JP2009141374A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2009141374A
JP2009141374A JP2008328234A JP2008328234A JP2009141374A JP 2009141374 A JP2009141374 A JP 2009141374A JP 2008328234 A JP2008328234 A JP 2008328234A JP 2008328234 A JP2008328234 A JP 2008328234A JP 2009141374 A JP2009141374 A JP 2009141374A
Authority
JP
Japan
Prior art keywords
phosphor
wavelength
light
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008328234A
Other languages
Japanese (ja)
Inventor
Naomi Shinoda
直美 信田
Masaaki Tamaya
正昭 玉谷
Kazuaki Otsuka
一昭 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008328234A priority Critical patent/JP2009141374A/en
Publication of JP2009141374A publication Critical patent/JP2009141374A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

<P>PROBLEM TO BE SOLVED: To maintain a high quality by having a phosphor layer including a specific phosphor. <P>SOLUTION: This light emitting device 200 has a light emitting element 206 for emitting the light of a wavelength of 410 nm, 360 nm, 470 nm or 405 nm, and the phosphor layer 209 arranged on the light emitting element 206 and including the phosphor 210. The phosphor 210 has a core particle composed of an alkaline earth metal silicate phosphor having the composition represented by formula (1):(M<SB>1-x</SB>E<SB>ux</SB>)<SB>2</SB>Si<SB>y</SB>O<SB>2y+2</SB>(in the formula (1), M is at least one kind of alkaline earth metal element selected from a group composed of Ca, Sr and Ba, x is 0.001 to 0.1, and yis 0.9 to 1.1), and a surface layer material such as a silicone resin arranged on a surface of the core particle. A light emitting spectrum excited by the light of the wavelength has the single light emitting peak between a wavelength 540 nm and 600 nm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、蛍光体を用いたLED等の発光装置に関する。   The present invention relates to a light emitting device such as an LED using a phosphor.

発光ダイオードを用いたLEDランプは、携帯機器、PC周辺機器、OA機器、各種スイッチ、バックライト用光源、表示板などの各種表示装置に用いられている。LEDチップは半導体素子であるために、長寿命でかつ信頼性が高く、光源として用いた場合に、その交換作業が軽減されることから、種々の用途への応用が試みられている。   LED lamps using light emitting diodes are used in various display devices such as portable devices, PC peripheral devices, OA devices, various switches, backlight light sources, and display plates. Since the LED chip is a semiconductor element, it has a long lifetime and high reliability, and when used as a light source, its replacement work is reduced. Therefore, application to various uses has been attempted.

上述したようなLEDランプにおいては光源として、波長400nm前後の長波長紫外線を放射するLEDチップ、例えばGaN系化合物半導体層を有するLEDチップが用いられている。このため、LEDランプに用いられる蛍光体には、上記したような長波長の紫外線をよく吸収し、かつ効率よく可視光を発光するものが求められている。   In the LED lamp as described above, an LED chip that emits long-wavelength ultraviolet light having a wavelength of around 400 nm, for example, an LED chip having a GaN-based compound semiconductor layer is used as a light source. For this reason, the phosphor used for the LED lamp is required to absorb a long wavelength ultraviolet ray as described above and to emit visible light efficiently.

二価のユーロピウムで付活された公知の珪酸塩蛍光体は、波長360〜500nm前後の長波長紫外線を効率的に吸収し、ピーク波長が550nm付近の黄色光を効率よく発光することから、LEDランプなどに用いられる黄色蛍光体として期待されている。   A known silicate phosphor activated by divalent europium efficiently absorbs long-wavelength ultraviolet light having a wavelength of about 360 to 500 nm and efficiently emits yellow light having a peak wavelength of about 550 nm. It is expected as a yellow phosphor used in lamps and the like.

LEDランプを種々の用途に適用するに当たって、発光素子の耐用年数を高めることが提案されている(例えば、特許文献1参照)。この文献には、酸化物発光体、硫化物発光体、アルミン酸塩発光体、ホウ酸塩発光体、バナジン酸塩発光体ならびにケイ酸塩発光体用に共通の技術としての耐用年数の向上に関するコーティング技術が記載されている。   In applying the LED lamp to various uses, it has been proposed to increase the service life of the light emitting element (see, for example, Patent Document 1). This document relates to the improvement of the service life as a common technology for oxide, sulfide, aluminate, borate, vanadate and silicate emitters. Coating techniques are described.

YAG−Ce系、窒素含有CaO−Al23−SiO2:Eu,Crに関しては、有機物被膜によりマイクロカプセル化を行なって、発光バラツキを低減する方法が開示されている(例えば、特許文献2参照)。また、YAG系蛍光体に関しては、表面改質によって分散性向上の開発がなされている(例えば、特許文献3参照)。
特開2002−223008号公報 特開2003−46141号公報 特開2003−37295号公報
Regarding YAG-Ce-based, nitrogen-containing CaO—Al 2 O 3 —SiO 2 : Eu, Cr, a method of reducing luminescence variation by performing microencapsulation with an organic coating (for example, Patent Document 2) is disclosed. reference). In addition, YAG phosphors have been developed to improve dispersibility by surface modification (see, for example, Patent Document 3).
JP 2002-223008 A JP 2003-46141 A JP 2003-37295 A

しかしながら、従来のユーロピウム付活珪酸塩蛍光体を用いたLEDランプ等の発光装置は、発光にムラが生じ、長期間使用した際には発光出力が低下するという現象が確認された。こうした現象は、LEDランプの品質を低下させる要因となってしまう。   However, it has been confirmed that a light emitting device such as an LED lamp using a conventional europium activated silicate phosphor is uneven in light emission and the light emission output is reduced when used for a long time. Such a phenomenon becomes a factor of deteriorating the quality of the LED lamp.

そこで本発明は、高品質の発光装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a high-quality light-emitting device.

