JP2009139207A - Powder surface detection device in stirring tank - Google Patents

Powder surface detection device in stirring tank Download PDF

Info

Publication number
JP2009139207A
JP2009139207A JP2007315548A JP2007315548A JP2009139207A JP 2009139207 A JP2009139207 A JP 2009139207A JP 2007315548 A JP2007315548 A JP 2007315548A JP 2007315548 A JP2007315548 A JP 2007315548A JP 2009139207 A JP2009139207 A JP 2009139207A
Authority
JP
Japan
Prior art keywords
powder
level
stirring
stirring tank
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007315548A
Other languages
Japanese (ja)
Inventor
Teishun Ueda
禎俊 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2007315548A priority Critical patent/JP2009139207A/en
Publication of JP2009139207A publication Critical patent/JP2009139207A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect powder surface level in a stirring tank in order to control the material powder amount applied into and the produced powder amount discharged from the stirring tank for stirring the powder at a high temperature. <P>SOLUTION: In a carbonization furnace for producing carbonized powder at a high temperature, in order to control the supply amount of raw material powder and the discharge amount of the produced powder, a detector for detecting the powder surface by detecting a force occurring in the powder during stirring is installed in a reference position of the powder surface. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は高温で使用する攪拌槽において、粉流体の流動によって生じる応力を直接検知して、粉体面を求めるレベル検知装置に関する。   The present invention relates to a level detection device that directly detects a stress caused by the flow of powdered fluid and obtains a powder surface in a stirring tank used at a high temperature.

高温度領域における粉面や液面のレベルを検知するには、粉体や流体に直接接触して検知する方法と、接触させずに検知する方法とがある。   In order to detect the level of the powder level and the liquid level in the high temperature region, there are a method of detecting by directly contacting the powder and fluid, and a method of detecting without contacting them.

流体に直接接触して検知する方法としては、振動式検知装置、静電容量式検知装置、パドル式検知装置などがある。例えば、特許文献1には、静電容量式センサを用いて界面を検出するものと、超音波を用い移動する界面を検出するものが開示されている。これらの検出装置は、250℃〜950℃の高温域で使用するためにはいずれも材質的にもまた構造的にも特殊なものとなり、そのため装置価格やメンテナンス価格が高価なものになり普及していない。概ね250℃以下の温度において使用されるべきものであり、250℃から950℃の範囲の高温で使用されるものではない。   Examples of the detection method by directly contacting the fluid include a vibration type detection device, a capacitance type detection device, and a paddle type detection device. For example, Patent Document 1 discloses one that detects an interface using a capacitive sensor and one that detects a moving interface using ultrasonic waves. These detectors are both special in terms of material and structure for use in a high temperature range of 250 ° C. to 950 ° C. Therefore, the device price and the maintenance price become expensive and become widespread. Not. It should be used at a temperature of approximately 250 ° C. or lower, and is not used at a high temperature in the range of 250 ° C. to 950 ° C.

従って、この種の高温領域においては、特許文献2に記載されているようなカプセル内にセンサを設けたものや、流体に直接接触しない非接触式装置が主として使用されている。   Therefore, in this type of high temperature region, a sensor provided in a capsule as described in Patent Document 2 and a non-contact type device that does not directly contact a fluid are mainly used.

非接触式検知装置では、放射線レベル検知装置があるが、放射線源の取り扱いが困難であることや、非常に高価であり、一般にはあまり使用されていない。   As the non-contact type detection device, there is a radiation level detection device. However, it is difficult to handle the radiation source and is very expensive, and is not generally used.

特開平05−273032号公報JP 05-273032 A 特開平06−034310号公報Japanese Patent Laid-Open No. 06-034310

前述のように、従来技術の検知装置では構造的にも複雑で有ったり、取り扱い・メンテナンスが困難であったり、価格的にも非常に高価で有ったりして実用上適合する検知装置は無きに等しい状態である。   As described above, the conventional detection device is structurally complicated, difficult to handle and maintain, and very expensive in price. It is a state equal to nothing.

本発明は構造的に簡単で且つ小型である検知装置を用いて高温の攪拌流体又は粒子の面を検出し面レベルに応じて供給する材料の量、及び排出する生成物の量を最適に制御できる攪拌装置を提供することにある。   The present invention uses a detection device that is structurally simple and compact to detect the surface of a hot stirring fluid or particle and optimally control the amount of material supplied and the amount of product discharged according to the surface level. It is providing the stirring apparatus which can be performed.

