JP2009140800A - Air pole support for solid oxide fuel cell, and solid oxide fuel cell body using the same - Google Patents

Air pole support for solid oxide fuel cell, and solid oxide fuel cell body using the same Download PDF

Info

Publication number
JP2009140800A
JP2009140800A JP2007316932A JP2007316932A JP2009140800A JP 2009140800 A JP2009140800 A JP 2009140800A JP 2007316932 A JP2007316932 A JP 2007316932A JP 2007316932 A JP2007316932 A JP 2007316932A JP 2009140800 A JP2009140800 A JP 2009140800A
Authority
JP
Japan
Prior art keywords
fuel cell
solid oxide
oxide fuel
composition
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007316932A
Other languages
Japanese (ja)
Other versions
JP5286766B2 (en
Inventor
Megumi Shimazu
めぐみ 島津
Mitsunobu Shiono
光伸 塩野
Kenichi Hiwatari
研一 樋渡
Hironobu Murakami
弘展 村上
Masanori Furuya
正紀 古屋
Minoru Takashio
稔 高塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2007316932A priority Critical patent/JP5286766B2/en
Publication of JP2009140800A publication Critical patent/JP2009140800A/en
Application granted granted Critical
Publication of JP5286766B2 publication Critical patent/JP5286766B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air pole support for a solid oxide fuel cell, having improved strength when using La<SB>1-y</SB>Sr<SB>y</SB>Ni<SB>1-x</SB>Fe<SB>x</SB>O<SB>3</SB>. <P>SOLUTION: Using La<SB>1-y</SB>Sr<SB>y</SB>Ni<SB>1-x</SB>Fe<SB>x</SB>O<SB>3</SB>(0<y≤0.3 and 0.4≤x<1), the air pole support has high electron conductivity and high strength property to avoid breakage when generating power. Owing to the invention, a solid oxide fuel cell body has high power generating performance and reliability. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は固体酸化物形燃料電池に用いる空気極支持体に関する。   The present invention relates to an air electrode support used in a solid oxide fuel cell.

固体酸化物形燃料電池セル体の空気極には、電子伝導性が高いこと、熱膨張係数が固体電解質のそれに近いことが求められる。従来La1-ySryMnO3が用いられてきたが、さらなる高出力化のためにより電子伝導性の高い材料が求められている。近年、La1-ySryNi1-xFexO3(x-0.25≦y≦x-0.35で、かつ0.55≦x≦0.85)が、La1-ySryMnO3に比べて高い電子伝導性をもち、熱膨張係数が固体電解質のそれに近い性質をもつことが明らかになった。前記材料は600℃付近の中温においても高い電子伝導性を示すため、中温作動型の固体酸化物形燃料電池セル体の空気極材料として用いた例があり、高い発電性能と信頼性が得られることが示された(例えば特許文献1)。 The air electrode of the solid oxide fuel cell body is required to have high electron conductivity and a thermal expansion coefficient close to that of the solid electrolyte. Conventionally, La 1-y Sr y MnO 3 has been used, but a material with higher electron conductivity is required for higher output. In recent years, La 1-y Sr y Ni 1-x Fe x O 3 (x-0.25 ≦ y ≦ x-0.35 and 0.55 ≦ x ≦ 0.85) is higher than La 1-y Sr y MnO 3 It has become clear that it has conductivity and its thermal expansion coefficient is similar to that of a solid electrolyte. Since the material exhibits high electron conductivity even at an intermediate temperature of about 600 ° C., there is an example in which the material is used as an air electrode material for a medium temperature operation type solid oxide fuel cell body, and high power generation performance and reliability can be obtained. (For example, Patent Document 1).

また、La1-ySryNi1-xFexO3においてy=0であるLaNi1-xFexO3についても高い電子伝導性を持つことが明らかになっており、特許文献2にはLaNi1-xFexO3を空気極として用いた場合、高い発電性能が得られることが示唆されている。 Moreover, La 1-y Sr y Ni 1-x Fe x O 3 has been shown to have high electron conductivity also LaNi 1-x Fe x O 3 is y = 0 in the, in the patent document 2 when using LaNi 1-x Fe x O 3 as the air electrode, it has been suggested that high power generation performance can be obtained.

なお、空気極支持体としてLa1-ySryMnO3を用いた固体酸化物形燃料電池セル体の例は、例えば特許文献3である。
特許第3617814号 特開平11−242960 特許第3617814号
The example of La 1-y Sr y MnO 3 a solid oxide fuel cell body used as an air electrode support is, for example, Patent Document 3.
Japanese Patent No. 3617814 JP-A-11-242960 Japanese Patent No. 3617814

本発明は、電子伝導性の高いLa1-ySryNi1-xFexO3を用いた固体酸化物形燃料電池用空気極支持体を提供する際の不具合を解決するものであって、より詳しくは、強度特性を向上させるためのものである。 The present invention is intended to solve the problem in providing electron conductivity high La 1-y Sr y Ni 1 -x Fe x O 3 solid oxide fuel cell air electrode support used More specifically, it is for improving the strength characteristics.

上記課題を解決するために、本発明の固体酸化物形燃料電池用空気極支持体は、La1-ySryNi1-xFexO3で表され、その組成範囲が0<y≦0.3かつ0.4≦x<1で表されることを特徴とする。 In order to solve the above problems, a solid oxide fuel cell air electrode support of the present invention is represented by La 1-y Sr y Ni 1 -x Fe x O 3, the composition range 0 <y ≦ 0.3 and 0.4 ≦ x <1.

本発明によれば、La1-ySryNi1-xFexO3を固体酸化物形燃料電池の空気極支持体として好的に用いることができる。本発明によって、電子伝導性及び強度特性ともに高い固体酸化物形燃料電池用空気極支持体及びをそれを備えたセル体を提供することができる。 According to the present invention, La 1-y Sr y Ni 1-x Fe x O 3 can be used favorable manner as the air electrode support of a solid oxide fuel cell. According to the present invention, it is possible to provide a solid oxide fuel cell air electrode support having high electronic conductivity and strength characteristics, and a cell body including the same.

