JP2009280763A - Phosphor preparation and light emitting device using it - Google Patents

Phosphor preparation and light emitting device using it Download PDF

Info

Publication number
JP2009280763A
JP2009280763A JP2008136914A JP2008136914A JP2009280763A JP 2009280763 A JP2009280763 A JP 2009280763A JP 2008136914 A JP2008136914 A JP 2008136914A JP 2008136914 A JP2008136914 A JP 2008136914A JP 2009280763 A JP2009280763 A JP 2009280763A
Authority
JP
Japan
Prior art keywords
phosphor
light
light emitting
emitting device
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008136914A
Other languages
Japanese (ja)
Inventor
Masatsugu Masuda
昌嗣 増田
Kenji Terajima
賢二 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008136914A priority Critical patent/JP2009280763A/en
Publication of JP2009280763A publication Critical patent/JP2009280763A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device causing little reduction in brightness of a white color and little fluctuation in chromaticity and having excellent color reproducibility (an NTSC rate) even if a tetravalent manganese-activated fluorinated tetravalent metal salt phosphor is used. <P>SOLUTION: The phosphor preparation, which includes at least a tetravalent manganese-activated fluorinated tetravalent metal salt red light emitting phosphor substantially represented by MI<SB>2</SB>(MII<SB>1-a</SB>Mn<SB>a</SB>)F<SB>6</SB>in a silicone resin, is prepared with viscosity by which the phosphor does not precipitate in the silicone resin and its dispersion state is maintained. The light emitting device has a light emitting element emitting primary light, and a wavelength conversion part absorbing a part of the primary light emitted from the light emitting element and emitting secondary light with a wavelength longer than that of the primary light. The wavelength conversion part is formed by using the phosphor preparation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、一次光を発する発光素子と、発光素子から発せられた一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換部とを備える発光装置、ならびに、当該発光装置を形成する際に特に好適である蛍光体調製物に関するものである。   The present invention provides a light emitting device that includes a light emitting element that emits primary light, and a wavelength conversion unit that absorbs part of the primary light emitted from the light emitting element and emits secondary light having a wavelength longer than the wavelength of the primary light. The present invention relates to a device and a phosphor preparation that is particularly suitable for forming the light-emitting device.

半導体発光素子と蛍光体とを組み合わせた発光装置は、低消費電力、小型化、高輝度、さらには広範囲な色再現性が期待される次世代の発光装置として注目され、活発に研究、開発が行われている。発光素子から発せられる一次光は、通常、長波長の紫外線から青色の範囲、すなわち380〜480nmのものが用いられる。また、この用途に適合した様々な蛍光体を用いた波長変換部も提案されている。   Light-emitting devices that combine semiconductor light-emitting elements and phosphors are attracting attention as next-generation light-emitting devices that are expected to have low power consumption, downsizing, high brightness, and a wide range of color reproducibility, and are actively researched and developed. Has been done. The primary light emitted from the light emitting element is usually in the range of long wavelength ultraviolet to blue, that is, 380 to 480 nm. In addition, wavelength converters using various phosphors suitable for this application have been proposed.

さらには近年、小型液晶ディスプレイ(以下、LCD(Liquid Crystal Display))用バックライトの開発競争が激化している。この分野においては様々な方式が提案されているが、明るさと色再現性(NTSC比)とを同時に満足する方式は見つかっていない。   Furthermore, in recent years, development competition for backlights for small liquid crystal displays (hereinafter referred to as LCD (Liquid Crystal Display)) has intensified. Various methods have been proposed in this field, but no method that satisfies both brightness and color reproducibility (NTSC ratio) has been found.

現在、白色の発光装置としては、青色発光の発光素子(ピーク波長:450nm前後)とその青色により励起され黄色発光を示す3価のセリウムで付活された(Y、Gd)3(Al,Ga)512蛍光体または2価のユーロピウムで付活された(Sr,Ba,Ca)2SiO4蛍光体との組み合わせが主として用いられている。ただし、これらの発光装置では、色再現性(NTSC比)は65%前後(CIE1931)である。一方、近年、小型LCDにおいてもより色再現性の良好なものが求められている。 Currently, as a white light emitting device, a blue light emitting element (peak wavelength: around 450 nm) and (Y, Gd) 3 (Al, Ga) activated by trivalent cerium that is excited by the blue light and emits yellow light are emitted. ) A combination with 5 O 12 phosphor or (Sr, Ba, Ca) 2 SiO 4 phosphor activated with divalent europium is mainly used. However, in these light emitting devices, color reproducibility (NTSC ratio) is around 65% (CIE 1931). On the other hand, in recent years, a small LCD having better color reproducibility has been demanded.

色再現性(NTSC比)を高くする赤色系発光蛍光体としては、たとえば、米国特許出願公開第2006/0169998号明細書(特許文献1)に開示された下記一般式で実質的に表わされる4価のマンガン付活フッ化4価金属塩蛍光体が適していることが知られている。   Examples of the red light-emitting phosphor that enhances color reproducibility (NTSC ratio) are substantially represented by the following general formula disclosed in, for example, US Patent Application Publication No. 2006/0169998 (Patent Document 1). It is known that a valent manganese-activated fluorinated tetravalent metal salt phosphor is suitable.

一般式:MI2(MII1-aMna)F6
(式中、MIはLi、Na、K、RbおよびCsから選ばれる少なくとも1種のアルカリ金属元素を示し、MIIはGe、Sn、TiおよびZrから選ばれる少なくとも1種の4価の金属元素を示し、0.001≦a≦0.5を満足する数である。)
しかしながら、上記特許文献1には、高効率な緑色蛍光体と組合わせて、その色再現性(NTSC比)に言及した記述はない。
General formula: MI 2 (MII 1-a Mn a) F 6
(In the formula, MI represents at least one alkali metal element selected from Li, Na, K, Rb and Cs, and MII represents at least one tetravalent metal element selected from Ge, Sn, Ti and Zr. And a number satisfying 0.001 ≦ a ≦ 0.5.)
However, Patent Document 1 does not describe the color reproducibility (NTSC ratio) in combination with a highly efficient green phosphor.

また、このような赤色系発光蛍光体を前記波長変換部に用いた発光装置においては、高温、高湿(60℃、90%(相対湿度))の環境の下で、連続点灯を行うと、明るさが大きく低下し、白色の色度が大きく変動するという技術課題を有している。このような背景から、4価のマンガン付活フッ化4価金属塩蛍光体の連続点灯における白色の色度変動の改善が急務となっている。しかしながら、上記特許文献1には、連続点灯における白色の色度変動についても言及されていない。
米国特許出願公開第2006/0169998号明細書
Further, in the light emitting device using such a red light emitting phosphor for the wavelength conversion unit, when continuous lighting is performed under an environment of high temperature and high humidity (60 ° C., 90% (relative humidity)), There is a technical problem that the brightness is greatly reduced and the white chromaticity varies greatly. From such a background, there is an urgent need to improve the white chromaticity variation in continuous lighting of the tetravalent manganese-activated fluorinated tetravalent metal salt phosphor. However, Patent Document 1 does not mention white chromaticity fluctuation in continuous lighting.
US Patent Application Publication No. 2006/0169998

本発明は、上記課題を解決するためになされたものであって、その目的とするところは、4価のマンガン付活フッ化4価金属塩蛍光体を用いても、白色の明るさの低下の少ない、色度の変動の小さい発光装置であって、色再現性(NTSC比)の優れた発光装置を提供することである。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to reduce white brightness even when a tetravalent manganese-activated fluorinated tetravalent metal salt phosphor is used. The present invention is to provide a light-emitting device that is small in chromaticity variation and excellent in color reproducibility (NTSC ratio).