250℃から950℃の範囲の高温で炭化粉体を生成する撹拌槽内において、原料粉の供給量および生成粉の排出量を制御するために、粉面の基準位置に撹拌時に粉体に発生する力を検出することで粉面を検出する検出器を設置したことを特徴とする。   Generated powder during stirring at the reference position on the powder surface in order to control the supply amount of raw material powder and the discharge amount of generated powder in a stirring tank that generates carbonized powder at a high temperature ranging from 250 ° C to 950 ° C. It is characterized in that a detector for detecting the powder level by detecting the force to be installed is installed.

高温の粉体生成用の攪拌機構を備えた炭化炉内の粉体の量(粉面レベル)を計測して、炭化炉内に供給する原料粉の供給量、及び生成物の排出量を精度良く制御することが可能となった。   Measure the amount of powder (powder level) in the carbonization furnace equipped with a stirring mechanism for high-temperature powder generation to accurately supply the amount of raw material powder supplied to the carbonization furnace and the amount of product discharged It became possible to control well.

以下図に示す実施例に基づいて本発明の攪拌装置を説明する。図1には本発明の粉面検知器を設けた粉体処理装置を示す。   The stirring device of the present invention will be described below based on the embodiments shown in the drawings. FIG. 1 shows a powder processing apparatus provided with the powder level detector of the present invention.

炭化炉1内部は、仕切り板12によって、炭化部2と乾留ガス燃焼部3とに区分されている。また炭化部2には、原料粉(例えば、乾燥コーヒー粕)が供給用の原料ホッパー7に適当な方法(例えば空気輸送装置)で搬送され、貯留されている。この貯留された原料粉は、原料ホッパー7に設けられている原料供給用ロータリーバルブ8と原料供給用スクリューフィーダ9を駆動制御することで、炭化炉1内の炭化部2に定期的に供給される。   The inside of the carbonization furnace 1 is divided into a carbonization section 2 and a dry distillation gas combustion section 3 by a partition plate 12. In the carbonization section 2, raw material powder (for example, dried coffee cake) is conveyed and stored in the raw material hopper 7 for supply by an appropriate method (for example, air transport device). The stored raw material powder is periodically supplied to the carbonization section 2 in the carbonization furnace 1 by drivingly controlling a raw material supply rotary valve 8 and a raw material supply screw feeder 9 provided in the raw material hopper 7. The

炭化部2の下方にはコーン部20で仕切られた空間が設けてあり、このコーン部20には高温ガスを供給するための空気孔21が複数設けてある。コーン部20で仕切られた空間には、都市ガスと燃焼空気を供給して燃焼させる炭化バーナ22から600〜800℃の高温ガスが供給される。この高温ガスが、コーン部20に設けてある空気孔21から原料粉間を通過して乾留ガス燃焼部3に上昇して行く。この高温ガスは、原料粉を加熱して残留酸素によって部分的に自己燃焼し、600〜800℃の高温となる。これにより、原料粉は乾留状態で炭化品になる。炭化された原料粉は、炭化品排出用スクリューフィーダ10及び炭化品排出ロータリーバルブ11を介して炭化炉1から排出される。   A space partitioned by a cone portion 20 is provided below the carbonization portion 2, and the cone portion 20 is provided with a plurality of air holes 21 for supplying high temperature gas. A space partitioned by the cone portion 20 is supplied with a high-temperature gas of 600 to 800 ° C. from a carbonized burner 22 that supplies and burns city gas and combustion air. This high-temperature gas passes between the raw material powders through the air holes 21 provided in the cone part 20 and rises to the dry distillation gas combustion part 3. This high-temperature gas heats the raw material powder and partially self-combusts with residual oxygen, resulting in a high temperature of 600 to 800 ° C. Thereby, raw material powder turns into a carbonized product in a dry distillation state. The carbonized raw material powder is discharged from the carbonization furnace 1 through the carbonized product discharge screw feeder 10 and the carbonized product discharge rotary valve 11.