本発明を実施するための最良の形態を説明するのに先立って、本発明の作用効果について説明する。   Prior to describing the best mode for carrying out the present invention, the function and effect of the present invention will be described.

本発明に係る固体酸化物形燃料電池用空気極支持体は、La1-ySryNi1-xFexO3で表され、その組成範囲が0<y≦0.3かつ0.4≦x<1で表されることを特徴とする。 An air electrode support for a solid oxide fuel cell according to the present invention is represented by La 1-y Sr y Ni 1-x Fe x O 3 , and the composition range thereof is 0 <y ≦ 0.3 and 0.4 ≦ x <1. It is represented by.

本発明では、電子伝導性の高いLa1-ySryNi1-xFexO3について、0<y≦0.3かつ0.4≦x<1の組成範囲を用いることにより強度特性の高い固体酸化物形燃料電池用空気極支持体を提供することができる。 In the present invention, an electronic conductivity higher La 1-y Sr y Ni 1 -x Fe x O 3, 0 <y ≦ 0.3 and 0.4 ≦ x <high solid oxide strength properties by using a composition range An air electrode support for a fuel cell can be provided.

また本発明に係る固体酸化物形燃料電池セル体は、La1-ySryNi1-xFexO3で表され、その組成範囲が0<y≦0.3かつ0.4≦x<1で表されることを特徴とする固体酸化物形燃料電池用空気極支持体を備えるものである。 Table The solid oxide fuel cell body according to the present invention is represented by La 1-y Sr y Ni 1 -x Fe x O 3, in the composition range 0 <y ≦ 0.3 and 0.4 ≦ x <1 The air electrode support for a solid oxide fuel cell is provided.

La1-ySryNi1-xFexO3で表され、その組成範囲が0<y≦0.3かつ0.4≦x<1で表されることを特徴とする固体酸化物形燃料電池用空気極支持体として用いることにより高い発電性能を得ることができ、また発電時のセル体破損を防止することができる。 Solid oxide fuel cell air represented by La 1-y Sr y Ni 1-x Fe x O 3 and having a composition range of 0 <y ≦ 0.3 and 0.4 ≦ x <1 By using it as an electrode support, high power generation performance can be obtained, and cell body damage during power generation can be prevented.

以下、本発明における固体酸化物形燃料電池用空気極支持体について、詳細に説明する。   Hereinafter, the air electrode support for a solid oxide fuel cell according to the present invention will be described in detail.

代表的な固体酸化物形燃料電池の一例である、円筒型セル体を図1に示す。空気極支持体1上に固体電解質3、さらに固体電解質3の上にインターコネクター2と接触しないように燃料極4が構成されている。発電に際して、空気極と固体電解質の界面で、空気極内部を流れてきた電子と外部の酸素ガスが反応し、式(1)に示すように酸素イオンを生じる。この酸素イオンが固体電解質を通って燃料極に達し、燃料ガス中の水素や一酸化炭素と酸素イオンが反応して水あるいは二酸化炭素と電子を生成する。これらの反応は(2)、(3)式で示される。
O2+4e-→2O2- …(1)
H2+O2-→H2O+2e- …(2)
CO+O2-→CO2+2e- …(3)
A cylindrical cell body, which is an example of a typical solid oxide fuel cell, is shown in FIG. The fuel electrode 4 is configured so as not to contact the interconnector 2 on the solid electrolyte 3 on the air electrode support 1 and further on the solid electrolyte 3. During power generation, electrons flowing inside the air electrode react with oxygen gas outside at the interface between the air electrode and the solid electrolyte, and oxygen ions are generated as shown in Equation (1). The oxygen ions pass through the solid electrolyte and reach the fuel electrode, and hydrogen or carbon monoxide in the fuel gas reacts with oxygen ions to generate water or carbon dioxide and electrons. These reactions are represented by formulas (2) and (3).
O 2 + 4e - → 2O 2- ... (1)
H 2 + O 2− → H 2 O + 2e (2)
CO + O 2- → CO 2 + 2e - ... (3)

円筒型タイプの支持体としては、カルシア安定化ジルコニア等の支持機能のみを持たせたタイプ、La1-ySryMnO3等の空気極と支持機能の2機能をあわせもつタイプ、および燃料極と支持機能の2機能をあわせもつタイプがある。このうち、支持機能のみを持たせたタイプは、空気極を支持体とするタイプと比較して電子伝導性が低下し発電性能が低下する。一方、燃料極を支持体とするタイプでは、作動温度700℃〜1000℃において、固体酸化物形燃料電池で発電した電気を長時間安定に集電する方法に課題がある。また、燃料極は通常、セル体作製時には酸化物であり発電時に金属に還元されるが、このとき体積変化が生じるため、燃料極を支持体とする場合はセル体が破損しやすい恐れがある。このように、空気極を支持体とするタイプは発電性能、信頼性ともに高く、安定して電気を供給することができる。なお、この場合の支持体は円筒型タイプに限らず、他の型であっても同様のことが言える。 Cylindrical type supports include a type that has only a supporting function such as calcia stabilized zirconia, a type that has both an air electrode and a supporting function such as La 1-y Sr y MnO 3 , and a fuel electrode. There is a type that has two functions of support function. Among these, the type having only the support function has a lower electronic conductivity and a lower power generation performance than the type having the air electrode as a support. On the other hand, in the type using a fuel electrode as a support, there is a problem in a method of stably collecting electricity generated by a solid oxide fuel cell for a long time at an operating temperature of 700 ° C. to 1000 ° C. In addition, the fuel electrode is usually an oxide at the time of producing the cell body and is reduced to a metal at the time of power generation. However, since the volume changes at this time, the cell body may be easily damaged when the fuel electrode is used as a support. . Thus, the type using the air electrode as a support has high power generation performance and high reliability, and can stably supply electricity. In this case, the support is not limited to the cylindrical type, and the same applies to other types.

円筒型セル体の空気極に電子伝導性の高い材料を用いることにより、発電性能が大きく向上することが、発明者らのシミュレーション結果から明らかになっている。これは、空気極内部を流れる電流の流路が長いため、セル体の総抵抗における空気極の寄与率が大きいためである。  It is clear from the simulation results of the inventors that the power generation performance is greatly improved by using a material having high electron conductivity for the air electrode of the cylindrical cell body. This is because the flow rate of the current flowing inside the air electrode is long, and the contribution rate of the air electrode in the total resistance of the cell body is large.