本発明の蛍光体調製物は、シリコーン樹脂中に、
一般式(A):MI2(MII1-aMna)F6
(上記一般式(A)中、MIはLi、Na、K、RbおよびCsから選ばれる少なくとも1種のアルカリ金属元素を示し、MIIはGe、Sn、TiおよびZrから選ばれる少なくとも1種の4価の金属元素を示し、0.001≦a≦0.5を満足する数である)
で実質的に表わされる4価のマンガン付活フッ化4価金属塩赤色系発光蛍光体を少なくとも含有し、前記蛍光体がシリコーン樹脂中で沈降せず、分散状態が保持される粘度に調製してなることを特徴とする。
The phosphor preparation of the present invention contains a silicone resin,
Formula (A): MI 2 (MII 1-a Mn a) F 6
(In the general formula (A), MI represents at least one alkali metal element selected from Li, Na, K, Rb and Cs, and MII represents at least one 4 selected from Ge, Sn, Ti and Zr. A valent metal element, a number satisfying 0.001 ≦ a ≦ 0.5)
At least a tetravalent manganese-activated fluorinated tetravalent metal salt red light emitting phosphor substantially represented by the formula, wherein the phosphor does not settle in the silicone resin and is prepared to have a viscosity that maintains a dispersed state. It is characterized by.

本発明の蛍光体調製物において、上記一般式(A)中、MIはKであり、MIIはTiであることが好ましい。   In the phosphor preparation of the present invention, in the general formula (A), MI is preferably K and MII is preferably Ti.

本発明の蛍光体調製物は、粘度が20000mPa・s以上であることが好ましい。
本発明はまた、一次光を発する発光素子と、発光素子から発せられた一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換部とを備える発光装置であって、上記波長変換部が上述した本発明の蛍光体調製物を用いて形成されたものである発光装置についても提供する。
The phosphor preparation of the present invention preferably has a viscosity of 20000 mPa · s or more.
The present invention also includes a light emitting element that emits primary light, and a wavelength conversion unit that absorbs part of the primary light emitted from the light emitting element and emits secondary light having a wavelength longer than the wavelength of the primary light. There is also provided a light-emitting device, wherein the wavelength conversion unit is formed using the phosphor preparation of the present invention described above.

本発明の発光装置において、上記波長変換部は緑色系発光蛍光体および赤色系発光蛍光体を含む1種以上の蛍光体を含み、赤色系発光蛍光体が上記蛍光体調製物に含まれる4価のマンガン付活フッ化4価金属塩赤色系発光蛍光体であることが好ましい。   In the light emitting device of the present invention, the wavelength conversion unit includes one or more phosphors including a green light emitting phosphor and a red light emitting phosphor, and the red light emitting phosphor is included in the phosphor preparation. The manganese-activated tetravalent metal salt red light emitting phosphor is preferable.

また本発明の発光装置において、発光素子は、ピーク波長430〜480nmの一次光を発する窒化ガリウム系半導体であることが好ましい。   In the light-emitting device of the present invention, the light-emitting element is preferably a gallium nitride-based semiconductor that emits primary light having a peak wavelength of 430 to 480 nm.

本発明の発光装置において、上記緑色系発光蛍光体は、
一般式(B):EubSicAldef
(上記一般式(B)中、0.005≦b≦0.4、c+d=12、e+f=16を満足する数である)
で実質的に表されるβ型SiAlONである2価のユ−ロピウム付活酸窒化物蛍光体、ならびに、
一般式(C):2(Ba1-g-hMIIIgEuh)O・SiO2
(上記一般式(C)中、MIIIはMg、CaおよびSrから選ばれる少なくとも1種のアルカリ土類金属元素を示し、0<g≦0.55、0.03≦h≦0.10を満足する数である)
で実質的に表される2価のユ−ロピウム付活珪酸塩蛍光体からなる群から選ばれる少なくともいずれかであることが好ましい。
In the light emitting device of the present invention, the green light emitting phosphor is,
Formula (B): Eu b Si c Al d O e N f
(In the above general formula (B), 0.005 ≦ b ≦ 0.4, c + d = 12, e + f = 16)
A divalent europium activated oxynitride phosphor substantially β-type SiAlON represented by:
Formula (C): 2 (Ba 1-gh MIII g Eu h ) O.SiO 2
(In the general formula (C), MIII represents at least one alkaline earth metal element selected from Mg, Ca and Sr, and satisfies 0 <g ≦ 0.55 and 0.03 ≦ h ≦ 0.10. Is the number to do)
It is preferably at least one selected from the group consisting of divalent europium activated silicate phosphors substantially represented by:

本発明によれば、発光素子からの発光を効率よく吸収して高効率な白色光を得ることができるとともに、白色の明るさの低下が少なく、色度の変動の小さいライフ特性に優れた、信頼性の高い発光装置であって、色再現性(NTSC比)の優れた発光装置、ならびに当該発光装置の実現に特に好適な蛍光体調製物を提供することができる。   According to the present invention, it is possible to efficiently absorb the light emitted from the light emitting element and obtain white light with high efficiency, and there is little decrease in white brightness, and excellent life characteristics with small chromaticity variation. A highly reliable light-emitting device that has excellent color reproducibility (NTSC ratio) and a phosphor preparation that is particularly suitable for realizing the light-emitting device can be provided.

本発明の蛍光体調製物は、シリコーン樹脂中に、下記一般式(A)で実質的に表される4価のマンガン付活フッ化4価金属塩赤色系発光蛍光体を少なくとも含有する。   The phosphor preparation of the present invention contains at least a tetravalent manganese-activated tetravalent metal salt red light emitting phosphor substantially represented by the following general formula (A) in a silicone resin.

(A)4価のマンガン付活フッ化4価金属塩赤色系発光蛍光体
当該赤色系発光蛍光体は、
一般式(A):MI2(MII1-aMna)F6
で実質的に表される。上記一般式(A)において、Mnはマンガン、Fはフッ素を表している。一般式(A)中、MIは、Li、Na、K、RbおよびCsから選ばれる少なくとも1種のアルカリ金属元素を示す。また一般式(A)中、MIIは、Ge、Sn、TiおよびZrから選ばれる少なくとも1種の4価の金属元素を示す。明るさおよび粉体特性の安定性の観点からは、上記一般式(A)中、MIはKであり、MIIはTiであることが好ましい。
(A) Tetravalent manganese-activated tetravalent metal salt red light emitting phosphor The red light emitting phosphor is:
Formula (A): MI 2 (MII 1-a Mn a) F 6
Is substantially represented by In the general formula (A), Mn represents manganese, and F represents fluorine. In the general formula (A), MI represents at least one alkali metal element selected from Li, Na, K, Rb and Cs. In general formula (A), MII represents at least one tetravalent metal element selected from Ge, Sn, Ti, and Zr. From the viewpoint of brightness and stability of powder characteristics, in the general formula (A), MI is preferably K and MII is preferably Ti.

また、一般式(A)中、Mnの組成比(濃度)を示すaの値は0.001≦a≦0.5である。aの値が0.001未満である場合には、十分な明るさが得られないという不具合があり、また、aの値が0.5を超える場合には、濃度消光などにより、明るさが大きく低下するという不具合があるためである。明るさおよび粉体特性の安定性から、aの値は0.005≦a≦0.2であることが好ましい。   In the general formula (A), the value of a indicating the composition ratio (concentration) of Mn is 0.001 ≦ a ≦ 0.5. When the value of a is less than 0.001, there is a problem that sufficient brightness cannot be obtained, and when the value of a exceeds 0.5, the brightness is reduced by concentration quenching or the like. This is because there is a problem of a significant decrease. From the viewpoint of brightness and stability of powder characteristics, the value of a is preferably 0.005 ≦ a ≦ 0.2.

