JP2009141239A - Brewster window and laser oscillator - Google Patents

Brewster window and laser oscillator Download PDF

Info

Publication number
JP2009141239A
JP2009141239A JP2007318009A JP2007318009A JP2009141239A JP 2009141239 A JP2009141239 A JP 2009141239A JP 2007318009 A JP2007318009 A JP 2007318009A JP 2007318009 A JP2007318009 A JP 2007318009A JP 2009141239 A JP2009141239 A JP 2009141239A
Authority
JP
Japan
Prior art keywords
fluoride
brewster window
laser
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007318009A
Other languages
Japanese (ja)
Other versions
JP5112033B2 (en
Inventor
Mariko Nogawa
真理子 野川
Toshiya Yoshida
俊也 吉田
Keiichi Sekine
啓一 関根
Kazuyuki Eto
和幸 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2007318009A priority Critical patent/JP5112033B2/en
Publication of JP2009141239A publication Critical patent/JP2009141239A/en
Application granted granted Critical
Publication of JP5112033B2 publication Critical patent/JP5112033B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lasers (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a brewster window improved in laser durability. <P>SOLUTION: The brewster window is disposed inside a laser oscillator such that laser light is oscillated by linear polarization, and includes: a substrate 1 which is constituted of an alkaline earth metal fluoride monocrystal and of which the surface is flattened; and fluoride films 2a, 2a' of a polycrystal or amorphous structure formed on at least one surface of the substrate. The fluoride film 2a, 2a' is constituted of any of gadolinium fluoride, magnesium fluoride, lanthanum fluoride, aluminum fluoride and cryolite. The fluoride film may also be a multilayer film like fluoride films 2b, 2b'. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、エキシマレーザ等のレーザ発振器、及び、そのレーザ発振器に用いられるブリュースター窓に関する。特に、ブリュースター窓のレーザ耐性を向上させる技術に関する。   The present invention relates to a laser oscillator such as an excimer laser and a Brewster window used for the laser oscillator. In particular, it relates to a technique for improving the laser resistance of a Brewster window.

図5に、エキシマレーザ等の偏光を発振するレーザ発振器200の模式図を示す。レーザ発振器200は、レーザ媒質であるレーザガスが封入されたレーザチャンバ201、レーザチャンバ201の両側に配置された反射鏡202と出力鏡203とからなる共振器を備える。   FIG. 5 is a schematic diagram of a laser oscillator 200 that oscillates polarized light such as an excimer laser. The laser oscillator 200 includes a resonator including a laser chamber 201 in which a laser gas as a laser medium is sealed, and reflecting mirrors 202 and output mirrors 203 disposed on both sides of the laser chamber 201.

放電用電極207に電圧が印加されるとレーザチャンバ201のレーザ媒質が励起されて、すなわちポンピングされて、自然放出、及び、誘導放出による増幅が可能となる。共振器中の光は、レーザチャンバ201のレーザ媒質を通過するごとに誘電放出により増幅され、反射鏡202と出力鏡203との間で反射を繰り返して定常波を形成する。出力鏡203は入射した光の一部を透過して出力光として外部に出力する。   When a voltage is applied to the discharge electrode 207, the laser medium in the laser chamber 201 is excited, that is, pumped, and spontaneous emission and amplification by stimulated emission become possible. The light in the resonator is amplified by dielectric emission every time it passes through the laser medium in the laser chamber 201, and is repeatedly reflected between the reflecting mirror 202 and the output mirror 203 to form a standing wave. The output mirror 203 transmits part of the incident light and outputs it as output light to the outside.

ブリュースター窓205は、レーザチャンバ201のレーザ媒質を透過する光の光軸方向の両端部に設けられる。ブリュースター窓205は、光軸206に対してブリュースター角で交わるように設置された光学基板のことである。ブリュースター窓205に用いられる光学基板として、短波長・高エネルギー光に対する透過性とレーザ耐性に優れた蛍石(CaF)が例えば用いられる。 The Brewster windows 205 are provided at both ends in the optical axis direction of light transmitted through the laser medium of the laser chamber 201. The Brewster window 205 is an optical substrate installed so as to intersect the optical axis 206 at a Brewster angle. As the optical substrate used for the Brewster window 205, for example, fluorite (CaF 2 ) having excellent transparency and laser resistance to short wavelength / high energy light is used.