ところで、本実施例の炭化炉では、炭化部2の粉面を略同じ状態を保持するように制御している。このため、粉面の基準となるべき位置に粉面検出センサ16を設け、その粉面検出センサ16の出力を、信号ケーブル17及び信号接続箱18を介して検出器(歪み計)19に送る。そして、検出器19にて粉面を検出して、その検出値に基づいて原料供給用と炭化品排出用スクリューフィーダ9,10等を駆動制御して供給する原料粉量と排出する炭化粉量とを制御している。   By the way, in the carbonization furnace of a present Example, it controls so that the powder surface of the carbonization part 2 may hold | maintain substantially the same state. For this reason, the powder level detection sensor 16 is provided at a position that should become the reference of the powder level, and the output of the powder level detection sensor 16 is sent to the detector (strain gauge) 19 via the signal cable 17 and the signal connection box 18. . Then, the powder level is detected by the detector 19, and the amount of raw material powder to be supplied and the amount of carbonized powder to be discharged are controlled by driving the raw material supply and carbide discharge screw feeders 9 and 10 based on the detected value. And control.

炭化部2で発生した乾留ガスは乾留ガス燃焼部3に上昇し、この乾留ガス燃焼部3で乾留ガス燃焼用空気取入口23から取込んだ過剰空気によって自己燃焼し、無害化される。その後、排気配管13を経て熱交換器14で冷却水と熱交換して冷却され排風機15によって系外に排出される。熱交換器14で高温の排気ガスと熱交換して暖められ蒸発した冷却水は他で使用される。   The dry distillation gas generated in the carbonization unit 2 rises to the dry distillation gas combustion unit 3 and is self-combusted by the excess air taken in from the dry distillation gas combustion air inlet 23 in the dry distillation gas combustion unit 3 and rendered harmless. After that, it is cooled by exchanging heat with cooling water in the heat exchanger 14 through the exhaust pipe 13, and is discharged out of the system by the exhaust fan 15. The cooling water heated and evaporated by heat exchange with the hot exhaust gas in the heat exchanger 14 is used elsewhere.

炭化炉1内の炭化部2には原料粉を均一過熱させるために、また、炭化時に発生するタール分によって原料粉が固着しないように、攪拌翼5を設けた攪拌棒4を駆動装置6で回転させることで、攪拌混合する構成となっている。以後この撹拌手段(撹拌翼5、撹拌棒4、駆動装置6を総称する)設けた部分を撹拌槽と称する場合もある。   In order to uniformly superheat the raw material powder in the carbonization section 2 in the carbonization furnace 1 and to prevent the raw material powder from adhering due to tar generated during carbonization, a stirring rod 4 provided with a stirring blade 5 is connected by a driving device 6. By rotating, it is configured to stir and mix. Hereinafter, the portion provided with the stirring means (generically referring to the stirring blade 5, the stirring rod 4, and the driving device 6) may be referred to as a stirring tank.

図2に粉面を検知する検出器の検知部の構成を示す。本実施例で使用する粉面検出センサ16は検知板25に、カプセル内に歪みゲージ26を設けた感応部を取付けたものである。   The structure of the detection part of the detector which detects a powder level in FIG. 2 is shown. The powder level detection sensor 16 used in this embodiment is obtained by attaching a sensitive portion provided with a strain gauge 26 in a capsule to a detection plate 25.

攪拌手段が粉体を攪拌するときに粉体から粉面検出センサ16が力を受けて、発生する応力を検出して、応力値に応じて粉面が所定の高さ(レベル)にあるか否かを検出するものである。歪みゲージ26の出力は接続部27を介して耐熱性の信号線17及び信号接続箱18を介して検知器(歪み計)19に接続されている。検知板25は略b=15mm、L=200mmの受圧面を持つ板状体であり、その厚みは略1mm程度の薄いもので粉体の圧力を大きく受けるように受圧面の広い方が縦方向となるように構成されている。また、受圧面の後方は図1の炭化炉1に接続し易いようにm=10φの棒状になっている。   When the stirring means stirs the powder, the powder level detection sensor 16 receives a force from the powder to detect the generated stress, and whether the powder level is at a predetermined height (level) according to the stress value. Whether or not is detected. The output of the strain gauge 26 is connected to a detector (strain meter) 19 through a heat-resistant signal line 17 and a signal connection box 18 through a connection portion 27. The detection plate 25 is a plate-like body having a pressure receiving surface of approximately b = 15 mm and L = 200 mm. The thickness of the detecting plate 25 is as thin as approximately 1 mm, and the wider pressure receiving surface is in the vertical direction so as to receive a large amount of powder pressure. It is comprised so that. Further, the rear side of the pressure receiving surface has a rod shape of m = 10φ so that it can be easily connected to the carbonization furnace 1 of FIG.

粉面が低下すると、検知器19の出力が小さくなるか、全く出力が発生しなくなることで粉面低下を検知することが可能となる。なお、本図には図示していないが検知器19の出力は図示していない制御装置に接続されており、制御装置では検知器19の検出結果に基づいて、粉面が基準値以下の場合は原料粉を供給すると共に、生成物の排出を停止するように制御する。   When the powder level is lowered, the output of the detector 19 is reduced or no output is generated at all, so that it is possible to detect the powder level drop. Although not shown in the figure, the output of the detector 19 is connected to a control device (not shown). In the control device, the powder level is below a reference value based on the detection result of the detector 19. Controls the supply of the raw material powder and stops the discharge of the product.

図3に検知板25の取付け状態を示す。図3(a)は装置を上から見た図を、図3(b)は装置を横から見た図を示している。図3に示すように、粉面検出センサ16は、水平方向に対してθ=45度の角度に傾斜して、炭化炉に取付けてある。また、攪拌翼5の上部から上方に、約Z=30mm離れた位置に検知板25の下端部が位置するように配置してある。   FIG. 3 shows how the detection plate 25 is attached. FIG. 3A shows a view of the apparatus from above, and FIG. 3B shows a view of the apparatus from the side. As shown in FIG. 3, the powder level detection sensor 16 is attached to the carbonization furnace at an angle of θ = 45 degrees with respect to the horizontal direction. Further, the detection plate 25 is disposed so that the lower end of the detection plate 25 is located at a position approximately Z = 30 mm above the stirring blade 5.

図4に図3をA方向から見た図を示す。攪拌翼5は幅n=150mmの板状体で、攪拌軸に対してφ=45度の角度で回転軸に取付けてある。この構成で、回転方向との関係で、粉体を掻き揚げる作用を持つようになっている。   FIG. 4 shows a view of FIG. 3 viewed from the A direction. The stirring blade 5 is a plate-like body having a width n = 150 mm, and is attached to the rotating shaft at an angle of φ = 45 degrees with respect to the stirring shaft. With this configuration, it has an action of lifting the powder in relation to the rotation direction.

今例えば粉体面がレベルBに示すように、攪拌翼5の下にあれば正に攪拌翼5は空を切る形となり、検知板には何等圧力が掛からず、歪み量は0となる。   Now, for example, as shown in level B, if the powder surface is below the stirring blade 5, the stirring blade 5 will be completely emptied, no pressure will be applied to the detection plate, and the amount of distortion will be zero.

次に、粉体面がレベルAに示すように、攪拌翼5に当たる位置になると攪拌翼の掻き揚げ作用により、攪拌翼5が検知板25の直下又は近傍を通過したときのみ、粉体は検知板25に接触する。攪拌翼は上から見て時計回り方向に回転しており、粉体は回転の影響を受けて同じ方向に流動する。これによって、検知板25には応力が発生し、その応力に見合った歪を歪ゲージ26で検出する。攪拌翼が検知板の近傍を離れるに従って掻き揚げ力が無くなり、攪拌翼は空を切る形となり検知板に発生する歪み量は0となる。粉体面のレベルが検知板の位置より高くなる(検知板を覆う)と、検知板には所定の応力が作用していることなり、撹拌翼の通過に伴う発生する応力値の変化分は小さくなる。この状態を予め測定しておけば、粉体面のレベルを求めることが可能となる。   Next, as shown in level A, when the powder surface comes into contact with the stirring blade 5, the powder is detected only when the stirring blade 5 passes directly under or near the detection plate 25 due to the lifting action of the stirring blade. Contact the plate 25. The stirring blade rotates in the clockwise direction when viewed from above, and the powder flows in the same direction under the influence of the rotation. As a result, a stress is generated in the detection plate 25, and a strain corresponding to the stress is detected by the strain gauge 26. As the stirring blade moves away from the vicinity of the detection plate, the lifting force disappears, the stirring blade cuts into the sky, and the amount of distortion generated in the detection plate becomes zero. When the level of the powder surface becomes higher than the position of the detection plate (covering the detection plate), a predetermined stress is applied to the detection plate, and the change in the stress value generated by the passage of the stirring blade is Get smaller. If this state is measured in advance, the level of the powder surface can be obtained.

例えば、攪拌翼の回転速度が1分間に3回転とすると、検知板には回転速度に同期した形で、1分間に3回の歪が発生する。従って、誤差検知を考慮して、1分間に1回以上の頻度で、ある数値以上の歪を検知するか否かで、粉体面がその位置(レベル)にあるか否かを計測することができる。   For example, when the rotation speed of the stirring blade is 3 rotations per minute, the detection plate is strained 3 times per minute in a form synchronized with the rotation speed. Therefore, taking into account error detection, measure whether or not the powder surface is at that position (level) by detecting whether or not a strain greater than a certain value is detected at a frequency of once or more per minute. Can do.

以上の説明においては、検知板の設置場所を1箇所としているが、実際にはレベルの粉体面レベルの上限と下限位置にそれぞれ検知板を設けることで、上限用の検知板が歪みを検知すると、排出量を増加させ、下限用の検知板が歪みを検知すると排出量を減少させるように、排出の制御や、供給用の制御に用いている。   In the above description, the installation position of the detection plate is one, but in reality, the detection plate for the upper limit detects distortion by providing detection plates at the upper and lower limit positions of the powder surface level. Then, the discharge amount is increased, and when the lower limit detection plate detects distortion, the discharge amount is decreased, and is used for discharge control and supply control.

また、本実施例では粉体を例にして説明したが、流動体を用いるものであれば本発明を適用することができる。   In the present embodiment, the powder is described as an example, but the present invention can be applied if a fluid is used.

以上のように、本発明のように、高温状態にある粉体面のレベルを検知し粉体の供給、排出の制御を容易に行うことができた。   As described above, as in the present invention, it is possible to easily control the supply and discharge of powder by detecting the level of the powder surface in a high temperature state.

粉体処理装置の全体構成図である。It is a whole block diagram of a powder processing apparatus. 粉面検出センサ部の構成図である。It is a block diagram of a powder level detection sensor part. 炭化炉にレベル検出センサを取付けた状態の説明図である。It is explanatory drawing of the state which attached the level detection sensor to the carbonization furnace. レベル検出センサが分体の有無の状態を説明するための図面である。It is a figure for demonstrating the state of the presence or absence of a level detection sensor.

符号の説明Explanation of symbols

1…炭化炉、2…炭化部、3…乾留ガス燃焼部、4…撹拌棒、5…撹拌翼、6…駆動装置、7…原料ホッパー、8…原料供給用ロータリーバルブ、9…原料供給用スクリューフィーダ、10…炭化品排出用スクリューフィーダ、11…炭化品排出用ロータリーバルブ、16…粉面検出センサ。   DESCRIPTION OF SYMBOLS 1 ... Carbonization furnace, 2 ... Carbonization part, 3 ... Dry distillation gas combustion part, 4 ... Stirring rod, 5 ... Stirring blade, 6 ... Drive device, 7 ... Raw material hopper, 8 ... Rotary valve for raw material supply, 9 ... For raw material supply Screw feeder, 10 ... Screw feeder for discharging carbonized products, 11 ... Rotary valve for discharging carbonized products, 16 ... Powder level detection sensor.

Claims (2)

250℃から950℃の範囲の高温で炭化粉体を生成する炭化炉内において、原料粉を均一に炭化するために、攪拌翼による攪拌槽構造とし、炭化炉内の原料粉の供給量および生成粉の排出量を制御するために、粉面の基準位置に撹拌時に粉体に発生する力を検出することで粉面を検出する検出器を設置したことを特徴とする撹拌槽内の粉面検出装置。   In a carbonization furnace that generates carbonized powder at a high temperature in the range of 250 ° C to 950 ° C, in order to uniformly carbonize the raw material powder, a stirring tank structure with a stirring blade is used, and the supply amount and generation of the raw material powder in the carbonization furnace In order to control the amount of discharged powder, a powder level in the stirring tank is provided with a detector that detects the powder level by detecting the force generated in the powder during stirring at the reference position of the powder level. Detection device. 請求項1に記載の撹拌槽内の粉面検出装置において、
前記検出器が高温カプセル内に歪みゲージ式の圧力検出センサであることを特徴とする撹拌槽内の粉面検出装置。
In the powder level detection apparatus in the stirring tank according to claim 1,
The powder level detection device in a stirring tank, wherein the detector is a strain gauge type pressure detection sensor in a high temperature capsule.
JP2007315548A 2007-12-06 2007-12-06 Powder surface detection device in stirring tank Pending JP2009139207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315548A JP2009139207A (en) 2007-12-06 2007-12-06 Powder surface detection device in stirring tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315548A JP2009139207A (en) 2007-12-06 2007-12-06 Powder surface detection device in stirring tank

Publications (1)

Publication Number Publication Date
JP2009139207A true JP2009139207A (en) 2009-06-25

Family

ID=40869962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315548A Pending JP2009139207A (en) 2007-12-06 2007-12-06 Powder surface detection device in stirring tank

Country Status (1)

Country Link
JP (1) JP2009139207A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224447A (en) * 2010-04-16 2011-11-10 Hosokawa Micron Corp Apparatus for and method of treating powder
CN105233728A (en) * 2015-09-21 2016-01-13 常州市合达油泵有限公司 Induction stirring apparatus
CN108139258A (en) * 2015-12-09 2018-06-08 株式会社村田制作所 Fluid storage device
CN109351231A (en) * 2018-10-18 2019-02-19 周力 A kind of fertilizer agitating device
CN113465967A (en) * 2021-06-21 2021-10-01 中国原子能科学研究院 Stirring performance test method and system of stirring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224447A (en) * 2010-04-16 2011-11-10 Hosokawa Micron Corp Apparatus for and method of treating powder
CN105233728A (en) * 2015-09-21 2016-01-13 常州市合达油泵有限公司 Induction stirring apparatus
CN108139258A (en) * 2015-12-09 2018-06-08 株式会社村田制作所 Fluid storage device
US10719032B2 (en) 2015-12-09 2020-07-21 Murata Manufacturing Co., Ltd. Fluid storage device
CN108139258B (en) * 2015-12-09 2020-09-18 株式会社村田制作所 Fluid containing device
CN109351231A (en) * 2018-10-18 2019-02-19 周力 A kind of fertilizer agitating device
CN113465967A (en) * 2021-06-21 2021-10-01 中国原子能科学研究院 Stirring performance test method and system of stirring device

Similar Documents

Publication Publication Date Title
JP2009139207A (en) Powder surface detection device in stirring tank
TWI341915B (en) External heating rotary kiln and operating method therefor
CN102472582B (en) Method and device for controlling a process for burning a lime containing mixture to burnt lime
JP2006517644A5 (en)
JP2006315899A (en) Method and device for producing active carbonized product
EP2997358B1 (en) Arrangement and method for monitoring scaling in heat exchanger
CN202254762U (en) Full-atmosphere protection spiral groove type convolution furnace
JP2019066121A (en) Solid fuel pulverization device and control method of solid fuel pulverization device
JP2017145981A (en) Stoker type incinerator
JP6500305B2 (en) Method of producing carbide and carbide producing apparatus
JP4443481B2 (en) Fluid medium clogging diagnosis system
JP5675715B2 (en) Indirect heating dryer
JP2017032231A (en) Rotary kiln
CN101649225B (en) Hot wall type gasifier baker control system
JP6256095B2 (en) Scale adhesion determination device
CN216448588U (en) Automatic unloader of kiln tail
CN107586568A (en) Shell airflow bed gasification furnace reactor slag-drip opening temperature online measurement apparatus and method
CN108613162A (en) Station boiler based on strain measurement suspends heating surface fouling monitoring system and method in midair
JP2015067520A (en) Method of producing calcium oxide, method of producing calcium hydroxide, production apparatus for calcium oxide and production apparatus for calcium hydroxide
CN102305675A (en) Indirect temperature measuring device in entrained flow gasifying furnace
CN207486799U (en) A kind of W type radiant tubes with warning function
RU144530U1 (en) INSTALLATION FOR THERMOCHEMICAL TREATMENT OF IRRADIATED NUCLEAR FUEL
JP4084045B2 (en) Gas generator safety device
KR101549132B1 (en) Slag Viscosity Control Apparatus of Gasifier
JP2000214062A (en) Test method for evaluating wearing and abrasion and hardness of powder and its device