当該4価のマンガン付活フッ化4価金属塩赤色系発光蛍光体としては、具体的には、K2(Ti0.99Mn0.01)F6、K2(Ti0.9Mn0.1)F6、K2(Ti0.999Mn0.001)F6、Na2(Zr0.98Mn0.02)F6、Cs2(Si0.95Mn0.05)F6、Na2(Ti0.98Mn0.02)F6、Cs2(Sn0.98Mn0.02)F6、Cs2(Zr0.995Mn0.005)F6、K2(Sn0.995Mn0.005)F6、(K0.80Cs0.202(Zr0.98Mn0.02)F6、K2(Ti0.88Zr0.10Mn0.02)F6、Na2(Ti0.75Sn0.20Mn0.05)F6、Cs2(Ge0.999Mn0.001)F6、(K0.80Na0.202(Ti0.69Ge0.30Mn0.01)F6などを挙げることができるが、勿論これらに限定されるものではない。 Specific examples of the tetravalent manganese-activated tetravalent metal fluoride red light emitting phosphor include K 2 (Ti 0.99 Mn 0.01 ) F 6 , K 2 (Ti 0.9 Mn 0.1 ) F 6 , K 2. (Ti 0.999 Mn 0.001 ) F 6 , Na 2 (Zr 0.98 Mn 0.02 ) F 6 , Cs 2 (Si 0.95 Mn 0.05 ) F 6 , Na 2 (Ti 0.98 Mn 0.02 ) F 6 , Cs 2 (Sn 0.98 Mn 0.02 ) F 6 , Cs 2 (Zr 0.995 Mn 0.005 ) F 6 , K 2 (Sn 0.995 Mn 0.005 ) F 6 , (K 0.80 Cs 0.20 ) 2 (Zr 0.98 Mn 0.02 ) F 6 , K 2 (Ti 0.88 Zr 0.10 Mn 0.02 ) F 6 , Na 2 (Ti 0.75 Sn 0.20 Mn 0.05 ) F 6 , Cs 2 (Ge 0.999 Mn 0.001 ) F 6 , (K 0.80 Na 0.20 ) 2 (Ti 0.69 Ge 0.30 Mn 0.01 ) F 6 Of course, it is not limited to these.

また本発明の蛍光体調製物は、上述した4価のマンガン付活フッ化4価金属塩赤色系発光蛍光体がシリコーン樹脂中で沈降せず、分散状態が保持される粘度に調製される。本発明の蛍光体調製物の粘度は、20000mPa・s以上で流動性を保つ限り(たとえば、30000mPa・s程度)、特に制限されるものではない。なお、この蛍光体調製物の粘度は、たとえばブルックフィールドR/SレオメータCP−50−1を用いて測定された値を指す。   In addition, the phosphor preparation of the present invention is prepared to have a viscosity at which the above-described tetravalent manganese-activated fluorinated tetravalent metal salt red light-emitting phosphor does not settle in the silicone resin and maintains a dispersed state. The viscosity of the phosphor preparation of the present invention is not particularly limited as long as fluidity is maintained at 20000 mPa · s or more (for example, about 30000 mPa · s). In addition, the viscosity of this fluorescent substance preparation points out the value measured, for example using Brookfield R / S rheometer CP-50-1.

本発明の蛍光体調製物は、シリコーン樹脂と4価のマンガン付活フッ化4価金属塩赤色系発光蛍光体とを、高速回転装置などの従来公知の適宜の混合装置を用いて混合し、シリコーン樹脂中に4価のマンガン付活フッ化4価金属塩赤色系発光蛍光体を分散させることで調製できる。なお、シリコーン樹脂は、蛍光体調製物の粘度が20000mPa・s以上となるような粘度を有するものを用いることが好ましい。   In the phosphor preparation of the present invention, a silicone resin and a tetravalent manganese-activated tetravalent metal salt red light emitting phosphor are mixed using a conventionally known appropriate mixing device such as a high-speed rotating device, It can be prepared by dispersing a tetravalent manganese-activated tetravalent metal fluoride red light emitting phosphor in a silicone resin. In addition, it is preferable to use a silicone resin having a viscosity such that the viscosity of the phosphor preparation is 20000 mPa · s or more.

ここで、図1は、本発明の好ましい一例の発光装置1を模式的に示す断面図である。本発明の発光装置1は、図1に示すように、一次光を発する発光素子2と、発光素子2から発せられた一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換部3とを基本的に備え、波長変換部3が上述した本発明の蛍光体調製物を用いて形成されたものであることを特徴とする。また図2は、本発明の好ましい一例の発光装置の発光スペクトル分布を示すグラフであり、図2において縦軸は強度(任意単位)、横軸は波長(nm)である。上述した本発明の蛍光体調製物を用いて形成された波長変換部を備える本発明の発光装置によれば、発光素子2からの発光を効率よく吸収して高効率な白色光を得ることができるとともに、白色の明るさの低下が少なく、色度の変動の小さいライフ特性に優れた、信頼性の高い発光装置であって、色再現性(NTSC比)の優れた発光装置が実現される。   Here, FIG. 1 is a cross-sectional view schematically showing a light emitting device 1 of a preferred example of the present invention. As shown in FIG. 1, the light emitting device 1 of the present invention absorbs a part of the primary light emitted from the light emitting element 2 that emits primary light and the light emitted from the light emitting element 2, and has a wavelength longer than the wavelength of the primary light. And a wavelength converter 3 that emits secondary light, and the wavelength converter 3 is formed using the phosphor preparation of the present invention described above. FIG. 2 is a graph showing an emission spectrum distribution of a light emitting device as a preferred example of the present invention. In FIG. 2, the vertical axis represents intensity (arbitrary unit) and the horizontal axis represents wavelength (nm). According to the light emitting device of the present invention provided with the wavelength conversion unit formed using the phosphor preparation of the present invention described above, it is possible to efficiently absorb the light emitted from the light emitting element 2 and obtain highly efficient white light. In addition, a highly reliable light-emitting device that has excellent life characteristics with little decrease in white brightness and small chromaticity variation, and that has excellent color reproducibility (NTSC ratio) is realized. .

本発明の発光装置は、波長変換部3が、図1に示す例のように緑色系発光蛍光体11および赤色系発光蛍光体12を含む1種以上の蛍光体を含み、赤色系発光蛍光体12が上述した本発明の蛍光体調製物に含まれる4価のマンガン付活フッ化4価金属塩赤色系発光蛍光体であることが、好ましい。なお、本発明の発光装置は、波長変換部が上述した本発明の蛍光体調製物に含まれる4価のマンガン付活フッ化4価金属塩赤色系発光蛍光体である赤色系発光蛍光体を含み、緑色系発光蛍光体を含まないように実現されても勿論よい。   In the light emitting device of the present invention, the wavelength conversion unit 3 includes one or more phosphors including the green light emitting phosphor 11 and the red light emitting phosphor 12 as in the example shown in FIG. It is preferable that No. 12 is a tetravalent manganese-activated tetravalent metal salt red light-emitting phosphor contained in the phosphor preparation of the present invention described above. The light emitting device of the present invention is a red light emitting phosphor, which is a tetravalent manganese-activated tetravalent metal salt red light emitting phosphor whose wavelength conversion part is contained in the phosphor preparation of the present invention described above. Of course, it may be realized so as not to include the green light emitting phosphor.

この場合、本発明の発光装置に用いる緑色系発光蛍光体11は、下記一般式(B)で実質的に表されるβ型SiAlONである2価のユ−ロピウム付活酸窒化物蛍光体、ならびに、下記一般式(C)で実質的に表される2価のユ−ロピウム付活珪酸塩蛍光体からなる群から選ばれる少なくともいずれかであることが、好ましい。   In this case, the green light-emitting phosphor 11 used in the light-emitting device of the present invention is a divalent europium-activated oxynitride phosphor that is a β-type SiAlON substantially represented by the following general formula (B): In addition, it is preferably at least one selected from the group consisting of divalent europium activated silicate phosphors substantially represented by the following general formula (C).

(B)β型SiAlONである2価のユ−ロピウム付活酸窒化物蛍光体
当該β型SiAlONである2価のユ−ロピウム付活酸窒化物蛍光体は、
一般式(B):EubSicAldef
で実質的に表される。一般式(B)において、Euはユーロピウム、Siはケイ素、Alはアルミニウム、Oは酸素、Nは窒素を表している。一般式(B)中、Euの組成比(濃度)を表すbの値は0.005≦b≦0.4である。bの値が0.005未満である場合には、十分な明るさが得られないためであり、またbの値が0.4を超える場合には、濃度消光などにより、明るさが大きく低下するためである。なお、粉体特性の安定性、母体の均質性の観点から、上記式中のbの値は、0.01≦b≦0.2であるのが好ましい。また、一般式(B)において、Siの組成比(濃度)を表すcおよびAlの組成比(濃度)を表すdは、c+d=12を満足する数であり、Oの組成比(濃度)を表すeおよびNの組成比(濃度)を表すfは、e+f=16を満足する数である。
(B) Divalent europium activated oxynitride phosphor that is β-type SiAlON The divalent europium activated oxynitride phosphor that is β-type SiAlON is:
Formula (B): Eu b Si c Al d O e N f
Is substantially represented by In the general formula (B), Eu represents europium, Si represents silicon, Al represents aluminum, O represents oxygen, and N represents nitrogen. In the general formula (B), the value of b representing the Eu composition ratio (concentration) is 0.005 ≦ b ≦ 0.4. This is because sufficient brightness cannot be obtained when the value of b is less than 0.005, and when the value of b exceeds 0.4, the brightness is greatly reduced due to concentration quenching or the like. It is to do. In view of the stability of the powder characteristics and the homogeneity of the matrix, the value of b in the above formula is preferably 0.01 ≦ b ≦ 0.2. In the general formula (B), c representing the composition ratio (concentration) of Si and d representing the composition ratio (concentration) of Al are numbers satisfying c + d = 12, and the composition ratio (concentration) of O is F representing the composition ratio (concentration) of e and N is a number satisfying e + f = 16.

当該β型SiAlONである2価のユ−ロピウム付活酸窒化物蛍光体としては、具体的には、Eu0.05Si11.50Al0.500.0515.95、Eu0.10Si11.00Al1.000.1015.90、Eu0.30Si9.80Al2.200.3015.70、Eu0.15Si10.00Al2.000.2015.80、Eu0.01Si11.60Al0.400.0115.99、Eu0.005Si11.70Al0.300.0315.97などを挙げることができるが、勿論これらに限定されるものではない。 Specific examples of the β-type SiAlON divalent europium activated oxynitride phosphor include Eu 0.05 Si 11.50 Al 0.50 O 0.05 N 15.95 , Eu 0.10 Si 11.00 Al 1.00 O 0.10 N 15.90 , Eu 0.30 Si 9.80 Al 2.20 O 0.30 N 15.70 , Eu 0.15 Si 10.00 Al 2.00 O 0.20 N 15.80 , Eu 0.01 Si 11.60 Al 0.40 O 0.01 N 15.99 , Eu 0.005 Si 11.70 Al 0.30 O 0.03 N 15.97 Of course, it is not limited to these.

(C)2価のユ−ロピウム付活珪酸塩蛍光体
当該2価のユ−ロピウム付活珪酸塩蛍光体は、
一般式(C):2(Ba1-g-hMIIIgEuh)O・SiO2
で実質的に表される。一般式(C)において、Baはバリウム、Euはユーロピウム、Oは酸素、Siはケイ素を表している。一般式(C)中、MIIIは、アルカリ土類金属元素であり、Mg、CaおよびSrから選ばれる少なくとも1種の元素を示す。高効率な母体を得るためには、上記中でも、MIIIはSrであることが好ましい。一般式(C)中、MIIIの組成比(濃度)を表すgの値は0<g≦0.55であり、gの値がこの範囲内であることで、510〜540nmの範囲の緑色系発光を得ることができる。gの値が0.55を超える場合には、黄色味がかった緑色系発光となり、色純度が悪くなってしまう。さらには、効率、色純度の観点からは、gの値は0.15≦g≦0.45の範囲の範囲内であることが好ましい。また一般式(C)中、Euの組成比(濃度)を示すhの値は0.03≦h≦0.10である。hの値が0.03未満である場合には、十分な明るさが得られないためであり、また、hの値が0.10を超える場合には、濃度消光などにより、明るさが大きく低下するためである。なお、明るさおよび粉体特性の安定性から、hの値は0.04≦h≦0.08の範囲内であることが好ましい。
(C) Divalent europium activated silicate phosphor The divalent europium activated silicate phosphor is:
Formula (C): 2 (Ba 1-gh MIII g Eu h ) O.SiO 2
Is substantially represented by In the general formula (C), Ba represents barium, Eu represents europium, O represents oxygen, and Si represents silicon. In general formula (C), MIII is an alkaline earth metal element and represents at least one element selected from Mg, Ca, and Sr. Among them, MIII is preferably Sr in order to obtain a highly efficient matrix. In the general formula (C), the value of g representing the composition ratio (concentration) of MIII is 0 <g ≦ 0.55, and the value of g is within this range, so that the green type in the range of 510 to 540 nm. Luminescence can be obtained. When the value of g exceeds 0.55, greenish light emission with yellowishness is caused, and the color purity is deteriorated. Furthermore, from the viewpoint of efficiency and color purity, the value of g is preferably in the range of 0.15 ≦ g ≦ 0.45. In the general formula (C), the value of h indicating the composition ratio (concentration) of Eu is 0.03 ≦ h ≦ 0.10. This is because sufficient brightness cannot be obtained when the value of h is less than 0.03, and when the value of h exceeds 0.10, the brightness increases due to concentration quenching or the like. It is because it falls. Note that the value of h is preferably in the range of 0.04 ≦ h ≦ 0.08 from the standpoints of brightness and powder property stability.

当該2価のユ−ロピウム付活珪酸塩蛍光体としては、具体的には、2(Ba0.70Sr0.26Eu0.04)・SiO2、2(Ba0.57Sr0.38Eu0.05)O・SiO2、2(Ba0.53Sr0.43Eu0.04)O・SiO2、2(Ba0.82Sr0.15Eu0.03)O・SiO2、2(Ba0.46Sr0.49Eu0.05)O・SiO2、2(Ba0.59Sr0.35Eu0.06)O・SiO2、2(Ba0.52Sr0.40Eu0.08)O・SiO2、2(Ba0.85Sr0.10Eu0.05)O・SiO2、2(Ba0.47Sr0.50Eu0.03)O・SiO2、2(Ba0.54Sr0.36Eu0.10)O・SiO2、2(Ba0.69Sr0.25Ca0.02Eu0.04)O・SiO2、2(Ba0.56Sr0.38Mg0.01Eu0.05)O・SiO2、2(Ba0.81Sr0.13Mg0.01Ca0.01Eu0.04)O・SiO2などを挙げることができるが、勿論これらに限定されるものではない。 As the divalent europium activated silicate phosphor, specifically, 2 (Ba 0.70 Sr 0.26 Eu 0.04 ) · SiO 2 , 2 (Ba 0.57 Sr 0.38 Eu 0.05 ) O · SiO 2 , 2 ( Ba 0.53 Sr 0.43 Eu 0.04 ) O · SiO 2 , 2 (Ba 0.82 Sr 0.15 Eu 0.03 ) O · SiO 2 , 2 (Ba 0.46 Sr 0.49 Eu 0.05 ) O · SiO 2 , 2 (Ba 0.59 Sr 0.35 Eu 0.06 ) O・ SiO 2 , 2 (Ba 0.52 Sr 0.40 Eu 0.08 ) O · SiO 2 , 2 (Ba 0.85 Sr 0.10 Eu 0.05 ) O · SiO 2 , 2 (Ba 0.47 Sr 0.50 Eu 0.03 ) O · SiO 2 , 2 (Ba 0.54 Sr 0.36 Eu 0.10 ) O.SiO 2 , 2 (Ba 0.69 Sr 0.25 Ca 0.02 Eu 0.04 ) O.SiO 2 , 2 (Ba 0.56 Sr 0.38 Mg 0.01 Eu 0.05 ) O.SiO 2 , 2 (Ba 0.81 Sr 0.13 Mg 0.01 and Ca 0.01 Eu 0.04) O · SiO 2 It can gel, but the invention is of course limited thereto.

上述した本発明の発光装置に用いる発光素子としては特に制限されるものではないが、ピーク波長が430〜480nm(より好適には440〜480nm)の青色領域の一次光を発する窒化ガリウム(GaN)系半導体を発光素子として好適に用いることができる。ピーク波長が430nm未満の発光素子を用いた場合には、青色光成分の寄与が小さくなって演色性が悪くなり、実用的でなくなる虞があるためであり、また、ピーク波長が480nmを超える発光素子を用いた場合には、白色での明るさが低下し、実用的でなくなる虞があるためである。   The light-emitting element used in the above-described light-emitting device of the present invention is not particularly limited, but gallium nitride (GaN) that emits primary light in a blue region having a peak wavelength of 430 to 480 nm (more preferably 440 to 480 nm). Based semiconductors can be suitably used as light-emitting elements. This is because when a light-emitting element having a peak wavelength of less than 430 nm is used, the contribution of the blue light component is reduced, the color rendering properties are deteriorated, and it may become impractical, and the light emission having a peak wavelength exceeding 480 nm. This is because when the element is used, the brightness in white is lowered, which may be impractical.

本発明の発光装置は、上述した特徴を備えているのであれば、その他の構成については特に制限されるものではない。図1に示す例では、凹状の窪みを有するパッケージ4の当該窪みに発光素子2が搭載され、この発光素子2の電極パッド部(図示せず)が、パッケージ4に形成されたリード(電力供給端子)5に金属ワイヤを介して電気的に接続されており、上記窪みを発光素子2ごと本発明の蛍光体調製物中の4価のマンガン付活フッ化4価金属塩赤色系発光蛍光体を含む蛍光体および封止剤13によって封止して波長変換部3が形成されてなる。封止剤13としては、透光性を有する樹脂材料であるエポキシ樹脂、シリコーン樹脂、尿素樹脂などを用いることができるが、これらに限定されるものではない。また、波長変換部3には、上述した蛍光体および封止剤以外に、本発明の効果を阻害しない範囲で、適宜のSiO2、TiO2、ZrO2、Al23、Y23などの添加剤が含有されていても勿論よい。 As long as the light emitting device of the present invention has the above-described features, other configurations are not particularly limited. In the example shown in FIG. 1, the light emitting element 2 is mounted in the depression of the package 4 having a concave depression, and an electrode pad portion (not shown) of the light emitting element 2 is a lead (power supply) formed on the package 4. Terminal) 5 is electrically connected via a metal wire, and the above-described depression together with the light-emitting element 2 is a tetravalent manganese-activated tetravalent metal fluoride tetravalent metal salt red light-emitting phosphor in the phosphor preparation of the present invention. The wavelength conversion part 3 is formed by sealing with a phosphor containing a phosphor and a sealing agent 13. As the sealant 13, an epoxy resin, a silicone resin, a urea resin, or the like, which is a light-transmitting resin material, can be used, but is not limited thereto. In addition to the phosphor and the sealing agent described above, the wavelength conversion unit 3 may have any appropriate SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 , Y 2 O 3 as long as the effects of the present invention are not impaired. Of course, additives such as may be contained.

なお、本発明の蛍光体調製物に用いられる上述した赤色系発光蛍光体、発光装置に用いられる上述した緑色系発光蛍光体は、いずれも公知のものであり、従来公知の適宜の手法で製造するか、または製品として入手することが可能である。   Note that the above-described red light-emitting phosphor used in the phosphor preparation of the present invention and the above-described green light-emitting phosphor used in the light-emitting device are both known and manufactured by a conventionally known appropriate method. Or can be obtained as a product.

以下、実施例および比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these.

<実施例1>
2(Ti0.99Mn0.01)F6(メディアン径:2.0μm)なる組成で表される赤色系発光蛍光体5.00gと粘度13500mPa・sのシリコーン樹脂(A剤(主剤))3.33gとを高速回転装置を用いて混合して、蛍光体調製物を得た(混合して得られた蛍光体調製物の粘度(ブルックフィールドR/SレオメータCP−50−1を用いて測定)は20000mPa・s以上であった。)。この蛍光体調製物を1週間大気中で放置した。
<Example 1>
K 2 (Ti 0.99 Mn 0.01) F 6 ( median diameter: 2.0 .mu.m) becomes red light emitting phosphor 5.00g and viscosity 13500mPa · s silicone resin represented by the composition (A agent (main agent)) 3.33 g Were mixed using a high-speed rotating device to obtain a phosphor preparation (the viscosity of the phosphor preparation obtained by mixing (measured using a Brookfield R / S rheometer CP-50-1)) It was 20000 mPa · s or more.) This phosphor preparation was left in the atmosphere for one week.

上述した蛍光体調製物4.33gに、粘度13500mPa・sの上記シリコーン樹脂(A剤(主剤))0.27gと、粘度35mPa・sのシリコーン樹脂(B剤(硬化剤))2.00gとを混合し、この混合物を用いて波長変換部を形成し、波長変換部が緑色系発光蛍光体を含まないこと以外は図1と同様の構成を有する発光装置を作製した。なお、発光素子としては、450nmにピ−ク波長を有する窒化ガリウム(GaN)系半導体を用いた。   To 4.33 g of the phosphor preparation described above, 0.27 g of the silicone resin (A agent (main agent)) having a viscosity of 13500 mPa · s, and 2.00 g of a silicone resin (B agent (curing agent)) having a viscosity of 35 mPa · s, A light-emitting device having the same configuration as that of FIG. 1 was produced except that a wavelength conversion part was formed using this mixture, and the wavelength conversion part did not contain a green light-emitting phosphor. As the light emitting element, a gallium nitride (GaN) semiconductor having a peak wavelength at 450 nm was used.

<比較例1>
1週間大気中で放置したK2(Ti0.99Mn0.01)F6(メディアン径:2.0μm)なる組成で表される赤色系発光蛍光体2.60gに、粘度13500mPa・sのシリコーン樹脂(A剤(主剤))2.00gおよび粘度35mPa・sのシリコーン樹脂(B剤(硬化剤))2.00gを、高速回転装置で混合したものを用いたこと以外は実施例1と同様にして波長変換部を形成し、発光装置を作製した。
<Comparative Example 1>
A silicone resin (A) having a viscosity of 13500 mPa · s was added to 2.60 g of a red light-emitting phosphor represented by a composition of K 2 (Ti 0.99 Mn 0.01 ) F 6 (median diameter: 2.0 μm) left in the atmosphere for one week. Wavelength in the same manner as in Example 1 except that 2.00 g of an agent (main agent) and 2.00 g of a silicone resin (B agent (curing agent)) having a viscosity of 35 mPa · s were mixed with a high-speed rotating device. A conversion part was formed to produce a light emitting device.

実施例1、比較例1で作製した発光装置について、順電流(IF)20mAにて点灯し、発光装置からの光出力(光電流)を測定し、明るさ(初期値)を評価した。また、60℃、相対湿度90%の恒温槽中において順電流30mAにて500時間点灯し、その後、室温において順電流20mAにて点灯し、発光装置からの光出力(光電流)を測定し、明るさ(500時間後)を評価した。結果を表1に示す。   The light emitting devices manufactured in Example 1 and Comparative Example 1 were lit at a forward current (IF) of 20 mA, the light output (photocurrent) from the light emitting device was measured, and the brightness (initial value) was evaluated. Moreover, it is lit for 500 hours at a forward current of 30 mA in a constant temperature bath at 60 ° C. and a relative humidity of 90%, and then lit at a forward current of 20 mA at room temperature, and the light output (photocurrent) from the light emitting device is measured. The brightness (after 500 hours) was evaluated. The results are shown in Table 1.

Figure 2009280763
Figure 2009280763

表1から、本発明の発光装置は、従来品と比較して、ライフ特性(信頼性)(光度の低下)が非常に優れていることが判る。   From Table 1, it can be seen that the light emitting device of the present invention has very excellent life characteristics (reliability) (decrease in luminous intensity) as compared with the conventional product.

<実施例2〜6、比較例2〜6>
発光素子、蛍光体、シリコーン樹脂(A剤(主剤)、B剤(硬化剤))の粘度およびA剤に対する赤色系発光蛍光体の比率をそれぞれ表2に示すように組み合わせたこと以外は実施例1、比較例1と同様に発光装置をそれぞれ作製した。なお、実施例2〜6で用いた蛍光体調製物は、いずれも粘度が20000mPa・s以上であった。
<Examples 2-6, Comparative Examples 2-6>
Except for combining the viscosity of the light emitting device, the phosphor, the silicone resin (agent A (main agent), agent B (curing agent)) and the ratio of the red light emitting phosphor to agent A, as shown in Table 2, respectively. 1 and the light emitting device were produced in the same manner as Comparative Example 1, respectively. In addition, all the phosphor preparations used in Examples 2 to 6 had a viscosity of 20000 mPa · s or more.

Figure 2009280763
Figure 2009280763

実施例2〜6、比較例2〜6の発光装置について、実施例1、比較例1と同様に明るさ(初期値)および明るさ(500時間後)を評価した結果を表3に示す。   Table 3 shows the results of evaluating the brightness (initial value) and brightness (after 500 hours) of the light emitting devices of Examples 2 to 6 and Comparative Examples 2 to 6 in the same manner as in Example 1 and Comparative Example 1.

Figure 2009280763
Figure 2009280763

表3から、本発明の発光装置は、従来品と比較して、ライフ特性(信頼性)(光度の低下)が非常に優れていることが判る。   From Table 3, it can be seen that the light emitting device of the present invention is very excellent in life characteristics (reliability) (decrease in luminous intensity) as compared with the conventional product.

<実施例7>
2(Ti0.99Mn0.01)F6(メディアン径:2.0μm)なる組成で表される赤色系発光蛍光体5.00gと粘度13500mPa・sのシリコーン樹脂(A剤(主剤))3.33gとを高速回転装置を用いて混合して、蛍光体調製物を得た(混合して得られた蛍光体調製物の粘度は20000mPa・s以上であった。)。この蛍光体調製物を1週間大気中で放置した。
<Example 7>
K 2 (Ti 0.99 Mn 0.01) F 6 ( median diameter: 2.0 .mu.m) becomes red light emitting phosphor 5.00g and viscosity 13500mPa · s silicone resin represented by the composition (A agent (main agent)) 3.33 g Were mixed using a high-speed rotating device to obtain a phosphor preparation (the viscosity of the phosphor preparation obtained by mixing was 20000 mPa · s or more). This phosphor preparation was left in the atmosphere for one week.

上述した蛍光体調製物0.840gに、粘度13500mPa・sのシリコーン樹脂(A剤(主剤))1.58gと、粘度35mPa・sのシリコーン樹脂(B剤(硬化剤))2.00gと、Eu0.05Si11.50Al0.500.0515.95(β型SiAlON)(メディアン径:12.0μm)なる組成で表される緑色系発光蛍光体0.180gとを混合し、この混合物を用いて波長変換部を形成し、図1に示した発光装置を作製した。なお、発光素子としては、450nmにピ−ク波長を有する窒化ガリウム(GaN)系半導体を用いた。 0.840 g of the phosphor preparation described above, 1.58 g of silicone resin (A agent (main agent)) with a viscosity of 13500 mPa · s, 2.00 g of silicone resin (B agent (curing agent)) with a viscosity of 35 mPa · s, Eu 0.05 Si 11.50 Al 0.50 O 0.05 N 15.95 (β-type SiAlON) (median diameter: 12.0 μm) is mixed with 0.180 g of a green light-emitting phosphor, and a wavelength conversion unit using this mixture The light emitting device shown in FIG. 1 was manufactured. As the light emitting element, a gallium nitride (GaN) semiconductor having a peak wavelength at 450 nm was used.

<比較例7>
1週間大気中で放置したK2(Ti0.99Mn0.01)F6(メディアン径:2.0μm)なる組成で表される赤色系発光蛍光体0.420gに、粘度13500mPa・sのシリコーン樹脂(A剤(主剤))2.00g、粘度35mPa・sのシリコーン樹脂(B剤(硬化剤))2.00gおよびEu0.05Si11.50Al0.500.0515.95(β型SiAlON)(メディアン径:12.0μm)なる組成で表される緑色系発光蛍光体0.180gを、高速回転装置で混合したものを用いたこと以外は実施例7と同様にして波長変換部を形成し、発光装置を作製した。
<Comparative Example 7>
A red resin phosphor 0.420 g represented by a composition of K 2 (Ti 0.99 Mn 0.01 ) F 6 (median diameter: 2.0 μm) left in the atmosphere for one week was added to a silicone resin (A 2.00 g, viscosity of 35 mPa · s silicone resin (B agent (curing agent)) 2.00 g and Eu 0.05 Si 11.50 Al 0.50 O 0.05 N 15.95 (β-type SiAlON) (median diameter: 12.0 μm The wavelength conversion part was formed in the same manner as in Example 7 except that 0.180 g of a green light-emitting phosphor represented by the composition represented by the above composition was mixed with a high-speed rotating device to form a light-emitting device.

実施例7、比較例7で作製した発光装置について、実施例1、比較例1と同様に明るさ(初期値)および明るさ(500時間後)を評価した。さらに、発光装置からの白色光を大塚電子製MCPD−2000にて測定し、色度(x、y)の値を求めた。結果を表4に示す。   For the light emitting devices manufactured in Example 7 and Comparative Example 7, the brightness (initial value) and the brightness (after 500 hours) were evaluated in the same manner as in Example 1 and Comparative Example 1. Furthermore, white light from the light emitting device was measured with MCPD-2000 manufactured by Otsuka Electronics, and the value of chromaticity (x, y) was determined. The results are shown in Table 4.

Figure 2009280763
Figure 2009280763

表4から、本発明の発光装置は、従来品と比較して、ライフ特性(信頼性)(光度の低下)が非常に優れていることが判る。   From Table 4, it can be seen that the light emitting device of the present invention has very excellent life characteristics (reliability) (decrease in luminous intensity) as compared with the conventional product.

<実施例8〜11、比較例8〜11>
発光素子、蛍光体、シリコーン樹脂(A剤(主剤)、B剤(硬化剤))の粘度およびA剤に対する赤色系発光蛍光体の比率をそれぞれ表5に示すように組み合わせたこと以外は実施例7、比較例7と同様に発光装置をそれぞれ作製した。なお、実施例8〜11で用いた蛍光体調製物は、いずれも粘度が20000mPa・s以上であった。
<Examples 8 to 11 and Comparative Examples 8 to 11>
Except for combining the viscosity of the light emitting device, the phosphor, the silicone resin (A agent (main agent), B agent (curing agent)) and the ratio of the red light emitting phosphor to the A agent as shown in Table 5, respectively. 7 and the light emitting device were fabricated in the same manner as Comparative Example 7. In addition, all the phosphor preparations used in Examples 8 to 11 had a viscosity of 20000 mPa · s or more.

Figure 2009280763
Figure 2009280763

実施例8〜11、比較例8〜11の発光装置について、実施例7、比較例7と同様に明るさ(初期値)、明るさ(500時間後)および色度を評価した結果を表6に示す。   Table 6 shows the results of evaluating the brightness (initial value), brightness (after 500 hours), and chromaticity of the light emitting devices of Examples 8 to 11 and Comparative Examples 8 to 11 as in Example 7 and Comparative Example 7. Shown in

Figure 2009280763
Figure 2009280763

表6から、本発明の発光装置は、従来品と比較して、ライフ特性(信頼性)(光度の低下)が非常に優れていることが判る。   From Table 6, it can be seen that the light emitting device of the present invention has very excellent life characteristics (reliability) (decrease in luminous intensity) as compared with the conventional product.

また、実施例7〜11の発光装置の色再現性(NTSC比)は88.3、88.1、88.5、87.9、88.0であり、色再現性(NTSC比)が著しく良好であることが判る。   Moreover, the color reproducibility (NTSC ratio) of the light-emitting devices of Examples 7 to 11 is 88.3, 88.1, 88.5, 87.9, 88.0, and the color reproducibility (NTSC ratio) is remarkably high. It turns out that it is favorable.

ここで、図3は、実施例7〜11の発光装置をサイド発光型パッケージ21で構成し、導光板22の側面から光源の光を導入するような典型的なエッジライト方式の液晶ディスプレイの光源として1つ以上使用した例である。サイド発光型パッケージ21は、リフレクターを兼ねた樹脂パッケージ23内に発光素子24が搭載され、発光素子24の周囲を覆う蛍光体含有封止樹脂25は、実施例7〜11で記載された内容のものである。さらに、導光板22の背面には反射シート26、導光板22の表面には拡散シート27、輝度向上シート、カラーフィルタなどの光学シート28が配置され、その光学シート28の表面側に液晶パネル29が配置されている。なお、図3において、発光装置の実装基板などの記載は省略している。また、発光装置をサイド発光型パッケージではなく、平坦な基板上に発光素子を搭載し、発光素子の周囲を封止樹脂で覆っただけの簡便な形状で構成し、液晶パネルの直下に複数配置するような構成としてもよい。   Here, FIG. 3 shows a light source of a typical edge light type liquid crystal display in which the light emitting devices of Examples 7 to 11 are configured by the side light emitting type package 21 and light from the light source is introduced from the side surface of the light guide plate 22. This is an example of using one or more. In the side light emitting package 21, a light emitting element 24 is mounted in a resin package 23 that also serves as a reflector, and the phosphor-containing sealing resin 25 that covers the periphery of the light emitting element 24 has the contents described in Examples 7-11. Is. Further, a reflection sheet 26 is disposed on the back surface of the light guide plate 22, and an optical sheet 28 such as a diffusion sheet 27, a brightness enhancement sheet, and a color filter is disposed on the surface of the light guide plate 22. Is arranged. In FIG. 3, description of a mounting substrate of the light emitting device is omitted. In addition, the light emitting device is not a side light emitting package, but a light emitting element is mounted on a flat substrate, and the light emitting element is simply formed by covering the periphery with a sealing resin. A plurality of light emitting devices are arranged directly under the liquid crystal panel. It is good also as a structure which does.

本発明の好ましい一例の発光装置1を模式的に示す断面図である。It is sectional drawing which shows typically the light-emitting device 1 of a preferable example of this invention. 本発明の発光装置の発光スペクトル分布を示すグラフである。It is a graph which shows the emission spectrum distribution of the light-emitting device of this invention. 本発明の発光装置を光源として使用したエッジライト方式の液晶ディスプレイを模式的に示す図である。It is a figure which shows typically the liquid crystal display of the edge light system which uses the light-emitting device of this invention as a light source.

符号の説明Explanation of symbols

1 発光装置、2 発光素子、3 波長変換部、4 パッケージ、5 リード、11 緑色系発光蛍光体、12 赤色系発光蛍光体、13 封止剤、21 サイド発光型パッケージ、22 導光板、23 リフレクターを兼ねた樹脂パッケージ、24 発光素子、25 蛍光体含有封止樹脂、26 反射シート、27 拡散シート、28 光学シート、29 液晶パネル。   DESCRIPTION OF SYMBOLS 1 Light emitting device, 2 Light emitting element, 3 Wavelength conversion part, 4 Package, 5 lead | read | reed, 11 Green light emission fluorescent substance, 12 Red light emission fluorescent substance, 13 Sealant, 21 Side light emission type package, 22 Light guide plate, 23 Reflector 24 light emitting element, 25 phosphor-containing sealing resin, 26 reflection sheet, 27 diffusion sheet, 28 optical sheet, 29 liquid crystal panel.

Claims (7)

シリコーン樹脂中に、
一般式(A):MI2(MII1-aMna)F6
(上記一般式(A)中、MIはLi、Na、K、RbおよびCsから選ばれる少なくとも1種のアルカリ金属元素を示し、MIIはGe、Sn、TiおよびZrから選ばれる少なくとも1種の4価の金属元素を示し、0.001≦a≦0.5を満足する数である)
で実質的に表わされる4価のマンガン付活フッ化4価金属塩赤色系発光蛍光体を少なくとも含有し、前記蛍光体がシリコーン樹脂中で沈降せず、分散状態が保持される粘度に調製した、蛍光体調製物。
In silicone resin,
Formula (A): MI 2 (MII 1-a Mn a) F 6
(In the general formula (A), MI represents at least one alkali metal element selected from Li, Na, K, Rb and Cs, and MII represents at least one 4 selected from Ge, Sn, Ti and Zr. A valent metal element, a number satisfying 0.001 ≦ a ≦ 0.5)
At least a tetravalent manganese-activated fluorinated tetravalent metal salt red light-emitting phosphor substantially represented by the above formula, and the phosphor was adjusted to a viscosity that does not settle in the silicone resin and maintains a dispersed state. , Phosphor preparations.
上記一般式(A)中、MIはKであり、MIIはTiである、請求項1に記載の蛍光体調製物。   The phosphor preparation according to claim 1, wherein MI is K and MII is Ti in the general formula (A). 粘度が20000mPa・s以上である、請求項1または2に記載の蛍光体調製物。   The phosphor preparation according to claim 1 or 2, having a viscosity of 20000 mPa · s or more. 一次光を発する発光素子と、発光素子から発せられた一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換部とを備える発光装置であって、上記波長変換部が請求項1〜3のいずれかに記載の蛍光体調製物を用いて形成されたものである、発光装置。   A light-emitting device comprising: a light-emitting element that emits primary light; and a wavelength conversion unit that absorbs part of the primary light emitted from the light-emitting element and emits secondary light having a wavelength longer than the wavelength of the primary light. A light-emitting device in which the wavelength conversion unit is formed using the phosphor preparation according to any one of claims 1 to 3. 上記波長変換部は緑色系発光蛍光体および赤色系発光蛍光体を含む1種以上の蛍光体を含み、赤色系発光蛍光体が上記蛍光体調製物に含まれる4価のマンガン付活フッ化4価金属塩赤色系発光蛍光体である、請求項4に記載の発光装置。   The wavelength converter includes one or more phosphors including a green light-emitting phosphor and a red light-emitting phosphor, and the red light-emitting phosphor is a tetravalent manganese-activated fluoride 4 included in the phosphor preparation. The light emitting device according to claim 4, wherein the light emitting device is a valent metal salt red light emitting phosphor. 発光素子が、ピーク波長430〜480nmの一次光を発する窒化ガリウム系半導体である、請求項4に記載の発光装置。   The light emitting device according to claim 4, wherein the light emitting element is a gallium nitride based semiconductor that emits primary light having a peak wavelength of 430 to 480 nm. 上記緑色系発光蛍光体が、
一般式(B):EubSicAldef
(上記一般式(B)中、0.005≦b≦0.4、c+d=12、e+f=16を満足する数である)
で実質的に表されるβ型SiAlONである2価のユ−ロピウム付活酸窒化物蛍光体、ならびに、
一般式(C):2(Ba1-g-hMIIIgEuh)O・SiO2
(上記一般式(C)中、MIIIはMg、CaおよびSrから選ばれる少なくとも1種のアルカリ土類金属元を示し、0<g≦0.55、0.03≦h≦0.10を満足する数である)
で実質的に表される2価のユ−ロピウム付活珪酸塩蛍光体からなる群から選ばれる少なくともいずれかである、請求項4に記載の発光装置。
The green light-emitting phosphor is
Formula (B): Eu b Si c Al d O e N f
(In the above general formula (B), 0.005 ≦ b ≦ 0.4, c + d = 12, e + f = 16)
A divalent europium activated oxynitride phosphor substantially β-type SiAlON represented by:
Formula (C): 2 (Ba 1-gh MIII g Eu h ) O.SiO 2
(In the general formula (C), MIII represents at least one alkaline earth metal element selected from Mg, Ca and Sr, and satisfies 0 <g ≦ 0.55 and 0.03 ≦ h ≦ 0.10. Is the number to do)
The light emitting device according to claim 4, which is at least one selected from the group consisting of divalent europium activated silicate phosphors substantially represented by:
JP2008136914A 2008-05-26 2008-05-26 Phosphor preparation and light emitting device using it Withdrawn JP2009280763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008136914A JP2009280763A (en) 2008-05-26 2008-05-26 Phosphor preparation and light emitting device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008136914A JP2009280763A (en) 2008-05-26 2008-05-26 Phosphor preparation and light emitting device using it

Publications (1)

Publication Number Publication Date
JP2009280763A true JP2009280763A (en) 2009-12-03

Family

ID=41451547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008136914A Withdrawn JP2009280763A (en) 2008-05-26 2008-05-26 Phosphor preparation and light emitting device using it

Country Status (1)

Country Link
JP (1) JP2009280763A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8237348B2 (en) 2008-03-03 2012-08-07 Sharp Kabushiki Kaisha Light-emitting device
JP2013014715A (en) * 2011-07-06 2013-01-24 Nichia Corp Fluoride phosphor and light-emitting device obtained using the fluoride phosphor
JP2013533363A (en) * 2010-07-27 2013-08-22 ゼネラル・エレクトリック・カンパニイ Moisture-resistant phosphor and related methods
WO2014104152A1 (en) 2012-12-28 2014-07-03 信越化学工業株式会社 Light emitting device
WO2014103932A1 (en) 2012-12-28 2014-07-03 信越化学工業株式会社 Method for surface treatment of phosphor
WO2014136674A1 (en) 2013-03-04 2014-09-12 信越化学工業株式会社 Red lamp and lighting system for vehicle
JP2015052648A (en) * 2013-09-05 2015-03-19 日亜化学工業株式会社 Method for selecting combination of color filter and light emitting device, and method for manufacturing image display device
EP2857741A2 (en) 2013-09-26 2015-04-08 Shin-Etsu Chemical Co., Ltd. Red lamp and vehicle lighting fixture
WO2015115189A1 (en) 2014-01-30 2015-08-06 信越化学工業株式会社 Method for producing and method for processing complex fluoride phosphor
CN105482814A (en) * 2014-09-18 2016-04-13 中国制釉股份有限公司 Manganese-containing linear red-light fluorescent material and light source device thereof
JP2016053178A (en) * 2011-03-23 2016-04-14 ゼネラル・エレクトリック・カンパニイ Color stable manganese-doped phosphors
JP2016135881A (en) * 2013-07-03 2016-07-28 日亜化学工業株式会社 Fluoride fluorescent body and light-emitting device using the same
US10224465B2 (en) 2016-03-24 2019-03-05 Nichia Corporation Method of manufacturing light emitting device
US10741732B2 (en) 2018-01-31 2020-08-11 Nichia Corporation Light emitting device and light source
CN112126429A (en) * 2020-09-27 2020-12-25 云南民族大学 Mn (manganese)4+Activated fluorostannate red luminescent material and preparation method thereof

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981639B2 (en) 2008-03-03 2015-03-17 Sharp Kabushiki Kaisha Light-emitting device
US8362685B2 (en) 2008-03-03 2013-01-29 Sharp Kabushiki Kaisha Light-emitting device
US9455381B2 (en) 2008-03-03 2016-09-27 Ge Phosphors Technology, Llc Light-emitting device
US8237348B2 (en) 2008-03-03 2012-08-07 Sharp Kabushiki Kaisha Light-emitting device
US8829781B2 (en) 2008-03-03 2014-09-09 Sharp Kabushiki Kaisha Light-emitting device
US9184353B2 (en) 2008-03-03 2015-11-10 Sharp Kabushiki Kaisha Light-emitting device
JP2013533363A (en) * 2010-07-27 2013-08-22 ゼネラル・エレクトリック・カンパニイ Moisture-resistant phosphor and related methods
KR101832529B1 (en) * 2010-07-27 2018-02-26 제너럴 일렉트릭 캄파니 Moisture-resistant phosphor and associated method
JP2016053178A (en) * 2011-03-23 2016-04-14 ゼネラル・エレクトリック・カンパニイ Color stable manganese-doped phosphors
JP2013014715A (en) * 2011-07-06 2013-01-24 Nichia Corp Fluoride phosphor and light-emitting device obtained using the fluoride phosphor
CN104024374A (en) * 2012-12-28 2014-09-03 信越化学工业株式会社 Method for surface treatment of phosphor
JP5565539B1 (en) * 2012-12-28 2014-08-06 信越化学工業株式会社 Phosphor surface treatment method
WO2014104152A1 (en) 2012-12-28 2014-07-03 信越化学工業株式会社 Light emitting device
US9598636B2 (en) 2012-12-28 2017-03-21 Shin-Etsu Chemical Co., Ltd. Phosphor surface treatment method
KR20150100487A (en) 2012-12-28 2015-09-02 신에쓰 가가꾸 고교 가부시끼가이샤 Method for surface treatment of phosphor
WO2014103932A1 (en) 2012-12-28 2014-07-03 信越化学工業株式会社 Method for surface treatment of phosphor
WO2014136674A1 (en) 2013-03-04 2014-09-12 信越化学工業株式会社 Red lamp and lighting system for vehicle
JP2016135881A (en) * 2013-07-03 2016-07-28 日亜化学工業株式会社 Fluoride fluorescent body and light-emitting device using the same
JP2015052648A (en) * 2013-09-05 2015-03-19 日亜化学工業株式会社 Method for selecting combination of color filter and light emitting device, and method for manufacturing image display device
EP2857741A2 (en) 2013-09-26 2015-04-08 Shin-Etsu Chemical Co., Ltd. Red lamp and vehicle lighting fixture
WO2015115189A1 (en) 2014-01-30 2015-08-06 信越化学工業株式会社 Method for producing and method for processing complex fluoride phosphor
US10214687B2 (en) 2014-01-30 2019-02-26 Shin-Etsu Chemical Co., Ltd. Method for producing and method for processing complex fluoride phosphor
CN105482814A (en) * 2014-09-18 2016-04-13 中国制釉股份有限公司 Manganese-containing linear red-light fluorescent material and light source device thereof
US10224465B2 (en) 2016-03-24 2019-03-05 Nichia Corporation Method of manufacturing light emitting device
US10930822B2 (en) 2016-03-24 2021-02-23 Nichia Corporation Method of manufacturing light emitting device
US10741732B2 (en) 2018-01-31 2020-08-11 Nichia Corporation Light emitting device and light source
US11282990B2 (en) 2018-01-31 2022-03-22 Nichia Corporation Light emitting device and light source
CN112126429A (en) * 2020-09-27 2020-12-25 云南民族大学 Mn (manganese)4+Activated fluorostannate red luminescent material and preparation method thereof

Similar Documents

Publication Publication Date Title
US9455381B2 (en) Light-emitting device
JP2009280763A (en) Phosphor preparation and light emitting device using it
JP5368985B2 (en) Phosphor particles and light emitting device using the same
WO2011105571A1 (en) Halophosphate phosphor and white light emitting device
WO2003092081A1 (en) Light-emitting device using fluorescent substance
CN109390453B (en) Light emitting device and image display device
JP2007180483A (en) Light-emitting device
JP6558378B2 (en) Light emitting device
JP2008081631A (en) Light-emitting device
JP2014209660A (en) Phosphor, light-emitting device, and liquid crystal display device arranged by use thereof
JP2015113358A (en) Phosphor, phosphor-containing composition, light-emitting device, lighting device, image display device, and method for producing the phosphor
US11005010B2 (en) Phosphor and method of manufacturing same, and LED lamp
JP2011225696A (en) Red-type light-emitting phosphor, process for producing the same and light-emitting device using the red-type light-emitting phosphor
JP2005146172A (en) Light emitter and phosphor for light emitter
JP2006352178A (en) Light emitting apparatus
JP2009081187A (en) Semiconductor light-emitting apparatus and image display device
JP2015183084A (en) Fluorescent material for violet ray excitation, composition containing fluorescent material and light-emitting device using the fluorescent material and lightening apparatus and picture display unit using the light-emitting device
JP2019165257A (en) Light-emitting device
JP2009209332A (en) Phosphor for light emitting device and light emitting device using the same
JP5697766B2 (en) Phosphor and light emitting device
WO2013118329A1 (en) Fluorophore and light emitting device
JP2009191093A (en) Fluorescent substance and light emission apparatus
JP2013095879A (en) Phosphor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110802