図6に示すように、S偏光(入射面に対して垂直な偏光)の反射率は入射角度が大きくなるに従って大きくなるが、P偏光(入射面に対して平行な偏光)の反射率は入射角度が大きくなるに従って徐々に小さくなり、ある入射角度(この例では56度付近)で0になることが知られている。このP偏光の反射率が0となる入射角度のことを、ブリュースター角という。光学基板をブリュースター角だけ傾けて使用することにより、理想的にはP偏光の透過率が100%となるため、その光学基板には反射防止のためのコーティングが必要ではなくなる。   As shown in FIG. 6, the reflectance of S-polarized light (polarized light perpendicular to the incident surface) increases as the incident angle increases, but the reflectance of P-polarized light (polarized light parallel to the incident surface) is incident. It is known that the angle gradually decreases as the angle increases and becomes 0 at a certain incident angle (in this example, around 56 degrees). The incident angle at which the reflectance of the P-polarized light is 0 is called the Brewster angle. By tilting the optical substrate by the Brewster angle, the transmittance of P-polarized light is ideally 100%, so that the optical substrate does not require an antireflection coating.

しかし、レーザ発振器200がエキシマレーザのような高出力レーザ装置である場合には、レーザチャンバ201における光の強度が強くなり、ブリュースター窓205に高出力の短波長のレーザが多数回照射されると、損傷が生じてブリュースター窓205が劣化する問題が知られている。   However, when the laser oscillator 200 is a high-power laser device such as an excimer laser, the intensity of light in the laser chamber 201 is increased, and the Brewster window 205 is irradiated with a high-power, short-wavelength laser many times. There is a known problem that the Brewster window 205 deteriorates due to damage.

この問題を解決するために、光学基板を成すフッ化カルシウム(CaF)を光学研磨して表面を平坦化することにより生じた準ビールビー層をエッチング除去して、それによって露出する凹凸なSSD面に適宜の材料の光学薄膜を形成して、その光学薄膜を再度光学研磨して表面を平坦化することにより、ブリュースター窓205のレーザ耐性を向上させる技術が提供されている(例えば、特許文献1参照。)。この技術は、光学基板を成すフッ化カルシウム(CaF)を光学研磨して表面を平坦化することにより生じた準ビールビー層の光吸収及び発熱に着目したものである。
特開2006−72364号公報
In order to solve this problem, the uneven SSD surface exposed by etching away the quasi-Birby layer formed by optically polishing the calcium fluoride (CaF 2 ) forming the optical substrate and flattening the surface. There is provided a technique for improving the laser resistance of the Brewster window 205 by forming an optical thin film of an appropriate material and flattening the surface by optically polishing the optical thin film again (for example, Patent Documents). 1). This technique pays attention to light absorption and heat generation of a quasi-Birby layer generated by optically polishing calcium fluoride (CaF 2 ) constituting an optical substrate to flatten the surface.
JP 2006-72364 A

特許文献1に記載された技術においては、準ビールビー層をエッチング除去したのちに、再度光学研磨をする必要があり手間がかかるという問題があった。   In the technique described in Patent Document 1, there is a problem that it is necessary to perform optical polishing again after the quasi-beer bee layer is removed by etching, which is troublesome.

この発明は、簡易に構成することができ、レーザ耐性に優れたブリュースター窓及びレーザ発振器を提供することを目的とする。   An object of the present invention is to provide a Brewster window and a laser oscillator that can be simply configured and have excellent laser resistance.

この発明によるブリュースター窓は、レーザ光が直進偏光で発振するようにレーザ共振器の内部に配され、アルカリ土類金属フッ化物単結晶から成り、表面が平坦化された基板と、その基板の少なくとも一方の面に形成された多結晶又はアモルファス構造のフッ化物膜とを備える。   The Brewster window according to the present invention is arranged inside the laser resonator so that the laser beam oscillates in a linearly polarized light, and is made of an alkaline earth metal fluoride single crystal and has a flattened surface, and the substrate And a fluoride film having a polycrystalline or amorphous structure formed on at least one surface.

基板をフッ化物膜でコーティングすることにより、ブリュースター窓のレーザ耐性が増す。フッ化物膜は表面が平坦化された基板の面上に設けられるため、フッ化物膜も十分に平坦な面を有するものとなる。このため、フッ化物膜を形成した後の再度の研磨は不要であり、その点で簡易に構成することができる。   Coating the substrate with a fluoride film increases the laser resistance of the Brewster window. Since the fluoride film is provided on the surface of the substrate having a planarized surface, the fluoride film also has a sufficiently flat surface. For this reason, re-polishing after forming the fluoride film is unnecessary, and in that respect, it can be simply configured.

図1Aを参照して、この発明によるブリュースター窓の一実施例について説明をする。図1Aは、この発明によるブリュースター窓の断面を例示する模式図である。   An embodiment of a Brewster window according to the present invention will be described with reference to FIG. 1A. FIG. 1A is a schematic view illustrating a cross section of a Brewster window according to the present invention.

ブリュースター窓は、基板1とフッ化物膜2a,2a’から構成される。
基板1は、フッ化カルシウム、フッ化バリウム、フッ化マグネシウム、フッ化ストロンチウム等のアルカリ土類金属フッ化物単結晶から成る。ここでは、そのアルカリ土類金属フッ化物単結晶が、フッ化カルシウム(蛍石、CaF)である場合を例に挙げて説明をする。基板1は、オスカー型研磨機を用いる通常のCMP(Chemical Mechanical Polish/Planarization)の工程によって、平均ラフネスが例えば約2Å以下となるまで平坦化される。
The Brewster window is composed of a substrate 1 and fluoride films 2a and 2a ′.
The substrate 1 is made of an alkaline earth metal fluoride single crystal such as calcium fluoride, barium fluoride, magnesium fluoride, or strontium fluoride. Here, the case where the alkaline earth metal fluoride single crystal is calcium fluoride (fluorite, CaF 2 ) will be described as an example. The substrate 1 is planarized by an ordinary CMP (Chemical Mechanical Polish / Planarization) process using an Oscar-type polishing machine until the average roughness becomes about 2 mm or less, for example.

基板1の少なくとも一方の面に、多結晶又はアモルファス構造であるフッ化物膜2a,2a’が形成される。例えば、図1Aに例示するように基板1の両面に、単層のフッ化物膜2a,2a’を設ける。フッ化物膜2a,2a’としては、例えば、フッ化マグネシウム(MgF)、フッ化ガドリニウム(GdF)、フッ化ランタン(LaF)、フッ化アルミニウム(AlF)及びクリオライト(NaAlF)等を用いることができる。フッ化物膜2a,2a’として、同じフッ化物を用いてもよいし、異なるフッ化物を用いてもよい。 Fluoride films 2 a and 2 a ′ having a polycrystalline or amorphous structure are formed on at least one surface of the substrate 1. For example, as illustrated in FIG. 1A, single-layer fluoride films 2 a and 2 a ′ are provided on both surfaces of the substrate 1. Examples of the fluoride films 2a and 2a ′ include magnesium fluoride (MgF 2 ), gadolinium fluoride (GdF 3 ), lanthanum fluoride (LaF 3 ), aluminum fluoride (AlF 3 ), and cryolite (Na 3 AlF). 6 ) etc. can be used. As the fluoride films 2a and 2a ′, the same fluoride may be used, or different fluorides may be used.

フッ化物膜の厚さは、レーザ光の波長をλとして、レーザ共振器200の内部においてレーザ光がそのフッ化物膜を備えたブリュースター窓を透過する際の光路方向の光学膜厚がλ/2の整数倍となる厚さ、すなわち、フッ化物膜の屈折率をnとして膜面に対して垂直方向の物理膜厚がλ/(2n)の整数倍にブリュースター角の余弦を乗じた大きさとなるようにする。基板1の両面にそれぞれフッ化物膜を形成した場合には、各フッ化物膜の膜面に対して垂直方向の物理膜厚がλ/(2n)の整数倍にブリュースター角の余弦を乗じた大きさとなるようにする。これにより、この発明のブリュースター窓の反射防止の性能を維持することができる。なお、ArFエキシマレーザである場合には、λ=193nmとなる。   The thickness of the fluoride film is such that the wavelength of the laser beam is λ, and the optical film thickness in the optical path direction when the laser beam passes through the Brewster window including the fluoride film inside the laser resonator 200 is λ / A thickness that is an integral multiple of 2, that is, the refractive index of the fluoride film is n, and the physical film thickness in the direction perpendicular to the film surface is multiplied by an integer multiple of λ / (2n) by the cosine of the Brewster angle To be. When fluoride films are formed on both surfaces of the substrate 1, the physical film thickness in the direction perpendicular to the film surface of each fluoride film is multiplied by an integer multiple of λ / (2n) by the cosine of the Brewster angle. Try to be large. Thereby, the antireflection performance of the Brewster window of the present invention can be maintained. In the case of an ArF excimer laser, λ = 193 nm.

フッ化物膜の成膜方法は任意である。例えば、イオンビームスパッタリング法や、蒸着法を用いることができる。予め平坦化された基板1に成膜をするため、フッ化物膜も十分に平坦な面を有するものとなる。このため、フッ化物膜を形成した後にブリュースター窓を再度の研磨する必要はない。   The method for forming the fluoride film is arbitrary. For example, an ion beam sputtering method or a vapor deposition method can be used. Since the film is formed on the substrate 1 which has been planarized in advance, the fluoride film also has a sufficiently flat surface. For this reason, it is not necessary to polish the Brewster window again after forming the fluoride film.

また、図1Bに例示するように、基板1の両面に、多層膜のフッ化物膜2b,2b’をそれぞれ設けてもよい。図1Bにおいては、フッ化物膜2b,2b’は、二層膜であり、第一層21,21’、第二層22,22’からそれぞれ構成されている。第一層21,21’、第二層22,22’はそれぞれ、図1Aにおけるフッ化物膜2a,2a’と同様に、フッ化マグネシウム(MgF)、フッ化ガドリニウム(GdF)、フッ化ランタン(LaF)、フッ化アルミニウム(AlF)及びクリオライト(NaAlF)等から成る。なお、基板1に近い方から順番に、第一層、第二層、…とする。 Further, as illustrated in FIG. 1B, multilayer fluoride films 2b and 2b ′ may be provided on both surfaces of the substrate 1, respectively. In FIG. 1B, the fluoride films 2b and 2b ′ are two-layer films and are composed of first layers 21 and 21 ′ and second layers 22 and 22 ′, respectively. The first layers 21, 21 ′ and the second layers 22, 22 ′ are respectively magnesium fluoride (MgF 2 ), gadolinium fluoride (GdF 3 ), fluoride, similarly to the fluoride films 2a, 2a ′ in FIG. 1A. It consists of lanthanum (LaF 3 ), aluminum fluoride (AlF 3 ), cryolite (Na 3 AlF 6 ), and the like. Note that the first layer, the second layer,...

フッ化物膜2b,2b’を構成する各層の層面に対して垂直方向の物理膜厚はそれぞれλ/(2n)の整数倍にブリュースター角の余弦を乗じた大きさとする。   The physical film thickness in the direction perpendicular to the layer surface of each layer constituting the fluoride films 2b and 2b 'is set to a value obtained by multiplying an integral multiple of λ / (2n) by the cosine of the Brewster angle.

図2に、イオンビームスパッタリング法でフッ化物膜を成膜した場合のブリュースター窓のレーザ耐性を評価した実験結果を示す。具体的には、ArFエキシマレーザを用いてレーザ損傷閾値を比較した実験結果を示す。本実験においては基板1としてフッ化カルシウム(CaF)を用いている。また、ブリュースター角は約56度、レーザの出力エネルギーは9mJ、レーザ波長は193.4nm、サンプル位置での平均エネルギー密度は210mJ/cm、スポットサイズは0.0036cm、サンプル位置での最大エネルギー密度は650〜700mJ/cm、照射周波数は1kHzとした。ここで、サンプル位置での最大エネルギー密度は、入射面に対して垂直にレーザを照射した場合のサンプル位置での最大エネルギー密度である。照射周波数とは、1秒間当たりのレーザの照射回数のことである。 FIG. 2 shows the experimental results of evaluating the laser resistance of the Brewster window when a fluoride film is formed by ion beam sputtering. Specifically, experimental results comparing laser damage thresholds using an ArF excimer laser are shown. In this experiment, calcium fluoride (CaF 2 ) is used as the substrate 1. Further, Brewster angle of about 56 degrees, the maximum output energy of the laser 9 mJ, laser wavelength is 193.4 nm, the average energy density at the sample position 210 mJ / cm 2, the spot size is 0.0036Cm 2, sample position The energy density was 650 to 700 mJ / cm 2 and the irradiation frequency was 1 kHz. Here, the maximum energy density at the sample position is the maximum energy density at the sample position when the laser is irradiated perpendicularly to the incident surface. The irradiation frequency is the number of laser irradiations per second.

図2の横軸はフッ化物膜の材料を示す。「基板単体」はフッ化物膜が形成されていない場合の実験データである。「GdF」は、基板1の両面にそれぞれフッ化ガドリニウム(GdF)から成る、レーザ光照射方向(ブリュースター角沿いの方向)の物理膜厚がλ/(2n)の厚さのフッ化物膜を形成した場合の実験データである。「LaF」は、基板1の両面にそれぞれフッ化ランタン(LaF)から成る、同じくレーザ光照射方向の物理膜厚がλ/(2n)の厚さのフッ化物膜を形成した場合の実験データである。「MgF」は、基板1の両面にそれぞれフッ化マグネシウム(MgF)から成る、同じくレーザ光照射方向の物理膜厚がλ/(2n)の厚さのフッ化物膜を形成した場合の実験データである。「GdF+MgF」は、第一層、第二層をそれぞれレーザ光照射方向の物理膜厚がλ/(2n)の厚さのフッ化マグネシウム(MgF)、λ/(2n)の厚さのフッ化ガドリニウム(GdF)とした場合の実験データである。 The horizontal axis of FIG. 2 shows the material of the fluoride film. “Substrate alone” is experimental data when a fluoride film is not formed. “GdF 3 ” is a fluoride made of gadolinium fluoride (GdF 3 ) on both surfaces of the substrate 1 and having a physical film thickness of λ / (2n) in the laser beam irradiation direction (direction along the Brewster angle). It is an experimental data at the time of forming a film | membrane. “LaF 3 ” is an experiment in which a fluoride film made of lanthanum fluoride (LaF 3 ) and having a physical thickness of λ / (2n) in the laser beam irradiation direction is formed on both surfaces of the substrate 1. It is data. “MgF 2 ” is an experiment in which a fluoride film having a physical film thickness of λ / (2n) is formed on both surfaces of the substrate 1 and is made of magnesium fluoride (MgF 2 ). It is data. “GdF 3 + MgF 2 ” has a thickness of magnesium fluoride (MgF 2 ) and λ / (2n) in which the first layer and the second layer have a physical film thickness of λ / (2n) in the laser light irradiation direction, respectively. This is experimental data in the case of gadolinium fluoride (GdF 3 ).

図2の縦軸は、レーザの照射回数を示す。縦軸の単位は1×10ショットである。「損傷有り」とは、対応するレーザの照射回数で基板1に損傷が生じたことを表す。「損傷無し」とは、対応するレーザの照射回数だけレーザを照射しても基板1に損傷が生じなかったことを表す。図3に、レーザの照射により生じた基板単体の損傷を100倍に拡大した写真を例示する。 The vertical axis in FIG. 2 indicates the number of laser irradiations. The unit of the vertical axis is 1 × 10 6 shots. “Damaged” indicates that the substrate 1 was damaged by the number of times of irradiation of the corresponding laser. “No damage” means that the substrate 1 was not damaged even when the laser was irradiated as many times as the corresponding laser irradiation. FIG. 3 illustrates a photograph in which damage to a single substrate caused by laser irradiation is magnified 100 times.

この実験結果により、フッ化カルシウム(CaF)から成る基板単体のブリュースター窓よりも、基板にフッ化物膜を設けたブリュースター窓の方がレーザ耐性が高いことがわかる。また、フッ化物膜としてフッ化マグネシウム(MgF)を用いた場合のレーザ耐性が高いことがわかる。 From this experimental result, it is understood that the Brewster window in which the fluoride film is provided on the substrate is higher in laser resistance than the Brewster window of the substrate alone made of calcium fluoride (CaF 2 ). It can also be seen that the laser resistance is high when magnesium fluoride (MgF 2 ) is used as the fluoride film.

図4に、蒸着法によりフッ化物膜を成膜したブリュースター窓のレーザ耐性を評価した実験結果を示す。蒸着法により成膜した以外の条件は、上記の実験条件と同じである。この実験結果により、蒸着法で成膜したブリュースター窓においてもレーザ耐性が向上していることがわかる。   FIG. 4 shows the experimental results of evaluating the laser resistance of a Brewster window on which a fluoride film was formed by vapor deposition. The conditions other than the film formation by the vapor deposition method are the same as the experimental conditions described above. From this experimental result, it is understood that the laser resistance is improved even in the Brewster window formed by the vapor deposition method.

アルカリ土類金属フッ化物単結晶の基板にフッ化物膜を形成した場合にレーザ耐性を上げることができる理由は以下のように考えることができる。   The reason why the laser resistance can be increased when a fluoride film is formed on an alkaline earth metal fluoride single crystal substrate can be considered as follows.

一般に基板の表面は基板の内部と比較して原子の結合状態が弱いことが知られている。結合状態の弱い基板の表面に高いエネルギーを持つレーザを照射した場合、基板の表面の金属原子(基板がフッ化カルシウムである場合にはCa)−フッ素原子間の結合が切れてフッ素原子が脱離する。フッ素原子の脱離により発生したフッ素原子の欠損箇所に電子がトラップされるとイオン結晶中では結晶構造が変化する。原子が周期的に配列している単結晶基板において結晶構造が変化すると、さらに結合状態の弱い部分が表面に発生して、それが次のフッ素原子の欠損の起点となる。この繰り返しにより、フッ素原子が次々に欠損して行き、基板の破壊が生じると考えられる。   In general, it is known that the surface of the substrate has a weaker atomic bonding state than the inside of the substrate. When high-energy laser is irradiated on the surface of a weakly bonded substrate, the bond between the metal atom on the substrate surface (Ca when the substrate is calcium fluoride) -fluorine atom is broken and the fluorine atom is removed. Release. When an electron is trapped in a fluorine atom deficiency generated by the elimination of a fluorine atom, the crystal structure changes in the ionic crystal. When the crystal structure changes in a single crystal substrate in which atoms are periodically arranged, a weaker bonded portion is generated on the surface, which becomes a starting point for the next defect of fluorine atoms. By repeating this, it is considered that fluorine atoms are successively lost and the substrate is destroyed.

一方、基板に形成されるフッ化マグネシウム(MgF)、フッ化ガドリニウム(GdF)等のフッ化物膜は、多結晶又はアモルファス構造をしており、単結晶である基板と比較してランダムな配列をして安定化している。このため、膜上に高いエネルギーを持つレーザを照射した場合、基板と同様にフッ素原子の欠損が発生しても、表面に原子の結合状態が弱い部分が発生しにくい。この結果、基板単体と比較してフッ素原子の欠損が抑制されてレーザ耐性が向上すると考えられる。 On the other hand, fluoride films such as magnesium fluoride (MgF 2 ) and gadolinium fluoride (GdF 3 ) formed on the substrate have a polycrystalline or amorphous structure, and are random compared to a single crystal substrate. The array is stabilized. For this reason, when a laser having high energy is irradiated on the film, even if fluorine atom defects occur as in the case of the substrate, it is difficult to generate a portion where the bonding state of atoms is weak on the surface. As a result, it is considered that the loss of fluorine atoms is suppressed and laser resistance is improved as compared with the substrate alone.

この発明によるブリュースター窓を用いたレーザ発振器を構成するためには、図5を参照して背景技術で説明したレーザ発振器200のブリュースター窓205に代えて、この発明によるブリュースター窓を用いればよい。   In order to configure the laser oscillator using the Brewster window according to the present invention, the Brewster window according to the present invention is used instead of the Brewster window 205 of the laser oscillator 200 described in the background art with reference to FIG. Good.

[変形例等]
フッ化物膜を三層で構成する場合には、例えば、フッ化物膜の第一層をフッ化マグネシウム(MgF)、第二層をフッ化ガドリニウム(GdF)、第三層をフッ化マグネシウム(MgF)とするのが好ましい。
[Modifications, etc.]
When the fluoride film is composed of three layers, for example, the first layer of the fluoride film is magnesium fluoride (MgF 2 ), the second layer is gadolinium fluoride (GdF 3 ), and the third layer is magnesium fluoride. (MgF 2 ) is preferred.

基板1の一方の面のみに、フッ化物膜を形成してもよい。   A fluoride film may be formed only on one surface of the substrate 1.

基板1の両方の面にそれぞれフッ化物膜を形成する場合に、基板1の一方の面に形成されるフッ化物膜の層の数と、基板1の他方の面に形成されるフッ化物膜の層の数とが異なっていてもよい。   When forming fluoride films on both surfaces of the substrate 1 respectively, the number of fluoride film layers formed on one surface of the substrate 1 and the number of fluoride films formed on the other surface of the substrate 1 The number of layers may be different.

基板1の面のすべてをフッ化物膜で覆う必要はない。すなわち、基板1の面のうちレーザが透過する部分についてのみフッ化物膜を形成すればよい。   It is not necessary to cover the entire surface of the substrate 1 with a fluoride film. That is, it is only necessary to form the fluoride film only on the portion of the surface of the substrate 1 through which the laser passes.

この発明によるブリュースター窓の一実施例の断面の例示する模式図。Aは、基板の両面に単層のフッ化物膜を形成したブリュースター窓の一実施例の断面を例示する模式図。Bは、基板の両面に二層のフッ化物膜を形成したブリュースター窓の一実施例の断面を例示する模式図。The schematic diagram which illustrates the cross section of one Example of the Brewster window by this invention. FIG. 4A is a schematic view illustrating a cross section of an example of a Brewster window in which a single-layer fluoride film is formed on both surfaces of a substrate. B is a schematic view illustrating a cross section of an example of a Brewster window in which two layers of fluoride films are formed on both sides of a substrate. イオンビームスパッタリング法によりフッ化物膜を成膜したブリュースター窓のレーザ耐性を評価した実験結果を示す図。The figure which shows the experimental result which evaluated the laser tolerance of the Brewster window which formed the fluoride film into a film by ion beam sputtering method. レーザの照射により生じた基板の損傷例を表す図。The figure showing the example of damage of the board | substrate which arose by laser irradiation. 蒸着法によりフッ化物膜を成膜したブリュースター窓の実験結果を示す図。The figure which shows the experimental result of the Brewster window which formed the fluoride film | membrane by the vapor deposition method. レーザ発振器200の模式図。The schematic diagram of the laser oscillator 200. FIG. S偏光とP偏光の各入射角度における反射率を表すグラフ。The graph showing the reflectance in each incident angle of S polarized light and P polarized light.