以下に本発明の実施例を添付の図面を参照して説明する。なお、当然のことであるが本発明は以下の実施例に限定されるものではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Of course, the present invention is not limited to the following examples.

(実施例1)
出発原料として、La(OH)3、SrCO3、NiO、Fe2O3の各粉末を使用した。La0.98Sr0.02Ni0.56Fe0.44O3組成となるように所定量の出発原料を秤量し、ボールミル混合した。この混合粉末を大気中1200℃で10時間焼成し、原料粉末を得た。この粉末に有機バインダーとしてポリビニルアルコールを分散させ、一軸プレス法にて角柱を成形した。この成形体を大気中1350℃で2時間焼成し、実験用試料とした。
(Example 1)
As starting materials, powders of La (OH) 3 , SrCO 3 , NiO, and Fe 2 O 3 were used. La 0.98 Sr 0.02 Ni 0.56 Fe 0.44 O 3 A predetermined amount of starting material was weighed so as to have a composition, and ball mill mixed. This mixed powder was fired in the atmosphere at 1200 ° C. for 10 hours to obtain a raw material powder. Polyvinyl alcohol was dispersed as an organic binder in this powder, and a prism was formed by a uniaxial press method. This molded body was fired at 1350 ° C. in the atmosphere for 2 hours to obtain an experimental sample.

(実施例2)
組成がLa0.94Sr0.06Ni0.53Fe0.47O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
(Example 2)
The same as Example 1, except that the blending ratio of the starting materials was changed so that the composition was La 0.94 Sr 0.06 Ni 0.53 Fe 0.47 O 3 .

(実施例3)
組成がLa0.95Sr0.05Ni0.47Fe0.53O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
(Example 3)
The same as Example 1 except that the blending ratio of the starting materials was changed so that the composition was La 0.95 Sr 0.05 Ni 0.47 Fe 0.53 O 3 .

(実施例4)
組成がLa0.95Sr0.05Ni0.33Fe0.67O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
Example 4
The same as Example 1, except that the blending ratio of the starting materials was changed so that the composition was La 0.95 Sr 0.05 Ni 0.33 Fe 0.67 O 3 .

(実施例5)
組成がLa0.96Sr0.04Ni0.25Fe0.75O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
(Example 5)
The same as Example 1, except that the blending ratio of the starting materials was changed so that the composition was La 0.96 Sr 0.04 Ni 0.25 Fe 0.75 O 3 .

(実施例6)
組成がLa0.97Sr0.03Ni0.01Fe0.99O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
(Example 6)
The same as Example 1 except that the blending ratio of the starting materials was changed so that the composition was La 0.97 Sr 0.03 Ni 0.01 Fe 0.99 O 3 .

(実施例7)
組成がLa0.75Sr0.25Ni0.56Fe0.44O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
(Example 7)
The same as Example 1, except that the blending ratio of the starting materials was changed so that the composition was La 0.75 Sr 0.25 Ni 0.56 Fe 0.44 O 3 .

(実施例8)
組成がLa0.79Sr0.21Ni0.35Fe0.65O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
(Example 8)
The same as Example 1, except that the blending ratio of the starting materials was changed so that the composition was La 0.79 Sr 0.21 Ni 0.35 Fe 0.65 O 3 .

(実施例9)
組成がLa0.88Sr0.12Ni0.05Fe0.95O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
Example 9
The same as Example 1, except that the blending ratio of the starting materials was changed so that the composition was La 0.88 Sr 0.12 Ni 0.05 Fe 0.95 O 3 .

実施例10〜14は原料粉末をパイプ状に成形した。作製方法を以下に示す。   In Examples 10 to 14, the raw material powder was formed into a pipe shape. A manufacturing method is shown below.

(実施例10)
出発原料として、La(OH)3、SrCO3、NiO、Fe2O3の各粉末を使用した。La0.98Sr0.02Ni0.56Fe0.44O3組成となるように所定量の出発原料を秤量し、ボールミル混合した。この混合粉末を大気中1200℃で10時間焼成し、原料粉末を得た。この粉末を用いて押出成形によりパイプを成形し、大気中1350℃で2時間焼成して、実験用試料とした。
(Example 10)
As starting materials, powders of La (OH) 3 , SrCO 3 , NiO, and Fe 2 O 3 were used. La 0.98 Sr 0.02 Ni 0.56 Fe 0.44 O 3 A predetermined amount of starting material was weighed so as to have a composition, and ball mill mixed. This mixed powder was fired in the atmosphere at 1200 ° C. for 10 hours to obtain a raw material powder. Using this powder, a pipe was formed by extrusion molding and fired at 1350 ° C. for 2 hours in the atmosphere to prepare an experimental sample.

(実施例11)
組成がLa0.95Sr0.05Ni0.47Fe0.53O3となるように出発原料の配合割合を変えたこと以外、実施例10と同様である。
(Example 11)
Example 10 is the same as Example 10 except that the blending ratio of the starting materials is changed so that the composition becomes La 0.95 Sr 0.05 Ni 0.47 Fe 0.53 O 3 .

(実施例12)
組成がLa0.75Sr0.25Ni0.56Fe0.44O3となるように出発原料の配合割合を変えたこと以外、実施例10同様である。
Example 12
Example 10 is the same as Example 10 except that the mixing ratio of the starting materials is changed so that the composition becomes La 0.75 Sr 0.25 Ni 0.56 Fe 0.44 O 3 .

(実施例13)
組成がLa0.79Sr0.21Ni0.35Fe0.65O3となるように出発原料の配合割合を変えたこと以外、実施例10と同様である。
(Example 13)
Example 10 is the same as Example 10 except that the blending ratio of the starting materials is changed so that the composition becomes La 0.79 Sr 0.21 Ni 0.35 Fe 0.65 O 3 .

(実施例14)
組成がLa0.88Sr0.12Ni0.05Fe0.95O3となるように出発原料の配合割合を変えたこと以外、実施例10と同様である。
(Example 14)
Example 10 is the same as Example 10 except that the blending ratio of the starting materials is changed so that the composition becomes La 0.88 Sr 0.12 Ni 0.05 Fe 0.95 O 3 .

以下の比較例において、比較例1〜5はLa1-ySryNi1-xFexO3についてFeドープ量xの範囲が0<x<0.4の例である。比較例6〜9はSrドープ量yの範囲が0.3<yの例である。また、比較例10、11はx=0すなわちLa1-ySryNiO3の例であり、比較例12、13はy=0すなわちLaNi1-xFexO3の例である。 In the following Comparative Examples, Comparative Examples 1-5 are examples of La 1-y Sr y Ni 1 -x Fe x for O 3 in the range of Fe doping amount x 0 <x <0.4. Comparative Examples 6 to 9 are examples where the range of the Sr doping amount y is 0.3 <y. In Comparative Examples 10 and 11 is an example of x = 0 That is La 1-y Sr y NiO 3 , Comparative Examples 12 and 13 is an example of y = 0 That LaNi 1-x Fe x O 3 .

(比較例1)
組成がLa0.94Sr0.06Ni0.65Fe0.35O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
(Comparative Example 1)
The same as Example 1, except that the blending ratio of the starting materials was changed so that the composition was La 0.94 Sr 0.06 Ni 0.65 Fe 0.35 O 3 .

(比較例2)
組成がLa0.87Sr0.13Ni0.87Fe0.13O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
(Comparative Example 2)
The same as Example 1, except that the blending ratio of the starting materials was changed so that the composition was La 0.87 Sr 0.13 Ni 0.87 Fe 0.13 O 3 .

(比較例3)
組成がLa0.87Sr0.13Ni0.75Fe0.25O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
(Comparative Example 3)
The same as Example 1, except that the blending ratio of the starting materials was changed so that the composition was La 0.87 Sr 0.13 Ni 0.75 Fe 0.25 O 3 .

(比較例4)
組成がLa0.76Sr0.24Ni0.83Fe0.17O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
(Comparative Example 4)
The same as Example 1 except that the blending ratio of the starting materials was changed so that the composition was La 0.76 Sr 0.24 Ni 0.83 Fe 0.17 O 3 .

(比較例5)
組成がLa0.75Sr0.25Ni0.76Fe0.24O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
(Comparative Example 5)
The same as Example 1 except that the blending ratio of the starting materials was changed so that the composition was La 0.75 Sr 0.25 Ni 0.76 Fe 0.24 O 3 .

(比較例6)
組成がLa0.65Sr0.35Ni0.46Fe0.54O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
(Comparative Example 6)
The same as Example 1, except that the blending ratio of the starting materials was changed so that the composition was La 0.65 Sr 0.35 Ni 0.46 Fe 0.54 O 3 .

(比較例7)
組成がLa0.63Sr0.37Ni0.47Fe0.53O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
(Comparative Example 7)
The same as Example 1, except that the blending ratio of the starting materials was changed so that the composition was La 0.63 Sr 0.37 Ni 0.47 Fe 0.53 O 3 .

(比較例8)
組成がLa0.61Sr0.39Ni0.19Fe0.81O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
(Comparative Example 8)
The same as Example 1 except that the blending ratio of the starting materials was changed so that the composition was La 0.61 Sr 0.39 Ni 0.19 Fe 0.81 O 3 .

(比較例9)
組成がLa0.48Sr0.52Ni0.66Fe0.34O3となるように出発原料の配合割合を変えたこと以外、実施例1と同様である。
(Comparative Example 9)
The same as Example 1, except that the blending ratio of the starting materials was changed so that the composition was La 0.48 Sr 0.52 Ni 0.66 Fe 0.34 O 3 .

(比較例10)
出発原料として、La(OH)3、SrCO3、NiOの各粉末を使用した。La0.67Sr0.33NiO3組成となるように所定量の出発原料を秤量し、ボールミル混合した。この混合粉末を大気中1200℃で10時間焼成し、原料粉末を得た。この粉末に有機バインダーとしてポリビニルアルコールを分散させ、一軸プレス法にて角柱を成形した。この成形体を大気中1350℃で2時間焼成し、実験用試料とした。すなわち、本比較例はFeドープ量x=0の試料である。
(Comparative Example 10)
As starting materials, powders of La (OH) 3 , SrCO 3 , and NiO were used. A predetermined amount of starting materials were weighed so as to have a composition of La 0.67 Sr 0.33 NiO 3 and mixed with a ball mill. This mixed powder was fired in the atmosphere at 1200 ° C. for 10 hours to obtain a raw material powder. Polyvinyl alcohol was dispersed as an organic binder in this powder, and a prism was formed by a uniaxial press method. This molded body was fired at 1350 ° C. in the atmosphere for 2 hours to obtain an experimental sample. That is, this comparative example is a sample with Fe doping amount x = 0.

(比較例11)
組成をLa0.44Sr0.56NiO3となるように出発原料の配合割合を変えたこと以外、比較例10と同様である。すなわち比較例10と同様Feドープ量x=0である。ただし、Srドープ量yが比較例10と異なる。
(Comparative Example 11)
Except that the composition was changed mixing ratio of the starting materials such that the La 0.44 Sr 0.56 NiO 3, is the same as in Comparative Example 10. That is, as in Comparative Example 10, the Fe doping amount x = 0. However, the Sr doping amount y is different from that in Comparative Example 10.

(比較例12)
出発原料として、La(OH)3、NiO、Fe2O3の各粉末を使用した。LaNi0.97Fe0.03O3組成となるように所定量の出発原料を秤量し、ボールミル混合した。この混合粉末を大気中1200℃で10時間焼成し、原料粉末を得た。この粉末に有機バインダーとしてポリビニルアルコールを分散させ、一軸プレス法にて角柱を成形した。この成形体を大気中1350℃で2時間焼成し、実験用試料とした。すなわち、本比較例はSrドープ量y=0の試料である。
(Comparative Example 12)
As starting materials, powders of La (OH) 3 , NiO, and Fe 2 O 3 were used. A predetermined amount of starting material was weighed so as to have a LaNi 0.97 Fe 0.03 O 3 composition, and ball mill mixed. This mixed powder was fired in the atmosphere at 1200 ° C. for 10 hours to obtain a raw material powder. Polyvinyl alcohol was dispersed as an organic binder in this powder, and a prism was formed by a uniaxial press method. This molded body was fired at 1350 ° C. in the atmosphere for 2 hours to obtain an experimental sample. That is, this comparative example is a sample with an Sr doping amount y = 0.

(比較例13)
組成をLaNi0.53Fe0.47O3となるように出発原料の配合割合を変えたこと以外、比較例12と同様である。すなわち比較例12と同様Srドープ量y=0である。ただし、Feドープ量xが比較例12と異なる。
(Comparative Example 13)
Except that the composition was changed mixing ratio of the starting materials such that the LaNi 0.53 Fe 0.47 O 3, the same as in Comparative Example 12. That is, as in Comparative Example 12, the Sr doping amount y = 0. However, the Fe doping amount x is different from that of Comparative Example 12.

比較14〜17は原料粉末をパイプ状に成形した。作製方法を以下に示す。   In comparisons 14 to 17, the raw material powder was formed into a pipe shape. A manufacturing method is shown below.

(比較例14)
組成がLa0.94Sr0.06Ni0.65Fe0.35O3となるように出発原料の配合割合を変えたこと以外、実施例10と同様である。
(Comparative Example 14)
Example 10 is the same as Example 10 except that the blending ratio of the starting materials is changed so that the composition becomes La 0.94 Sr 0.06 Ni 0.65 Fe 0.35 O 3 .

(比較例15)
組成がLa0.75Sr0.25Ni0.76Fe0.24O3となるように出発原料の配合割合を変えたこと以外、実施例10と同様である。
(Comparative Example 15)
Example 10 is the same as Example 10 except that the blending ratio of the starting materials is changed so that the composition becomes La 0.75 Sr 0.25 Ni 0.76 Fe 0.24 O 3 .

(比較例16)
出発原料として、La(OH)3、SrCO3、NiOの各粉末を使用した。La0.44Sr0.56NiO3組成となるように所定量の出発原料を秤量し、ボールミル混合した。この混合粉末を大気中1200℃で10時間焼成し、原料粉末を得た。この粉末を用いて押出成形によりパイプを成形し、大気中1350℃で2時間焼成して、実験用試料とした。
(Comparative Example 16)
As starting materials, powders of La (OH) 3 , SrCO 3 , and NiO were used. A predetermined amount of starting material was weighed so as to have a composition of La 0.44 Sr 0.56 NiO 3 and mixed with a ball mill. This mixed powder was fired in the atmosphere at 1200 ° C. for 10 hours to obtain a raw material powder. Using this powder, a pipe was formed by extrusion molding and fired at 1350 ° C. for 2 hours in the atmosphere to prepare an experimental sample.

(比較例17)
出発原料として、La(OH)3、NiO、Fe2O3の各粉末を使用した。LaNi0.53Fe0.47O3組成となるように所定量の出発原料を秤量し、ボールミル混合した。この混合粉末を大気中1200℃で10時間焼成し、原料粉末を得た。この粉末を用いて押出成形によりパイプを成形し、大気中1350℃で2時間焼成して、実験用試料とした。
(Comparative Example 17)
As starting materials, powders of La (OH) 3 , NiO, and Fe 2 O 3 were used. A predetermined amount of starting material was weighed so as to have a LaNi 0.53 Fe 0.47 O 3 composition, and ball mill mixed. This mixed powder was fired in the atmosphere at 1200 ° C. for 10 hours to obtain a raw material powder. Using this powder, a pipe was formed by extrusion molding and fired at 1350 ° C. for 2 hours in the atmosphere to prepare an experimental sample.

(組成分析方法)
実施例及び比較例の組成分析方法を以下に示す。まず、標準試料作製方法について示す。標準試料は、後で述べる原料を配合し、混合し、乾燥することによって得られる。配合については、La(OH)3, SrCO3, Fe2O3, NiOを110℃で2時間以上乾燥させ、表1に示す元素比になるように配合した。具体的には、標準試料1は元素のmol比がLa:Sr:Ni:Fe=0.9:0.1:0.7:0.3となるように、標準試料2はLa:Sr:Ni:Fe=0.7:0.3:0.5:0.5となるように、標準試料3はLa:Sr:Ni:Fe=0.5:0.5:0.1:0.9となるように配合した。混合については、4種類の原料が均一になるまで十分に混合した。乾燥については、110℃で一晩以上乾燥した。粉体形態の3種類の標準試料についてそれぞれ、四ホウ酸リチウムを用いてガラスビードを作製し、リガク製ZSX PrimusIIを用いて以下の条件で、La, Sr, Ni, Feの強度値の測定を行った。
スペクトル Kα
X線出力 60mA, 50kV
スリット S2
分析径 1mm角
分光結晶 LiF1
検出器 SC
(Composition analysis method)
The composition analysis methods of Examples and Comparative Examples are shown below. First, a standard sample preparation method will be described. The standard sample is obtained by blending raw materials described later, mixing, and drying. For blending, La (OH) 3 , SrCO 3 , Fe 2 O 3 , and NiO were dried at 110 ° C. for 2 hours or longer and blended so that the element ratios shown in Table 1 were obtained. Specifically, standard sample 1 has La: Sr: Ni: Fe = 0.7: 0.3: the molar ratio of elements is La: Sr: Ni: Fe = 0.9: 0.1: 0.7: 0.3. The standard sample 3 was blended so that La: Sr: Ni: Fe = 0.5: 0.5: 0.1: 0.9 so that 0.5: 0.5. About mixing, it mixed enough until four types of raw materials became uniform. About drying, it dried at 110 degreeC overnight or more. For each of the three standard samples in powder form, glass beads were prepared using lithium tetraborate, and the strength values of La, Sr, Ni, and Fe were measured using Rigaku ZSX Primus II under the following conditions: went.
Spectrum Kα
X-ray output 60mA, 50kV
Slit S2
Analysis diameter 1mm square
Spectroscopic crystal LiF1
Detector SC

検量線作成方法について、まずLaの場合を説明する。上記の測定により得られたLaの強度値と表1に示すLaの元素比との関係は、縦軸を強度値、横軸をLaの元素比としてグラフ化される。グラフの原点を通るように最小二乗法でプロット点の近似直線を作成して、Laの検量線を得た。Sr, Ni, Feについても同様にして検量線を得た。  Regarding the calibration curve creation method, the case of La will be described first. The relationship between the intensity value of La obtained by the above measurement and the element ratio of La shown in Table 1 is graphed with the intensity value on the vertical axis and the element ratio of La on the horizontal axis. An approximate straight line of plot points was created by the least square method so as to pass through the origin of the graph, and a calibration curve of La was obtained. Calibration curves were similarly obtained for Sr, Ni, and Fe.

実施例、比較例の元素比の求め方について説明する。全ての実施例、比較例について、3点曲げ強度測定用の試料をリガク製ZSX PrimusIIを用いて標準試料と同じ条件で測定し、Laの強度値を得た。上述の方法で標準試料より作成したLaの検量線を用いて、強度値からLaの元素比を求めた。Sr, Ni, Feについても同様の方法で、それぞれの検量線から元素比を求めた。なお固体酸化物形燃料電池セル体の空気極支持体の組成を分析する際は、セル体を長尺方向に垂直に切断し切断面の空気極支持体部分を標準試料と同じ条件で測定する、もしくは空気極支持体を粉砕し四ホウ酸リチウムを用いてガラスビード化し、標準試料と同じ条件測定すれば良い。  The method for obtaining the element ratios of the examples and comparative examples will be described. For all examples and comparative examples, samples for measuring the three-point bending strength were measured using the Rigaku ZSX Primus II under the same conditions as the standard samples, and La strength values were obtained. Using the La calibration curve prepared from the standard sample by the method described above, the element ratio of La was determined from the intensity value. For Sr, Ni, and Fe, the element ratio was obtained from each calibration curve in the same manner. When analyzing the composition of the air electrode support of the solid oxide fuel cell body, the cell body is cut perpendicular to the longitudinal direction, and the air electrode support portion of the cut surface is measured under the same conditions as the standard sample. Alternatively, the air electrode support may be pulverized and glass beaded using lithium tetraborate, and measured under the same conditions as the standard sample.

Figure 2009140800
(強度特性)
Figure 2009140800
(Strength characteristics)

次に、実施例1〜9と比較例1〜13の3点曲げ強度と、実施例10〜14と比較例14〜17の圧環強度を以下に示す方法で評価することによって、強度特性を調べた。   Next, the strength characteristics were examined by evaluating the three-point bending strength of Examples 1 to 9 and Comparative Examples 1 to 13 and the crushing strength of Examples 10 to 14 and Comparative Examples 14 to 17 by the following methods. It was.

実施例1〜9と比較例1〜13の3点曲げ強度をJIS R1601に基づいて評価した。測定には島津製作所製AGS-H 1kNを用い(4)式から強度を算出した。
σb = (3×P×L)/ (2×w×t2) …(4)
ここでσbは3点曲げ強度、Pは破壊荷重、L は下部支点間距離、wは試験片の幅、tは試験片の厚さを示す。なお、サンプルサイズはw=約5mm、t=約5mmでありJIS規格と異なるものを用いたが、計算式にサンプルサイズが含まれているため、サイズが異なっていても強度値は変化しない。
The three-point bending strengths of Examples 1 to 9 and Comparative Examples 1 to 13 were evaluated based on JIS R1601. For the measurement, AGS-H 1kN manufactured by Shimadzu Corporation was used, and the strength was calculated from the equation (4).
σ b = (3 × P × L) / (2 × w × t 2 ) (4)
Here, σ b is the three-point bending strength, P is the breaking load, L is the distance between the lower fulcrums, w is the width of the test piece, and t is the thickness of the test piece. The sample size was w = about 5 mm and t = about 5 mm, which was different from the JIS standard. However, since the sample size is included in the calculation formula, the strength value does not change even if the size is different.

また、実施例10〜14と比較例14〜17の圧環強度を以下の方法で評価した。3点曲げ強度測定と同じ装置を用い、圧縮治具の間に試料を置き、上下から加圧して破壊させ、そのときの荷重値を用いて(5)式から算出した。
σr = P × (D-d) / (l×d2) …(5)
ここでσrは圧環強度、Pは破壊荷重、Dは試料の外径、dは肉厚、lは試料長さを示す。
(評価結果)
Moreover, the crushing strength of Examples 10-14 and Comparative Examples 14-17 was evaluated by the following method. Using the same apparatus as the three-point bending strength measurement, the sample was placed between the compression jigs, pressed from above and below to be broken, and the load value at that time was used to calculate from equation (5).
σ r = P × (Dd) / (l × d 2 )… (5)
Where σ r is the crushing strength, P is the breaking load, D is the outer diameter of the sample, d is the wall thickness, and l is the sample length.
(Evaluation results)

組成分析結果より試料組成は仕込み通りであることが確認された。実施例1〜9と比較例1〜13の3点曲げ強度試験結果を表2に、実施例10〜14と比較例14〜17の圧環強度試験結果を表3に示す。発電時のセル体破損を防止するためには支持体の圧環強度が15MPa以上必要であることが経験的に知られている。また、圧環強度と3点曲げ強度との間には相関があり、圧環強度15MPa以上は3点曲げ強度4kgf/mm2以上に相当することが確認されている。 From the result of the composition analysis, it was confirmed that the sample composition was as prepared. Table 2 shows the three-point bending strength test results of Examples 1 to 9 and Comparative Examples 1 to 13, and Table 3 shows the crushing strength test results of Examples 10 to 14 and Comparative Examples 14 to 17. It is empirically known that the crushing strength of the support is required to be 15 MPa or more in order to prevent the cell body from being damaged during power generation. Further, there is a correlation between the crushing strength and the three-point bending strength, and it has been confirmed that a crushing strength of 15 MPa or more corresponds to a three-point bending strength of 4 kgf / mm 2 or more.

Figure 2009140800
Figure 2009140800

Figure 2009140800
Figure 2009140800

表2より、実施例1〜9は全て3点曲げ強度4kgf/mm2以上であり、特に実施例5や実施例9で高い強度値を示した。比較例1〜13はいずれも3.53kgf/mm2以下であり、特に比較例4や比較例11で低い値を示した。 From Table 2, Examples 1 to 9 all have a three-point bending strength of 4 kgf / mm 2 or more, and in particular, Examples 5 and 9 showed high strength values. Each of Comparative Examples 1 to 13 was 3.53 kgf / mm 2 or less, and particularly Comparative Example 4 and Comparative Example 11 showed low values.

また、表3より実施例10〜14ではいずれも圧環強度15MPa以上であり、特に実施例9で高い強度値を示した。比較例14〜17では10.59MPa以下であった。   Moreover, from Table 3, in Examples 10-14, the crushing strength was 15 MPa or more, and in particular, Example 9 showed a high strength value. In Comparative Examples 14 to 17, it was 10.59 MPa or less.

La1-ySryNi1-xFexO3組成図に、3点曲げ強度が4kgf/mm2以上の組成を○で、4kgf/mm2未満の組成を×で表記した図を図2に示す。縦軸はSrドープ量yを0から0.8まで、横軸はFeドープ量xを0から1まで表しており、点線によって区切ってある。○横の数字は実施例番号を、×横の数字は比較例番号を表す。 La 1-y Sr y Ni 1-x Fe x O 3 Composition diagram showing a composition with a three-point bending strength of 4 kgf / mm 2 or higher and a composition of less than 4 kgf / mm 2 with × Shown in The vertical axis represents the Sr doping amount y from 0 to 0.8, and the horizontal axis represents the Fe doping amount x from 0 to 1, separated by a dotted line. ○ The numbers on the horizontal side represent the example numbers, and the numbers on the horizontal side represent the comparative example numbers.

図2より、La1-ySryNi1-xFexO3(0<y≦0.3かつ0.4≦x<1)の組成範囲で3点曲げ強度4kgf/mm2以上となった。Feドープ量xの範囲が0<x<0.4である比較例1〜5は4kgf/mm2未満であった。また、Srドープ量yの範囲が0.3<yである比較例6〜9についても、3点曲げ強度4kgf/mm2未満であるため支持体として用いることができない。さらに、x=0である比較例10と11すなわちLa1-ySryNiO3、y=0である比較例12と13すなわちLaNi1-xFexO3についても3点曲げ強度が4kgf/mm2未満であるため支持体に用いることができないことが分かった。 From 2 became La 1-y Sr y Ni 1 -x Fe x O 3 (0 <y ≦ 0.3 and 0.4 ≦ x <1) 3-point composition range of flexural strength 4 kgf / mm 2 or more. In Comparative Examples 1 to 5 in which the range of the Fe doping amount x was 0 <x <0.4, it was less than 4 kgf / mm 2 . Further, Comparative Examples 6 to 9 in which the range of the Sr doping amount y is 0.3 <y cannot be used as a support because the three-point bending strength is less than 4 kgf / mm 2 . Further, Comparative Example 10 is x = 0 11 namely La 1-y Sr y NiO 3 , y = 0 and is Comparative Example 12 and 13 i.e. 3-point bending strength for LaNi 1-x Fe x O 3 is 4 kgf / It was found that it cannot be used for the support because it is less than mm 2 .

すなわち、La1-ySryNi1-xFexO3(0<y≦0.3かつ0.4≦x<1)で示される組成範囲で圧環強度15MPa以上かつ3点曲げ強度4kgf/mm2以上が得られることが明らかになった。 That, La 1-y Sr y Ni 1-x Fe x O 3 (0 <y ≦ 0.3 and 0.4 ≦ x <1) radial crushing strength 15MPa or more and 3-point bending strength 4 kgf / mm 2 or more in a composition range represented by the It became clear that it was obtained.

前記範囲において高い強度特性を示したのは、置換元素であるSrやFeの一部が結晶格子内に取り込まれず粒界に存在したため焼結性が向上し、粒子同士のつながりが強くなった結果、強度特性が向上したためと推測される。Sr量が増加すると強度特性が減少するのは、Srが過剰になると、Sr化合物が生成しその化合物の強度特性が低いためと考えられる。   The high strength characteristics in the above range are the result of the fact that some of the substitutional elements Sr and Fe were not taken into the crystal lattice and were present at the grain boundaries, so the sinterability was improved and the connection between the particles became stronger It is presumed that the strength characteristics were improved. The reason why the strength characteristics decrease as the amount of Sr increases is considered to be that when Sr is excessive, an Sr compound is formed and the strength characteristics of the compound are low.

以上より、La1-ySryNi1-xFexO3(0<y≦0.3かつ0.4≦x<1)において高い強度特性が得られることが明らかになり、前記範囲を用いることにより発電時のセル体破損を防止することが可能になった。本発明によって、電子伝導性の高いLa1-ySryNi1-xFexO3を固体酸化物形燃料電池用空気極支持体として好的に用いることができる。 From the above, it becomes clear that La 1-y Sr y Ni 1 -x Fe x O 3 where high strength properties in (0 <y ≦ 0.3 and 0.4 ≦ x <1) is obtained, the power generation by using the range It became possible to prevent the cell body from being damaged. The present invention, the electron conductivity high La 1-y Sr y Ni 1 -x Fe x O 3 can be used favorable manner as an air electrode support for a solid oxide fuel cell.

また、La1-ySryNi1-xFexO3(0<y≦0.3かつ0.4≦x<1)で表される組成の空気極支持体を用いて、順次、電解質、燃料極を成膜して作製した固体酸化物形燃料電池セル体は、高い信頼性と高い発電性能を提供することができる。 Further, using the La 1-y Sr y Ni 1 -x Fe x O 3 (0 <y ≦ 0.3 and 0.4 ≦ x <1) in the air electrode support composition represented sequentially, electrolyte, fuel electrode The solid oxide fuel cell body produced by film formation can provide high reliability and high power generation performance.

円筒タイプのSOFCセル体の断面を示す図である。It is a figure which shows the cross section of a cylindrical type SOFC cell body. 本発明における強度特性と組成の関係を示す図である。It is a figure which shows the relationship between the intensity | strength characteristic in this invention, and a composition.

符号の説明Explanation of symbols

1…空気極支持体
2…インターコネクター
3…固体電解質
4…燃料極
DESCRIPTION OF SYMBOLS 1 ... Air electrode support body 2 ... Interconnector 3 ... Solid electrolyte 4 ... Fuel electrode

Claims (2)

固体酸化物形燃料電池用空気極支持体であって、La1-ySryNi1-xFexO3で表され、その組成範囲が0<y≦0.3かつ0.4≦x<1で表されることを特徴とする固体酸化物形燃料電池用空気極支持体。 An air electrode support for a solid oxide fuel cell, represented by La 1-y Sr y Ni 1-x Fe x O 3 , whose composition range is represented by 0 <y ≦ 0.3 and 0.4 ≦ x <1. An air electrode support for a solid oxide fuel cell. 請求項1記載の空気極支持体を備えることを特徴とする固体酸化物形燃料電池セル体。 A solid oxide fuel cell body comprising the air electrode support according to claim 1.
JP2007316932A 2007-12-07 2007-12-07 Air electrode support for solid oxide fuel cell and solid oxide fuel cell body using the same Expired - Fee Related JP5286766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007316932A JP5286766B2 (en) 2007-12-07 2007-12-07 Air electrode support for solid oxide fuel cell and solid oxide fuel cell body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007316932A JP5286766B2 (en) 2007-12-07 2007-12-07 Air electrode support for solid oxide fuel cell and solid oxide fuel cell body using the same

Publications (2)

Publication Number Publication Date
JP2009140800A true JP2009140800A (en) 2009-06-25
JP5286766B2 JP5286766B2 (en) 2013-09-11

Family

ID=40871219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007316932A Expired - Fee Related JP5286766B2 (en) 2007-12-07 2007-12-07 Air electrode support for solid oxide fuel cell and solid oxide fuel cell body using the same

Country Status (1)

Country Link
JP (1) JP5286766B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187841A (en) * 1993-12-28 1995-07-25 Ngk Insulators Ltd Porous sintered compact and solid electrolyte type fuel cell
JPH10223239A (en) * 1997-02-05 1998-08-21 Osaka Gas Co Ltd Cylindrical solid oxide electrolyte fuel cell
JP2001325973A (en) * 2000-03-06 2001-11-22 Toto Ltd Ceramic film and its manufacturing method
JP2002151091A (en) * 2000-11-13 2002-05-24 Nippon Telegr & Teleph Corp <Ntt> Air electrode material for alkaline earth-added nickel- iron perovskite type low-temperature operating solid fuel cell
JP2006351406A (en) * 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187841A (en) * 1993-12-28 1995-07-25 Ngk Insulators Ltd Porous sintered compact and solid electrolyte type fuel cell
JPH10223239A (en) * 1997-02-05 1998-08-21 Osaka Gas Co Ltd Cylindrical solid oxide electrolyte fuel cell
JP2001325973A (en) * 2000-03-06 2001-11-22 Toto Ltd Ceramic film and its manufacturing method
JP2002151091A (en) * 2000-11-13 2002-05-24 Nippon Telegr & Teleph Corp <Ntt> Air electrode material for alkaline earth-added nickel- iron perovskite type low-temperature operating solid fuel cell
JP2006351406A (en) * 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode

Also Published As

Publication number Publication date
JP5286766B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
Dai et al. Synthesis and characterization of B-site Ni-doped perovskites Sr 2 Fe 1.5− x Ni x Mo 0.5 O 6− δ (x= 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs
Paulik et al. Mechanical properties of calcium-and strontium-substituted lanthanum chromite
KR101987299B1 (en) Structure
KR20170132140A (en) Proton conductor, solid electrolyte layer for fuel cell, cell structure, and fuel cell including the same
Shi et al. Electrochemical performance of cobalt‐free Nd0. 5Ba0. 5Fe1–xNixO3–δ cathode materials for intermediate temperature solid oxide fuel cells
Liu et al. Highly oxygen non‐stoichiometric BaSc0. 25Co0. 75O3‐δ as a high‐performance cathode for intermediate‐temperature solid oxide fuel cells
JP5219370B2 (en) Ionic conductor
US7625653B2 (en) Ionic conductor
Aruna et al. Studies on combustion synthesized LaMnO3–LaCoO3 solid solutions
JP2004339035A (en) Lanthanum gallate sintered compact, method for producing the same, and use of the same
JP5286766B2 (en) Air electrode support for solid oxide fuel cell and solid oxide fuel cell body using the same
JP3121993B2 (en) Method for producing conductive ceramics
JP2011111348A (en) Ferrite electrode and method for producing the same
CN101983437A (en) Sintered compact and thermoelectric conversion material
JP2009230929A (en) Current collector material of solid oxide fuel cell, air pole current collector, and solid oxide fuel cell
JP2836852B2 (en) Solid oxide fuel cell separator
JP2010067498A (en) Solid oxide type fuel cell body and fuel cell employing the same
Ma et al. Synthesis and characterizations of Ce0. 85 (SmxNd1− x) 0.15 O2− δ ceramics
JP2001072465A (en) Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same
JP3471890B2 (en) Porous sintered body, heat-resistant electrode and solid oxide fuel cell
JP4790978B2 (en) Oxygen ion conductive solid electrolyte, method for producing the same, electrochemical device using the same, and solid electrolyte fuel cell
JP3598956B2 (en) Gallate composite oxide solid electrolyte material and method for producing the same
KR101821805B1 (en) Method for preparing metal bipolar plate of fuel cell and metal bipolar plate prepared therewith
JP2007012498A (en) Manufacturing method of fuel electrode for solid oxide fuel cell and fuel cell
KR101241284B1 (en) Method for improving electrical conduction of ceramic interconnector of sofc under the reduced environment and low temperature manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5286766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees