JP2009141016A - Method of manufacturing semiconductor device, photosensitive adhesive, and semiconductor device - Google Patents

Method of manufacturing semiconductor device, photosensitive adhesive, and semiconductor device Download PDF

Info

Publication number
JP2009141016A
JP2009141016A JP2007313900A JP2007313900A JP2009141016A JP 2009141016 A JP2009141016 A JP 2009141016A JP 2007313900 A JP2007313900 A JP 2007313900A JP 2007313900 A JP2007313900 A JP 2007313900A JP 2009141016 A JP2009141016 A JP 2009141016A
Authority
JP
Japan
Prior art keywords
semiconductor device
photosensitive adhesive
adhesive
manufacturing
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007313900A
Other languages
Japanese (ja)
Inventor
Kazuyuki Mitsukura
一行 満倉
Takashi Kawamori
崇司 川守
Takashi Masuko
崇 増子
Shigeki Katogi
茂樹 加藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007313900A priority Critical patent/JP2009141016A/en
Publication of JP2009141016A publication Critical patent/JP2009141016A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/4826Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device capable of simplifying a process and facilitating process management in the manufacture of a semiconductor device, and to provide a photosensitive adhesive and a semiconductor device. <P>SOLUTION: The method of manufacturing a semiconductor package 30 includes: an adhesive formation process for laminating the photosensitive adhesive onto a semiconductor wafer; a patterning process for exposing a photosensitive adhesive film to light for development and patterning and forming a residual adhesive section 5, where the photosensitive adhesive film remains, on the semiconductor wafer; a dicing process for dicing the semiconductor wafer where the residual adhesive section 5 is formed; and a chip adhesion process for adhering a semiconductor chip 11 separated into pieces by the dicing process to a lead frame 21 by the residual adhesion section 5 on the semiconductor chip 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体チップをリードフレームに接着する工程を備える半導体装置の製造方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor device including a step of bonding a semiconductor chip to a lead frame.

従来、このような分野の技術として、下記特許文献1に記載の半導体装置の製造方法が知られている。この製造方法においては、LOC構造の半導体パッケージを製造するにあたり、半導体ウェハにポリイミドワニスをスクリーン印刷し、この半導体ウェハから得られるLOC用半導体チップを、上記ポリイミドワニスをLOC接着層としてリードフレームに接着している。
特開2000−154346号公報
Conventionally, as a technique in such a field, a method for manufacturing a semiconductor device described in Patent Document 1 is known. In this manufacturing method, when manufacturing a semiconductor package having a LOC structure, a polyimide varnish is screen-printed on a semiconductor wafer, and a semiconductor chip for LOC obtained from the semiconductor wafer is bonded to a lead frame using the polyimide varnish as a LOC adhesive layer. is doing.
JP 2000-154346 A

しかしながら、この製造方法では、半導体ウェハ上に所望のポリイミドワニスのパターンを形成させる際に、比較的煩雑な制御が要求されるスクリーン印刷法が用いられている。また、スクリーン印刷法によりLOC接着層を形成させる場合、LOC接着層の厚みの管理等も必要となるので、煩雑な工程管理が要求される。このような半導体装置の製造方法においては、更なる工程の簡略化及び工程管理の容易化が求められている。   However, in this manufacturing method, a screen printing method that requires relatively complicated control when a desired polyimide varnish pattern is formed on a semiconductor wafer is used. In addition, when the LOC adhesive layer is formed by the screen printing method, it is necessary to manage the thickness of the LOC adhesive layer, and thus complicated process management is required. In such a semiconductor device manufacturing method, further simplification of the process and easier process management are required.

そこで本発明は、半導体装置の製造における工程の簡略化及び工程管理の容易化を図ることができる半導体装置の製造方法、感光性接着剤及び半導体装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device, a photosensitive adhesive, and a semiconductor device that can simplify the process and facilitate the process control in manufacturing the semiconductor device.

本発明の半導体装置の製造方法は、露光及び現像によってパターニングされた後に被着体に対する接着性を有しアルカリ現像が可能な感光性接着剤を半導体ウェハ上に設ける接着剤形成工程と、半導体ウェハ上に設けられた感光性接着剤を露光及び現像してパターニングし、感光性接着剤が残存してなる残存接着部を半導体ウェハ上に形成させるパターニング工程と、残存接着部が形成された半導体ウェハをダイシングするダイシング工程と、ダイシング工程により個片化された半導体チップを、当該半導体チップ上の残存接着部によってリードフレームに接着するチップ接着工程と、を備える。   The method for manufacturing a semiconductor device according to the present invention includes an adhesive forming step of providing a photosensitive adhesive on a semiconductor wafer, which has an adhesive property to an adherend and is alkali-developable after patterning by exposure and development, and a semiconductor wafer. A patterning process for patterning by exposing and developing the photosensitive adhesive provided on the semiconductor wafer to form a residual adhesive portion where the photosensitive adhesive remains, and a semiconductor wafer on which the residual adhesive portion is formed A dicing process for dicing the chip, and a chip bonding process for bonding the semiconductor chip separated by the dicing process to the lead frame with the remaining bonding portion on the semiconductor chip.

この半導体装置の製造方法においては、半導体チップとリードフレームとを接着するための接着部として、パターニング後の感光性接着剤が用いられている。従って、半導体ウェハ上に設けられた感光性接着剤を露光及び現像することで、容易に所望の接着位置に応じて接着層(残存接着部)をパターニングすることができる。その結果、半導体装置の製造方法における工程の簡略化及び工程管理の容易化を図ることができる。   In this method of manufacturing a semiconductor device, a patterned photosensitive adhesive is used as an adhesive part for adhering a semiconductor chip and a lead frame. Therefore, by exposing and developing the photosensitive adhesive provided on the semiconductor wafer, the adhesive layer (residual adhesive part) can be easily patterned according to a desired adhesion position. As a result, it is possible to simplify processes and facilitate process management in the method for manufacturing a semiconductor device.

また、本発明の半導体装置の製造方法では、感光性接着剤は、アルカリ可溶性ポリマーと、放射線重合性化合物と、光重合開始剤と、を含有することが好ましい。これにより、露光及び現像によってパターニングされた後に被着体に対する接着性を感光性接着剤に特に容易に付与することができる。同様の観点から、アルカリ可溶性ポリマーはカルボキシル基又はフェノール性水酸基を有することがより好ましい。   In the method for manufacturing a semiconductor device of the present invention, the photosensitive adhesive preferably contains an alkali-soluble polymer, a radiation polymerizable compound, and a photopolymerization initiator. Thereby, after patterning by exposure and development, adhesion to the adherend can be particularly easily imparted to the photosensitive adhesive. From the same viewpoint, the alkali-soluble polymer preferably has a carboxyl group or a phenolic hydroxyl group.

また、本発明の半導体装置の製造方法では、感光性接着剤は、アルカリ可溶性ポリマーのガラス転移温度が150℃以下であることが好ましい。これにより、フィルム状の感光性接着剤(以下場合により「接着フィルム」という。)を半導体ウェハ等の被着体に、より低い温度で貼付けることが可能になる。   In the method for manufacturing a semiconductor device of the present invention, the photosensitive adhesive preferably has an alkali-soluble polymer having a glass transition temperature of 150 ° C. or lower. Thereby, a film-like photosensitive adhesive (hereinafter, referred to as “adhesive film” in some cases) can be attached to an adherend such as a semiconductor wafer at a lower temperature.

また、本発明の半導体装置の製造方法では、感光性接着剤は、アルカリ可溶性ポリマーがポリイミドであるが好ましい。ポリイミドは、テトラカルボン酸二無水物と、下記化学式(I−a)、(I−b)、(II−a)、(II−b)又は(II−c)で表される芳香族ジアミンを含むジアミンとを反応させて得られるものであることが好ましい。   In the method for producing a semiconductor device of the present invention, the photosensitive adhesive is preferably an alkali-soluble polymer made of polyimide. Polyimide is composed of tetracarboxylic dianhydride and an aromatic diamine represented by the following chemical formula (Ia), (Ib), (II-a), (II-b) or (II-c). It is preferable that it is a thing obtained by making it react with the diamine containing.

Figure 2009141016
Figure 2009141016

また、本発明の半導体装置の製造方法では、感光性接着剤は、熱硬化性樹脂を更に含有することが好ましい。   Moreover, in the manufacturing method of the semiconductor device of this invention, it is preferable that a photosensitive adhesive further contains a thermosetting resin.

感光性接着剤は、フィルム状であってもよい。   The photosensitive adhesive may be in the form of a film.

本発明の感光性接着剤は、上述の何れかの半導体装置の製造方法に用いるための感光性接着剤である。   The photosensitive adhesive of the present invention is a photosensitive adhesive for use in any one of the semiconductor device manufacturing methods described above.

本発明の半導体装置は、上述の何れかの半導体装置の製造方法によって製造された半導体装置である。   The semiconductor device of the present invention is a semiconductor device manufactured by any one of the above-described semiconductor device manufacturing methods.

本発明によれば、半導体装置の製造における工程の簡略化及び工程管理の容易化を図ることができる半導体装置の製造方法、感光性接着剤及び半導体装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a semiconductor device, the photosensitive adhesive agent, and semiconductor device which can aim at simplification of the process in manufacture of a semiconductor device, and the ease of process control can be provided.

以下、図面を参照しつつ本発明に係る半導体装置の製造方法、感光性接着剤及び半導体装置の好適な一実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a semiconductor device manufacturing method, a photosensitive adhesive, and a semiconductor device according to preferred embodiments of the invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments.

まず、本発明の半導体装置の一実施形態である半導体パッケージ30(図4)の製造方法について説明する。   First, the manufacturing method of the semiconductor package 30 (FIG. 4) which is one Embodiment of the semiconductor device of this invention is demonstrated.

(接着剤形成工程)
図1に示す半導体ウェハ1は、半導体パッケージ30(図4)に内蔵される半導体チップ11(図4)の材料であり、典型的にはシリコンウェハである。半導体ウェハ1には、既に前工程により回路が形成されている。この接着剤形成工程では、予めフィルム状に形成された感光性接着剤3を準備し、この半導体ウェハ1の回路面1aに、感光性接着剤3を室温〜100℃程度の低温で加熱しながらラミネートする。これにより、半導体ウェハ1の回路面1a上には、均一な厚さの層状の感光性接着剤3が形成される。
(Adhesive formation process)
A semiconductor wafer 1 shown in FIG. 1 is a material of the semiconductor chip 11 (FIG. 4) incorporated in the semiconductor package 30 (FIG. 4), and is typically a silicon wafer. A circuit has already been formed on the semiconductor wafer 1 by a previous process. In this adhesive forming step, a photosensitive adhesive 3 previously formed in a film shape is prepared, and the photosensitive adhesive 3 is heated on the circuit surface 1 a of the semiconductor wafer 1 at a low temperature of about room temperature to 100 ° C. Laminate. Thereby, a layered photosensitive adhesive 3 having a uniform thickness is formed on the circuit surface 1 a of the semiconductor wafer 1.

ここで、上記感光性接着剤3は、露光及び現像によってパターニングされた後に被着体に対する接着性を有し、アルカリ現像が可能なネガ型の感光性接着剤である。より詳細には、感光性接着剤3を露光及び現像によってパターニングして形成されるレジストパターンが、半導体チップ及びガラス基板等の被着体に対する接着性を有している。例えばレジストパターンに被着体を必要により加熱しながら圧着することにより、レジストパターンと被着体とを接着することが可能である。かかる機能を有する感光性接着剤3の詳細については後述する。   Here, the photosensitive adhesive 3 is a negative photosensitive adhesive that has an adhesive property to an adherend after being patterned by exposure and development and is capable of alkali development. More specifically, a resist pattern formed by patterning the photosensitive adhesive 3 by exposure and development has adhesion to adherends such as semiconductor chips and glass substrates. For example, it is possible to bond the resist pattern and the adherend by applying pressure to the adherend while heating the resist pattern as necessary. Details of the photosensitive adhesive 3 having such a function will be described later.

(パターニング工程)
その後、半導体ウェハ1の回路面1a上にラミネートされた上記感光性接着剤3を、所定のパターンのフォトマスクを介して露光する。すなわち、感光性接着剤3に対して、所定の位置に開口を形成しているフォトマスクを介して活性光線(典型的には紫外線)を照射する。これにより感光性接着剤1が所定のパターンで露光される。その後、感光性接着剤3のうち露光されなかった部分をアルカリ現像液を用いた現像によって除去することにより、回路面1a上の感光性接着剤3にパターニングを施す。なお、ネガ型に代えてポジ型の感光性接着剤を用いることも可能であり、その場合はフィルム状の感光性接着剤のうち露光された部分が現像により除去される。このパターニングにより、図2に示すように、回路面1a上にはフォトマスクのパターンに応じて感光性接着剤3の一部が凸部5として残存する。この残存した凸部5を、以下「残存接着部」と称する。前述の通り、上記感光性接着剤3は、露光及び現像の後に接着性を有するといった性質をもつので、上記の残存接着部5は接着性を有している。
(Patterning process)
Thereafter, the photosensitive adhesive 3 laminated on the circuit surface 1a of the semiconductor wafer 1 is exposed through a photomask having a predetermined pattern. In other words, the photosensitive adhesive 3 is irradiated with actinic rays (typically ultraviolet rays) through a photomask having openings at predetermined positions. Thereby, the photosensitive adhesive 1 is exposed in a predetermined pattern. Thereafter, the unexposed portion of the photosensitive adhesive 3 is removed by development using an alkaline developer, thereby patterning the photosensitive adhesive 3 on the circuit surface 1a. In addition, it is also possible to use a positive photosensitive adhesive instead of the negative type, and in this case, the exposed portion of the film-like photosensitive adhesive is removed by development. By this patterning, as shown in FIG. 2, a part of the photosensitive adhesive 3 remains as a convex portion 5 on the circuit surface 1a according to the pattern of the photomask. This remaining convex portion 5 is hereinafter referred to as “residual adhesive portion”. As described above, since the photosensitive adhesive 3 has the property of having adhesiveness after exposure and development, the remaining adhesive portion 5 has adhesiveness.

なお、このようなパターニングされた接着部を半導体ウェハ1上に形成する他の方法として、ワニス等をスクリーン印刷する方法も考えられるが、上述の感光性接着剤3の露光及び現像によるパターニングによれば、スクリーン印刷よりも高精度に残存接着部5を形成できる点で優れている。   As another method of forming such a patterned adhesive portion on the semiconductor wafer 1, a method of screen printing varnish or the like is also conceivable. However, the patterning by exposure and development of the photosensitive adhesive 3 described above is also possible. For example, the remaining adhesive portion 5 can be formed with higher accuracy than screen printing.

パターニングの後、半導体ウェハ1の感光性接着剤3とは反対側の面を研磨して、半導体ウェハ1を所定の厚さまで薄くする。研磨は、例えば、感光性接着剤3上に粘着フィルムを貼り付け、粘着フィルムによって半導体ウェハ1を研磨用の治具に固定して行われる。   After patterning, the surface of the semiconductor wafer 1 opposite to the photosensitive adhesive 3 is polished to thin the semiconductor wafer 1 to a predetermined thickness. The polishing is performed, for example, by attaching an adhesive film on the photosensitive adhesive 3 and fixing the semiconductor wafer 1 to a polishing jig with the adhesive film.

(ダイシング工程)
その後、半導体ウェハ1の回路面1aとは反対側の面に、ダイボンディングフィルム及びダイシングフィルムを有しこれらが積層している複合フィルム(図示せず)が、ダイボンディングフィルムが半導体ウェハ1に接する向きで貼り付けられる。貼り付けは必要により加熱しながら行われる。
(Dicing process)
Thereafter, a composite film (not shown) having a die bonding film and a dicing film laminated on the surface opposite to the circuit surface 1 a of the semiconductor wafer 1 is in contact with the semiconductor wafer 1. Pasted in the direction. Pasting is performed while heating if necessary.

次に、回路面1aに残存接着部5が形成された上記半導体ウェハ1を、ダイシングし、図3に示すように、個片化された半導体チップ11を作製する。すなわち、ダイシングマシーンにより、ダイシングラインに沿って半導体ウェハ1を上記複合フィルムとともに切断することにより、半導体ウェハ1がダイシングによって複数の半導体チップ11に切り分けられる。このダイシングは、例えば、ダイシングフィルムによって全体をフレームに固定した状態でダイシングブレードを用いて行われる。   Next, the semiconductor wafer 1 on which the remaining adhesive portion 5 is formed on the circuit surface 1a is diced to produce individual semiconductor chips 11 as shown in FIG. That is, the semiconductor wafer 1 is cut into a plurality of semiconductor chips 11 by dicing by cutting the semiconductor wafer 1 together with the composite film along the dicing line by a dicing machine. For example, the dicing is performed using a dicing blade in a state where the whole is fixed to the frame by a dicing film.

図3に示すように、個片化された半導体チップ11の回路面11aには、半導体ウェハ1のパターニングの段階で形成された上記の残存接着部5が2つ存在している。また、回路面11aには、別途形成されたボンディングパッド13が存在している。残存接着部5は、半導体チップ11とリードフレーム21(図4)との接着位置に対応させる形状とされている。なお、残存接着部5の形状は、ワイヤボンディング等の工程の障害にならないような形状であれば、適宜変形が可能である。   As shown in FIG. 3, two residual adhesive portions 5 formed at the patterning stage of the semiconductor wafer 1 are present on the circuit surface 11 a of the semiconductor chip 11 that has been separated. In addition, bonding pads 13 formed separately exist on the circuit surface 11a. The remaining bonded portion 5 has a shape corresponding to the bonding position between the semiconductor chip 11 and the lead frame 21 (FIG. 4). In addition, if the shape of the residual adhesion part 5 is a shape which does not become an obstacle of processes, such as wire bonding, it can change suitably.

(チップ接着工程)
図4に示すように、チップ接着工程においては、半導体チップ11を、別途準備したリードフレーム21上に配置する。このとき、回路面11aとリードフレーム21のチップ接着面21aとの間には、上記残存接着部5が挟まれる。そして、半導体チップ11をリードフレーム21に加熱しながら圧着する。このとき、残存接着部5が加熱により硬化して接着性を発揮し、回路面11aとチップ接着面21aとが接着され、半導体チップ11はリードフレーム21に接着固定される。
(Chip bonding process)
As shown in FIG. 4, in the chip bonding step, the semiconductor chip 11 is placed on a lead frame 21 that is separately prepared. At this time, the remaining adhesive portion 5 is sandwiched between the circuit surface 11 a and the chip adhesive surface 21 a of the lead frame 21. Then, the semiconductor chip 11 is pressure-bonded to the lead frame 21 while being heated. At this time, the remaining adhesive portion 5 is cured by heating to exhibit adhesiveness, the circuit surface 11 a and the chip bonding surface 21 a are bonded, and the semiconductor chip 11 is bonded and fixed to the lead frame 21.

その後、ボンディングパット13(図3)とリードフレーム21とがボンディングワイヤ25により接続され、半導体チップ11がボンディングワイヤ25とともに樹脂27で封止されることで、LOC構造の半導体パッケージ30が完成する。   Thereafter, the bonding pad 13 (FIG. 3) and the lead frame 21 are connected by the bonding wire 25, and the semiconductor chip 11 is sealed with the resin 27 together with the bonding wire 25, thereby completing the semiconductor package 30 having the LOC structure.

以上説明した半導体パッケージ30の製造方法によれば、半導体チップ11とリードフレーム21とを接着する残存接着部5は、露光及び現像といった簡易な工程でパターニング可能であり、所望の接着位置に設置可能である。従って、半導体パッケージ30の製造方法における工程の簡略化及び工程管理の容易化を図ることができる。   According to the manufacturing method of the semiconductor package 30 described above, the remaining adhesive portion 5 for bonding the semiconductor chip 11 and the lead frame 21 can be patterned by a simple process such as exposure and development, and can be installed at a desired bonding position. It is. Therefore, it is possible to simplify the process and facilitate process management in the method for manufacturing the semiconductor package 30.

続いて、本発明の感光性接着剤の好適な実施形態について説明する。この感光性接着剤は、上述した半導体パッケージ30の製造方法における上記感光性接着剤3として好適に用いることができる。   Subsequently, a preferred embodiment of the photosensitive adhesive of the present invention will be described. This photosensitive adhesive can be suitably used as the photosensitive adhesive 3 in the method for manufacturing the semiconductor package 30 described above.

本実施形態に係る感光性接着剤は、アルカリ可溶性ポリマーと、放射線重合性化合物と、光重合開始剤とを含有する。   The photosensitive adhesive according to this embodiment contains an alkali-soluble polymer, a radiation polymerizable compound, and a photopolymerization initiator.

アルカリ可溶性ポリマーは、アルカリ現像液に可溶であればよく、テトラメチルアンモニウムハイドライド水溶液に可溶であることが好ましい。例えば、カルボキシル基及び/又はフェノール性水酸基を有するポリマーであれば、アルカリ現像液への良好な溶解性を有する場合が多い。   The alkali-soluble polymer may be soluble in an alkaline developer, and is preferably soluble in an aqueous tetramethylammonium hydride solution. For example, a polymer having a carboxyl group and / or a phenolic hydroxyl group often has good solubility in an alkaline developer.

アルカリ可溶性ポリマーがカルボキシル基を有している場合、その酸価は好ましくは80〜180mg/KOHである。酸価が80〜180mg/KOHであることにより、アルカリ現像液によるパターン形成性、及び露光後の再接着性が特に良好になる。アルカリ可溶性ポリマーの酸価が80mg/KOH未満であるとアルカリ現像液への溶解性が低下する傾向があり、180mg/KOHを超えると現像中に感光性接着剤が被着体からはく離してしまう可能性が高くなる。同様の観点から、アルカリ可溶性ポリマーの酸価は150mg/KOH以下であることがより好ましい。特に、感光性接着剤が後述する熱硬化性樹脂を含有し、且つ、アルカリ可溶性ポリマーの酸価が80〜180mg/KOHであることが好ましい。   When the alkali-soluble polymer has a carboxyl group, the acid value is preferably 80 to 180 mg / KOH. When the acid value is 80 to 180 mg / KOH, the pattern formability with an alkali developer and the re-adhesion after exposure are particularly good. If the acid value of the alkali-soluble polymer is less than 80 mg / KOH, the solubility in an alkali developer tends to decrease, and if it exceeds 180 mg / KOH, the photosensitive adhesive peels off from the adherend during development. The possibility increases. From the same viewpoint, the acid value of the alkali-soluble polymer is more preferably 150 mg / KOH or less. In particular, it is preferable that the photosensitive adhesive contains a thermosetting resin described later, and the acid value of the alkali-soluble polymer is 80 to 180 mg / KOH.

露光後の良好な接着性を確保するために、アルカリ可溶性ポリマーのガラス転移温度(Tg)は、30〜150℃であることが好ましい。アルカリ可溶性ポリマーのTgが30℃未満であると、露光後の熱圧着時にボイドが生成しやすくなる傾向にある。Tgが150℃を超えると、露光前の被着体への貼付け温度及び露光後の圧着温度が高くなり周辺部材にダメージを与えやすくなる傾向にある。なお、上記Tgは粘弾性測定装置(レオメトリック社製)を用いてフィルム状の感光性接着剤の粘弾性の温度変化を測定したときのtanδのピーク温度である。   In order to ensure good adhesion after exposure, the glass transition temperature (Tg) of the alkali-soluble polymer is preferably 30 to 150 ° C. If the Tg of the alkali-soluble polymer is less than 30 ° C., voids tend to be easily generated during thermocompression bonding after exposure. When Tg exceeds 150 ° C., the temperature for pasting to the adherend before exposure and the pressure-bonding temperature after exposure tend to increase, and the peripheral members tend to be damaged. The above Tg is the peak temperature of tan δ when the temperature change of the viscoelasticity of the film-like photosensitive adhesive is measured using a viscoelasticity measuring device (Rheometric).

アルカリ可溶性ポリマーの重量平均分子量は5000〜150000であることが好ましく、20000〜500000がより好ましく、30000〜40000が更に好ましい。アルカリ可溶性ポリマーの重量平均分子量が5000より小さいと感光性接着剤のフィルム形成性が低下する傾向にあり、150000を超えるとアルカリ現像液への溶解性が低下して、現像時間が長くなる傾向にある。アルカリ可溶性ポリマーの重量平均分子量を5000〜150000とすることにより、露光後の再接着のための加熱温度を低くすることができるという効果も得られる。なお、上記の重量平均分子量は、高速液体クロマトグラフィー(例えば、島津製作所製「C−R4A」(商品名))を用いて測定される標準ポリスチレン換算値である。   The weight average molecular weight of the alkali-soluble polymer is preferably from 5,000 to 150,000, more preferably from 20,000 to 500,000, still more preferably from 30,000 to 40,000. If the weight average molecular weight of the alkali-soluble polymer is less than 5,000, the film-forming property of the photosensitive adhesive tends to be lowered, and if it exceeds 150,000, the solubility in an alkali developer is lowered and the development time tends to be longer. is there. By setting the weight average molecular weight of the alkali-soluble polymer to 5000 to 150,000, an effect that the heating temperature for re-adhesion after exposure can be lowered is also obtained. In addition, said weight average molecular weight is a standard polystyrene conversion value measured using a high performance liquid chromatography (For example, "C-R4A" (brand name) by Shimadzu Corporation).

アルカリ可溶性ポリマーは、エチレン性不飽和基等の放射線重合性官能基を有していてもよい。この場合、アルカリ可溶性ポリマーは放射線重合性化合物としても機能する。放射線重合性化合物として、放射線重合性官能基を有するアルカリ可溶性ポリマーのみを用いてもよいし、係るアルカリ可溶性ポリマーと、これとは別の放射線重合性化合物とを組合わせて用いてもよい。   The alkali-soluble polymer may have a radiation polymerizable functional group such as an ethylenically unsaturated group. In this case, the alkali-soluble polymer also functions as a radiation polymerizable compound. As the radiation-polymerizable compound, only an alkali-soluble polymer having a radiation-polymerizable functional group may be used, or such an alkali-soluble polymer and another radiation-polymerizable compound may be used in combination.

アルカリ可溶性ポリマーは、ポリイミド、ポリアミドイミド、ポリアミド酸、ポリベンゾオキサゾール、アクリルポリマー、スチレン−マレイン酸共重合体、ノボラック樹脂及びポリノルボルネン樹脂からなる群より選ばれる少なくとも1種のポリマーを含むことが好ましい。こららの中でも、ポリイミド、ポリアミド、ポリベンゾオキサゾール及びアクリルポリマーが好ましい。   The alkali-soluble polymer preferably contains at least one polymer selected from the group consisting of polyimide, polyamideimide, polyamic acid, polybenzoxazole, acrylic polymer, styrene-maleic acid copolymer, novolac resin, and polynorbornene resin. . Among these, polyimide, polyamide, polybenzoxazole and acrylic polymer are preferable.

アルカリ可溶性ポリマーとして用いられるポリイミドは、主鎖中にイミド骨格を有する1種又は2種以上の重合体から構成される。ポリイミドはカルボキシル基及び/又はフェノール性水酸基を有することが好ましい。   The polyimide used as the alkali-soluble polymer is composed of one or more polymers having an imide skeleton in the main chain. The polyimide preferably has a carboxyl group and / or a phenolic hydroxyl group.

カルボキシル基を有するポリイミドは、テトラカルボン酸二無水物と、カルボキシル基及びアミノ基を有するジアミンとの反応により、得ることができる。フェノール性水酸基を有するポリイミドは、テトラカルボン酸二無水物と、フェノール性水酸基及びアミノ基を有するジアミンとの反応により、得ることができる。これら反応により、ポリイミドにはジアミンに由来するカリボキシル基又はフェノール性水酸基が導入される。ジアミンの種類及びその仕込み比、反応条件等を適宜調整することにより、ポリイミドの酸価を所望の範囲に制御することができる。   A polyimide having a carboxyl group can be obtained by a reaction between a tetracarboxylic dianhydride and a diamine having a carboxyl group and an amino group. A polyimide having a phenolic hydroxyl group can be obtained by a reaction between a tetracarboxylic dianhydride and a diamine having a phenolic hydroxyl group and an amino group. Through these reactions, a carboxyl group or a phenolic hydroxyl group derived from diamine is introduced into the polyimide. The acid value of the polyimide can be controlled within a desired range by appropriately adjusting the type of diamine, its charging ratio, reaction conditions, and the like.

テトラカルボン酸二無水物とジアミンとの反応(縮合反応)は、当業者には理解されるように、公知の方法により行うことができる。例えば、この反応においては、まず、有機溶媒中で、テトラカルボン酸二無水物とジアミンとを、等モル又はほぼ等モルの比率で、反応温度80℃以下、好ましくは0〜60℃で付加反応させる。各成分の添加順序は任意である。反応が進行するにつれ反応液の粘度が徐々に上昇し、ポリイミドの前駆体であるポリアミド酸が生成する。生成したポリアミド酸を50〜80℃の温度に加熱して解重合させることによって、その分子量を調整することもできる。生成したポリアミド酸を脱水閉環させることにより、ポリイミドが生成する。脱水閉環は、加熱による熱閉環法、又は脱水剤を使用する化学閉環法により行うことができる。   The reaction (condensation reaction) between tetracarboxylic dianhydride and diamine can be carried out by a known method, as will be understood by those skilled in the art. For example, in this reaction, first, tetracarboxylic dianhydride and diamine are added in an organic solvent in an equimolar or almost equimolar ratio at a reaction temperature of 80 ° C. or less, preferably 0 to 60 ° C. Let The order of adding each component is arbitrary. As the reaction proceeds, the viscosity of the reaction solution gradually increases, and polyamic acid, which is a polyimide precursor, is generated. The molecular weight can be adjusted by heating the produced polyamic acid to a temperature of 50 to 80 ° C. for depolymerization. A polyimide is produced by dehydrating and ring-closing the produced polyamic acid. The dehydration ring closure can be performed by a thermal ring closure method by heating or a chemical ring closure method using a dehydrating agent.

テトラカルボン酸二無水物とジアミンとの仕込み比に関して、より具体的には、テトラカルボン酸二無水物の合計量1.0molに対して、ジアミンの合計量を好ましくは0.5〜2.0mol、より好ましくは0.8〜1.0molの範囲内とする。ジアミンの比率が2.0molを超えると末端がアミノ基であるポリイミドオリゴマーが多く生成し、0.5molを下回ると末端がカルボキシル基であるポリイミドオリゴマーが多く生成する傾向にある。ポリイミドオリゴマーの量が多くなると、ポリイミドの重量平均分子量が低下して、感光性接着剤組成物の耐熱性等の種々の特性の低下が生じ易くなる。上記仕込み比を調整することによって、ポリイミドの重量平均分子量を5000〜150000の範囲内となるように調製することができる。   More specifically, regarding the charging ratio of tetracarboxylic dianhydride and diamine, more specifically, the total amount of diamine is preferably 0.5 to 2.0 mol with respect to 1.0 mol of the total amount of tetracarboxylic dianhydride. More preferably, it is in the range of 0.8 to 1.0 mol. When the ratio of the diamine exceeds 2.0 mol, many polyimide oligomers having amino groups at the ends are produced, and when the proportion is less than 0.5 mol, many polyimide oligomers having carboxyl groups at the ends tend to be produced. When the amount of the polyimide oligomer is increased, the weight average molecular weight of the polyimide is decreased, and various characteristics such as heat resistance of the photosensitive adhesive composition are easily decreased. By adjusting the charging ratio, the weight average molecular weight of the polyimide can be adjusted to be in the range of 5000 to 150,000.

ポリイミドの合成に使用されるジアミンとしては、アルカリ現像液への溶解性を特に良好なものとするために、上述の式(I−a)、(I−b)、(II−a)、(II−b)又は(II−c)で表される芳香族ジアミンが好ましい。   As the diamine used for the synthesis of the polyimide, in order to particularly improve the solubility in an alkali developer, the above formulas (Ia), (Ib), (II-a), (II The aromatic diamine represented by II-b) or (II-c) is preferable.

ポリイミドのTgを低下させて熱応力を低減するため、ジアミンは、更に、下記一般式(III)で表される脂肪族エーテルジアミンを含むことが好ましい。式(III)中、Q、Q及びQはそれぞれ独立に炭素数1〜10のアルキレン基を示し、nは1〜80の整数を示す。 In order to reduce the Tg of polyimide and reduce thermal stress, the diamine preferably further contains an aliphatic ether diamine represented by the following general formula (III). In formula (III), Q 1 , Q 2 and Q 3 each independently represent an alkylene group having 1 to 10 carbon atoms, and n 1 represents an integer of 1 to 80.

Figure 2009141016
Figure 2009141016

式(III)の脂肪族エーテルジアミンとしては、より具体的には、下記化学式(IIIa)、(IIIb)又は(IIIc)で表されるものが挙げられる。これらの中でも、露光前の低温での貼付け性及び露光後の被着体に対する良好な接着性を確保できる点で、式(IIIa)の脂肪族エーテルジアミンが好ましい。   More specific examples of the aliphatic ether diamine of the formula (III) include those represented by the following chemical formula (IIIa), (IIIb) or (IIIc). Among these, the aliphatic ether diamine of the formula (IIIa) is preferable in that it can secure the adhesion at a low temperature before the exposure and the good adhesion to the adherend after the exposure.

Figure 2009141016
Figure 2009141016

脂肪族エーテルジアミンの市販品としては、例えば、サン テクノケミカル(株)製のジェファーミン「D−230」、「D−400」、「D−2000」、「D−4000」、「ED−600」、「ED−900」、「ED−2001」、「EDR−148」(以上商品名)、BASF(製)のポリエーテルアミン「D−230」、「D−400」、「D−2000」(以上商品名)が挙げられる。   Commercially available products of aliphatic ether diamines include, for example, Jeffamine “D-230”, “D-400”, “D-2000”, “D-4000”, “ED-600” manufactured by Sun Techno Chemical Co., Ltd. ”,“ ED-900 ”,“ ED-2001 ”,“ EDR-148 ”(trade name), BASF (manufactured) polyetheramine“ D-230 ”,“ D-400 ”,“ D-2000 ” (Product name).

更に、露光後の再接着性を更に高めるために、下記一般式(IV)で表されるシロキサンジアミンを使用することが好ましい。式(IV)中、R及びRはそれぞれ独立に炭素数1〜5のアルキレン基又は置換基を有してもよいフェニレン基を示し、R、R、R及びRはそれぞれ独立に炭素数1〜5のアルキル基、フェニル基又はフェノキシ基を示し、nは1〜5の整数を示す。 Furthermore, in order to further improve the re-adhesion after exposure, it is preferable to use a siloxane diamine represented by the following general formula (IV). In formula (IV), R 1 and R 2 each independently represent an alkylene group having 1 to 5 carbon atoms or a phenylene group which may have a substituent, and R 3 , R 4 , R 5 and R 6 are each Independently, it represents an alkyl group having 1 to 5 carbon atoms, a phenyl group or a phenoxy group, and n 2 represents an integer of 1 to 5.

Figure 2009141016
Figure 2009141016

化学式(IV)で表されるシロキサンジアミンとしては、例えば、式中のnが1のとき、1,1,3,3−テトラメチル−1,3−ビス(4−アミノフェニル)ジシロキサン、1,1,3,3−テトラフェノキシ−1,3−ビス(4−アミノエチル)ジシロキサン、1,1,3,3−テトラフェニル−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラフェニル−1,3−ビス(3−アミノプロピル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(3−アミノプロピル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(3−アミノブチル)ジシロキサン、1,3−ジメチル−1,3−ジメトキシ−1,3−ビス(4−アミノブチル)ジシロキサンが挙げられる。nが2のとき、1,1,3,3,5,5−ヘキサメチル−1,5−ビス(4−アミノフェニル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメトキシ−1,5−ビス(4−アミノブチル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメトキシ−1,5−ビス(5−アミノペンチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(2−アミノエチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(4−アミノブチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(5−アミノペンチル)トリシロキサン、1,1,3,3,5,5−ヘキサメチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,3,3,5,5−ヘキサエチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,3,3,5,5−ヘキサプロピル−1,5−ビス(3−アミノプロピル)トリシロキサンが挙げられる。 As the siloxane diamine represented by the chemical formula (IV), for example, when n 2 in the formula is 1, 1,1,3,3-tetramethyl-1,3-bis (4-aminophenyl) disiloxane, 1,1,3,3-tetraphenoxy-1,3-bis (4-aminoethyl) disiloxane, 1,1,3,3-tetraphenyl-1,3-bis (2-aminoethyl) disiloxane, 1,1,3,3-tetraphenyl-1,3-bis (3-aminopropyl) disiloxane, 1,1,3,3-tetramethyl-1,3-bis (2-aminoethyl) disiloxane, 1,1,3,3-tetramethyl-1,3-bis (3-aminopropyl) disiloxane, 1,1,3,3-tetramethyl-1,3-bis (3-aminobutyl) disiloxane, 1,3-dimethyl-1,3-dimethoxy- 1,3-bis (4-aminobutyl) disiloxane may be mentioned. When n 2 is 2, 1,1,3,3,5,5-hexamethyl-1,5-bis (4-aminophenyl) trisiloxane, 1,1,5,5-tetraphenyl-3,3- Dimethyl-1,5-bis (3-aminopropyl) trisiloxane, 1,1,5,5-tetraphenyl-3,3-dimethoxy-1,5-bis (4-aminobutyl) trisiloxane, 1,1 , 5,5-tetraphenyl-3,3-dimethoxy-1,5-bis (5-aminopentyl) trisiloxane, 1,1,5,5-tetramethyl-3,3-dimethoxy-1,5-bis (2-aminoethyl) trisiloxane, 1,1,5,5-tetramethyl-3,3-dimethoxy-1,5-bis (4-aminobutyl) trisiloxane, 1,1,5,5-tetramethyl −3,3-dimethoxy-1,5-bis ( 5-aminopentyl) trisiloxane, 1,1,3,3,5,5-hexamethyl-1,5-bis (3-aminopropyl) trisiloxane, 1,1,3,3,5,5-hexaethyl- Examples include 1,5-bis (3-aminopropyl) trisiloxane and 1,1,3,3,5,5-hexapropyl-1,5-bis (3-aminopropyl) trisiloxane.

これらのジアミンは単独で、又は2種以上を組み合わせて使用することができる。例えば、式(Ia)、(Ib)、(II−a)、(II−b)又は(II−c)で表される芳香族ジアミンを全ジアミンの10〜50モル%、一般式(IV)で表されるシロキサンジアミンを全ジアミンの1〜20モル%(更に好ましくは5〜10モル%)、一般式(III)で表される脂肪族エーテルジアミンを全ジアミンの10〜90モル%とすることが好ましい。式(Ia)又は(Ib)で表される芳香族ジアミンを上記比率で用いることにより、通常、ポリイミドの酸価を80〜180mg/KOH又は80〜150mg/KOHとすることができる。シロキサンジアミンが全ジアミンの1モル%未満であると、露光後の再接着性が低下する傾向にあり、20モル%を超えるとアルカリ現像液への溶解性が低下する傾向にある。また、脂肪族エーテルジアミンが全ジアミンの10モル%未満であると、ポリイミドのTgが高くなって低温加工性(低温での貼付け性)が低下する傾向にあり、90モル%を超えると、露光後の熱圧着時にボイドが発生しやすくなる傾向にある。   These diamines can be used alone or in combination of two or more. For example, the aromatic diamine represented by the formula (Ia), (Ib), (II-a), (II-b) or (II-c) is added in an amount of 10 to 50 mol% of the total diamine, and the general formula (IV) 1 to 20 mol% (more preferably 5 to 10 mol%) of the total diamine, and the aliphatic ether diamine represented by the general formula (III) is 10 to 90 mol% of the total diamine. It is preferable. By using the aromatic diamine represented by the formula (Ia) or (Ib) at the above ratio, the acid value of the polyimide can be usually 80 to 180 mg / KOH or 80 to 150 mg / KOH. When the siloxane diamine is less than 1 mol% of the total diamine, the re-adhesion property after exposure tends to decrease, and when it exceeds 20 mol%, the solubility in an alkali developer tends to decrease. If the aliphatic ether diamine is less than 10 mol% of the total diamine, the Tg of the polyimide tends to be high and the low-temperature processability (sticking property at low temperature) tends to decrease. Voids tend to be easily generated during subsequent thermocompression bonding.

ジアミンは、上記以外のジアミンを更に含んでいてもよい。例えば、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテメタン、ビス(4−アミノ−3,5−ジメチルフェニル)メタン、ビス(4−アミノ−3,5−ジイソプロピルフェニル)メタン、3,3’−ジアミノジフェニルジフルオロメタン、3,4’−ジアミノジフェニルジフルオロメタン、4,4’−ジアミノジフェニルジフルオロメタン、3,3’−ジアミノジフェニルスルフォン、3,4’−ジアミノジフェニルスルフォン、4,4’−ジアミノジフェニルスルフォン、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルケトン、3,4’−ジアミノジフェニルケトン、4,4’−ジアミノジフェニルケトン、2,2−ビス(3−アミノフェニル)プロパン、2,2’−(3,4’−ジアミノジフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)ヘキサフルオロプロパン、2,2−(3,4’−ジアミノジフェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、3,3’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、3,4’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、4,4’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、2,2−ビス(4−(3−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(3−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、ビス(4−(3−アミノエノキシ)フェニル)スルフィド、ビス(4−(4−アミノエノキシ)フェニル)スルフィド、ビス(4−(3−アミノエノキシ)フェニル)スルフォン、ビス(4−(4−アミノエノキシ)フェニル)スルフォン、1,3−ビス(アミノメチル)シクロヘキサン及び2,2−ビス(4−アミノフェノキシフェニル)プロパンが挙げられる。   The diamine may further contain a diamine other than those described above. For example, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenylmethane, 3 , 4′-diaminodiphenylmethane, 4,4′-diaminodiphenylethermethane, bis (4-amino-3,5-dimethylphenyl) methane, bis (4-amino-3,5-diisopropylphenyl) methane, 3,3 ′ -Diaminodiphenyldifluoromethane, 3,4'-diaminodiphenyldifluoromethane, 4,4'-diaminodiphenyldifluoromethane, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 4,4'-diamino Diphenyls Phon, 3,3′-diaminodiphenyl sulfide, 3,4′-diaminodiphenyl sulfide, 4,4′-diaminodiphenyl sulfide, 3,3′-diaminodiphenyl ketone, 3,4′-diaminodiphenyl ketone, 4,4 '-Diaminodiphenyl ketone, 2,2-bis (3-aminophenyl) propane, 2,2'-(3,4'-diaminodiphenyl) propane, 2,2-bis (4-aminophenyl) propane, 2, 2-bis (3-aminophenyl) hexafluoropropane, 2,2- (3,4'-diaminodiphenyl) hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4 Aminophenoxy) benzene, 3,3 ′-(1,4-phenylenebis (1-methylethylidene)) bisaniline, 3,4 ′-(1,4-phenylenebis (1-methylethylidene)) bisaniline, 4,4 '-(1,4-phenylenebis (1-methylethylidene)) bisaniline, 2,2-bis (4- (3-aminophenoxy) phenyl) propane, 2,2-bis (4- (3-aminophenoxy) Phenyl) hexafluoropropane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, bis (4- (3-aminoenoxy) phenyl) sulfide, bis (4- (4-aminoenoxy) phenyl) Sulfide, bis (4- (3-aminoenoxy) phenyl) sulfone, bis (4- (4-aminoenoxy) phenyl ) Sulfone, 1,3-bis (aminomethyl) cyclohexane and 2,2-bis (4-aminophenoxyphenyl) propane.

ポリイミドを合成する際の原料として用いるテトラカルボン酸二無水物は、接着剤の諸特性の低下を抑えるため、無水酢酸からの再結晶により精製されていることが好ましい。あるいは、テトラカルボン酸二無水物は、その融点よりも10〜20℃低い温度で12時間以上加熱することにより乾燥されていてもよい。テトラカルボン酸二無水物の純度は、示差走査熱量計(DSC)によって測定される吸熱開始温度と吸熱ピーク温度との差によって評価することができ、再結晶や乾燥等によりこの差が20℃以内、より好ましくは10℃以内となるように精製されたカルボン酸二無水物をポリイミドの合成のために用いることが好ましい。吸熱開始温度及び吸熱ピーク温度は、DSC(パーキンエルマー社製DSC−7型)を用いて、サンプル量:5mg、昇温速度:5℃/min、測定雰囲気:窒素の条件で測定される。   Tetracarboxylic dianhydride used as a raw material for the synthesis of polyimide is preferably purified by recrystallization from acetic anhydride in order to suppress deterioration of various properties of the adhesive. Alternatively, the tetracarboxylic dianhydride may be dried by heating at a temperature lower by 10 to 20 ° C. than its melting point for 12 hours or more. The purity of tetracarboxylic dianhydride can be evaluated by the difference between the endothermic onset temperature measured by a differential scanning calorimeter (DSC) and the endothermic peak temperature, and this difference is within 20 ° C. due to recrystallization or drying. More preferably, carboxylic dianhydride purified so as to be within 10 ° C. is used for the synthesis of polyimide. The endothermic start temperature and endothermic peak temperature are measured using DSC (DSC-7, manufactured by Perkin Elmer Co.) under the conditions of sample amount: 5 mg, temperature increase rate: 5 ° C./min, measurement atmosphere: nitrogen.

テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’、4,4’−ビフェニルテトラカルボン酸二無水物、2,2’、3,3’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ベンゼン−1,2,3,4−テトラカルボン酸二無水物、3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,2’,3’−ベンゾフェノンテトラカルボン酸二無水物、3,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,4,5−ナフタレンテトラカルボン酸二無水物、2,6−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,7−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,3,6,7−テトラクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、フェナンスレン−1,8,9,10−テトラカルボン酸二無水物、ピラジン−2,3,5,6−テトラカルボン酸二無水物、チオフェン−2,3,5,6−テトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物、2,3,2’,3’−ビフェニルテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)ジメチルシラン二無水物、ビス(3,4−ジカルボキシフェニル)メチルフェニルシラン二無水物、ビス(3,4−ジカルボキシフェニル)ジフェニルシラン二無水物、1,4−ビス(3,4−ジカルボキシフェニルジメチルシリル)ベンゼン二無水物、1,3−ビス(3,4−ジカルボキシフェニル)−1,1,3,3−テトラメチルジシクロヘキサン二無水物、p−フェニレンビス(トリメリテート無水物)、エチレンテトラカルボン酸二無水物、1,2,3,4−ブタンテトラカルボン酸二無水物、デカヒドロナフタレン−1,4,5,8−テトラカルボン酸二無水物、4,8−ジメチル−1,2,3,5,6,7−ヘキサヒドロナフタレン−1,2,5,6−テトラカルボン酸二無水物、シクロペンタン−1,2,3,4−テトラカルボン酸二無水物、ピロリジン−2,3,4,5−テトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、ビス(エキソ−ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸二無水物、ビシクロ−[2,2,2]−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2、−ビス[4−(3,4−ジカルボキシフェニル)フェニル]プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2、−ビス[4−(3,4−ジカルボキシフェニル)フェニル]ヘキサフルオロプロパン二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、1,4−ビス(2−ヒドロキシヘキサフルオロイソプロピル)ベンゼンビス(トリメリット酸無水物)、1,3−ビス(2−ヒドロキシヘキサフルオロイソプロピル)ベンゼンビス(トリメリット酸無水物)、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸二無水物、及びテトラヒドロフラン−2,3,4,5−テトラカルボン酸二無水物が挙げられる。   Examples of the tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid. Dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1-bis (2, 3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4 -Dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) Ether dianhydride, benzene-1,2,3,4-tetracarboxylic dianhydride, 3,4,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 2,3,2 ′, 3′- Benzophenone tetracarboxylic dianhydride, 3,3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 1,2,5,6-naphthalene tetracarboxylic dianhydride, 1,4,5,8- Naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,4,5-naphthalenetetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4 , 5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4 5,8-Tetracar Acid dianhydride, phenanthrene-1,8,9,10-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, thiophene-2,3,5,6- Tetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride, 2,3,2 ′, 3′-biphenyltetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) dimethylsilane dianhydride, bis (3,4-dicarboxyphenyl) methylphenylsilane dianhydride, bis (3,4- Dicarboxyphenyl) diphenylsilane dianhydride, 1,4-bis (3,4-dicarboxyphenyldimethylsilyl) benzene dianhydride, 1,3-bis (3,4-dicarboxyphenyl) -1,1, 3,3-tetramethyldicyclohexane dianhydride, p-phenylenebis (trimellitic anhydride), ethylenetetracarboxylic dianhydride, 1,2,3,4-butanetetracarboxylic dianhydride, decahydronaphthalene- 1,4,5,8-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride , Cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride Anhydride, bis (exo-bicyclo [2,2,1] heptane-2,3-dicarboxylic dianhydride, bicyclo- [2,2,2] -oct-7-ene-2,3,5,6 -Tetracarboxylic acid 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2, -bis [4- (3,4-dicarboxyphenyl) phenyl] propane dianhydride, 2,2- Bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, 2,2, -bis [4- (3,4-dicarboxyphenyl) phenyl] hexafluoropropane dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 1,4-bis (2-hydroxyhexafluoroisopropyl) benzenebis (trimellitic anhydride), 1,3-bis (2-hydroxyhexafluoroisopropyl) ) Benzenebis (trimellitic anhydride), 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2 Dicarboxylic acid anhydride, and tetrahydrofuran-2,3,4,5-tetracarboxylic acid dianhydride.

特に、溶剤への良好な溶解性を付与するため、下記化学式(V)又は(VI)で表されるテトラカルボン酸二無水物が好ましい。この場合、これらの式で表されるテトラカルボン酸二無水物の割合を、全テトラカルボン酸二無水物100モル%に対して50モル%以上とすることが好ましい。この割合が50モル%未満であると、溶解性向上効果が低下する傾向にある。   In particular, a tetracarboxylic dianhydride represented by the following chemical formula (V) or (VI) is preferable in order to impart good solubility in a solvent. In this case, it is preferable that the ratio of the tetracarboxylic dianhydrides represented by these formulas be 50 mol% or more with respect to 100 mol% of all tetracarboxylic dianhydrides. When this proportion is less than 50 mol%, the effect of improving solubility tends to be reduced.

Figure 2009141016
Figure 2009141016

以上のようなテトラカルボン酸二無水物は、単独で又は二種類以上を組み合わせて使用することができる。   The above tetracarboxylic dianhydrides can be used alone or in combination of two or more.

放射線重合性化合物は、紫外線や電子ビームなどの放射線の照射により、重合する化合物である。放射線重合性化合物は、アクリート基及びメタクリレート基のようなエチレン性不飽和基を有する化合物であることが好ましい。放射線重合性化合物の具体例としては、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸2−エチルヘキシル、メタクリル酸2−エチルヘキシル、ペンテニルアクリレート、テトラヒドロフルフリルアクリレート、テトラヒドロフルフリルメタクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、スチレン、ジビニルベンゼン、4−ビニルトルエン、4−ビニルピリジン、N−ビニルピロリドン、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、1,3−アクリロイルオキシ−2−ヒドロキシプロパン、1,2−メタクリロイルオキシ−2−ヒドロキシプロパン、メチレンビスアクリルアミド、N,N−ジメチルアクリルアミド、N−メチロールアクリルアミド、トリス(β−ヒドロキシエチル)イソシアヌレートのトリアクリレート、下記一般式(10)で表される化合物、ウレタンアクリレート若しくはウレタンメタクリレート、及び尿素アクリレートが挙げられる。式(10)中、R及びRはそれぞれ独立に水素原子又はメチル基を示し、q及びrはそれぞれ独立に1以上の整数を示す。 A radiation-polymerizable compound is a compound that polymerizes upon irradiation with radiation such as ultraviolet rays or electron beams. The radiation polymerizable compound is preferably a compound having an ethylenically unsaturated group such as an acrylate group and a methacrylate group. Specific examples of the radiation polymerizable compound include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, pentenyl acrylate, tetrahydro Furfuryl acrylate, tetrahydrofurfuryl methacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane diacrylate, trimethylolpropane Triacrylate, trimethylolpropane dimethacrylate, tri Tyrolpropane trimethacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate , Pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, styrene, divinylbenzene, 4-vinyltoluene, 4-vinylpyridine, N-vinylpyrrolidone, 2-hydroxyethyl acrylate, 2 -Hydroxyethyl methacrylate, 1,3-acryloyloxy-2-hydroxypropane, 1,2-methan Acryloyloxy-2-hydroxypropane, methylenebisacrylamide, N, N-dimethylacrylamide, N-methylolacrylamide, triacrylate of tris (β-hydroxyethyl) isocyanurate, a compound represented by the following general formula (10), Examples include urethane acrylate or urethane methacrylate, and urea acrylate. In formula (10), R 3 and R 4 each independently represent a hydrogen atom or a methyl group, and q and r each independently represent an integer of 1 or more.

Figure 2009141016
Figure 2009141016

ウレタンアクリレート及びウレタンメタクリレートは、例えば、ジオール類、下記一般式(21)で表されるイソシアネート化合物、及び下記一般式(22)で表される化合物の反応により生成する。   Urethane acrylate and urethane methacrylate are produced, for example, by a reaction of a diol, an isocyanate compound represented by the following general formula (21), and a compound represented by the following general formula (22).

Figure 2009141016
Figure 2009141016

式(21)中、sは0又は1を示し、Rは炭素原子数が1〜30の2価又は3価の有機基を示す。式(22)中、Rは水素原子又はメチル基を示し、Rはエチレン基又はプロピレン基を示す。 In the formula (21), s represents 0 or 1, and R 5 represents a divalent or trivalent organic group having 1 to 30 carbon atoms. In formula (22), R 6 represents a hydrogen atom or a methyl group, and R 7 represents an ethylene group or a propylene group.

尿素メタクリレートは、例えば、下記一般式(31)で表されるジアミンと、下記一般式(32)で表される化合物との反応により生成する。   Urea methacrylate is produced, for example, by a reaction between a diamine represented by the following general formula (31) and a compound represented by the following general formula (32).

Figure 2009141016
Figure 2009141016

式(31)中、Rは炭素原子数が2〜30の2価の有機基を示す。式(32)中、tは0又は1を示す。 In formula (31), R 8 represents a divalent organic group having 2 to 30 carbon atoms. In formula (32), t represents 0 or 1.

以上のような化合物の他、官能基を含むビニル共重合体に、少なくとも1個のエチレン性不飽和基と、オキシラン環、イソシアネート基、水酸基、及びカルボキシル基等の官能基とを有する化合物を付加反応させて得られる、側鎖にエチレン性不飽和基を有する放射線重合性共重合体等などを使用することができる。   In addition to the above compounds, a compound having at least one ethylenically unsaturated group and a functional group such as an oxirane ring, an isocyanate group, a hydroxyl group, and a carboxyl group is added to a vinyl copolymer containing a functional group. A radiation-polymerizable copolymer having an ethylenically unsaturated group in the side chain and the like obtained by the reaction can be used.

これらの放射線重合性化合物は、単独で又は2種類以上を組み合わせて使用することができる。なかでも上記一般式(10)で示される放射線重合性化合物は硬化後の耐溶剤性を付与できる点で好ましく、ウレタンアクリレート及びウレタンメタクリレートは硬化後の可とう性を付与できる点で好ましい。   These radiation polymerizable compounds can be used alone or in combination of two or more. Among these, the radiation polymerizable compound represented by the general formula (10) is preferable in that it can provide solvent resistance after curing, and urethane acrylate and urethane methacrylate are preferable in that they can provide flexibility after curing.

放射線重合性化合物の分子量は2000以下が好ましい。分子量が2000を超えると、感光性接着剤のアルカリ現像液への溶解性が低下する傾向にあり、また、接着フィルムのタック性が低下して、半導体ウェハ等の被着体に低温で貼付けることが困難となる傾向にある。   The molecular weight of the radiation polymerizable compound is preferably 2000 or less. When the molecular weight exceeds 2000, the solubility of the photosensitive adhesive in an alkaline developer tends to be reduced, and the tackiness of the adhesive film is reduced, so that the adhesive is stuck to an adherend such as a semiconductor wafer at a low temperature. Tend to be difficult.

放射線重合性化合物の含有量は、アルカリ可溶性ポリマー100重量部に対して20〜80重量部であることが好ましく、30〜60重量部であることが更に好ましい。放射線重合性化合物の量が80重量部を超えると、重合した放射線重合性化合物が原因となって熱圧着後の接着性が低下する傾向にある。5重量部未満であると、露光後の耐溶剤性が低くなり、パターンを形成するのが困難となる傾向にある。   The content of the radiation-polymerizable compound is preferably 20 to 80 parts by weight, more preferably 30 to 60 parts by weight with respect to 100 parts by weight of the alkali-soluble polymer. When the amount of the radiation polymerizable compound exceeds 80 parts by weight, the adhesiveness after thermocompression bonding tends to decrease due to the polymerized radiation polymerizable compound. If it is less than 5 parts by weight, the solvent resistance after exposure tends to be low, and it tends to be difficult to form a pattern.

光重合開始剤は、パターン形成時の感度を良くするために、300〜400nmにおいて吸収帯を有することが好ましい。光重合開始剤の具体例としては、ベンゾフェノン、N,N’−テトラメチル−4,4’−ジアミノベンゾフェノン(ミヒラーケトン)、N,N’−テトラエチル−4,4’−ジアミノベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルフォリノプロパノン−1、2,4−ジエチルチオキサントン、2−エチルアントラキノン及びフェナントレンキノン等の芳香族ケトン、ベンゾインメチルエーテル、ベンゾインエチルエーテル及びベンゾインフェニルエーテル等のベンゾインエーテル、メチルベンゾイン及びエチルベンゾイン等のベンゾイン、ベンジルジメチルケタール等のベンジル誘導体、2−(o−クロロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−クロロフェニル)−4,5−ジ(m−メトキシフェニル)イミダゾール二量体、2−(o−フルオロフェニル)−4,5−フェニルイミダゾール二量体、2−(o−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体、2−(p−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体、2,4−ジ(p−メトキシフェニル)−5−フェニルイミダゾール二量体及び2−(2,4−ジメトキシフェニル)−4,5−ジフェニルイミダゾール二量体等の2,4,5−トリアリールイミダゾール二量体、9−フェニルアクリジン及び1,7−ビス(9,9’−アクリジニル)ヘプタン等のアクリジン誘導体、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイド及びビス(2,4,6,−トリメチルベンゾイル)−フェニルフォスフィンオキサイド等のビスアシルフォスフィンオキサイドが挙げられる。これらは単独で又は二種類以上を組み合わせて使用することができる。   The photopolymerization initiator preferably has an absorption band at 300 to 400 nm in order to improve sensitivity during pattern formation. Specific examples of the photopolymerization initiator include benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy- 4′-dimethylaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy- Aromatic ketones such as cyclohexyl-phenyl-ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropanone-1,2,4-diethylthioxanthone, 2-ethylanthraquinone and phenanthrenequinone, benzoin Methyl ether, benzoin ethyl ether and benzoin phenyl Benzoin ether such as ether, benzoin such as methylbenzoin and ethylbenzoin, benzyl derivatives such as benzyldimethyl ketal, 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4 , 5-di (m-methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-phenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer 2-mer, 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer, 2,4-di (p-methoxyphenyl) -5-phenylimidazole dimer and 2- (2,4-dimethoxy) 2,4,5-triarylimidazole dimers such as phenyl) -4,5-diphenylimidazole dimer Acridine derivatives such as 9-phenylacridine and 1,7-bis (9,9′-acridinyl) heptane, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide and bis (2 , 4,6, -trimethylbenzoyl) -phenylphosphine oxide and the like. These can be used alone or in combination of two or more.

光重合開始剤の量は、特に制限はないが、アルカリ可溶性ポリマー100重量部に対して通常0.01〜30重量部である。   The amount of the photopolymerization initiator is not particularly limited, but is usually 0.01 to 30 parts by weight with respect to 100 parts by weight of the alkali-soluble polymer.

感光性接着剤は、熱硬化性樹脂を更に含有することが好ましい。本明細書において熱硬化性樹脂とは、熱により架橋反応を起こしうる反応性化合物をいう。このような化合物としては、例えば、エポキシ樹脂、シアネート樹脂、ビスマレイミド樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、アルキド樹脂、アクリル樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、シリコーン樹脂、レゾルシノールホルムアルデヒド樹脂、キシレン樹脂、フラン樹脂、ポリウレタン樹脂、ケトン樹脂、トリアリルシアヌレート樹脂、ポリイソシアネート樹脂、トリス(2−ヒドロキシエチル)イソシアヌラートを含有する樹脂、トリアリルトリメリタートを含有する樹脂、シクロペンタジエンから合成された熱硬化性樹脂、芳香族ジシアナミドの三量化による熱硬化性樹脂等が挙げられる。中でも、高温において優れた接着力を持たせることができる点で、エポキシ樹脂、シアネート樹脂及びビスマレイミド樹脂が好ましく、取り扱い性及びポリイミドとの相溶性の点からエポキシ樹脂が特に好ましい。これら熱硬化性樹脂は単独で又は二種類以上を組み合わせて用いることができる。   It is preferable that the photosensitive adhesive further contains a thermosetting resin. In the present specification, the thermosetting resin refers to a reactive compound capable of causing a crosslinking reaction by heat. Examples of such compounds include epoxy resins, cyanate resins, bismaleimide resins, phenol resins, urea resins, melamine resins, alkyd resins, acrylic resins, unsaturated polyester resins, diallyl phthalate resins, silicone resins, resorcinol formaldehyde resins, From xylene resin, furan resin, polyurethane resin, ketone resin, triallyl cyanurate resin, polyisocyanate resin, resin containing tris (2-hydroxyethyl) isocyanurate, resin containing triallyl trimellitate, cyclopentadiene Examples thereof include a thermosetting resin synthesized and a thermosetting resin by trimerization of aromatic dicyanamide. Among these, an epoxy resin, a cyanate resin, and a bismaleimide resin are preferable in that an excellent adhesive force can be imparted at a high temperature, and an epoxy resin is particularly preferable in terms of handling properties and compatibility with polyimide. These thermosetting resins can be used alone or in combination of two or more.

エポキシ樹脂としては、分子内に少なくとも2個のエポキシ基を有する化合物が好ましい。硬化性や硬化物特性の点からは、フェノールのグリシジルエーテル型のエポキシ樹脂が極めて好ましい。このようなエポキシ樹脂としては、例えば、ビスフェノールA、AD、S又はFのグリシジルエーテル、水素添加ビスフェノールAのグリシジルエーテル、ビスフェノールAのエチレンオキシド付加体のグリシジルエーテル、ビスフェノールAのプロピレンオキシド付加体のグリシジルエーテル、フェノールノボラック樹脂のグリシジルエーテル、クレゾールノボラック樹脂のグリシジルエーテル、ビスフェノールAノボラック樹脂のグリシジルエーテル、ナフタレン樹脂のグリシジルエーテル、3官能型又は4官能型のグリシジルエーテル、ジシクロペンタジエンフェノール樹脂のグリシジルエーテル、ダイマー酸のグリシジルエステル、3官能型又は4官能型のグリシジルアミン、ナフタレン樹脂のグリシジルアミンが挙げられる。これらは単独で又は二種類以上を組み合わせて使用することができる。   As the epoxy resin, a compound having at least two epoxy groups in the molecule is preferable. From the viewpoints of curability and cured product properties, phenol glycidyl ether type epoxy resins are extremely preferred. Examples of such epoxy resins include glycidyl ether of bisphenol A, AD, S or F, glycidyl ether of hydrogenated bisphenol A, glycidyl ether of ethylene oxide adduct of bisphenol A, and glycidyl ether of propylene oxide adduct of bisphenol A. Glycidyl ether of phenol novolac resin, glycidyl ether of cresol novolac resin, glycidyl ether of bisphenol A novolac resin, glycidyl ether of naphthalene resin, trifunctional or tetrafunctional glycidyl ether, glycidyl ether of dicyclopentadiene phenol resin, dimer Examples thereof include glycidyl esters of acids, trifunctional or tetrafunctional glycidyl amines, and glycidyl amines of naphthalene resins. These can be used alone or in combination of two or more.

シアネート樹脂としては、例えば、2,2’−ビス(4−シアネートフェニル)イソプロピリデン、1,1’−ビス(4−シアネートフェニル)エタン、ビス(4−シアネート−3,5−ジメチルフェニル)メタン、1,3−ビス[4−シアネートフェニル−1−(1−メチルエチリデン)]ベンゼン、シアネーテッドフェノール−ジシクロペンタンジエンアダクト、シアネーテッドノボラック、ビス(4−シアナートフェニル)チオエーテル、ビス(4−シアナートフェニル)エーテル、レゾルシノールジシアネート、1,1,1−トリス(4−シアネートフェニル)エタン、2−フェニル−2−(4−シアネートフェニル)イソプロピリデンが挙げられる。これらは単独で又は二種類以上を組み合わせて使用することができる。   Examples of the cyanate resin include 2,2′-bis (4-cyanatephenyl) isopropylidene, 1,1′-bis (4-cyanatephenyl) ethane, and bis (4-cyanate-3,5-dimethylphenyl) methane. 1,3-bis [4-cyanatephenyl-1- (1-methylethylidene)] benzene, cyanated phenol-dicyclopentanediene adduct, cyanated novolak, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ether, resorcinol dicyanate, 1,1,1-tris (4-cyanatephenyl) ethane, 2-phenyl-2- (4-cyanatephenyl) isopropylidene. These can be used alone or in combination of two or more.

ビスマレイミド樹脂としては、例えば、o−、m−又はp−ビスマレイミドベンゼン、4−ビス(p−マレイミドクミル)ベンゼン、1,4−ビス(m−マレイミドクミル)ベンゼン、及び下記一般式(40)、(41)、(42)又は(43)で表されるマレイミド化合物が挙げられる。これらは単独で又は二種類以上を組み合わせて使用することができる。   Examples of the bismaleimide resin include o-, m- or p-bismaleimide benzene, 4-bis (p-maleimidocumyl) benzene, 1,4-bis (m-maleimidocumyl) benzene, and the following general formula. The maleimide compound represented by (40), (41), (42) or (43) is mentioned. These can be used alone or in combination of two or more.

Figure 2009141016
Figure 2009141016

式(40)において、R40は−O−、−CH−、−CF−、−SO−、−S−、−CO−、−C(CH−又は−C(CF−を示し、4つのR41はそれぞれ独立に水素原子、低級アルキル基低級アルコキシ基、フッ素、塩素又は臭素を示し、2つのZはそれぞれ独立にエチレン性不飽和二重結合を有するジカルボン酸残基を示す。 In the formula (40), R 40 represents —O—, —CH 2 —, —CF 2 —, —SO 2 —, —S—, —CO—, —C (CH 3 ) 2 — or —C (CF 3 2 ), 4 R 41 each independently represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, fluorine, chlorine or bromine, and two Z 1 s each independently represent a dicarboxylic acid having an ethylenically unsaturated double bond. Acid residues are indicated.

式(41)において、R42は−O−、−CH−、−CF−、−SO−、−S−、−CO−、−C(CH−又は−C(CF−を示し、4つのR43はそれぞれ独立に水素、低級アルキル基、低級アルコキシ基、フッ素、塩素又は臭素を示し、2つのZはそれぞれ独立にエチレン性不飽和二重結合を有するジカルボン酸残基を示す。 In the formula (41), R 42 represents —O—, —CH 2 —, —CF 2 —, —SO 2 —, —S—, —CO—, —C (CH 3 ) 2 — or —C (CF 3 2 ), 4 R 43 each independently represent hydrogen, a lower alkyl group, a lower alkoxy group, fluorine, chlorine or bromine, and two Z 2 s each independently represent a dicarboxylic acid having an ethylenically unsaturated double bond Acid residues are indicated.

式(42)において、xは0〜4の整数を示し、複数のZはそれぞれ独立にエチレン性不飽和二重結合を有するジカルボン酸残基を示す。 In the formula (42), x represents an integer of 0 to 4, and a plurality of Z 3 each independently represents a dicarboxylic acid residue having an ethylenically unsaturated double bond.

式(43)において、2つのR44はそれぞれ独立に2価の炭化水素基を示し、複数のR45はそれぞれ独立に1価の炭化水素基を示し、2つのZはそれぞれ独立にエチレン性不飽和二重結合を有するジカルボン酸残基を示し、yは1以上の整数を示す。 In the formula (43), two R 44 s each independently represent a divalent hydrocarbon group, a plurality of R 45 s each independently represent a monovalent hydrocarbon group, and two Z 4 s independently represent ethylenic groups. A dicarboxylic acid residue having an unsaturated double bond is shown, and y is an integer of 1 or more.

式(40)〜(43)におけるZ、Z、Z及びZとしては、マレイン酸残基、シトラコン酸残基などが挙げられる。 Examples of Z 1 , Z 2 , Z 3 and Z 4 in formulas (40) to (43) include a maleic acid residue and a citraconic acid residue.

式(41)で表されるビスマレイミド樹脂としては、例えば、4,4−ビスマレイミドジフェニルエーテル、4,4−ビスマレイミドジフェニルメタン、4,4−ビスマレイミド−3,3’−ジメチル−ジフェニルメタン、4,4−ビスマレイミドジフェニルスルホン、4,4−ビスマレイミドジフェニルスルフィド、4,4−ビスマレイミドジフェニルケトン、2’−ビス(4−マレイミドフェニル)プロパン、4−ビスマレイミドジフェニルフルオロメタン、及び1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(4−マレイミドフェニル)プロパンが挙げられる。   Examples of the bismaleimide resin represented by the formula (41) include 4,4-bismaleimide diphenyl ether, 4,4-bismaleimide diphenylmethane, 4,4-bismaleimide-3,3′-dimethyl-diphenylmethane, 4-bismaleimide diphenyl sulfone, 4,4-bismaleimide diphenyl sulfide, 4,4-bismaleimide diphenyl ketone, 2′-bis (4-maleimidophenyl) propane, 4-bismaleimide diphenylfluoromethane, and 1,1, 1,3,3,3-hexafluoro-2,2-bis (4-maleimidophenyl) propane.

式(42)で表されるビスマレイミド樹脂としては、例えば、ビス[4−(4−マレイミドフェノキシ)フェニル]エーテル、ビス[4−(4−マレイミドフェノキシ)フェニル]メタン、ビス[4−(4−マレイミドフェノキシ)フェニル]フルオロメタン、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(4−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(4−マレイミドフェノキシ)フェニル]ケトン、2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン、及び1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパンが挙げられる。   Examples of the bismaleimide resin represented by the formula (42) include bis [4- (4-maleimidophenoxy) phenyl] ether, bis [4- (4-maleimidophenoxy) phenyl] methane, and bis [4- (4 -Maleimidophenoxy) phenyl] fluoromethane, bis [4- (4-maleimidophenoxy) phenyl] sulfone, bis [4- (3-maleimidophenoxy) phenyl] sulfone, bis [4- (4-maleimidophenoxy) phenyl] sulfide Bis [4- (4-maleimidophenoxy) phenyl] ketone, 2-bis [4- (4-maleimidophenoxy) phenyl] propane, and 1,1,1,3,3,3-hexafluoro-2,2 -Bis [4- (4-maleimidophenoxy) phenyl] propane.

熱硬化性樹脂を用いる場合、これを硬化させるために、硬化剤、硬化促進剤、触媒等の添加剤を感光性接着剤中に適宜加えることができる。触媒を添加する場合は助触媒を必要に応じて使用することができる。   When a thermosetting resin is used, additives such as a curing agent, a curing accelerator, and a catalyst can be appropriately added to the photosensitive adhesive in order to cure the thermosetting resin. When a catalyst is added, a cocatalyst can be used as necessary.

エポキシ樹脂を使用する場合、エポキシ樹脂の硬化剤又は硬化促進剤を使用することが好ましく、これらを併用することがより好ましい。硬化剤としては、例えば、フェノール系化合物、脂肪族アミン、脂環族アミン、芳香族ポリアミン、ポリアミド、脂肪族酸無水物、脂環族酸無水物、芳香族酸無水物、ジシアンジアミド、有機酸ジヒドラジド、三フッ化ホウ素アミン錯体、イミダゾール類、第3級アミン、分子中に少なくとも2個のフェノール性水酸基を有するフェノール系化合物等が挙げられる。これらの中でも、アルカリ現像液への溶解性に優れる点から、分子中に少なくとも2個のフェノール性水酸基を有するフェノール系化合物が好ましい。   When using an epoxy resin, it is preferable to use an epoxy resin curing agent or curing accelerator, and it is more preferable to use these in combination. Examples of the curing agent include phenolic compounds, aliphatic amines, alicyclic amines, aromatic polyamines, polyamides, aliphatic acid anhydrides, alicyclic acid anhydrides, aromatic acid anhydrides, dicyandiamide, and organic acid dihydrazides. , Boron trifluoride amine complexes, imidazoles, tertiary amines, phenolic compounds having at least two phenolic hydroxyl groups in the molecule, and the like. Among these, a phenol compound having at least two phenolic hydroxyl groups in the molecule is preferable from the viewpoint of excellent solubility in an alkali developer.

上記分子中に少なくとも2個のフェノール性水酸基を有するフェノール系化合物としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、t−ブチルフェノールノボラック樹脂、ジシクロペンタジェンクレゾールノボラック樹脂、ジシクロペンタジェンフェノールノボラック樹脂、キシリレン変性フェノールノボラック樹脂、ナフトールノボラック樹脂、トリスフェノールノボラック樹脂、テトラキスフェノールノボラック樹脂、ビスフェノールAノボラック樹脂、ポリ−p−ビニルフェノール樹脂、フェノールアラルキル樹脂等が挙げられる。   Examples of the phenolic compound having at least two phenolic hydroxyl groups in the molecule include phenol novolak resin, cresol novolak resin, t-butylphenol novolak resin, dicyclopentagencresol novolak resin, dicyclopentagen phenol novolak resin. And xylylene-modified phenol novolak resin, naphthol novolak resin, trisphenol novolak resin, tetrakisphenol novolak resin, bisphenol A novolak resin, poly-p-vinylphenol resin, phenol aralkyl resin and the like.

硬化促進剤としては、エポキシ樹脂の硬化を促進するものであれば特に制限はなく、例えば、イミダゾール類、ジシアンジアミド誘導体、ジカルボン酸ジヒドラジド、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、2−エチル−4−メチルイミダゾール−テトラフェニルボレート、1,8−ジアザビシクロ[5.4.0]ウンデセン−7−テトラフェニルボレート等が挙げられる。   The curing accelerator is not particularly limited as long as it accelerates the curing of the epoxy resin. For example, imidazoles, dicyandiamide derivatives, dicarboxylic acid dihydrazide, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, 2-ethyl-4 -Methylimidazole-tetraphenylborate, 1,8-diazabicyclo [5.4.0] undecene-7-tetraphenylborate and the like.

エポキシ樹脂の硬化剤の量は、エポキシ樹脂100重量部に対して0〜200重量部が好ましく、硬化促進剤の量は、エポキシ樹脂100重量部に対して0〜50重量部が好ましい。   The amount of the epoxy resin curing agent is preferably 0 to 200 parts by weight with respect to 100 parts by weight of the epoxy resin, and the amount of the curing accelerator is preferably 0 to 50 parts by weight with respect to 100 parts by weight of the epoxy resin.

熱硬化性樹脂としてシアネート樹脂を使用する場合、触媒及び必要に応じて助触媒を使用することが好ましい。触媒としては、例えば、コバルト、亜鉛、銅等の金属塩や金属錯体などが挙げられ、助触媒としてはアルキルフェノール、ビスフェノール化合物、フェノールノボラック等のフェノール系化合物などが好ましい。   When a cyanate resin is used as the thermosetting resin, it is preferable to use a catalyst and, if necessary, a promoter. Examples of the catalyst include metal salts such as cobalt, zinc, and copper, metal complexes, and the like, and examples of the cocatalyst include phenolic compounds such as alkylphenols, bisphenol compounds, and phenol novolacs.

熱硬化性樹脂としてビスマレイミド樹脂を使用する場合、その硬化剤としてラジカル重合剤を使用することが好ましい。ラジカル重合剤としては、例えば、アセチルシクロヘキシルスルホニルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイド、オクタノイルパーオキサイド、アセチルパーオキサイド、ジクミルパーオキサイド、クメンハイドロパーオキサイド、アゾビスイソブチロニトリル等が挙げられる。このとき、ラジカル重合剤の使用量は、ビスマレイミド樹脂100重量部に対して0.01〜1.0重量部が好ましい。   When a bismaleimide resin is used as the thermosetting resin, it is preferable to use a radical polymerization agent as the curing agent. Examples of the radical polymerization agent include acetylcyclohexylsulfonyl peroxide, isobutyryl peroxide, benzoyl peroxide, octanoyl peroxide, acetyl peroxide, dicumyl peroxide, cumene hydroperoxide, azobisisobutyronitrile, and the like. Can be mentioned. At this time, the usage-amount of a radical polymerization agent has preferable 0.01-1.0 weight part with respect to 100 weight part of bismaleimide resin.

感光性接着剤は、接着強度を上げる等の目的で、適宜カップリング剤を含有していてもよい。カップリング剤としては、例えば、シランカップリング剤、チタン系カップリング剤等が挙げられるが、中でもシランカップリング剤が高い接着力を付与できる点で好ましい。   The photosensitive adhesive may contain a coupling agent as appropriate for the purpose of increasing the adhesive strength. Examples of the coupling agent include a silane coupling agent, a titanium coupling agent, and the like, and among them, the silane coupling agent is preferable because it can provide high adhesive force.

カップリング剤を用いる場合、その使用量は、ポリイミド100重量部に対して、0〜50重量部が好ましく、0〜20重量部がより好ましい。50重量部を超えると感光性接着剤の保存安定性が低下する傾向にある。   When using a coupling agent, the usage-amount is preferable 0-50 weight part with respect to 100 weight part of polyimide, and 0-20 weight part is more preferable. When it exceeds 50 parts by weight, the storage stability of the photosensitive adhesive tends to be lowered.

シランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、N−(2−アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−(1,3―ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N,N’―ビス[3−(トリメトキシシリル)プロピル]エチレンジアミン、ポリオキシエチレンプロピルトリアルコキシシラン、及びポリエトキシジメチルシロキサンが挙げられる。これらは単独で又は二種類以上を組み合わせて使用することができる。   Examples of the silane coupling agent include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, and N- (2-amino). Ethyl) 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, N, N′-bis [3- (trimethoxysilyl) propyl] ethylenediamine, polyoxyethylenepropyltrialkoxysilane And polyethoxydimethylsiloxane. These can be used alone or in combination of two or more.

感光性接着剤は、フィラーを含有してもよい。フィラーとしては、例えば、銀粉、金粉、銅粉等の金属フィラー、シリカ、アルミナ、窒化ホウ素、チタニア、ガラス、酸化鉄、ほう酸アルミ、セラミック等の非金属無機フィラー、カーボン、ゴム系フィラー等の有機フィラーなどが挙げられる。   The photosensitive adhesive may contain a filler. Examples of the filler include metal fillers such as silver powder, gold powder, and copper powder, non-metallic inorganic fillers such as silica, alumina, boron nitride, titania, glass, iron oxide, aluminum borate, and ceramics, and organic materials such as carbon and rubber fillers. A filler etc. are mentioned.

上記フィラーは所望する機能に応じて使い分けることができる。例えば、金属フィラーは、接着フィルムに導電性又はチキソ性を付与する目的で添加され、非金属無機フィラーは、接着フィルムに低熱膨張性、低吸湿性を付与する目的で添加され、有機フィラーは接着フィルムに靭性を付与する目的で添加される。これら金属フィラー、非金属無機フィラー及び有機フィラーは単独で又は二種類以上を組み合わせて使用することができる。フィラーを用いた場合の混合、混練は、通常の攪拌機、らいかい機、三本ロール、ボールミル等の分散機を適宜、組み合わせて行うことができる。   The filler can be used properly according to the desired function. For example, the metal filler is added for the purpose of imparting conductivity or thixotropy to the adhesive film, the non-metallic inorganic filler is added for the purpose of imparting low thermal expansion and low hygroscopicity to the adhesive film, and the organic filler is bonded. It is added for the purpose of imparting toughness to the film. These metal fillers, non-metallic inorganic fillers and organic fillers can be used alone or in combination of two or more. Mixing and kneading in the case of using a filler can be performed by appropriately combining dispersers such as a normal stirrer, a raking machine, a three-roller, and a ball mill.

フィラーを用いる場合、その量は、アルカリ可溶性ポリマー100重量部に対し、1000重量部以下が好ましく、500重量部以下がより好ましい。下限は特に制限はないが、一般に1重量部である。フィラーの量が1000重量部を超えると接着性が低下する傾向がある。   When the filler is used, the amount thereof is preferably 1000 parts by weight or less and more preferably 500 parts by weight or less with respect to 100 parts by weight of the alkali-soluble polymer. The lower limit is not particularly limited, but is generally 1 part by weight. When the amount of the filler exceeds 1000 parts by weight, the adhesiveness tends to decrease.

感光性接着剤の露光後の100℃における貯蔵弾性率は0.01〜10MPaであることが好ましい。この貯蔵弾性率が0.01MPa未満であるとパターン形成後の熱圧着の際に加えられる熱及び圧力に対する耐性が低下して、パターンが潰れ易くなる傾向にあり、10MPaを超えると露光後の再接着性が低下して、パターン形成後に被着体に熱圧着する際、十分な接着力を得るために要する温度が高くなる傾向がある。   The storage elastic modulus at 100 ° C. after exposure of the photosensitive adhesive is preferably 0.01 to 10 MPa. When the storage elastic modulus is less than 0.01 MPa, resistance to heat and pressure applied during thermocompression bonding after pattern formation tends to be reduced, and the pattern tends to be easily crushed. When the adhesiveness is lowered and thermocompression is applied to the adherend after pattern formation, the temperature required to obtain sufficient adhesion tends to increase.

上記貯蔵弾性率の値は、露光された感光性接着剤からなる試験片の動的粘弾性を測定することにより得られる。動的粘弾性は、昇温速度:5℃/分、周波数:1Hz、測定温度:−50℃〜200℃の条件で測定される。測定装置としては、例えば、レオメトリックス社製粘弾性アナライザー「RSA−2」が用いられる。   The value of the storage elastic modulus is obtained by measuring the dynamic viscoelasticity of a test piece made of an exposed photosensitive adhesive. The dynamic viscoelasticity is measured under conditions of a temperature rising rate: 5 ° C./min, a frequency: 1 Hz, and a measurement temperature: −50 ° C. to 200 ° C. As the measuring device, for example, Rheometrics Viscoelasticity Analyzer “RSA-2” is used.

動的粘弾性測定のための試験片は、典型的には以下のようにして準備される。まず、PETフィルム及びこれの一面上に形成された厚さ約40μmの接着フィルムを有する接着シートを35mm×10mmの大きさに切り出し、高精度平行露光機(オーク製作所)を用いて露光量:1000mJ/cmの条件でPETフィルム側から紫外線を照射する。露光後、PETフィルムをはく離して上記試験片が得られる。 A specimen for dynamic viscoelasticity measurement is typically prepared as follows. First, an adhesive sheet having a PET film and an adhesive film having a thickness of about 40 μm formed on one surface of the PET film is cut into a size of 35 mm × 10 mm, and an exposure amount is 1000 mJ using a high-precision parallel exposure machine (Oak Seisakusho). UV light is irradiated from the PET film side under the condition of / cm 2 . After the exposure, the test piece is obtained by peeling off the PET film.

感光性接着剤の、露光後、更に加熱硬化された後の260℃における貯蔵弾性率は1MPa以上であることが好ましい。この貯蔵弾性率が1MPa未満であると、感光性接着剤を用いて得た半導体装置を基板に半田付けで実装する際、高温の加熱によるはく離又は破壊を抑制することが困難になる傾向にある。   It is preferable that the storage elastic modulus at 260 ° C. after exposure and further heat-curing of the photosensitive adhesive is 1 MPa or more. When the storage elastic modulus is less than 1 MPa, when a semiconductor device obtained using a photosensitive adhesive is mounted on a substrate by soldering, it tends to be difficult to suppress peeling or destruction due to high-temperature heating. .

上記貯蔵弾性率の値は、露光後、更に加熱硬化された後の感光性接着剤からなる試験片の動的粘弾性を測定することにより得られる。動的粘弾性は、昇温速度:5℃/分、周波数:1Hz、測定温度:−50℃〜300℃の条件で測定される。測定装置としては、例えば、レオメトリックス社製粘弾性アナライザー「RSA−2」が用いられる。   The value of the storage elastic modulus is obtained by measuring the dynamic viscoelasticity of a test piece made of a photosensitive adhesive after exposure and further heat-cured. Dynamic viscoelasticity is measured under the conditions of a temperature increase rate: 5 ° C./min, a frequency: 1 Hz, and a measurement temperature: −50 ° C. to 300 ° C. As the measuring device, for example, Rheometrics Viscoelasticity Analyzer “RSA-2” is used.

上記動的粘弾性測定のための試験片は、典型的には、露光後の動的粘弾性測定のための試験片の作製の説明において上述した条件と同様の条件で露光された接着フィルムを、さらに160℃のオーブン中で3時間の加熱により硬化させて得られる。   The test piece for measuring the dynamic viscoelasticity typically includes an adhesive film exposed under the same conditions as those described above in the description of the preparation of the test piece for dynamic viscoelasticity measurement after exposure. Further, it is obtained by curing in an oven at 160 ° C. for 3 hours.

露光後、更に加熱硬化された後の熱重量分析おける感光性接着剤の質量減少率が5%となる温度(以下「5%質量減少温度」という。)は、260℃以上であることが好ましい。5%質量減少温度が260℃を下回ると、感光性接着剤を用いて得た半導体装置を基板に半田付けで実装する際、高温の加熱によるはく離又は破壊を抑制することが困難になる傾向にある。また、加熱時に発生する揮発成分による周辺材料、又は部材を汚染する可能性が高くなる。   After exposure, the temperature at which the mass reduction rate of the photosensitive adhesive in thermogravimetric analysis after further heat curing is 5% (hereinafter referred to as “5% mass reduction temperature”) is preferably 260 ° C. or higher. . When the 5% mass reduction temperature is below 260 ° C., it becomes difficult to suppress peeling or destruction due to high-temperature heating when a semiconductor device obtained using a photosensitive adhesive is mounted on a substrate by soldering. is there. In addition, there is a high possibility that the surrounding materials or members due to volatile components generated during heating are contaminated.

5%質量減少温度は、昇温速度:10℃/分、空気流量:80mL/分、測定温度:40℃〜400℃の条件で行われる熱重量分析において、初期の質量に対する質量減少率が5%となる温度である。熱重量分析のための試料は、露光後、更に加熱硬化された後の貯蔵弾性率についての説明において上述の条件と同様の条件で露光及び加熱された接着フィルムを、乳鉢を用いて細かく砕いて準備される。測定装置としては、例えば、エスアイアイナノテクノロジー株式会社製示差熱熱重量同時測定装置「EXSTAR 6300」が用いられる。   The 5% mass reduction temperature has a mass reduction rate of 5 with respect to the initial mass in a thermogravimetric analysis performed under the conditions of a heating rate: 10 ° C./min, an air flow rate: 80 mL / min, and a measurement temperature: 40 ° C. to 400 ° C. %. Samples for thermogravimetric analysis were finely crushed using an mortar with an adhesive film that had been exposed and heated under the same conditions as described above in the description of the storage modulus after exposure and further heat-cured. Be prepared. As the measuring device, for example, a differential thermothermal weight simultaneous measuring device “EXSTAR 6300” manufactured by SII Nano Technology Co., Ltd. is used.

以上の諸特性は、ポリイミド、放射線重合性化合物及び光重合開始剤、さらに必要に応じて熱硬化性樹脂及びフィラーを用いて感光性接着剤を調製し、これらの種類、及び配合比を調整することで達成できる。   The above properties are prepared by preparing a photosensitive adhesive using polyimide, a radiation-polymerizable compound and a photopolymerization initiator, and further using a thermosetting resin and a filler, if necessary, and adjusting their types and blending ratios. Can be achieved.

フィルム状の感光性接着剤(接着フィルム)は、例えば、アルカリ可溶性ポリマー、放射線重合性化合物、光重合開始剤、及び必要に応じて他の成分を有機溶媒中で混合し、混合液を混練してワニスを調製し、基材上にこのワニスの層を形成させ、加熱によりワニス層を乾燥した後に基材を必要により除去する方法で得ることができる。   A film-like photosensitive adhesive (adhesive film) is prepared by, for example, mixing an alkali-soluble polymer, a radiation polymerizable compound, a photopolymerization initiator, and other components as necessary in an organic solvent, and kneading the mixed solution. The varnish is prepared, a layer of this varnish is formed on the substrate, the varnish layer is dried by heating, and then the substrate is removed if necessary.

上記の混合及び混練は、通常の攪拌機、らいかい機、三本ロール、ボールミル等の分散機を適宜、組み合わせて行うことができる。熱硬化性樹脂を用いる場合には、乾燥中に熱硬化性樹脂が十分には反応しない温度で、かつ、溶媒が充分に揮散する条件で乾燥する。具体的には、通常60〜180℃で、0.1〜90分間加熱することによりワニス層を乾燥する。   The above mixing and kneading can be carried out by appropriately combining dispersers such as a normal stirrer, a raking machine, a triple roll, and a ball mill. When a thermosetting resin is used, drying is performed at a temperature at which the thermosetting resin does not sufficiently react during drying and under conditions where the solvent is sufficiently volatilized. Specifically, the varnish layer is dried by heating at 60 to 180 ° C. for 0.1 to 90 minutes.

熱硬化性樹脂が十分には反応しない温度とは、具体的には、DSC(例えば、パーキンエルマー社製「DSC−7型」(商品名))を用いて、サンプル量10mg、昇温速度5℃/min、測定雰囲気:空気、の条件で測定したときの反応熱のピーク温度以下の温度である。   Specifically, the temperature at which the thermosetting resin does not sufficiently react is a DSC (for example, “DSC-7 type” (trade name) manufactured by PerkinElmer, Inc.), a sample amount of 10 mg, and a heating rate of 5 The temperature is equal to or lower than the peak temperature of the reaction heat when measured under the conditions of ° C / min and measurement atmosphere: air.

ワニスの調製に用いる有機溶媒、すなわちワニス溶剤は、材料を均一に溶解又は分散できるものであれば、特に制限はない。例えば、ジメチルホルムアミド、トルエン、ベンゼン、キシレン、メチルエチルケトン、テトラヒドロフラン、エチルセロソルブ、エチルセロソルブアセテート、ジオキサン、シクロヘキサノン、酢酸エチル、及びN−メチル−ピロリジノンが挙げられる。   The organic solvent used for preparing the varnish, that is, the varnish solvent is not particularly limited as long as the material can be uniformly dissolved or dispersed. Examples include dimethylformamide, toluene, benzene, xylene, methyl ethyl ketone, tetrahydrofuran, ethyl cellosolve, ethyl cellosolve acetate, dioxane, cyclohexanone, ethyl acetate, and N-methyl-pyrrolidinone.

ワニス層の厚みは好ましくは1〜100μmである。この厚みが1μm未満であると被着体を固定する機能が低下する傾向にあり、100μmを超えると得られる接着フィルム1中の残存揮発分が多くなる傾向にある。   The thickness of the varnish layer is preferably 1 to 100 μm. If this thickness is less than 1 μm, the function of fixing the adherend tends to be reduced, and if it exceeds 100 μm, the residual volatile content in the resulting adhesive film 1 tends to increase.

接着フィルムの残存揮発分は好ましくは10質量%以下である。この残存揮発分が10%を超えると組立のための加熱の際に溶媒の揮発による発泡に起因して接着フィルム内部にボイドが残存し易くなり、耐湿信頼性が低下し易くなる傾向にある。また、加熱の際に発生する揮発成分による周辺材料又は部材を汚染する可能性も高くなる。この残存揮発成分は、50mm×50mmサイズに切断した接着フィルムの初期の質量をM1とし、この接着フィルムを160℃のオーブン中で3時間加熱した後の質量をM2としたときに、残存揮発分(質量%)={(M2−M1)/M1}×100により算出される。   The residual volatile content of the adhesive film is preferably 10% by mass or less. If this residual volatile content exceeds 10%, voids are likely to remain inside the adhesive film due to foaming due to volatilization of the solvent during heating for assembly, and the moisture resistance reliability tends to be reduced. In addition, the possibility of contamination of surrounding materials or members due to volatile components generated during heating increases. This residual volatile component is the residual volatile content when the initial mass of the adhesive film cut to a size of 50 mm × 50 mm is M1, and the mass after heating this adhesive film in an oven at 160 ° C. for 3 hours is M2. It is calculated by (mass%) = {(M2-M1) / M1} × 100.

接着フィルムを形成するために用いられる基材は、上記の乾燥条件に耐えるものであれば特に限定されるものではない。例えば、ポリエステルフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエーテルナフタレートフィルム、メチルペンテンフィルムを基材3として用いることができる。基材3としてのフィルムは2種以上組み合わせた多層フィルムであってもよく、表面がシリコーン系、シリカ系等の離型剤などで処理されたものであってもよい。   The base material used for forming the adhesive film is not particularly limited as long as it can withstand the above drying conditions. For example, a polyester film, a polypropylene film, a polyethylene terephthalate film, a polyimide film, a polyetherimide film, a polyether naphthalate film, or a methylpentene film can be used as the substrate 3. The film as the substrate 3 may be a multilayer film in which two or more kinds are combined, or the surface may be treated with a release agent such as a silicone or silica.

半導体ウェハの回路面上に感光性接着剤がラミネートされた状態を示す断面図である。It is sectional drawing which shows the state by which the photosensitive adhesive was laminated on the circuit surface of a semiconductor wafer. 図1の感光性接着フィルムが露光及び現像された状態を示す断面図である。It is sectional drawing which shows the state by which the photosensitive adhesive film of FIG. 1 was exposed and developed. 図2の半導体ウェハが個片化されて作製される半導体チップを示す斜視図である。It is a perspective view which shows the semiconductor chip produced by dividing the semiconductor wafer of FIG. 2 into pieces. 図3の半導体チップが内蔵された半導体パッケージを示す断面図である。FIG. 4 is a cross-sectional view showing a semiconductor package in which the semiconductor chip of FIG. 3 is built.

符号の説明Explanation of symbols

1…半導体ウェハ、3…感光性接着剤、5…残存接着部、11…半導体チップ、21…リードフレーム、30…半導体パッケージ(半導体装置)。   DESCRIPTION OF SYMBOLS 1 ... Semiconductor wafer, 3 ... Photosensitive adhesive, 5 ... Residual adhesion part, 11 ... Semiconductor chip, 21 ... Lead frame, 30 ... Semiconductor package (semiconductor device).

Claims (10)

露光及び現像によってパターニングされた後に被着体に対する接着性を有しアルカリ現像が可能な感光性接着剤を半導体ウェハ上に設ける接着剤形成工程と、
前記半導体ウェハ上に設けられた前記感光性接着剤を露光及び現像してパターニングし、前記感光性接着剤が残存してなる残存接着部を前記半導体ウェハ上に形成させるパターニング工程と、
前記残存接着部が形成された前記半導体ウェハをダイシングするダイシング工程と、
前記ダイシング工程により個片化された半導体チップを、当該半導体チップ上の前記残存接着部によってリードフレームに接着するチップ接着工程と、
を備えた半導体装置の製造方法。
An adhesive forming step of providing a photosensitive adhesive on a semiconductor wafer, which has an adhesive property to an adherend after being patterned by exposure and development, and capable of alkali development;
Patterning by exposing and developing the photosensitive adhesive provided on the semiconductor wafer, patterning, and forming a residual adhesive portion on which the photosensitive adhesive remains, on the semiconductor wafer;
A dicing step of dicing the semiconductor wafer on which the remaining adhesive portion is formed;
A chip bonding step in which the semiconductor chip separated by the dicing step is bonded to a lead frame by the remaining bonding portion on the semiconductor chip;
A method for manufacturing a semiconductor device comprising:
前記感光性接着剤は、
アルカリ可溶性ポリマーと、放射線重合性化合物と、光重合開始剤と、を含有する請求項1記載の半導体装置の製造方法。
The photosensitive adhesive is
The method for manufacturing a semiconductor device according to claim 1, comprising an alkali-soluble polymer, a radiation polymerizable compound, and a photopolymerization initiator.
前記感光性接着剤は、
前記アルカリ可溶性ポリマーがカルボキシル基又はフェノール性水酸基を有する、請求項2記載の半導体装置の製造方法。
The photosensitive adhesive is
The method for manufacturing a semiconductor device according to claim 2, wherein the alkali-soluble polymer has a carboxyl group or a phenolic hydroxyl group.
前記感光性接着剤は、
前記アルカリ可溶性ポリマーのガラス転移温度が150℃以下である、請求項2又は3記載の半導体装置の製造方法。
The photosensitive adhesive is
The method for manufacturing a semiconductor device according to claim 2, wherein the alkali-soluble polymer has a glass transition temperature of 150 ° C. or lower.
前記感光性接着剤は、
前記アルカリ可溶性ポリマーがポリイミドである、請求項2〜4のいずれか一項に記載の半導体装置の製造方法。
The photosensitive adhesive is
The manufacturing method of the semiconductor device as described in any one of Claims 2-4 whose said alkali-soluble polymer is a polyimide.
前記感光性接着剤は、
前記ポリイミドが、テトラカルボン酸二無水物と、下記化学式(I−a)、(I−b)、(II−a)、(II−b)又は(II−c)で表される芳香族ジアミンを含むジアミンとを反応させて得られるポリイミドである、請求項5記載の半導体装置の製造方法。
Figure 2009141016
The photosensitive adhesive is
The polyimide is tetracarboxylic dianhydride and an aromatic diamine represented by the following chemical formula (Ia), (Ib), (II-a), (II-b) or (II-c) The manufacturing method of the semiconductor device of Claim 5 which is a polyimide obtained by making the diamine containing this react.
Figure 2009141016
前記感光性接着剤は、
熱硬化性樹脂を更に含有する、請求項2〜6のいずれか一項に記載の半導体装置の製造方法。
The photosensitive adhesive is
The manufacturing method of the semiconductor device as described in any one of Claims 2-6 which further contains a thermosetting resin.
前記感光性接着剤は、
フィルム状である、請求項1〜7のいずれか一項に記載の半導体装置の製造方法。
The photosensitive adhesive is
The manufacturing method of the semiconductor device as described in any one of Claims 1-7 which is a film form.
請求項1〜8の何れか一項に記載の半導体装置の製造方法に用いるための感光性接着剤。   The photosensitive adhesive for using for the manufacturing method of the semiconductor device as described in any one of Claims 1-8. 請求項1〜8の何れか一項に記載の半導体装置の製造方法によって製造された半導体装置。   The semiconductor device manufactured by the manufacturing method of the semiconductor device as described in any one of Claims 1-8.
JP2007313900A 2007-12-04 2007-12-04 Method of manufacturing semiconductor device, photosensitive adhesive, and semiconductor device Pending JP2009141016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007313900A JP2009141016A (en) 2007-12-04 2007-12-04 Method of manufacturing semiconductor device, photosensitive adhesive, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007313900A JP2009141016A (en) 2007-12-04 2007-12-04 Method of manufacturing semiconductor device, photosensitive adhesive, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2009141016A true JP2009141016A (en) 2009-06-25

Family

ID=40871379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007313900A Pending JP2009141016A (en) 2007-12-04 2007-12-04 Method of manufacturing semiconductor device, photosensitive adhesive, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2009141016A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164608A (en) * 1998-11-25 2000-06-16 Sumitomo Bakelite Co Ltd Resin-sealed semiconductor device
WO2007004569A1 (en) * 2005-07-05 2007-01-11 Hitachi Chemical Company, Ltd. Photosensitive adhesive composition, and obtained using the same, adhesive film, adhesive sheet, semiconductor wafer with adhesive layer, semiconductor device and electronic part

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164608A (en) * 1998-11-25 2000-06-16 Sumitomo Bakelite Co Ltd Resin-sealed semiconductor device
WO2007004569A1 (en) * 2005-07-05 2007-01-11 Hitachi Chemical Company, Ltd. Photosensitive adhesive composition, and obtained using the same, adhesive film, adhesive sheet, semiconductor wafer with adhesive layer, semiconductor device and electronic part

Similar Documents

Publication Publication Date Title
JP5758362B2 (en) Semiconductor device and manufacturing method thereof
JP5444905B2 (en) Manufacturing method of semiconductor device
JP5157255B2 (en) Photosensitive adhesive composition, and adhesive film, adhesive sheet, adhesive pattern using the same, and semiconductor device
KR101014483B1 (en) Adhesive composition, filmy adhesive, adhesive sheet, and semiconductor device made with the same
JP5353064B2 (en) Photosensitive adhesive composition, adhesive film obtained using the same, adhesive sheet, adhesive pattern, and semiconductor device
JP5458538B2 (en) Semiconductor device and manufacturing method thereof
JP5526783B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5098607B2 (en) Manufacturing method of semiconductor device
JP5251094B2 (en) Semiconductor device and manufacturing method thereof
WO2010032529A1 (en) Semiconductor device and method for manufacturing the same
JP5092719B2 (en) Semiconductor device and manufacturing method thereof
JP2009141017A (en) Semiconductor device and manufacturing method thereof
JP2009141008A (en) Semiconductor device and method of manufacturing the same, and photosensitive adhesive film
JP5428152B2 (en) Method for manufacturing connection structure
JP2011155195A (en) Method of manufacturing semiconductor chip with adhesive, and method of manufacturing semiconductor device
JP2009141016A (en) Method of manufacturing semiconductor device, photosensitive adhesive, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002