of a switching element of a booster circuit regardless of the phase of an AC input voltage.

本発明の請求項1における電源装置は、交流入力電圧を整流する整流回路と、前記整流回路からの整流電圧を昇圧するために、チョークコイルとスイッチング素子とを備えた昇圧回路と、前記チョークコイルに設けられる補助巻線,前記補助巻線からの誘起電圧により駆動するスイッチ素子,および前記スイッチ素子の両端間に接続する限流素子を備え、前記チョークコイルに印加する前記整流電圧が一定レベルに達し、前記昇圧回路が動作を始めるまで、前記スイッチ素子をオフにする突入電流防止回路と、を備えた電源装置において、前記整流電圧が一定レベルに達し、前記昇圧回路が動作を始めて、前記スイッチ素子がターンオンした後、前記補助巻線からの誘起電圧により前記スイッチ素子をオン状態に保持する保持回路を備えている。   A power supply device according to claim 1 of the present invention includes a rectifier circuit that rectifies an AC input voltage, a booster circuit that includes a choke coil and a switching element for boosting a rectified voltage from the rectifier circuit, and the choke coil. An auxiliary winding provided in the auxiliary winding, a switching element driven by an induced voltage from the auxiliary winding, and a current limiting element connected between both ends of the switching element, and the rectified voltage applied to the choke coil is at a constant level. And an inrush current prevention circuit that turns off the switch element until the booster circuit starts to operate. In the power supply device, the rectified voltage reaches a certain level, the booster circuit starts operating, and the switch A holding circuit for holding the switch element in an on state by an induced voltage from the auxiliary winding after the element is turned on; .

本発明の請求項1では、電源投入直後に突入電流が発生しても、整流回路からの整流電圧が一定レベルに達し、昇圧回路が動作を始めるまでは、突入電流防止回路がスイッチ素子をオフにするため、限流素子によって突入電流を効果的に制限できる。その後、整流電圧が一定レベルに達し、昇圧回路が動作を始めることで、補助巻線からの誘起電圧によってスイッチ素子をオンにする駆動電圧が与えられると、保持回路は整流電圧の変動に拘らず、前記補助巻線からの誘起電圧を利用して、スイッチ素子をオン状態にし続けるので、電源装置にサージ電流が流れ込んでも、当該サージ電流は限流素子にではなくスイッチ素子を通り、サージ電流に起因した限流素子の電圧上昇を回避できる。したがって、交流入力電圧がどのような位相にあっても、昇圧回路のスイッチング素子の両端間に過大な電圧が加わらない電源装置を提供できる。   According to the first aspect of the present invention, even if an inrush current occurs immediately after the power is turned on, the inrush current prevention circuit turns off the switch element until the rectified voltage from the rectifier circuit reaches a certain level and the booster circuit starts operating. Therefore, the inrush current can be effectively limited by the current limiting element. After that, when the rectified voltage reaches a certain level and the booster circuit starts to operate, when the drive voltage for turning on the switch element is given by the induced voltage from the auxiliary winding, the holding circuit is not affected by the fluctuation of the rectified voltage. Since the switching element is kept on using the induced voltage from the auxiliary winding, even if a surge current flows into the power supply device, the surge current passes through the switching element, not the current limiting element, and becomes a surge current. It is possible to avoid an increase in the voltage of the current limiting element due to this. Therefore, it is possible to provide a power supply device in which an excessive voltage is not applied across the switching elements of the booster circuit regardless of the phase of the AC input voltage.

以下、添付図面を参照しながら、本発明における電源装置について、好ましい実施例を説明する。なお、従来例で示した図4と同一箇所には同一符号を付し、共通する箇所の説明は重複を避けるため極力省略する。   Hereinafter, preferred embodiments of a power supply device according to the present invention will be described with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the same location as FIG. 4 shown in the prior art example, and description of a common location is abbreviate | omitted as much as possible to avoid duplication.

図1は、本発明の第1実施例における基本構成となる電源装置の回路図を示している。従来例と異なる点は突入電流防止回路31の構成であり、ここでは前述の補助巻線12,抵抗13,抵抗15,コンデンサ16,コンデンサ17,ダイオード18,ダイオード19,サイリスタ20,突入電流防止用抵抗21の他に、スイッチ素子たるMOSFET32と、抵抗33,34と、コンデンサ35とを備えている。これらの各素子は、ダイオード19のカソードにMOSFET32のゲートが接続され、MOSFET32のソースにサイリスタ20のゲートが接続され、MOSFET32のドレインに抵抗34が接続される。また、補助巻線12の一端とダイオード19のカソードとの間に、抵抗33とコンデンサ35の並列回路が接続される。それ以外の構成は、従来例で示した図4と共通している。   FIG. 1 shows a circuit diagram of a power supply apparatus as a basic configuration in the first embodiment of the present invention. The difference from the conventional example is the configuration of the inrush current prevention circuit 31. Here, the auxiliary winding 12, the resistor 13, the resistor 15, the capacitor 16, the capacitor 17, the diode 18, the diode 19, the thyristor 20, and the inrush current prevention are described here. In addition to the resistor 21, a MOSFET 32 serving as a switch element, resistors 33 and 34, and a capacitor 35 are provided. In each of these elements, the gate of the MOSFET 32 is connected to the cathode of the diode 19, the gate of the thyristor 20 is connected to the source of the MOSFET 32, and the resistor 34 is connected to the drain of the MOSFET 32. A parallel circuit of a resistor 33 and a capacitor 35 is connected between one end of the auxiliary winding 12 and the cathode of the diode 19. Other configurations are the same as those in FIG. 4 shown in the conventional example.

従来例の突入電流防止回路11は、ダイオード19のカソードが抵抗14を介して直接サイリスタ20のゲートに接続されていたが、本実施例の突入電流防止回路31は、ダイオード19のカソードとサイリスタ20のゲートとの間に、当該サイリスタ20をオンにし続ける保持回路36が設けられる。この保持回路36は、MOSFET32と、抵抗33,34と、コンデンサ35とからなり、チョークコイル4に整流回路2からの整流電圧が印加され、補助巻線12の一端に正極性の誘起電圧が発生すると、コンデンサ35に電荷を蓄えると共に、当該誘起電圧が一定レベルに達すると、MOSFET32をターンオンしてサイリスタ20をオン状態に切替え、その後はコンデンサ35に蓄えられた電荷によって、MOSFET32のゲート電圧を保持し、入力交流電圧の位相に関係なく、サイリスタ20をオン状態にし続けるものである。   In the inrush current prevention circuit 11 of the conventional example, the cathode of the diode 19 is directly connected to the gate of the thyristor 20 via the resistor 14. However, the inrush current prevention circuit 31 of this embodiment has the cathode of the diode 19 and the thyristor 20. A holding circuit 36 that keeps the thyristor 20 on is provided between the gate and the gate. The holding circuit 36 includes a MOSFET 32, resistors 33 and 34, and a capacitor 35. The rectified voltage from the rectifier circuit 2 is applied to the choke coil 4, and a positive induced voltage is generated at one end of the auxiliary winding 12. Then, charges are stored in the capacitor 35, and when the induced voltage reaches a certain level, the MOSFET 32 is turned on and the thyristor 20 is turned on. Thereafter, the gate voltage of the MOSFET 32 is held by the charge stored in the capacitor 35. However, the thyristor 20 is kept on regardless of the phase of the input AC voltage.

次に、上記構成においてその作用を説明すると、電源投入直後において、交流電源1からの交流入力電圧が整流回路2により全波整流され、その整流電圧が昇圧回路3のチョークコイル4に印加される。そして、整流電圧が一定レベルに達し、MOSFET5が動作を始めると、チョークコイル4の印加電圧に比例した電圧が補助巻線12の両端間に誘起され、この誘起電圧がコンデンサ35に電荷を蓄えて、MOSFET32のゲートをチャージする。やがて、MOSFET32のゲート電位の上昇に伴い、当該MOSFET32がオン状態となり、抵抗34とMOSFET32を介してサイリスタ20のゲートに電流が流れると、サイリスタ20もターンオンして突入電流防止用抵抗20の両端間を短絡するが、それまではサイリスタ20がオフしているため、昇圧回路3に侵入しようとする過渡的な突入電流は、突入電流防止用抵抗20によって制限される。   Next, the operation of the above configuration will be described. Immediately after the power is turned on, the AC input voltage from the AC power source 1 is full-wave rectified by the rectifier circuit 2, and the rectified voltage is applied to the choke coil 4 of the booster circuit 3. . When the rectified voltage reaches a certain level and the MOSFET 5 starts to operate, a voltage proportional to the voltage applied to the choke coil 4 is induced across the auxiliary winding 12, and this induced voltage accumulates electric charge in the capacitor 35. The gate of the MOSFET 32 is charged. Eventually, as the gate potential of the MOSFET 32 rises, the MOSFET 32 is turned on, and when a current flows to the gate of the thyristor 20 through the resistor 34 and the MOSFET 32, the thyristor 20 is also turned on and between both ends of the inrush current preventing resistor 20 However, since the thyristor 20 is off until then, the transient inrush current that tries to enter the booster circuit 3 is limited by the inrush current preventing resistor 20.

その後、交流入力電圧の位相が0°若しくは180°付近になると、整流電圧のレベルが0V付近にまで低下し、補助巻線12に誘起する電圧もほぼ無くなるが、それまでコンデンサ35に蓄えられた電荷によって、MOSFET32をオンし続けるレベルに、当該MOSFET32のゲート電圧は保持され、サイリスタ20はオン状態を維持し続ける。したがって、交流入力電圧の供給が遮断されない限り、交流入力電圧の位相に関らず、サイリスタ20は常時オン状態となり、サイリスタ20を通して昇圧回路3からDC−DCコンバータ9に入力電流が流れる。   After that, when the phase of the AC input voltage becomes near 0 ° or 180 °, the level of the rectified voltage decreases to near 0V, and the voltage induced in the auxiliary winding 12 is almost eliminated, but is stored in the capacitor 35 until then. The gate voltage of the MOSFET 32 is maintained at a level at which the MOSFET 32 is continuously turned on by the electric charge, and the thyristor 20 continues to be kept on. Therefore, unless the supply of the AC input voltage is interrupted, the thyristor 20 is always on regardless of the phase of the AC input voltage, and the input current flows from the booster circuit 3 to the DC-DC converter 9 through the thyristor 20.

また、この状態で交流電源1から電源装置にサージ電圧が印加されても、サージ電流は突入電流防止用抵抗21に流れず、サイリスタ20を通って平滑コンデンサ7に流れ込む。したがって、昇圧回路3に組み込まれたMOSFET5のドレイン・ソース間は、平滑コンデンサ7の両端間電圧にダイオード6の電圧降下分を加えた電圧が発生するに留まり、MOSFET5のドレイン・ソース間電圧の上昇を抑えることができる。同時に、サイリスタ20のアノード・カソード間の電圧上昇も抑えることができる。   Further, even if a surge voltage is applied from the AC power supply 1 to the power supply device in this state, the surge current does not flow into the inrush current prevention resistor 21 but flows into the smoothing capacitor 7 through the thyristor 20. Therefore, a voltage obtained by adding the voltage drop of the diode 6 to the voltage across the smoothing capacitor 7 is generated between the drain and source of the MOSFET 5 incorporated in the booster circuit 3, and the drain-source voltage of the MOSFET 5 increases. Can be suppressed. At the same time, an increase in voltage between the anode and cathode of the thyristor 20 can be suppressed.

以上のように、本実施例では交流入力電圧を整流する整流回路2と、整流回路2からの整流電圧を昇圧するために、チョークコイル4とスイッチング素子であるMOSFET5とを整流回路2の出力端間に接続してなるチョッパ方式の昇圧回路3と、チョークコイル4に設けられる補助巻線12,補助巻線12からの誘起電圧により駆動するスイッチ素子としてのサイリスタ20,およびサイリスタ20の両端間であるアノード・カソード間に接続する限流素子としての突入電流防止用抵抗21を備え、チョークコイル4に印加する整流電圧が一定レベルに達し、昇圧回路3のMOSFET5が動作を始めるまで、サイリスタ20をオフにする突入電流防止回路31と、を備えた電源装置において、整流回路2からの整流電圧が一定レベルに達し、MOSFET5が動作を始めて、サイリスタ20がターンオンした後、補助巻線12からの誘起電圧を利用してこのサイリスタ20をオン状態に保持する保持回路36を突入電流防止回路31に備えている。   As described above, in this embodiment, the rectifier circuit 2 that rectifies the AC input voltage and the choke coil 4 and the MOSFET 5 that is a switching element are connected to the output terminal of the rectifier circuit 2 in order to boost the rectified voltage from the rectifier circuit 2. A chopper type booster circuit 3 connected between the auxiliary winding 12 provided in the choke coil 4, a thyristor 20 as a switching element driven by an induced voltage from the auxiliary winding 12, and between both ends of the thyristor 20. A rush current preventing resistor 21 as a current limiting element connected between a certain anode and cathode is provided, and the thyristor 20 is operated until the rectified voltage applied to the choke coil 4 reaches a certain level and the MOSFET 5 of the booster circuit 3 starts operating. In the power supply device including the inrush current prevention circuit 31 that is turned off, the rectified voltage from the rectifier circuit 2 becomes a constant level. And, MOSFET 5 is started to operate, after the thyristor 20 is turned on, and includes the inrush current preventing circuit 31 a holding circuit 36 which utilizes the induced voltage from the auxiliary winding 12 for holding the thyristor 20 in the ON state.

この場合、電源投入直後に突入電流が発生しても、整流回路2からの整流電圧が一定レベルに達し、MOSFET5が動作を始めるまでは、突入電流防止回路31がサイリスタ20をオフにするため、突入電流防止用抵抗21によって突入電流を効果的に制限できる。その後、整流電圧が一定レベルに達し、MOSFET5が動作を始めて、補助巻線12からの誘起電圧によってサイリスタ20をオンにする駆動電圧が与えられると、保持回路36は整流電圧の変動に拘らず、補助巻線12からの誘起電圧を利用して、サイリスタ20をオン状態にし続けるので、電源装置にサージ電流が流れ込んでも、当該サージ電流は突入電流防止用抵抗21にではなくサイリスタ20を通り、サージ電流に起因した突入電流防止用抵抗21の電圧上昇を回避できる。したがって、交流入力電圧がどのような位相にあっても、昇圧回路3のMOSFET5の両端間に過大な電圧が加わらない電源装置を提供できる。   In this case, even if an inrush current occurs immediately after the power is turned on, the inrush current prevention circuit 31 turns off the thyristor 20 until the rectified voltage from the rectifier circuit 2 reaches a certain level and the MOSFET 5 starts to operate. The inrush current can be effectively limited by the inrush current preventing resistor 21. After that, when the rectified voltage reaches a certain level, the MOSFET 5 starts to operate, and a driving voltage for turning on the thyristor 20 is given by the induced voltage from the auxiliary winding 12, the holding circuit 36 does not depend on the fluctuation of the rectified voltage, Since the induced voltage from the auxiliary winding 12 is used to keep the thyristor 20 in the ON state, even if a surge current flows into the power supply device, the surge current passes through the thyristor 20 instead of the inrush current preventing resistor 21 and is An increase in voltage of the inrush current preventing resistor 21 due to the current can be avoided. Therefore, it is possible to provide a power supply device in which an excessive voltage is not applied between both ends of the MOSFET 5 of the booster circuit 3 regardless of the phase of the AC input voltage.

図2は、本発明の第2実施例における電源装置の実機例としての回路図である。同図において、第1実施例と異なるのは、ダイオード19のカソードとMOSFET32のゲートとの間に、抵抗41,42と、ツェナーダイオード43とからなる定電圧回路を介在させた点にある。ここでは、抵抗41,42の直列回路が、ダイオード19のカソードと補助巻線12の一端との間に接続され、当該抵抗41,42の接続点にMOSFET32のゲートが接続される。さらに、MOSFET32のゲートと補助巻線12の一端との間に接続した抵抗の両端間に、ツェナーダイオード43が接続される。それ以外の構成および動作は、上記第1実施例で説明したとおりである。   FIG. 2 is a circuit diagram as an actual example of the power supply device in the second embodiment of the present invention. In the figure, the difference from the first embodiment is that a constant voltage circuit composed of resistors 41 and 42 and a Zener diode 43 is interposed between the cathode of the diode 19 and the gate of the MOSFET 32. Here, a series circuit of resistors 41 and 42 is connected between the cathode of the diode 19 and one end of the auxiliary winding 12, and the gate of the MOSFET 32 is connected to the connection point of the resistors 41 and 42. Further, a Zener diode 43 is connected between both ends of a resistor connected between the gate of the MOSFET 32 and one end of the auxiliary winding 12. Other configurations and operations are as described in the first embodiment.

本例では、MOSFET32のゲート・ソース間電圧が、ツェナーダイオード43によって一定に保たれる。したがって、第1実施例に比べてMOSFET32を安定してオン状態に保持し続けることができ、整流回路2からの整流電圧が一定レベルに達した後は、サイリスタ20を確実にオン状態に保つことが可能になる。   In this example, the gate-source voltage of the MOSFET 32 is kept constant by the Zener diode 43. Therefore, the MOSFET 32 can be kept stably in the on state as compared with the first embodiment, and the thyristor 20 is surely kept in the on state after the rectified voltage from the rectifier circuit 2 reaches a certain level. Is possible.

図3は、本発明の第3実施例における電源装置の実機例としての回路図である。同図において、第2実施例と異なるのは、サイリスタ20および突入電流防止用抵抗21の並列回路が、昇圧回路3を構成するダイオード6のカソードとコンデンサ7の一端との間にではなく、整流回路2の出力端とチョークコイル4との間に挿入接続される点にある。それ以外の構成および動作は、上記第1実施例や第2実施例で説明したとおりである。   FIG. 3 is a circuit diagram as an actual example of the power supply device according to the third embodiment of the present invention. In the figure, the second embodiment differs from the second embodiment in that the parallel circuit of the thyristor 20 and the inrush current preventing resistor 21 is not between the cathode of the diode 6 constituting the booster circuit 3 and one end of the capacitor 7 but rectified. This is in the point of being inserted and connected between the output end of the circuit 2 and the choke coil 4. Other configurations and operations are the same as described in the first and second embodiments.

この場合、昇圧回路3の前段にサイリスタ20および突入電流防止用抵抗21の並列回路が設けられているため、電源投入直後に発生する突入電流を、昇圧回路3に確実に侵入させないようにすることができる。   In this case, since the parallel circuit of the thyristor 20 and the inrush current prevention resistor 21 is provided in the previous stage of the booster circuit 3, the inrush current generated immediately after the power is turned on is prevented from entering the booster circuit 3 with certainty. Can do.

なお、本発明は、上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更可能である。例えばスイッチング素子として、MOSFET5以外に例えばトランジスタなどを用いてもよいし、またスイッチング素子として、サイリスタ20以外に例えばトライアック(双方向サイリスタ)を用いてもよい。さらに、整流回路2は実施例のような全波整流回路に限らず、半波整流回路や倍電圧整流回路などを適用してもよい。また電源装置として、上記実施例では安定した直流電圧を出力するDC−DCコンバータ9を組み込んだが、例えば交流電圧を出力するDC−ACコンバータを代わりに組み込んでも良いし、また昇圧回路3からの昇圧出力を、そのまま電源装置の出力電圧としてもよい。   In addition, this invention is not limited to the said Example, It can change in the range which does not deviate from the meaning of this invention. For example, a transistor or the like may be used as the switching element in addition to the MOSFET 5, and a triac (bidirectional thyristor) may be used as the switching element in addition to the thyristor 20. Furthermore, the rectifier circuit 2 is not limited to the full-wave rectifier circuit as in the embodiment, and a half-wave rectifier circuit, a voltage doubler rectifier circuit, or the like may be applied. Further, as the power supply device, the DC-DC converter 9 that outputs a stable DC voltage is incorporated in the above-described embodiment. However, for example, a DC-AC converter that outputs an AC voltage may be incorporated instead. The output may be directly used as the output voltage of the power supply device.

本発明の第1実施例における電源装置を示す回路図である。It is a circuit diagram which shows the power supply device in 1st Example of this invention. 本発明の第2実施例における電源装置の実機例を示す回路図である。It is a circuit diagram which shows the example of a real machine of the power supply device in 2nd Example of this invention. 本発明の第3実施例における電源装置の実機例を示す回路図である。It is a circuit diagram which shows the example of a real machine of the power supply device in 3rd Example of this invention. 従来例の電源装置を示す回路図である。It is a circuit diagram which shows the power supply device of a prior art example. 同上、各部の動作状態を示す波形図である。It is a wave form diagram which shows the operation state of each part same as the above.

符号の説明Explanation of symbols

2 整流回路
3 昇圧回路
4 チョークコイル
5 MOSFET(スイッチング素子)
12 補助巻線
20 サイリスタ(スイッチ素子)
21 突入電流防止用抵抗
31 突入電流防止回路
36 保持回路
2 Rectifier circuit 3 Booster circuit 4 Choke coil 5 MOSFET (switching element)
12 Auxiliary winding 20 Thyristor (switch element)
21 Inrush current prevention resistor 31 Inrush current prevention circuit 36 Holding circuit

Claims (1)

交流入力電圧を整流する整流回路と、
前記整流回路からの整流電圧を昇圧するために、チョークコイルとスイッチング素子とを備えた昇圧回路と、
前記チョークコイルに設けられる補助巻線,前記補助巻線からの誘起電圧により駆動するスイッチ素子,および前記スイッチ素子の両端間に接続する限流素子を備え、前記チョークコイルに印加する前記整流電圧が一定レベルに達し、前記昇圧回路が動作を始めるまで、前記スイッチ素子をオフにする突入電流防止回路と、を備えた電源装置において、
前記整流電圧が一定レベルに達し、前記昇圧回路が動作を始めて、前記スイッチ素子がターンオンした後、前記補助巻線からの誘起電圧により前記スイッチ素子をオン状態に保持する保持回路を備えたことを特徴とする電源装置。


A rectifier circuit for rectifying an AC input voltage;
A step-up circuit including a choke coil and a switching element to step up a rectified voltage from the rectifier circuit;
An auxiliary winding provided in the choke coil, a switch element driven by an induced voltage from the auxiliary winding, and a current limiting element connected between both ends of the switch element, and the rectified voltage applied to the choke coil is In a power supply device comprising an inrush current prevention circuit that turns off the switch element until reaching a certain level and the booster circuit starts to operate,
A holding circuit for holding the switch element in an ON state by an induced voltage from the auxiliary winding after the rectified voltage reaches a certain level, the booster circuit starts operating, and the switch element is turned on; A featured power supply.


JP2007314378A 2007-12-05 2007-12-05 Power supply device Pending JP2009142020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007314378A JP2009142020A (en) 2007-12-05 2007-12-05 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007314378A JP2009142020A (en) 2007-12-05 2007-12-05 Power supply device

Publications (1)

Publication Number Publication Date
JP2009142020A true JP2009142020A (en) 2009-06-25

Family

ID=40872090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007314378A Pending JP2009142020A (en) 2007-12-05 2007-12-05 Power supply device

Country Status (1)

Country Link
JP (1) JP2009142020A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171227A1 (en) * 2011-06-11 2012-12-20 深圳市华星光电技术有限公司 Self excitation synchronous rectification boost converter
US8610416B2 (en) 2011-06-11 2013-12-17 Shenzhen China Star Optoelectronics Technology Co., Ltd. Self-driven synchronous rectification boost converter
CN106059295A (en) * 2015-04-07 2016-10-26 意法半导体(图尔)公司 Circuit for controlling a rectifier bridge
JP7315605B2 (en) 2021-03-15 2023-07-26 コーセル株式会社 switching power supply

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636382U (en) * 1992-10-12 1994-05-13 ネミック・ラムダ株式会社 Boost converter
JPH07147770A (en) * 1993-11-25 1995-06-06 Matsushita Electric Works Ltd Power unit
JP2007159265A (en) * 2005-12-05 2007-06-21 Mitsubishi Electric Corp Power supply unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636382U (en) * 1992-10-12 1994-05-13 ネミック・ラムダ株式会社 Boost converter
JPH07147770A (en) * 1993-11-25 1995-06-06 Matsushita Electric Works Ltd Power unit
JP2007159265A (en) * 2005-12-05 2007-06-21 Mitsubishi Electric Corp Power supply unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171227A1 (en) * 2011-06-11 2012-12-20 深圳市华星光电技术有限公司 Self excitation synchronous rectification boost converter
US8610416B2 (en) 2011-06-11 2013-12-17 Shenzhen China Star Optoelectronics Technology Co., Ltd. Self-driven synchronous rectification boost converter
CN106059295A (en) * 2015-04-07 2016-10-26 意法半导体(图尔)公司 Circuit for controlling a rectifier bridge
JP7315605B2 (en) 2021-03-15 2023-07-26 コーセル株式会社 switching power supply

Similar Documents

Publication Publication Date Title
JP4062307B2 (en) converter
JP5056395B2 (en) Switching power supply
KR100758127B1 (en) Power supply unit
EP2672620B1 (en) Power factor improvement circuit
JP2006094696A (en) Power factor correcting circuit and its output voltage control method
JP4632023B2 (en) Power converter
JP2004215433A (en) Switching power supply device
JP3236587B2 (en) Switching power supply
US11165334B2 (en) Enhancing high-voltage startup voltage rating for PWM controllers with internal high voltage startup circuit
JP2009142020A (en) Power supply device
JP2005198375A (en) Synchronous rectification circuit and power converter
JP2006333634A (en) Switching power supply
JP4111326B2 (en) Switching power supply
US10164513B1 (en) Method of acquiring input and output voltage information
CN116111848A (en) Integrated circuit and power supply circuit
JP4288702B2 (en) Switching power supply
JP4844151B2 (en) Switching power supply
JP2017103870A (en) Switching power supply device
JP2003250274A (en) Method for reducing bus voltage stress in single switch power-factor correction circuit of single stage
JP4680453B2 (en) Switching power supply
JP2005051942A (en) Switching power circuit and switching regulator equipped with it
CN216905379U (en) LED drive circuit
JP2004096967A (en) Switching power unit
JP5772278B2 (en) Switching power supply
JP5450255B2 (en) Switching power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101105

A977 Report on retrieval

Effective date: 20120502

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120521

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120924