本発明の一実施形態にかかる発光装置は、410nm、360nm、470nm、または405nmの波長の光を発光する発光素子と、
前記発光素子上に配置され、蛍光体を含有する蛍光層とを具備し、
前記蛍光体は、下記一般式(1)で表わされる組成のアルカリ土類金属珪酸塩蛍光体からなるコア粒子と、前記コア粒子の表面に配置され、シリコーン樹脂、エポキシ樹脂、フッ素樹脂、テトラエトキシシラン、シリカ、ケイ酸亜鉛、ケイ酸アルミニウム、カルシウムポリフォスフェート、シリコーンオイル、およびシリコーングリースから選択される少なくとも一種からなる表層材とを備え、波長410nm、360nm、470nm、または405nmの光で励起した際の発光スペクトルは、波長470nmないし610nmの間に単一の発光ピークを有することを特徴とする。
A light emitting device according to an embodiment of the present invention includes a light emitting element that emits light having a wavelength of 410 nm, 360 nm, 470 nm, or 405 nm,
A phosphor layer disposed on the light-emitting element and containing a phosphor;
The phosphor is disposed on the surface of the core particle composed of an alkaline earth metal silicate phosphor having a composition represented by the following general formula (1), and is a silicone resin, epoxy resin, fluororesin, tetraethoxy A surface layer material made of at least one selected from silane, silica, zinc silicate, aluminum silicate, calcium polyphosphate, silicone oil, and silicone grease, and excited by light having a wavelength of 410 nm, 360 nm, 470 nm, or 405 nm The emission spectrum is characterized by having a single emission peak between wavelengths 470 nm to 610 nm.

(M1-xEux2Siy2y+2 (1)
(上記一般式(1)中、MはCa,SrおよびBaからなる群から選択される少なくとも1種のアルカリ土類金属元素であり、xは0.001以上0.1以下、yは0.9以上1.1以下である。)
(M 1-x Eu x ) 2 Si y O 2y + 2 (1)
(In the general formula (1), M is at least one alkaline earth metal element selected from the group consisting of Ca, Sr and Ba, x is 0.001 or more and 0.1 or less, and y is 0.00. 9 or more and 1.1 or less.)

本発明の一態様によれば、高品質の発光装置が提供される。   According to one embodiment of the present invention, a high-quality light-emitting device is provided.

以下、本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

本発明者らは、従来のユーロピウム付活珪酸塩蛍光体について鋭意研究した結果、この蛍光体は吸湿性を有することを見出した。ユーロピウム付活珪酸塩蛍光体は、長期間保管した際、環境によっては容易に凝集してしまい、これに起因して種々の問題が引き起こされていた。   As a result of intensive studies on the conventional europium activated silicate phosphor, the present inventors have found that this phosphor has hygroscopicity. The europium activated silicate phosphor easily aggregates depending on the environment when stored for a long period of time, resulting in various problems.

LEDランプの蛍光層に用いられている粒子状の蛍光体が凝集すると、LEDランプの出力が低下する。LEDランプを作製する際に蛍光体の凝集が生じた場合には、蛍光体が樹脂中に均一に分散されてなる蛍光層を形成することができない。その結果、LEDランプからの発光にムラが生じ、LEDランプからの発光出力も低下する。   When the particulate phosphor used in the fluorescent layer of the LED lamp aggregates, the output of the LED lamp decreases. In the case where the aggregation of the phosphor occurs when the LED lamp is manufactured, it is not possible to form a phosphor layer in which the phosphor is uniformly dispersed in the resin. As a result, the light emission from the LED lamp becomes uneven, and the light emission output from the LED lamp also decreases.

LEDランプ等の発光装置の品質を高めるには、ユーロピウム付活珪酸塩蛍光体の防湿性の改善が必須であるという知見に基づいて、本発明は成されたものである。   In order to improve the quality of light-emitting devices such as LED lamps, the present invention has been made based on the knowledge that it is essential to improve the moisture resistance of the europium-activated silicate phosphor.

ユーロピウム付活珪酸塩蛍光体は、アルカリ土類金属元素の種類および組成を選択することにより、550nm近傍に第一の波長を有する発光スペクトルを与える。この際のスペクトルには、図1に示されるように500nm近傍の第二の波長が一般的に存在していた。こうした第二の波長に関しては、例えば、G.Blasse,W.L.Wanmaher,J.W.terVrugt,and A.Bril,Philips Res.Repts,23,189−200,(1968).(2) S.H.M.Poort,W.Janssen,G.Blasse,J.Alloys and Compounds,260,93−97,(1997)に記載されている。   The europium activated silicate phosphor gives an emission spectrum having a first wavelength near 550 nm by selecting the type and composition of the alkaline earth metal element. The spectrum at this time generally has a second wavelength in the vicinity of 500 nm as shown in FIG. With respect to such a second wavelength, for example, G.I. Blasse, W.M. L. Wanmaher, J. et al. W. terVrugt, and A.A. Brill, Philips Res. Repts, 23, 189-200, (1968). (2) S.M. H. M.M. Port, W. Janssen, G.M. Blasse, J. et al. Alloys and Compounds, 260, 93-97, (1997).

発光スペクトルに第二の波長が存在すると、ユーロピウム付活珪酸塩蛍光体の吸湿性が著しく増加すること、この第二の波長を取り除くことによって、ユーロピウム付活珪酸塩蛍光体の吸湿性が向上することが、本発明者らによって見出された。すなわち、吸湿性の低減されたユーロピウム付活珪酸塩蛍光体を得るには、第二の波長を取り除いて540nmないし600nmの波長の間に存在する発光ピークを、図2に示すように単一にしなければならない。単一の発光ピークを有するユーロピウム付活珪酸塩蛍光体は、特定の組成のアルカリ土類金属珪酸塩蛍光体からなるコア粒子から作製された。   When the second wavelength is present in the emission spectrum, the hygroscopicity of the europium activated silicate phosphor is significantly increased, and by removing this second wavelength, the hygroscopicity of the europium activated silicate phosphor is improved. Has been found by the present inventors. That is, in order to obtain a europium activated silicate phosphor with reduced hygroscopicity, the second wavelength is removed and the emission peak existing between wavelengths of 540 nm and 600 nm is made single as shown in FIG. There must be. Europium activated silicate phosphors having a single emission peak were prepared from core particles made of alkaline earth metal silicate phosphors of a specific composition.

すなわち、本発明の実施形態にかかる蛍光体は、前記一般式(1)で表わされる組成を有するアルカリ土類金属珪酸塩蛍光体からなるコア粒子と、このコア粒子の表面に配置された表層材とを有する。   That is, the phosphor according to the embodiment of the present invention includes a core particle made of an alkaline earth metal silicate phosphor having the composition represented by the general formula (1), and a surface layer material disposed on the surface of the core particle. And have.

コア粒子は、2価のユーロピウムで付活されたものであり、例えば以下のような手法により合成することができる。   The core particle is activated by divalent europium and can be synthesized by, for example, the following method.

まず、構成元素の酸化物粉末を所定量秤量し、結晶成長剤として適当量の塩化アンモニウムを加えてボールミル等で混合する。酸化物粉末の代わりに、熱分解により酸化物となり得る各種化合物を用いることもできる。例えば、Eu原料としてはEu23等、Ca原料としてはCaCO3等、Sr原料としてはSrCO3等、Si原料としてはSiO2等を用いることができる。 First, a predetermined amount of the constituent element oxide powder is weighed, an appropriate amount of ammonium chloride is added as a crystal growth agent, and mixed with a ball mill or the like. Instead of the oxide powder, various compounds that can be converted into oxides by thermal decomposition can also be used. For example, Eu 2 O 3 or the like can be used as the Eu material, CaCO 3 or the like can be used as the Ca material, SrCO 3 can be used as the Sr material, and SiO 2 or the like can be used as the Si material.

結晶成長剤としては、塩化アンモニウム以外のアンモニウム、アルカリ金属あるいはアルカリ土類金属の塩化物、フッ化物、臭化物、あるいは沃化物などを用いてもよい。吸湿性の増加を防止するために、結晶成長剤の添加量は、原料粉末全体に対して1.0wt%以上30wt%以下程度とすることが望まれる。   As the crystal growth agent, ammonium other than ammonium chloride, chloride of alkali metal or alkaline earth metal, fluoride, bromide, or iodide may be used. In order to prevent an increase in hygroscopicity, the amount of the crystal growth agent added is desirably about 1.0 wt% or more and 30 wt% or less with respect to the entire raw material powder.

その後、坩堝に収容し、N2、H2の還元性雰囲気において、1000〜1600℃の温度で3〜7時間焼成する。得られた焼成品を水中で粉砕、篩後、吸引ろ過により脱水する。最後に、乾燥機中150℃で乾燥することによって、前記一般式(1)で表わされる2価のユーロピウムで付活されたアルカリ土類金属珪酸塩蛍光体を得ることができる。 After that, it is placed in a crucible and fired at a temperature of 1000 to 1600 ° C. for 3 to 7 hours in a reducing atmosphere of N 2 and H 2 . The obtained fired product is pulverized in water, sieved, and dehydrated by suction filtration. Finally, an alkaline earth metal silicate phosphor activated with divalent europium represented by the general formula (1) can be obtained by drying at 150 ° C. in a dryer.

本発明の実施形態においては蛍光体の吸湿性を低減することが必要であるので、初期のコア粒子に含有される水分量は、極力少ないことが求められる。具体的には、コア粒子中の水分量が1wt%未満となるよう、十分に乾燥させることが望ましい。なお、コア粒子中の水分量は、カールフィッシャー水分分析法により測定することができる。   In the embodiment of the present invention, since it is necessary to reduce the hygroscopicity of the phosphor, the amount of water contained in the initial core particles is required to be as small as possible. Specifically, it is desirable that the core particles be sufficiently dried so that the water content in the core particles is less than 1 wt%. The water content in the core particles can be measured by Karl Fischer moisture analysis.

前記一般式(1)中、Mは、Ca、SrおよびBaからなる群から選択される少なくとも一種のアルカリ土類金属元素である。第一の波長540nmないし600nmを得る必要があることから、SrおよびBaはMとして含有されていることが好ましい。   In the general formula (1), M is at least one alkaline earth metal element selected from the group consisting of Ca, Sr and Ba. Since it is necessary to obtain the first wavelength of 540 nm to 600 nm, Sr and Ba are preferably contained as M.

前記一般式(1)において、xは付活剤であるEuの組成比を示しており、その範囲は0.001以上0.1以下に規定される。xが0.001未満の場合には、発光輝度が低下し、一方、xが0.1を越えた場合には、濃度消光によって充分な発光輝度を得ることはできない。   In the said General formula (1), x has shown the composition ratio of Eu which is an activator, The range is prescribed | regulated to 0.001 or more and 0.1 or less. When x is less than 0.001, the light emission luminance decreases. On the other hand, when x exceeds 0.1, sufficient light emission luminance cannot be obtained by concentration quenching.

また、前記一般式(1)におけるyはSiの組成比を示し、その範囲は0.9以上1.1以下に既定される。yが0.9未満の場合には、図1に示したような500nm近傍の第二の波長が発現して、吸湿性が著しく増加する。一方、yが1.1を超えると、充分な発光輝度を得ることができない。好ましくは、yは0.95以上1.05以下の範囲内である。   Further, y in the general formula (1) indicates the composition ratio of Si, and the range is set to 0.9 or more and 1.1 or less. When y is less than 0.9, the second wavelength in the vicinity of 500 nm as shown in FIG. 1 is developed, and the hygroscopicity is remarkably increased. On the other hand, if y exceeds 1.1, sufficient light emission luminance cannot be obtained. Preferably, y is in the range of 0.95 to 1.05.

上述したようなコア粒子の表面には、シリコーン樹脂、エポキシ樹脂、フッ素樹脂、テトラエトキシシラン(TEOS)、シリカ、ケイ酸亜鉛、ケイ酸アルミニウム、カルシウムポリフォスフェート、シリコーンオイル、およびシリコーングリースから選択される少なくとも一種からなる表層材が配置される。ケイ酸亜鉛およびケイ酸アルミニウムは、例えばZnO・aSiO2(1≦a≦4)およびAl23・bSiO2(1≦b≦10)でそれぞれ表わされる。コア粒子表面が完全に表層材で覆われている必要はなく、その一部が露出していてもよい。コア粒子の表面に、上述したような材質からなる表層材が存在していれば、その効果が得られる。 The surface of the core particle as described above is selected from silicone resin, epoxy resin, fluororesin, tetraethoxysilane (TEOS), silica, zinc silicate, aluminum silicate, calcium polyphosphate, silicone oil, and silicone grease. A surface layer material made of at least one of the above is disposed. Zinc silicate and aluminum silicate are represented by, for example, ZnO.aSiO 2 (1 ≦ a ≦ 4) and Al 2 O 3 .bSiO 2 (1 ≦ b ≦ 10), respectively. The surface of the core particle need not be completely covered with the surface layer material, and a part thereof may be exposed. If the surface layer material made of the material as described above exists on the surface of the core particle, the effect can be obtained.

表層材は、その分散液または溶液を用いてコア粒子表面に配置することができる。分散液または溶液中にコア粒子を所定時間浸漬した後、加熱等により乾燥させることによって表層材が配置される。蛍光体としての本来の機能を損なうことなく、表層材の効果を得るために、表層材は、コア粒子の体積の0.1〜50%程度の割合で存在することが好ましい。   The surface layer material can be arranged on the surface of the core particle using the dispersion or solution. After immersing the core particles in the dispersion or solution for a predetermined time, the surface layer material is disposed by drying by heating or the like. In order to obtain the effect of the surface layer material without impairing the original function as the phosphor, the surface layer material is preferably present at a ratio of about 0.1 to 50% of the volume of the core particles.

図3に、本発明の一実施形態にかかる発光装置の断面を示す。   FIG. 3 shows a cross section of a light emitting device according to an embodiment of the present invention.

図示する発光装置においては、樹脂ステム200はリードフレームを成形してなるリード201およびリード202と、これに一体成形されてなる樹脂部203とを有する。樹脂部203は、上部開口部が底面部より広い凹部205を有しており、この凹部の側面には反射面204が設けられる。   In the illustrated light emitting device, the resin stem 200 has a lead 201 and a lead 202 formed by molding a lead frame, and a resin portion 203 formed integrally therewith. The resin portion 203 has a concave portion 205 whose upper opening is wider than the bottom portion, and a reflective surface 204 is provided on the side surface of the concave portion.

凹部205の略円形底面中央部には、発光チップ206がAgペースト等によりマウントされている。発光チップ206としては、紫外発光を行なうもの、あるいは可視領域の発光を行なうものを用いることができる。例えば、GaAs系、GaN系等の半導体発光素子等を用いることが可能である。発光チップ206の電極(図示せず)は、Auなどからなるボンデイングワイヤ207および208によって、リード201およびリード202にそれぞれ接続されている。なお、リード201および202の配置は、適宜変更することができる。   A light emitting chip 206 is mounted with Ag paste or the like at the center of the substantially circular bottom surface of the recess 205. As the light-emitting chip 206, a chip that emits ultraviolet light or a chip that emits light in the visible region can be used. For example, it is possible to use a GaAs-based or GaN-based semiconductor light emitting element. The electrodes (not shown) of the light emitting chip 206 are connected to the leads 201 and 202 by bonding wires 207 and 208 made of Au or the like, respectively. The arrangement of the leads 201 and 202 can be changed as appropriate.

樹脂部203の凹部205内には、蛍光層209が配置される。この蛍光層209は、本発明の実施形態にかかる蛍光体210を、例えばシリコーン樹脂からなる樹脂層211中に5wt%〜50wt%の割合で分散することによって形成することができる。   A fluorescent layer 209 is disposed in the recess 205 of the resin portion 203. The fluorescent layer 209 can be formed by dispersing the phosphor 210 according to the embodiment of the present invention in a resin layer 211 made of, for example, a silicone resin at a rate of 5 wt% to 50 wt%.

発光チップ206としては、n型電極とp型電極とを同一面上に有するフリップチップ型のものを用いることも可能である。この場合には、ワイヤの断線や剥離、ワイヤによる光吸収等のワイヤに起因した問題を解消して、信頼性の高い高輝度な半導体発光装置が得られる。また、発光チップ206にn型基板を用いて、次のような構成とすることもできる。具体的には、n型基板の裏面にn型電極を形成し、基板上の半導体層上面にはp型電極を形成して、n型電極またはp型電極をリードにマウントする。p型電極またはn型電極は、ワイヤにより他方のリードに接続することができる。   As the light emitting chip 206, a flip chip type having an n-type electrode and a p-type electrode on the same surface can be used. In this case, problems caused by the wires such as wire breakage and peeling and light absorption by the wires are solved, and a highly reliable and high-luminance semiconductor light-emitting device can be obtained. In addition, an n-type substrate may be used for the light emitting chip 206 to have the following configuration. Specifically, an n-type electrode is formed on the back surface of the n-type substrate, a p-type electrode is formed on the upper surface of the semiconductor layer on the substrate, and the n-type electrode or the p-type electrode is mounted on a lead. The p-type electrode or the n-type electrode can be connected to the other lead by a wire.

発光チップ206のサイズ、凹部205の寸法および形状は、適宜変更することができる。本発明の実施形態にかかる蛍光体は、360nmから500nmの波長の光で励起することによって青緑系−赤系の発光色を示す。本発明に実施形態にかかる蛍光体を、青色発光蛍光体および赤色発光蛍光体と組み合わせて用いる場合には、白色光を得ることも可能である。   The size of the light emitting chip 206 and the size and shape of the recess 205 can be changed as appropriate. The phosphor according to the embodiment of the present invention exhibits a blue-green-red emission color when excited with light having a wavelength of 360 nm to 500 nm. When the phosphor according to the embodiment of the present invention is used in combination with a blue light-emitting phosphor and a red light-emitting phosphor, white light can be obtained.

本発明の実施形態にかかる蛍光体は、防湿力が優れているので、この蛍光体を含有する蛍光層を設けることによって、発光ムラがなく安定した出力で高品質の発光装置が得られる。   Since the phosphor according to the embodiment of the present invention is excellent in moisture-proofing power, a high-quality light-emitting device can be obtained with a stable output with no emission unevenness by providing a phosphor layer containing this phosphor.

以下、実施例および比較例を示して本発明をさらに詳細に説明するが、本発明は実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further in detail, this invention is not limited only to an Example.

種々の蛍光体を合成し、その防湿力を調べた。蛍光体は、内径20mm、深さ2mmの皿に収容して、湿度70%温度25℃に制御された箱内に保管した。24時間経過後、蛍光体の形状の変化を目視により観察するとともに、蛍光体1モルに対する水分量(m)をカールフィッシャー水分分析法により測定して、防湿力を次のように評価した。   Various phosphors were synthesized and their moisture resistance was examined. The phosphor was housed in a dish having an inner diameter of 20 mm and a depth of 2 mm, and stored in a box controlled at a humidity of 70% and a temperature of 25 ° C. After the elapse of 24 hours, the change in the shape of the phosphor was visually observed, and the moisture content (m) relative to 1 mol of the phosphor was measured by Karl Fischer moisture analysis, and the moisture resistance was evaluated as follows.

A:変化なし、m<1%
B:凝集硬化、1%≦m<3%
C:膨潤、m≧3%
また、第一の波長(λmax)におけるスペクトル強度(Ib)、および第二の波長(λmax−80)nmにおけるスペクトル強度(Ia)を測定して、スペクトル強度比(Ia/Ib)を求めた。スペクトル比(Ia/Ib)が0.1以下である場合には、実質的に第二の波長は存在しないことから、このスペクトル強度比(Ia/Ib)が0.1以下のときに、単一の発光ピークを有すると定義する。
A: No change, m <1%
B: Aggregation hardening, 1% ≦ m <3%
C: Swell, m ≧ 3%
In addition, the spectral intensity (Ib) at the first wavelength (λ max ) and the spectral intensity (Ia) at the second wavelength (λ max −80) nm are measured to obtain the spectral intensity ratio (Ia / Ib). It was. When the spectral ratio (Ia / Ib) is 0.1 or less, there is substantially no second wavelength. Therefore, when this spectral intensity ratio (Ia / Ib) is 0.1 or less, It is defined as having one emission peak.

さらに、得られた蛍光体をシリコーン樹脂中に分散させて、図3に示したような発光装置を作製し、発光出力を測定した。発光出力は蛍光体の樹脂中に分散される量によって変化するが、最高出力が得られる蛍光体量のときの出力を発光装置出力とした。   Further, the obtained phosphor was dispersed in a silicone resin to produce a light emitting device as shown in FIG. 3, and the light emission output was measured. The light emission output varies depending on the amount of the phosphor dispersed in the resin, but the output at the amount of the phosphor capable of obtaining the maximum output was defined as the light emitting device output.

(実施例1)
まず、コア粒子となる(Sr0.92Ba0.06Eu0.022SiO4で表わされる組成の蛍光体を調製した。原料粉末としては、SrCO3粉末、BaCO3粉末、Eu23粉末およびSiO2粉末を用意し、所定量秤量した。原料粉末の全量に対して1.5wt%の割合で結晶成長剤としてのNH4Clを添加して、ボールミルで均一に混合した。
Example 1
First, a phosphor having a composition represented by (Sr 0.92 Ba 0.06 Eu 0.02 ) 2 SiO 4 to be core particles was prepared. As raw material powders, SrCO 3 powder, BaCO 3 powder, Eu 2 O 3 powder and SiO 2 powder were prepared and weighed in predetermined amounts. NH 4 Cl as a crystal growth agent was added at a ratio of 1.5 wt% with respect to the total amount of the raw material powder, and mixed uniformly by a ball mill.

得られた混合原料を蓋付きアルミナ坩堝に充填し、N2/H2の混合ガスからなる還元性雰囲気中、1000℃で4時間焼成した。25℃に冷却後、焼成品を水中で粉砕した。篩通過後、オーブン中、150℃で10時間程度乾燥して、コア粒子となる蛍光体を得た。 The obtained mixed raw material was filled in an alumina crucible with a lid and fired at 1000 ° C. for 4 hours in a reducing atmosphere composed of a mixed gas of N 2 / H 2 . After cooling to 25 ° C., the fired product was pulverized in water. After passing through the sieve, it was dried in an oven at 150 ° C. for about 10 hours to obtain a phosphor as core particles.

一方、表層材としてはシリコーン樹脂を用意し、これをトルエンに溶解して溶液を調製した。この溶液中にコア粒子を30分間浸漬した後、真空エバポレータにより乾燥して、表面にシリコーン樹脂からなる表層材が配置された蛍光体を得た。   On the other hand, a silicone resin was prepared as a surface layer material, and this was dissolved in toluene to prepare a solution. The core particles were immersed in this solution for 30 minutes and then dried by a vacuum evaporator to obtain a phosphor having a surface layer material made of a silicone resin on the surface.

上述した方法により防湿力を評価したところ、Aであった。蛍光体の組成を、防湿力の評価とともに下記表1に示す。   When the moisture resistance was evaluated by the method described above, it was A. The composition of the phosphor is shown in Table 1 below together with the evaluation of moisture resistance.

この蛍光体を、395nmの励起光源と組み合わせて、実施例1の発光装置を作製した。第一の波長は570nmであり、スペクトル比(Ia/Ib)は0.07であった。   The phosphor was combined with an excitation light source of 395 nm to produce the light emitting device of Example 1. The first wavelength was 570 nm and the spectral ratio (Ia / Ib) was 0.07.

表層材を設けずに、実施例1で用いたコア粒子そのままの状態を比較例1の蛍光体として、前述と同様に防湿力を調べた。得られた結果を、蛍光体の組成とともに下記表2に示す。   Without providing the surface layer material, the moisture resistance of the core particles used in Example 1 as they were was investigated as the phosphor of Comparative Example 1 in the same manner as described above. The obtained results are shown in Table 2 below together with the composition of the phosphor.

比較例1の蛍光体を用いる以外は実施例1と同様にして比較例1の発光装置を作製し、特性を評価した。比較例1の発光装置におけるバンド波長およびスペクトル比は、実施例1の発光装置と同等であることが確認された。比較例1の発光装置の出力を1として相対発光装置出力を求めたところ、実施例1では1.1であった。   A light emitting device of Comparative Example 1 was produced in the same manner as in Example 1 except that the phosphor of Comparative Example 1 was used, and the characteristics were evaluated. It was confirmed that the band wavelength and the spectral ratio in the light emitting device of Comparative Example 1 were the same as those of the light emitting device of Example 1. When the output of the light emitting device of Comparative Example 1 was set to 1, the relative light emitting device output was found to be 1.1 in Example 1.

実施例および比較例の発光装置の特性(バンド波長、発光スペクトル比、発光装置出力)を、それぞれ下記表3および4に示す。   The characteristics (band wavelength, emission spectrum ratio, light-emitting device output) of the light-emitting devices of Examples and Comparative Examples are shown in Tables 3 and 4 below, respectively.

さらに、下記表1および2に示すように、種々の蛍光体を合成した。   Further, various phosphors were synthesized as shown in Tables 1 and 2 below.

実施例2乃至10の蛍光体は、実施例1と同様のコア粒子を用い、その表面に配置する表層材の材質を変更して作製した。エポキシ樹脂(実施例2)およびフッ素樹脂(実施例3)は、前述と同様の手法によりコア粒子の表面に配置した。TEOS(実施例4)は、トルエンに溶解して溶液を調製した。この溶液中にコア粒子を30分間浸漬した後、真空エバポレータにより乾燥してコア粒子の表面に配置した。また、シリコーンオイル(実施例5)およびシリコーングリース(実施例6)は、それぞれヘキサンに溶解して溶液を調製した。この溶液中にコア粒子を30分間浸漬した後、真空エバポレータにより乾燥してコア粒子の表面に配置した。   The phosphors of Examples 2 to 10 were prepared by using the same core particles as in Example 1 and changing the material of the surface layer material disposed on the surface thereof. The epoxy resin (Example 2) and the fluororesin (Example 3) were arranged on the surface of the core particles by the same method as described above. TEOS (Example 4) was dissolved in toluene to prepare a solution. After immersing the core particles in this solution for 30 minutes, they were dried by a vacuum evaporator and placed on the surface of the core particles. Also, silicone oil (Example 5) and silicone grease (Example 6) were dissolved in hexane to prepare solutions. After immersing the core particles in this solution for 30 minutes, they were dried by a vacuum evaporator and placed on the surface of the core particles.

実施例7乃至10の蛍光体は、それぞれ以下のような手法により表層材をコア粒子の表面に配置して作製した。   The phosphors of Examples 7 to 10 were produced by arranging the surface layer material on the surface of the core particle by the following method.

(実施例7)
10重量%SiO2を含むコリン水溶液中にコア粒子を分散させた。これを蒸発皿に収容して150℃に加熱することにより水分を蒸発させて固形物を得、さらに、水洗してシリカ膜をコア粒子の表面に配置した。
(Example 7)
Core particles were dispersed in an aqueous choline solution containing 10 wt% SiO 2 . This was stored in an evaporating dish and heated to 150 ° C. to evaporate the water to obtain a solid, and further washed with water to place a silica film on the surface of the core particles.

(実施例8)
水ガラス(K2O・3SiO2)水溶液中にコア粒子を分散させ、Al(NO33水溶液を加えてpH6.0に調整した。さらに、水洗、吸引濾過、乾燥してケイ酸アルミニウム、をコア粒子の表面に配置した。
(Example 8)
The core particles were dispersed in a water glass (K 2 O.3SiO 2 ) aqueous solution, and the pH was adjusted to 6.0 by adding an Al (NO 3 ) 3 aqueous solution. Further, washing with water, suction filtration, drying, and aluminum silicate were arranged on the surface of the core particles.

(実施例9)
水ガラス(K2O・3SiO2)水溶液中にコア粒子を分散させ、ZnSO4水溶液を加えた。これを水洗、吸引濾過、乾燥してケイ酸亜鉛をコア粒子の表面に配置した。
Example 9
The core particles were dispersed in an aqueous solution of water glass (K 2 O.3SiO 2 ), and an aqueous ZnSO 4 solution was added. This was washed with water, suction filtered, and dried to place zinc silicate on the surface of the core particles.

(実施例10)
ポリメタリン酸ナトリウムを含む水溶液中にコア粒子を分散させ、硝酸カルシウム水溶液を加えてpH8.0に調整した。これを水洗、吸引濾過、乾燥してカルシウムポリフォスフェートをコア粒子の表面に配置した。
(Example 10)
The core particles were dispersed in an aqueous solution containing sodium polymetaphosphate, and adjusted to pH 8.0 by adding an aqueous calcium nitrate solution. This was washed with water, suction filtered, and dried to place calcium polyphosphate on the surface of the core particles.

さらに、下記表1に示すようにコア粒子の組成を変更した以外は、前述の実施例1と同様の手法により実施例11乃至28の蛍光体を得た。コア粒子の組成は、原料粉末としてのEu23粉末、CaCO3粉末、SrCO3粉末、およびBaCO3粉末の重量を変えることにより調整した。 Further, as shown in Table 1 below, phosphors of Examples 11 to 28 were obtained in the same manner as in Example 1 except that the composition of the core particles was changed. The composition of the core particles was adjusted by changing the weights of Eu 2 O 3 powder, CaCO 3 powder, SrCO 3 powder, and BaCO 3 powder as raw material powder.

実施例2乃至24のいずれの蛍光体も、防湿力はAと優れていた。

Figure 2009141374
All of the phosphors of Examples 2 to 24 were excellent in moisture-proofing ability as A.
Figure 2009141374

また、結晶成長剤としてのNH4Clの量を0.5wt%に変更した以外は、実施例1と同様にしてコア粒子を作製し、比較例2の蛍光体とした。比較例2の蛍光体の発光スペクトルを図4に示す。第一の波長は550nmであり、図示するように470nm近傍に第二の波長が存在している。こうした第二の波長に起因して、後述するようにスペクトル強度比(Ia/Ib)が大きくなる。さらに、下記表2に示すようにコア粒子の組成を変更するとともに、その表面にTEOSを配置して比較例3の蛍光体を得た。コア粒子の組成は、原料粉末としてのEu23粉末、SrCO3粉末、およびBaCO3粉末の重量を変えることにより調整した。比較例3の蛍光体は大きな第二の波長を示し、Ia/Ib=0.3であった.
比較例の蛍光体の組成を、防湿力とともに下記表2にまとめる。

Figure 2009141374
Also, except for changing the amount of of NH 4 Cl as a crystal growth agent 0.5 wt%, to prepare core particles in the same manner as in Example 1, it was used as the fluorescent material of Comparative Example 2. The emission spectrum of the phosphor of Comparative Example 2 is shown in FIG. The first wavelength is 550 nm, and the second wavelength exists in the vicinity of 470 nm as shown in the figure. Due to the second wavelength, the spectral intensity ratio (Ia / Ib) increases as will be described later. Further, the composition of the core particles was changed as shown in Table 2 below, and TEOS was disposed on the surface thereof to obtain the phosphor of Comparative Example 3. The composition of the core particles was adjusted by changing the weights of Eu 2 O 3 powder, SrCO 3 powder, and BaCO 3 powder as raw material powder. The phosphor of Comparative Example 3 showed a large second wavelength, and Ia / Ib = 0.3.
The composition of the phosphor of the comparative example is summarized in Table 2 below together with moisture resistance.
Figure 2009141374

表層材が存在しない場合(比較例1,2,7〜12)、yの値が小さい場合(比較例3)、xの値が小さい場合(比較例4)、xの値が大きく、yの値が小さい場合(比較例5)、およびyの値が大きい場合(比較例6)は、いずれも防湿力が劣ることが示されている。   When the surface material is not present (Comparative Examples 1, 2, 7 to 12), when the value of y is small (Comparative Example 3), when the value of x is small (Comparative Example 4), the value of x is large and y When the value is small (Comparative Example 5) and when the value of y is large (Comparative Example 6), it is shown that the moisture resistance is inferior.

さらに、実施例2乃至24の蛍光体を用いた以外は実施例1と同様に、励起波長395nmの励起光源と組み合わせて、実施例2乃至28の発光装置を作製した。また、励起光源の波長を410nm、360nm,470nm、480nm、および405nmに変更した以外は実施例1と同様にして、実施例29、30、31、32および33の発光装置を作製した。   Further, in the same manner as in Example 1 except that the phosphors of Examples 2 to 24 were used, light emitting devices of Examples 2 to 28 were fabricated in combination with an excitation light source having an excitation wavelength of 395 nm. Further, light emitting devices of Examples 29, 30, 31, 32, and 33 were produced in the same manner as in Example 1 except that the wavelength of the excitation light source was changed to 410 nm, 360 nm, 470 nm, 480 nm, and 405 nm.

実施例の発光装置のバンド波長、スペクトル強度比および発光装置出力を、下記表3にまとめる。

Figure 2009141374
The band wavelength, spectral intensity ratio, and light emitting device output of the light emitting device of the example are summarized in Table 3 below.
Figure 2009141374

表3に示されるように、本発明の実施形態にかかる発光装置は、いずれもスペクトル強度比(Ia/Ib)が0.1以下であり、十分な出力が得られている。   As shown in Table 3, all the light emitting devices according to the embodiments of the present invention have a spectral intensity ratio (Ia / Ib) of 0.1 or less, and a sufficient output is obtained.

比較例2乃至7の蛍光体を用いた以外は比較例1と同様に、励起波長395nmの励起光源と組み合わせて、比較例2乃至7の発光装置を作製した。また、励起光源の波長を410nm、360nm、470nm、480nm、および405nmに変更した以外は比較例1と同様にして、比較例8、9、10、11および12の発光装置を作製した。比較例2の蛍光体は、シリコーン樹脂に分散させる際に凝集が生じた。   The light emitting devices of Comparative Examples 2 to 7 were fabricated in combination with an excitation light source having an excitation wavelength of 395 nm, as in Comparative Example 1, except that the phosphors of Comparative Examples 2 to 7 were used. Further, light emitting devices of Comparative Examples 8, 9, 10, 11, and 12 were produced in the same manner as Comparative Example 1 except that the wavelength of the excitation light source was changed to 410 nm, 360 nm, 470 nm, 480 nm, and 405 nm. Aggregation occurred in the phosphor of Comparative Example 2 when dispersed in the silicone resin.

比較例の発光装置のバンド波長、スペクトル強度比および発光装置出力を、下記表4にまとめる。

Figure 2009141374
The band wavelength, spectral intensity ratio, and light emitting device output of the light emitting device of the comparative example are summarized in Table 4 below.
Figure 2009141374

比較例2の発光装置では、顕著な発光ムラが観察された。これは、蛍光体の凝集に起因するものと推測される。   In the light emitting device of Comparative Example 2, noticeable light emission unevenness was observed. This is presumably due to the aggregation of the phosphors.

表4の結果から、スペクトル強度比(Ia/Ib)が0.3の場合(比較例2,3)には、出力が極端に低下することがわかる。出力の比較は、例えば、実施例29と比較例8のように、同一の励起光源について行なわれる。いずれの励起光源を用いた場合も、防湿力の高い蛍光体が用いられている実施例の発光装置は、比較例のものより出力が大きいことが明確に示されている。   From the results of Table 4, it can be seen that when the spectral intensity ratio (Ia / Ib) is 0.3 (Comparative Examples 2 and 3), the output is extremely reduced. The comparison of the output is performed for the same excitation light source as in Example 29 and Comparative Example 8, for example. In any of the excitation light sources, it is clearly shown that the light emitting device of the example using the phosphor having high moisture proof power has a larger output than that of the comparative example.

従来のユーロピウム付活珪酸塩蛍光体の発光スペクトル図。The emission spectrum figure of the conventional europium activated silicate fluorescent substance. 本発明の一実施形態にかかるユーロピウム付活珪酸塩蛍光体の発光スペクトル図。The emission spectrum figure of the europium activated silicate fluorescent substance concerning one Embodiment of this invention. 本発明の一実施形態にかかる発光装置の構成を表わす概略図。Schematic showing the structure of the light-emitting device concerning one Embodiment of this invention. 比較例2のユーロピウム付活珪酸塩蛍光体の発光スペクトル図。The emission spectrum figure of the europium activated silicate fluorescent substance of the comparative example 2.

符号の説明Explanation of symbols

200…樹脂ステム; 201…リード; 202…リード; 203…樹脂部
204…反射面; 205…凹部; 206…発光チップ
207…ボンディングワイヤ; 208…ボンディングワイヤ; 209…蛍光層
210…蛍光体; 211…樹脂層。
200 ... Resin stem; 201 ... Lead; 202 ... Lead; 203 ... Resin portion 204 ... Reflecting surface; 205 ... Recessed portion; 206 ... Light emitting chip 207 ... Bonding wire; 208 ... Bonding wire; 209 ... Phosphor layer 210 ... Phosphor; ... resin layer.

Claims (2)

410nm、360nm、470nm、または405nmの波長の光を発光する発光素子と、
前記発光素子上に配置され、蛍光体を含有する蛍光層とを具備し、
前記蛍光体は、下記一般式(1)で表わされる組成のアルカリ土類金属珪酸塩蛍光体からなるコア粒子と、前記コア粒子の表面に配置され、シリコーン樹脂、エポキシ樹脂、フッ素樹脂、テトラエトキシシラン、シリカ、ケイ酸亜鉛、ケイ酸アルミニウム、カルシウムポリフォスフェート、シリコーンオイル、およびシリコーングリースから選択される少なくとも一種からなる表層材とを備え、波長410nm、360nm、470nm、または405nmの光で励起した際の発光スペクトルは、波長540nmないし600nmの間に単一の発光ピークを有することを特徴とする発光装置。
(M1-xEux2Siy2y+2 (1)
(上記一般式(1)中、MはCa,SrおよびBaからなる群から選択される少なくとも1種のアルカリ土類金属元素であり、xは0.001以上0.1以下、yは0.9以上1.1以下である。)
A light-emitting element that emits light having a wavelength of 410 nm, 360 nm, 470 nm, or 405 nm;
A phosphor layer disposed on the light-emitting element and containing a phosphor;
The phosphor is disposed on the surface of the core particle composed of an alkaline earth metal silicate phosphor having a composition represented by the following general formula (1), and is a silicone resin, epoxy resin, fluororesin, tetraethoxy A surface layer material made of at least one selected from silane, silica, zinc silicate, aluminum silicate, calcium polyphosphate, silicone oil, and silicone grease, and excited by light having a wavelength of 410 nm, 360 nm, 470 nm, or 405 nm The light emission device has a single emission peak in the wavelength range of 540 nm to 600 nm.
(M 1-x Eu x ) 2 Si y O 2y + 2 (1)
(In the general formula (1), M is at least one alkaline earth metal element selected from the group consisting of Ca, Sr and Ba, x is 0.001 or more and 0.1 or less, and y is 0.00. 9 or more and 1.1 or less.)
前記蛍光体は、波長410nm、360nm、470nm、または405nmの光で励起した際の発光スペクトルにおいて、第一の波長(λmaxnm)におけるスペクトル強度(Ib)と、第二の波長(λmax−80nm)におけるスペクトル強度(Ia)との比(Ia/Ib)が、0.1以下であることを特徴とする請求項1に記載の発光装置。 In the emission spectrum when excited with light having a wavelength of 410 nm, 360 nm, 470 nm, or 405 nm, the phosphor has a spectral intensity (Ib) at the first wavelength (λ max nm) and a second wavelength (λmax-80 nm). 2) The ratio (Ia / Ib) to the spectral intensity (Ia) in (1) is 0.1 or less.
JP2008328234A 2003-12-05 2008-12-24 Light emitting device Pending JP2009141374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328234A JP2009141374A (en) 2003-12-05 2008-12-24 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003407366 2003-12-05
JP2008328234A JP2009141374A (en) 2003-12-05 2008-12-24 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004303428A Division JP4322774B2 (en) 2003-12-05 2004-10-18 Phosphor and light emitting device using the same

Publications (1)

Publication Number Publication Date
JP2009141374A true JP2009141374A (en) 2009-06-25

Family

ID=40871605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328234A Pending JP2009141374A (en) 2003-12-05 2008-12-24 Light emitting device

Country Status (1)

Country Link
JP (1) JP2009141374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729698B1 (en) * 2014-10-14 2015-06-03 株式会社ルミネッサス Luminescent body and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223008A (en) * 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv Light emitting element
WO2003021691A1 (en) * 2001-09-03 2003-03-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223008A (en) * 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv Light emitting element
WO2003021691A1 (en) * 2001-09-03 2003-03-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729698B1 (en) * 2014-10-14 2015-06-03 株式会社ルミネッサス Luminescent body and manufacturing method thereof
JP2016079244A (en) * 2014-10-14 2016-05-16 株式会社ルミネッサス Light emitter and method for producing the same

Similar Documents

Publication Publication Date Title
JP4322774B2 (en) Phosphor and light emitting device using the same
JP4836429B2 (en) Phosphor and light emitting device using the same
US8057706B1 (en) Moisture-resistant phosphor and associated method
JP5503871B2 (en) Charge compensated nitride phosphors for use in lighting applications
US7857994B2 (en) Green emitting phosphors and blends thereof
KR100774028B1 (en) Fluorescent Substance, Method of Manufacturing Fluorescent Substance, and Light Emitting Device Using the Fluorescent Substance
US7859182B2 (en) Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
JP5134788B2 (en) Method for manufacturing phosphor
JP4314279B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JP4779384B2 (en) Ce-activated rare earth aluminate-based phosphor and light emitting device using the same
JP5326182B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
WO2003032407A1 (en) Semiconductor light emitting element and light emitting device using this
JP2005264160A (en) Phosphor, method for producing the same and light emitting device
JP4223879B2 (en) Sm-activated red light emitting phosphor and light emitting device using the same
US9670403B2 (en) Fluoride fluorescent material and method for producing the same
JP2014514388A (en) Color-stable manganese-doped phosphor
JP2009506195A (en) Phosphors used in LEDs and blends thereof
JP5813096B2 (en) Phosphor for light emitting device, method for producing the same, and light emitting device using the same
JP2009280763A (en) Phosphor preparation and light emitting device using it
JP2008028042A (en) Light emitting device
JP5402008B2 (en) Phosphor production method, phosphor, and light emitting device using the same
JP4904694B2 (en) Oxide phosphor, and light emitting element, image display device, and illumination device using the same
JP2004331934A (en) Fluorescent material and luminescent element using the same
JP2009141374A (en) Light emitting device
JP4886221B2 (en) Method for manufacturing light emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927