Claims (8)

レーザ光が直進偏光で発振するようにレーザ共振器の内部に配されるブリュースター窓であって、
アルカリ土類金属フッ化物単結晶から成り、表面が平坦化された基板と、
その基板の少なくとも一方の面に形成された多結晶又はアモルファス構造のフッ化物膜と、
を備えることを特徴とするブリュースター窓。
A Brewster window arranged inside the laser resonator so that the laser beam oscillates with linearly polarized light,
A substrate made of an alkaline earth metal fluoride single crystal and having a flat surface,
A polycrystalline or amorphous fluoride film formed on at least one surface of the substrate;
Brewster window characterized by comprising.
請求項1に記載のブリュースター窓において、
上記フッ化物膜は、フッ化ガドリニウム、フッ化マグネシウム、フッ化ランタン、フッ化アルミニウム及びクリオライトの何れかで成る、
ことを特徴とするブリュースター窓。
Brewster window according to claim 1,
The fluoride film is made of any of gadolinium fluoride, magnesium fluoride, lanthanum fluoride, aluminum fluoride, and cryolite.
Brewster window characterized by that.
請求項1に記載のブリュースター窓において、
上記フッ化物膜は多層膜とされ、その多層膜の各層はフッ化ガドリニウム、フッ化マグネシウム、フッ化ランタン、フッ化アルミニウム及びクリオライトの何れかで成る、
ことを特徴とするブリュースター窓。
Brewster window according to claim 1,
The fluoride film is a multilayer film, and each layer of the multilayer film is made of any one of gadolinium fluoride, magnesium fluoride, lanthanum fluoride, aluminum fluoride, and cryolite.
Brewster window characterized by that.
請求項3に記載のブリュースター窓において、
上記多層膜の第一層は、フッ化マグネシウムで成る、
ことを特徴とするブリュースター窓。
Brewster window according to claim 3,
The first layer of the multilayer film is made of magnesium fluoride.
Brewster window characterized by that.
請求項1又は2の何れかに記載のブリュースター窓において、
上記ブリュースター窓を透過するレーザ光の波長をλとして、上記フッ化物膜の、そのレーザ光の透過する方向の光学膜厚は、λ/2の整数倍である、
ことを特徴とするブリュースター窓。
In the Brewster window according to claim 1 or 2,
The wavelength of the laser beam that passes through the Brewster window is λ, and the optical film thickness of the fluoride film in the direction in which the laser beam is transmitted is an integral multiple of λ / 2.
Brewster window characterized by that.
請求項3又は4の何れかに記載のブリュースター窓において、
上記ブリュースター窓を透過するレーザ光の波長をλとして、上記多層膜の各層の、そのレーザ光の透過する方向の光学膜厚は、λ/2の整数倍である、
ことを特徴とするブリュースター窓。
In the Brewster window according to claim 3 or 4,
The wavelength of the laser beam that passes through the Brewster window is λ, and the optical film thickness of each layer of the multilayer film in the direction in which the laser beam is transmitted is an integral multiple of λ / 2.
Brewster window characterized by that.
請求項1から6の何れかに記載のブリュースター窓において、
上記アルカリ土類金属フッ化物単結晶がフッ化カルシウムとされている、
ことを特徴とするブリュースター窓。
In the Brewster window according to any one of claims 1 to 6,
The alkaline earth metal fluoride single crystal is calcium fluoride,
Brewster window characterized by that.
請求項1から7の何れかに記載のブリュースター窓を備えることを特徴とするレーザ発振器。   A laser oscillator comprising the Brewster window according to any one of claims 1 to 7.
JP2007318009A 2007-12-10 2007-12-10 Brewster window and laser oscillator Expired - Fee Related JP5112033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007318009A JP5112033B2 (en) 2007-12-10 2007-12-10 Brewster window and laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007318009A JP5112033B2 (en) 2007-12-10 2007-12-10 Brewster window and laser oscillator

Publications (2)

Publication Number Publication Date
JP2009141239A true JP2009141239A (en) 2009-06-25
JP5112033B2 JP5112033B2 (en) 2013-01-09

Family

ID=40871538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007318009A Expired - Fee Related JP5112033B2 (en) 2007-12-10 2007-12-10 Brewster window and laser oscillator

Country Status (1)

Country Link
JP (1) JP5112033B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297901A (en) * 1988-10-04 1990-04-10 Canon Inc Multilayered film for high repetition and high output laser
JPH02166449A (en) * 1988-12-20 1990-06-27 Fujitsu Ltd Mask for exposure
JPH05234999A (en) * 1992-02-26 1993-09-10 Hitachi Ltd Method and apparatus for correcting wiring of semiconductor device
JPH07138744A (en) * 1993-11-12 1995-05-30 Canon Inc Production of fluoride thin film and fluoride thin film produced by the same
JPH10503288A (en) * 1995-09-01 1998-03-24 イノヴェイティブ レーザーズ コーポレーション Diode laser pump linear cavity laser system for long and sensitive gas detection by intracavity laser spectroscopy (ILS)
JP2001002497A (en) * 1999-06-18 2001-01-09 Nikon Corp Optical substrate, optical device, optical system and photolithography devices using the same, and inspection of optical substrate
JP2002043658A (en) * 2000-07-25 2002-02-08 Ushio Sogo Gijutsu Kenkyusho:Kk Discharge pumping gas laser
JP2005524998A (en) * 2002-05-07 2005-08-18 サイマー インコーポレイテッド High power deep ultraviolet laser with long life optics
JP2006089843A (en) * 2004-09-27 2006-04-06 Canon Inc Film deposition method, optical element, exposure apparatus and device production method
JP2006165484A (en) * 2004-11-09 2006-06-22 Komatsu Ltd Multistage amplification type laser system
JP2007133102A (en) * 2005-11-09 2007-05-31 Canon Inc Optical element having reflection preventing film, and exposure apparatus having the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297901A (en) * 1988-10-04 1990-04-10 Canon Inc Multilayered film for high repetition and high output laser
JPH02166449A (en) * 1988-12-20 1990-06-27 Fujitsu Ltd Mask for exposure
JPH05234999A (en) * 1992-02-26 1993-09-10 Hitachi Ltd Method and apparatus for correcting wiring of semiconductor device
JPH07138744A (en) * 1993-11-12 1995-05-30 Canon Inc Production of fluoride thin film and fluoride thin film produced by the same
JPH10503288A (en) * 1995-09-01 1998-03-24 イノヴェイティブ レーザーズ コーポレーション Diode laser pump linear cavity laser system for long and sensitive gas detection by intracavity laser spectroscopy (ILS)
JP2001002497A (en) * 1999-06-18 2001-01-09 Nikon Corp Optical substrate, optical device, optical system and photolithography devices using the same, and inspection of optical substrate
JP2002043658A (en) * 2000-07-25 2002-02-08 Ushio Sogo Gijutsu Kenkyusho:Kk Discharge pumping gas laser
JP2005524998A (en) * 2002-05-07 2005-08-18 サイマー インコーポレイテッド High power deep ultraviolet laser with long life optics
JP2006089843A (en) * 2004-09-27 2006-04-06 Canon Inc Film deposition method, optical element, exposure apparatus and device production method
JP2006165484A (en) * 2004-11-09 2006-06-22 Komatsu Ltd Multistage amplification type laser system
JP2007133102A (en) * 2005-11-09 2007-05-31 Canon Inc Optical element having reflection preventing film, and exposure apparatus having the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010041854; 江藤和幸、吉田俊也: 'イオンビームスパッタ法を用いたフッ化物成膜 (特集:最近の光学薄膜技術)' 光技術コンタクト Vol.42, No.10, 200410, pp.524-528 *

Also Published As

Publication number Publication date
JP5112033B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
US5513039A (en) Ultraviolet resistive coated mirror and method of fabrication
JP5393658B2 (en) Gas discharge chamber
JP2007094376A (en) Extended lifetime excimer laser optics
US20170117681A1 (en) Solid-state laser
JP7140114B2 (en) Passive Q-switched pulse laser device, processing device and medical device
US20120236894A1 (en) Wavelength conversion device, solid-state laser apparatus, and laser system
JP2007193060A (en) Mirror for solid laser
US20070183467A1 (en) Method and apparatus for cooling semiconductor pumped lasers
JP5112033B2 (en) Brewster window and laser oscillator
US11264773B2 (en) Laser apparatus and method for manufacturing optical element
JP2010123819A (en) Laser medium
JP2006295129A (en) Excimer laser device with improved endurance
JP2005039093A (en) Laser device
JP2006310743A (en) Laser oscillation device
JP5016208B2 (en) Surface treatment method for optical element
US5741595A (en) Ultraviolet optical part having coat of ultraviolet optical thin film, and wavelength-changing device and ultraviolet light source unit having coat of ultraviolet optical thin film
JP2007214207A (en) Laser beam generator
JP6534398B2 (en) Grating, method of manufacturing grating, and method of reproducing grating
EP1864954A2 (en) Method for joining optical members, structure for integrating optical members and laser oscillation device
JPH0682862A (en) Solid-state laser device excited with semiconductor laser
US11784452B2 (en) Optical element for a deep ultraviolet light source
JP2012168498A (en) Wavelength conversion element, solid-state laser device, and laser system
JP2004281595A (en) Solid state laser apparatus
KR100287113B1 (en) Nd:yvo4 crystalline antireflection film for second harmonic generation
JPH04196376A (en) Laser excitation solid-state laser device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5112033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees