JP2009138798A - Electromagnetic clutch and driving force transmission device - Google Patents

Electromagnetic clutch and driving force transmission device Download PDF

Info

Publication number
JP2009138798A
JP2009138798A JP2007313617A JP2007313617A JP2009138798A JP 2009138798 A JP2009138798 A JP 2009138798A JP 2007313617 A JP2007313617 A JP 2007313617A JP 2007313617 A JP2007313617 A JP 2007313617A JP 2009138798 A JP2009138798 A JP 2009138798A
Authority
JP
Japan
Prior art keywords
driving force
force transmission
magnetic flux
rotating member
transmission member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007313617A
Other languages
Japanese (ja)
Inventor
Junji Ando
淳二 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2007313617A priority Critical patent/JP2009138798A/en
Publication of JP2009138798A publication Critical patent/JP2009138798A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic clutch and a driving force transmission device having the electromagnetic clutch, capable of accurately controlling transmission torque, by maintaining an excellent torque transmission characteristic over a long period by a driving force transmission member with a simple constitution. <P>SOLUTION: In the electromagnetic clutch, an opposed surface opposed to a bottom 15 of an armature 25 has a sticking surface 41 stuck with a frictional material 26 frictionally engaging with the bottom 15 and a magnetic flux passing surface 42 formed in closer vicinity to the bottom 15 than the sticking surface 41 and passing a magnetic flux of magnetic flux density higher than the sticking surface 41. The frictional material 26 is formed in the thickness capable of making lubricating oil flow between the bottom 15 and the magnetic flux passing surface 42, by maintaining a gap between the bottom 15 and the magnetic flux passing surface 42, with the frictional material 26 frictionally engaged with the bottom 15. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電磁クラッチ及び該電磁クラッチを備えた駆動力伝達装置に関するものである。   The present invention relates to an electromagnetic clutch and a driving force transmission device including the electromagnetic clutch.

従来、円筒部を有する第1回転部材と、該第1回転部材内に回転自在に同軸配置された第2回転部材と、第1回転部材と第2回転部材との間でトルクを伝達する駆動力伝達部材と、これら駆動力伝達部材を通過する磁路に磁束を発生させることにより両駆動力伝達部材を摩擦係合させる電磁コイルと、第1回転部材内に所定の充填率で収容された潤滑油とを備えた所謂湿式の電磁クラッチがある。例えば、特許文献1に記載の駆動力伝達装置に用いられる電磁クラッチでは、電磁コイルに吸引されるアーマチャ及び該アーマチャと電磁コイルとの間に介在された磁路形成部材を備え、駆動力伝達部材としてのアウタクラッチプレート及びインナクラッチプレートがアーマチャと磁路形成部材との間に設けられている。そして、電磁コイルへの通電によりアーマチャが吸引されることで、アウタクラッチプレートとインナクラッチプレートとが摩擦係合し、第1回転部材と第2回転部材との間でトルクが伝達されるようになっている。   Conventionally, a first rotating member having a cylindrical portion, a second rotating member coaxially disposed in the first rotating member, and a drive for transmitting torque between the first rotating member and the second rotating member. A force transmission member, an electromagnetic coil that frictionally engages both driving force transmission members by generating magnetic flux in a magnetic path passing through these driving force transmission members, and a predetermined filling rate in the first rotating member. There are so-called wet electromagnetic clutches with lubricating oil. For example, an electromagnetic clutch used in a driving force transmission device described in Patent Document 1 includes an armature attracted by an electromagnetic coil, and a magnetic path forming member interposed between the armature and the electromagnetic coil, and includes a driving force transmission member The outer clutch plate and the inner clutch plate are provided between the armature and the magnetic path forming member. Then, when the armature is attracted by energizing the electromagnetic coil, the outer clutch plate and the inner clutch plate are frictionally engaged, and torque is transmitted between the first rotating member and the second rotating member. It has become.

ところで、上記特許文献1では、例えばインナクラッチプレートの摺接面に微細溝を形成することで、摺接面間に形成される油膜の膜厚を適切に維持している。これにより、摺接面間の滑り速度Vと摩擦係数μとの関係を示すμ−V特性を、滑り速度Vが大となるほど摩擦係数μが大となる高摩擦正勾配として、インナクラッチプレートとアウタクラッチプレートとのスティックスリップが原因となって生じる振動(ジャダー)を防止し、良好なトルク伝達特性を確保している。さらに、上記特許文献1では、インナクラッチプレートに焼き入れ等の表面処理を施すとともに、アウタクラッチプレートの摺接面にDLC膜(ダイヤモンド状炭素被膜)を形成することで各クラッチプレート間での摩耗を抑制し、長期間に亘って良好なトルク伝達特性が維持されるようにしている。
特開2003−28218号公報
By the way, in the said patent document 1, the film thickness of the oil film formed between sliding contact surfaces is maintained appropriately, for example by forming a fine groove in the sliding contact surface of an inner clutch plate. Accordingly, the μ-V characteristic indicating the relationship between the sliding speed V between the sliding contact surfaces and the friction coefficient μ is defined as a high friction positive gradient in which the friction coefficient μ increases as the sliding speed V increases. Vibration (judder) caused by stick-slip with the outer clutch plate is prevented, and good torque transmission characteristics are secured. Further, in Patent Document 1, the inner clutch plate is subjected to surface treatment such as quenching, and a DLC film (diamond-like carbon film) is formed on the sliding contact surface of the outer clutch plate to thereby wear between the clutch plates. And a good torque transmission characteristic is maintained over a long period of time.
JP 2003-28218 A

ところで、上記特許文献1では、μ−V特性を正勾配にしてジャダーを防止するためにクラッチプレートの摺接面に微細溝を形成する必要がある。また、各クラッチプレート間での摩耗を抑制するため、DLC膜の形成や、焼き入れ等の表面処理を各クラッチプレートに施す必要がある。従って、これらの表面処理のため、各クラッチプレート(駆動力伝達部材)の製造コストが上昇するという問題がある。また、各クラッチプレートの摺接面に、微細溝や非磁性材料であるDLC膜が形成されることで、各クラッチプレート間での磁束量の低下を招くといった問題が生じる。   By the way, in Patent Document 1, it is necessary to form a fine groove on the sliding contact surface of the clutch plate in order to prevent the judder by making the μ-V characteristic a positive gradient. In addition, in order to suppress wear between the clutch plates, it is necessary to apply a surface treatment such as DLC film formation or quenching to each clutch plate. Therefore, there is a problem that the manufacturing cost of each clutch plate (driving force transmission member) increases due to these surface treatments. In addition, a fine groove or a DLC film, which is a nonmagnetic material, is formed on the sliding contact surface of each clutch plate, which causes a problem that the amount of magnetic flux between the clutch plates is reduced.

そこで、ペーパー系の摩擦材をクラッチプレートの摺接面に貼着することが考えられる。というのは、ペーパー系の摩擦材では、その繊維基材間に潤滑油が浸透することで摺接面間に形成される油膜の膜厚を適切に維持できるとともに、クラッチプレートに比べて軟らかい材料であることからクラッチプレートの摩耗を抑制することができ、長期間に亘って耐ジャダー性に優れる良好なトルク伝達特性が確保されるためである。しかしながら、摩擦材は、非磁性材料により形成されているため磁束が通過し難く、また、その厚さを薄くすることに限界があるためクラッチプレート間のギャップが大きくなる。そのため、クラッチプレート間での磁束量の低下が大きくなってアーマチャを十分に吸引することができず、トルク容量が確保できないという問題が生じる。なお、このような問題は、駆動力伝達部材として、クラッチプレートを用いた場合に限らず、その他の第1回転部材と一体回転する部材及び第2回転部材と一体回転する部材を駆動力伝達部材として用いた場合においても同様に生じる。   Therefore, it is conceivable to attach a paper-based friction material to the sliding contact surface of the clutch plate. This is because the paper-based friction material can maintain the film thickness of the oil film formed between the sliding contact surfaces by allowing the lubricating oil to permeate between the fiber base materials and is softer than the clutch plate. Therefore, the wear of the clutch plate can be suppressed, and good torque transmission characteristics with excellent judder resistance can be ensured over a long period of time. However, since the friction material is made of a non-magnetic material, it is difficult for the magnetic flux to pass through, and the gap between the clutch plates becomes large because there is a limit to reducing the thickness. For this reason, a decrease in the amount of magnetic flux between the clutch plates becomes large, and the armature cannot be sufficiently attracted, resulting in a problem that the torque capacity cannot be secured. Such a problem is not limited to the case where the clutch plate is used as the driving force transmission member, and other members that rotate integrally with the first rotating member and members that rotate integrally with the second rotating member are driven force transmitting members. It also occurs in the same way when used as.

さらに、駆動力伝達部材間に潤滑油が介在された湿式の電磁クラッチでは、駆動力伝達部材間が非係合である場合であっても、その間に介在された潤滑油の粘性に基づく係合力に起因する所謂引きずりトルクが発生し、精度よく伝達トルクを制御できないという問題が生じる。   Further, in a wet type electromagnetic clutch in which lubricating oil is interposed between the driving force transmission members, even when the driving force transmission members are not engaged, the engaging force based on the viscosity of the lubricating oil interposed therebetween. This causes a so-called drag torque, which causes a problem that the transmission torque cannot be accurately controlled.

本発明は上記問題点を解決するためになされたものであって、その目的は、簡単な構成の駆動力伝達部材で長期間に亘って良好なトルク伝達特性を維持できるとともに精度よく伝達トルクを制御できる電磁クラッチ及び該電磁クラッチを備えた駆動力伝達装置を提供することにある。   The present invention has been made in order to solve the above-described problems. The object of the present invention is to maintain a good torque transmission characteristic over a long period of time with a simple structure driving force transmission member and to accurately transmit the transmission torque. An electromagnetic clutch that can be controlled and a driving force transmission device including the electromagnetic clutch.

上記目的を達成するため、請求項1に記載の発明は、円筒部を有する第1回転部材と、前記第1回転部材内に回転自在に同軸配置された軸状の第2回転部材と、前記第1回転部材及び前記第2回転部材のうちの何れか一方と一体回転可能に設けられた第1駆動力伝達部材と、前記第1回転部材及び前記第2回転部材のうちの何れか他方と一体回転可能に設けられた第2駆動力伝達部材と、前記第1及び第2駆動力伝達部材を通過する磁路に磁束を発生させることにより両駆動力伝達部材を摩擦係合させる電磁コイルと、前記第1回転部材内に所定の充填率で収容された潤滑油と、を備えた電磁クラッチであって、前記第1駆動力伝達部材の前記第2駆動力伝達部材と対向する対向面は、該第2駆動力伝達部材と摩擦係合する摩擦材が貼着される貼着面と、を有し、前記磁束通過面は、記貼着面よりも前記第2駆動力伝達部材に近接して形成されて該貼着面よりも磁束密度の高い磁束が通過する磁束通過面と、を有し、前記摩擦材は、該摩擦材と前記第2駆動力伝達部材とが摩擦係合した状態において、前記第2駆動力伝達部材と前記磁束通過面とのギャップを維持し、前記潤滑油を前記第2駆動力伝達部材と前記磁束通過面との間で流動可能とする厚みに形成されたことを要旨とする。   In order to achieve the above object, the invention according to claim 1 is a first rotating member having a cylindrical portion, a shaft-shaped second rotating member rotatably and coaxially disposed in the first rotating member, and A first driving force transmission member provided so as to be integrally rotatable with any one of the first rotating member and the second rotating member; and any one of the first rotating member and the second rotating member; A second driving force transmission member provided so as to be integrally rotatable, and an electromagnetic coil that frictionally engages both driving force transmission members by generating a magnetic flux in a magnetic path passing through the first and second driving force transmission members; An electromagnetic clutch provided with lubricating oil accommodated in the first rotating member at a predetermined filling rate, wherein a facing surface of the first driving force transmitting member facing the second driving force transmitting member is A friction material that is frictionally engaged with the second driving force transmission member is attached. The magnetic flux passage surface is formed closer to the second driving force transmitting member than the sticking surface, and the magnetic flux through which the magnetic flux density is higher than the sticking surface passes. And the friction material maintains a gap between the second driving force transmission member and the magnetic flux passage surface in a state where the friction material and the second driving force transmission member are frictionally engaged with each other. The gist of the present invention is that the lubricating oil is formed to a thickness allowing flow between the second driving force transmission member and the magnetic flux passage surface.

上記構成によれば、第1駆動力伝達部材の前記第2駆動力伝達部材と対向する対向面は、摩擦材が貼着される貼着面と、該貼着面よりも第2駆動力伝達部材に近接して形成されて該貼着面よりも磁束密度の高い磁束が通過する磁束通過面とを有している。そのため、磁束通過面と第2駆動力伝達部材との間のギャップを摩擦材の厚みよりも小さくすることが可能になり、駆動力伝達部材間での磁束量の低下が抑制され、アーマチャを十分に吸引することが可能になる。従って、トルク容量を確保しつつ、摩擦材と駆動力伝達部材とを摩擦係合させることが可能となり、表面処理を必要としない簡単な構成の駆動力伝達部材で長期間に亘って良好なトルク伝達特性が維持される。また、DLC膜や微細溝の形成等の表面処理を各駆動力伝達部材に施さず済むため、駆動力伝達部材の製造コストの低減が図られるとともに、上記表面処理に伴う磁束量の低下が防止される。   According to the said structure, the opposing surface which opposes the said 2nd driving force transmission member of a 1st driving force transmission member is a 2nd driving force transmission rather than the sticking surface to which a friction material is stuck, and this sticking surface. A magnetic flux passage surface that is formed close to the member and through which a magnetic flux having a higher magnetic flux density than the sticking surface passes. For this reason, the gap between the magnetic flux passage surface and the second driving force transmission member can be made smaller than the thickness of the friction material, and the decrease in the amount of magnetic flux between the driving force transmission members is suppressed, and the armature is sufficiently It becomes possible to suck. Therefore, it is possible to frictionally engage the friction material and the driving force transmission member while ensuring the torque capacity, and a good torque can be obtained over a long period of time with a simple configuration of the driving force transmission member that does not require surface treatment. Transfer characteristics are maintained. In addition, since it is not necessary to perform surface treatment such as the formation of DLC film and fine grooves on each driving force transmission member, the manufacturing cost of the driving force transmission member can be reduced, and the decrease in the amount of magnetic flux accompanying the surface treatment can be prevented. Is done.

また、摩擦材は、第1及び第2駆動力伝達部材が摩擦係合した状態で磁束通過面と第2駆動力伝達部材とのギャップを維持し、潤滑油が磁束通過面と第2駆動力伝達部材との間で流動可能となる厚みに形成されている。そのため、潤滑油の動圧によって第1駆動力伝達部材と第2駆動力伝達部材とが離間されて引きずりトルクの低減が図られ、精度よく伝達トルクが制御される。   Further, the friction material maintains a gap between the magnetic flux passage surface and the second driving force transmission member in a state where the first and second driving force transmission members are frictionally engaged, and the lubricating oil is used for the magnetic flux passage surface and the second driving force. It is formed in a thickness that allows flow between the transmission member. Therefore, the first driving force transmission member and the second driving force transmission member are separated from each other by the dynamic pressure of the lubricating oil, the drag torque is reduced, and the transmission torque is accurately controlled.

請求項2に記載の発明は、請求項1に記載の電磁クラッチにおいて、前記第1駆動力伝達部材は、前記第1回転部材及び前記第2回転部材のうちの何れか一方と一体回転可能、且つ軸方向移動可能に取着されるアーマチャであり、前記第2駆動力伝達部材は、前記第1回転部材及び前記第2回転部材のうちの何れか他方と一体回転可能、且つ前記アーマチャと前記電磁コイルとの間に介在された磁路形成部材であることを要旨とする。   According to a second aspect of the present invention, in the electromagnetic clutch according to the first aspect, the first driving force transmitting member can rotate integrally with any one of the first rotating member and the second rotating member. And the second driving force transmitting member is rotatable integrally with any one of the first rotating member and the second rotating member, and the armature and the armature are attached so as to be movable in the axial direction. The gist is that the magnetic path forming member is interposed between the electromagnetic coil and the magnetic coil.

上記構成によれば、アーマチャと磁路形成部材とが直接摩擦係合するため、駆動力伝達部材としてのクラッチプレートを用いずに済み、部品点数が削減される。また、アーマチャと磁路形成部材との間にクラッチプレートを設ける場合に比べ磁路が短くなるとともに、アーマチャを通過せずクラッチプレート内を通過して電磁コイル側に戻る磁束がなくなることで磁気効率の向上が図られる。   According to the above configuration, since the armature and the magnetic path forming member are directly frictionally engaged, it is not necessary to use a clutch plate as a driving force transmission member, and the number of parts is reduced. In addition, the magnetic path is shorter than when the clutch plate is provided between the armature and the magnetic path forming member, and the magnetic efficiency that passes through the clutch plate without passing through the armature and returns to the electromagnetic coil side is eliminated. Is improved.

請求項3に記載の発明は、請求項1又は2に記載の電磁クラッチにおいて、前記磁束通過面が前記第1駆動力伝達部材の径方向内側端部から径方向外側端部まで連続する放射状に形成されたことを要旨とする。   According to a third aspect of the present invention, in the electromagnetic clutch according to the first or second aspect, the magnetic flux passing surface is radially continuous from the radially inner end to the radially outer end of the first driving force transmission member. The gist is that it was formed.

上記構成によれば、電磁クラッチが回転した際に、遠心力によって潤滑油が第1及び第2駆動力伝達部材の径方向内側から径方向外側に向かって流動しやすくなるため、効率的に第1駆動力伝達部材と第2駆動力伝達部材とを離間させることが可能となり、より引きずりトルクの低減が図られる。   According to the above configuration, when the electromagnetic clutch rotates, the lubricating oil tends to flow from the radially inner side to the radially outer side of the first and second driving force transmission members by centrifugal force. The first driving force transmission member and the second driving force transmission member can be separated from each other, and the drag torque can be further reduced.

請求項4に記載の発明は、請求項1〜3のうちの何れか一項に記載の電磁クラッチにおいて、前記摩擦材には、軟磁性材料が含有されたことを要旨とする。
上記構成によれば、摩擦材に軟磁性材料が含有されることで摩擦材の透磁率が高くなっているため、駆動力伝達部材間での磁束量の低下がより抑制され、アーマチャをより十分に吸引することが可能になる。なお、軟磁性材料とは、保磁力が小さく透磁率が大きいことを特徴とする磁性材料をいう。
The gist of the invention described in claim 4 is the electromagnetic clutch according to any one of claims 1 to 3, wherein the friction material contains a soft magnetic material.
According to the above configuration, since the friction material contains the soft magnetic material, the magnetic permeability of the friction material is increased. Therefore, a decrease in the amount of magnetic flux between the driving force transmission members is further suppressed, and the armature is more sufficiently provided. It becomes possible to suck. The soft magnetic material refers to a magnetic material having a small coercive force and a high magnetic permeability.

請求項5に記載の発明は、円筒部を有する第1回転部材と、前記第1回転部材内に回転自在に同軸配置された第2回転部材と、前記第1回転部材と前記第2回転部材との間でトルクを伝達するメインクラッチと、前記メインクラッチの軸方向に並置された電磁クラッチと、前記メインクラッチと前記電磁クラッチとの間に設けられ該電磁クラッチを介して伝達される前記第1回転部材と前記第2回転部材との回転差に基づくトルクを軸方向の押圧力に変換してカム部材を軸方向移動させることにより前記メインクラッチを押圧するカム機構と、前記第1回転部材内に所定の充填率で収容された潤滑油と、を備え、前記電磁クラッチは、前記第1回転部材及び前記第2回転部材のうちの何れか一方と一体回転可能に設けられた第1駆動力伝達部材と、前記第1回転部材及び前記第2回転部材のうちの何れか他方と一体回転可能に設けられた第2駆動力伝達部材と、前記第1及び第2駆動力伝達部材を通過する磁路に磁束を発生させることにより両駆動力伝達部材を摩擦係合させる電磁コイルとから構成された駆動力伝達装置であって、前記第1駆動力伝達部材の前記第2駆動力伝達部材と対向する対向面は、該第2駆動力伝達部材と摩擦係合する摩擦材が貼着される貼着面と、前記貼着面よりも前記第2駆動力伝達部材に近接して形成されて該貼着面よりも磁束密度の高い磁束が通過する磁束通過面と、を有し、前記摩擦材は、該摩擦材と前記第2駆動力伝達部材とが摩擦係合した状態において、前記第2駆動力伝達部材と前記磁束通過面とのギャップを維持し、前記潤滑油を前記第2駆動力伝達部材と前記磁束通過面との間で流動可能とする厚みに形成されたことを要旨とする。   According to a fifth aspect of the present invention, there is provided a first rotating member having a cylindrical portion, a second rotating member coaxially disposed in the first rotating member, the first rotating member, and the second rotating member. A main clutch that transmits torque between the main clutch, an electromagnetic clutch juxtaposed in the axial direction of the main clutch, and the first clutch that is provided between the main clutch and the electromagnetic clutch and is transmitted via the electromagnetic clutch. A cam mechanism that presses the main clutch by converting a torque based on a rotational difference between the one rotating member and the second rotating member into an axial pressing force and moving the cam member in the axial direction; and the first rotating member And a lubricating oil contained at a predetermined filling rate, wherein the electromagnetic clutch is provided so as to be integrally rotatable with any one of the first rotating member and the second rotating member. Force transmission part A second driving force transmission member provided so as to be integrally rotatable with any one of the first rotating member and the second rotating member, and a magnetic path passing through the first and second driving force transmission members A driving force transmission device including an electromagnetic coil that frictionally engages both driving force transmission members by generating a magnetic flux in the first driving force transmission member opposite to the second driving force transmission member. The opposing surface is formed by adhering a friction material that frictionally engages with the second driving force transmission member, and being closer to the second driving force transmission member than the adhesion surface. A magnetic flux passage surface through which a magnetic flux having a higher magnetic flux density than the contact surface passes, and the friction material is in the state in which the friction material and the second driving force transmission member are frictionally engaged with each other. A gap between the force transmission member and the magnetic flux passage surface is maintained, and the lubricating oil is Wherein the driving force transmitting member is summarized in that formed in the thickness of the flowable between the magnetic flux passing surface.

上記構成によれば、トルク容量を確保しつつ、摩擦材と駆動力伝達部材とを摩擦係合させることが可能となり、表面処理を必要としない簡単な構成の駆動力伝達部材で長期間に亘って良好なトルク伝達特性が維持される。また、潤滑油の動圧によって第1駆動力伝達部材と第2駆動力伝達部材とが離間されて引きずりトルクの低減が図られ、精度よく伝達トルクが制御される。   According to the above configuration, the friction material and the driving force transmission member can be frictionally engaged while securing the torque capacity, and the driving force transmission member with a simple configuration that does not require surface treatment can be used for a long period of time. And good torque transmission characteristics are maintained. Further, the first driving force transmission member and the second driving force transmission member are separated from each other by the dynamic pressure of the lubricating oil, the drag torque is reduced, and the transmission torque is accurately controlled.

本発明によれば、簡単な構成の駆動力伝達部材で長期間に亘って良好なトルク伝達特性を維持可能であるとともに精度よく伝達トルクを制御可能な電磁クラッチ及び該電磁クラッチを備えた駆動力伝達装置を提供することができる。   According to the present invention, an electromagnetic clutch capable of maintaining good torque transmission characteristics over a long period of time with a driving force transmission member having a simple configuration and capable of accurately controlling transmission torque, and a driving force including the electromagnetic clutch. A transmission device can be provided.

(第1実施形態)
以下、本発明を具体化した第1実施形態を図面に従って説明する。
図1に示すように、電磁クラッチ11は、有底筒状のアウタハウジング12と、同アウタハウジング12の筒内に回転自在に同軸配置された軸状のインナシャフト13とを備えている。アウタハウジング12は、円筒状に形成された第1回転部材としての円筒部14と、同円筒部14のインナシャフト13側(同図中、左側)に一体形成されるとともに円環状に形成された第2駆動力伝達部材及び磁路形成部材としての底部15とから構成されている。そして、底部15の径方向中間部には、非磁性材料であるステンレス製の環状部材16が埋設されている。また、アウタハウジング12には、円筒部14の開口端17を閉塞するエンドハウジング18が固定されるようになっている。エンドハウジング18の円板状に形成されたフランジ部19は、開口端17の内周に螺着されるとともに、該フランジ部19の径方向中央にはアウタハウジング12の反対側(図1において、右側)に突出した軸状のシャフト部20が形成されている。また、第2回転部材としてのインナシャフト13は、底部15の内周に設けられたボール軸受21及びフランジ部19の中央に設けられた円錐ころ軸受22により回転自在に支承されている。そして、アウタハウジング12の筒内は、底部15の内周とインナシャフト13との間、及び開口端17とエンドハウジング18との嵌合部に設けられたシール部材23,24により封止され、その筒内には潤滑油が収容されている。なお、本実施形態では、インナシャフト13が駆動源に接続された入力軸(図示略)に接続されるとともに、シャフト部20が出力軸に接続されるようになっている。
(First embodiment)
A first embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the electromagnetic clutch 11 includes a bottomed cylindrical outer housing 12 and a shaft-like inner shaft 13 that is coaxially arranged rotatably in a cylinder of the outer housing 12. The outer housing 12 is formed integrally with a cylindrical portion 14 as a first rotating member formed in a cylindrical shape and an inner shaft 13 side (left side in the figure) of the cylindrical portion 14 and is formed in an annular shape. It is comprised from the bottom part 15 as a 2nd driving force transmission member and a magnetic path formation member. A stainless annular member 16, which is a nonmagnetic material, is embedded in the radially intermediate portion of the bottom portion 15. An end housing 18 that closes the open end 17 of the cylindrical portion 14 is fixed to the outer housing 12. A flange portion 19 formed in a disk shape of the end housing 18 is screwed to the inner periphery of the opening end 17, and the flange portion 19 has a radial center in the opposite side of the outer housing 12 (in FIG. 1, A shaft-shaped shaft portion 20 protruding rightward) is formed. The inner shaft 13 as the second rotating member is rotatably supported by a ball bearing 21 provided at the inner periphery of the bottom portion 15 and a tapered roller bearing 22 provided at the center of the flange portion 19. The cylinder of the outer housing 12 is sealed by seal members 23 and 24 provided between the inner periphery of the bottom portion 15 and the inner shaft 13 and the fitting portion between the open end 17 and the end housing 18. Lubricating oil is contained in the cylinder. In the present embodiment, the inner shaft 13 is connected to an input shaft (not shown) connected to the drive source, and the shaft portion 20 is connected to the output shaft.

円筒部14の内側には、円環状に形成された第1駆動力伝達部材としてのアーマチャ25が、軸方向に移動可能且つインナシャフト13と一体回転可能にスプライン嵌合されている。本実施形態では、アーマチャ25には、摩擦材26が設けられている。なお、図1において説明の便宜のため摩擦材26の厚みを誇張して記載している。そして、摩擦材26は底部15と摩擦係合するようになっている。   Inside the cylindrical portion 14, an armature 25 as a first driving force transmission member formed in an annular shape is spline-fitted so as to be movable in the axial direction and integrally rotatable with the inner shaft 13. In the present embodiment, the armature 25 is provided with a friction material 26. In FIG. 1, the thickness of the friction material 26 is exaggerated for convenience of explanation. The friction material 26 is configured to frictionally engage with the bottom portion 15.

また、インナシャフト13の基端側(図1中、左側)には、ボール軸受27,28を介して支持部材29及び該支持部材29に螺着されたヨーク30がインナシャフト13に相対回転可能に支持されている。そして、支持部材29により、ヨーク30に包囲された電磁コイル31がアーマチャ25の軸方向に底部15を介在させて並置されている。なお、支持部材29には、外部と接続されて電磁コイル31に電力を供給する電源線32が設けられている。   Further, on the base end side (the left side in FIG. 1) of the inner shaft 13, a support member 29 and a yoke 30 screwed to the support member 29 through ball bearings 27 and 28 can rotate relative to the inner shaft 13. It is supported by. Then, the electromagnetic coil 31 surrounded by the yoke 30 is juxtaposed with the support member 29 in the axial direction of the armature 25 with the bottom 15 interposed therebetween. The support member 29 is provided with a power line 32 that is connected to the outside and supplies power to the electromagnetic coil 31.

次に、アーマチャ25(駆動力伝達部材)の構造について説明する。
図2にアーマチャ25の底部15と対向する対向面を示す。アーマチャ25の対向面には、底部15と摩擦係合する摩擦材26が貼着される貼着面41と、貼着面41よりも底部15に近接して形成されて該貼着面41よりも磁束密度の高い磁束が通過する磁束通過面42とを有している。そして、摩擦材26は、該摩擦材26と底部15とが摩擦係合した状態において、底部15と磁束通過面42とのギャップを維持し、潤滑油を底部15と磁束通過面42との間で流動可能とする厚みに形成されている。なお、図2において、説明の便宜のため摩擦材26にハッチングを付して示す。
Next, the structure of the armature 25 (driving force transmission member) will be described.
FIG. 2 shows a facing surface that faces the bottom 15 of the armature 25. An opposing surface of the armature 25 is formed with an adhesive surface 41 to which the friction material 26 that frictionally engages with the bottom portion 15 is attached, and closer to the bottom portion 15 than the adhesive surface 41. Has a magnetic flux passage surface 42 through which a magnetic flux having a high magnetic flux density passes. The friction material 26 maintains a gap between the bottom portion 15 and the magnetic flux passage surface 42 in a state where the friction material 26 and the bottom portion 15 are frictionally engaged, and lubricates the lubricant between the bottom portion 15 and the magnetic flux passage surface 42. It is formed to a thickness that allows fluid flow. In FIG. 2, the friction material 26 is hatched for convenience of explanation.

詳述すると、貼着面41がアーマチャ25の径方向内側から径方向外側に向かった放射状に複数(本実施形態では、8個)形成されるとともに、磁束通過面42がアーマチャ25の径方向内側端部から径方向外側端部まで連続する放射状に複数(本実施形態では、8個)形成されている。本実施形態では、貼着面41と磁束通過面42とが周方向に沿って等間隔に形成されている。そして、貼着面41には、同貼着面41の軸方向深さよりも厚く、且つ同貼着面41と略同一形状の摩擦材26が貼着されることで、同摩擦材26の摺接面と磁束通過面42との間のギャップが所定値となるように形成されている。なお、所定値とは、摩擦材の摩耗や摩擦係合時のつぶれ代等を考慮して、摩擦係合時に磁束通過面42と底部15とのギャップが維持されるギャップをいい、本実施形態では20μm〜200μm程度である。また、アウタハウジング12及びアーマチャ25は、例えば低炭素鋼(S10C等)により形成されており、底部15及びアーマチャ25には、例えばDLC膜や微細溝の形成等の表面処理が施されていない。   More specifically, a plurality (8 in the present embodiment) of the sticking surfaces 41 are formed radially from the radially inner side to the radially outer side of the armature 25, and the magnetic flux passing surface 42 is radially inward of the armature 25. A plurality (in this embodiment, eight) are formed radially from the end to the radially outer end. In this embodiment, the sticking surface 41 and the magnetic flux passage surface 42 are formed at equal intervals along the circumferential direction. Then, the friction material 26 having a thickness larger than the axial depth of the adhesion surface 41 and having substantially the same shape as that of the adhesion surface 41 is adhered to the adhesion surface 41. The gap between the contact surface and the magnetic flux passing surface 42 is formed to have a predetermined value. The predetermined value refers to a gap in which the gap between the magnetic flux passage surface 42 and the bottom portion 15 is maintained during friction engagement in consideration of wear of the friction material, crushing allowance during friction engagement, and the like. Then, it is about 20 μm to 200 μm. Further, the outer housing 12 and the armature 25 are made of, for example, low carbon steel (S10C or the like), and the bottom 15 and the armature 25 are not subjected to surface treatment such as formation of a DLC film or a fine groove.

本実施形態では、摩擦材26はペーパー系湿式摩擦材からなり、軟磁性材料(保磁力が小さく透磁率が大きいことを特徴とする磁性材料)が含有されている。摩擦材26は、例えば木材パルプ或いはアラミド繊維等の繊維基材と、カシューダスト等の摩擦調整剤や炭酸カルシウム或いは珪藻土等の体質充填剤等の充填剤と、軟磁性材料とを抄造して抄紙体を形成し、その抄紙体に熱硬化性樹脂からなる樹脂結合剤を含浸し、次いで熱成形により加熱硬化して形成される。また、軟磁性材料には、例えばパーマロイ(鉄−ニッケル合金)や純鉄等が用いられるとともに、例えば粉状体や針状体に形成されて摩擦材26に含有されている。さらに、摩擦材26は、該摩擦材26と底部15との間の摩擦係数が、DLC膜等が形成された低炭素鋼間での摩擦係数よりも大きな値になるように形成されている。   In this embodiment, the friction material 26 is made of a paper-based wet friction material, and contains a soft magnetic material (a magnetic material characterized by a low coercive force and a high magnetic permeability). The friction material 26 is made by making a paper from a fiber base material such as wood pulp or aramid fiber, a friction modifier such as cashew dust, a filler such as calcium carbonate or diatomaceous earth filler, and a soft magnetic material. The paper body is impregnated with a resin binder made of a thermosetting resin, and then heat-cured by thermoforming. Further, as the soft magnetic material, for example, permalloy (iron-nickel alloy), pure iron or the like is used, and the soft magnetic material is formed into a powdery body or a needle-like body and contained in the friction material 26, for example. Further, the friction material 26 is formed so that the friction coefficient between the friction material 26 and the bottom 15 is larger than the friction coefficient between the low carbon steels on which the DLC film or the like is formed.

なお、摩擦材26は、その繊維基材間に潤滑油が浸透することで摺接面間に形成される油膜の膜厚を適切に維持できるため、アーマチャ25と底部15との間の滑り速度Vと摩擦係数μとの関係を示すμ−V特性が高摩擦正勾配となる。これにより、アーマチャ25と底部15とのスティックスリップ(静摩擦状態から動摩擦状態の変移、及びその逆の変移を繰り返す挙動)が原因となって生じる駆動系の振動(ジャダー)が抑制されるようになっている。また、摩擦材26は、アウタハウジング12(低炭素鋼)に比べて軟らかい材料であることから底部15の摩耗が抑制される。従って、アーマチャ25と底部15との間に摩擦材26を介在させて摩擦係合させることで、長期間に亘って耐ジャダー性に優れる良好なトルク伝達特性が確保される。   In addition, since the friction material 26 can maintain appropriately the film thickness of the oil film formed between sliding contact surfaces because the lubricating oil permeates between the fiber base materials, the sliding speed between the armature 25 and the bottom portion 15 is maintained. The μ-V characteristic indicating the relationship between V and the friction coefficient μ is a high frictional positive gradient. As a result, vibration (judder) of the drive system caused by stick-slip between the armature 25 and the bottom portion 15 (behavior in which the transition from the static friction state to the dynamic friction state and vice versa) is suppressed. ing. Further, since the friction material 26 is a softer material than the outer housing 12 (low carbon steel), wear of the bottom portion 15 is suppressed. Accordingly, the friction material 26 is interposed between the armature 25 and the bottom portion 15 so as to be frictionally engaged, thereby ensuring a good torque transmission characteristic that is excellent in judder resistance over a long period of time.

そして、電磁コイル31に電流が供給されると、環状部材16により底部15内で磁束が短絡することが防止され、図1に示すように、電磁クラッチ11には一点鎖線で示すように循環する磁路M1が発生する。即ち、ヨーク30、底部15、アーマチャ25、底部15及びヨーク30を循環する磁路M1が形成される。すると、アーマチャ25が電磁コイル31の磁力により吸引され、底部15とアーマチャ25とが摩擦材26を介して摩擦係合し、アウタハウジング12とインナシャフト13とがトルク伝達可能に連結されるようになっている。   When a current is supplied to the electromagnetic coil 31, the annular member 16 prevents the magnetic flux from being short-circuited in the bottom portion 15, and circulates in the electromagnetic clutch 11 as indicated by a one-dot chain line as shown in FIG. 1. A magnetic path M1 is generated. That is, the magnetic path M <b> 1 that circulates through the yoke 30, the bottom portion 15, the armature 25, the bottom portion 15, and the yoke 30 is formed. Then, the armature 25 is attracted by the magnetic force of the electromagnetic coil 31, the bottom portion 15 and the armature 25 are frictionally engaged via the friction material 26, and the outer housing 12 and the inner shaft 13 are coupled so as to transmit torque. It has become.

このとき、図3に示すように、底部15からアーマチャ25に流入する磁束は、磁束通過面42と底部15との間のギャップG又は摩擦材26を介してアーマチャ25に流入する。なお、図3において、白抜き矢印で磁束の流れを示すとともに、白抜き矢印の大きさによって磁束量を示す。摩擦材26が貼着面41に貼着されているため、ギャップGが摩擦材26の厚みよりも小さくなり、磁束通過面42と底部15との間での磁束量の低下が抑えられる。なお、アーマチャ25から底部15に流入する磁束についても同様にその磁束量の低下が抑えられる。そのため、電磁コイル31の発生する磁力によって十分にアーマチャ25が吸引され、トルク容量を確保しつつ、摩擦材26とアーマチャ25とが摩擦係合される。また、アーマチャ25と底部15との間にクラッチプレートを設ける場合に比べ磁路が短くなるとともに、アーマチャ25を通過せずクラッチプレート内を通過して電磁コイル31側に戻る磁束がなくなることで磁気効率の向上が図られる。   At this time, as shown in FIG. 3, the magnetic flux flowing into the armature 25 from the bottom portion 15 flows into the armature 25 via the gap G or the friction material 26 between the magnetic flux passage surface 42 and the bottom portion 15. In FIG. 3, the flow of magnetic flux is indicated by a white arrow, and the amount of magnetic flux is indicated by the size of the white arrow. Since the friction material 26 is adhered to the adhesion surface 41, the gap G becomes smaller than the thickness of the friction material 26, and a decrease in the amount of magnetic flux between the magnetic flux passage surface 42 and the bottom portion 15 is suppressed. Note that the magnetic flux flowing into the bottom 15 from the armature 25 is similarly suppressed from decreasing in the amount of magnetic flux. Therefore, the armature 25 is sufficiently attracted by the magnetic force generated by the electromagnetic coil 31, and the friction material 26 and the armature 25 are frictionally engaged while securing the torque capacity. Further, the magnetic path is shortened as compared with the case where the clutch plate is provided between the armature 25 and the bottom portion 15, and the magnetic flux passing through the clutch plate without passing through the armature 25 and returning to the electromagnetic coil 31 side is eliminated. Efficiency is improved.

また、底部15とアーマチャ25との摩擦係合時に、磁束通過面42と底部15とのギャップが維持されており、潤滑油が磁束通過面42と底部15との間を流動可能となるため、潤滑油の動圧によって底部15とアーマチャ25とを離間させることができ、引きずりトルクの低減が図られる。本実施形態では、磁束通過面42がアーマチャ25の径方向内側から径方向外側に向かって放射状に複数形成されているため、電磁クラッチ11が回転した際に、遠心力によって潤滑油がアーマチャ25及び底部15の径方向内側から径方向外側に向かって流動しやすくなる。そのため、効率的に底部15とアーマチャ25とを離間させることが可能となり、より引きずりトルクの低減が図られる。   In addition, the gap between the magnetic flux passage surface 42 and the bottom portion 15 is maintained during the frictional engagement between the bottom portion 15 and the armature 25, and the lubricating oil can flow between the magnetic flux passage surface 42 and the bottom portion 15, The bottom 15 and the armature 25 can be separated from each other by the dynamic pressure of the lubricating oil, and the drag torque can be reduced. In the present embodiment, a plurality of magnetic flux passage surfaces 42 are formed radially from the radially inner side to the radially outer side of the armature 25, so that when the electromagnetic clutch 11 rotates, the lubricating oil is separated from the armature 25 and the armature 25 by centrifugal force. It becomes easy to flow from the radially inner side of the bottom portion 15 toward the radially outer side. Therefore, it is possible to efficiently separate the bottom portion 15 and the armature 25, and the drag torque can be further reduced.

さらに、摩擦材26に軟磁性材料が含有されることで摩擦材26の透磁率が高くなっているため、摩擦材26を介してアーマチャ25に流入する磁束量の低下が抑制される。従って、底部15とアーマチャ25との間での磁束量の低下がより抑制される。   Further, since the magnetic material is contained in the friction material 26, the magnetic permeability of the friction material 26 is increased, so that a decrease in the amount of magnetic flux flowing into the armature 25 through the friction material 26 is suppressed. Therefore, a decrease in the amount of magnetic flux between the bottom 15 and the armature 25 is further suppressed.

以上記述したように、本実施の形態によれば、以下の効果を奏する。
(1)アーマチャ25の底部15と対向する対向面は、底部15と摩擦係合する摩擦材26が貼着される貼着面41と、貼着面41よりも底部15に近接して形成されて該貼着面41よりも磁束密度の高い磁束が通過する磁束通過面42とを有している。そして、摩擦材26は、該摩擦材26と底部15とが摩擦係合した状態において、底部15と磁束通過面42とのギャップを維持し、潤滑油を底部15と磁束通過面42との間で流動可能とする厚みに形成した。そのため、磁束通過面42と底部15との間のギャップGを摩擦材26の厚みよりも小さくすることができ、アーマチャ25と底部15との間での磁束量の低下が抑制され、アーマチャ25を十分に吸引することができる。従って、トルク容量を確保しつつ、摩擦材26と底部15とを摩擦係合させることができ、表面処理を必要としない簡単な構成で長期間に亘って良好なトルク伝達特性を維持できる。また、DLC膜や微細溝の形成等の表面処理を各クラッチプレートに施さず済むため、アウタハウジング12やアーマチャ25の製造コストの低減を図ることができるとともに、上記表面処理に伴う磁束量の低下を防止できる。
As described above, according to the present embodiment, the following effects can be obtained.
(1) The facing surface facing the bottom 15 of the armature 25 is formed closer to the bottom 15 than the pasting surface 41 and the pasting surface 41 to which the friction material 26 frictionally engaging the bottom 15 is pasted. And a magnetic flux passage surface 42 through which a magnetic flux having a higher magnetic flux density than the sticking surface 41 passes. The friction material 26 maintains a gap between the bottom portion 15 and the magnetic flux passage surface 42 in a state where the friction material 26 and the bottom portion 15 are frictionally engaged, and lubricates the lubricant between the bottom portion 15 and the magnetic flux passage surface 42. To a thickness allowing flow. Therefore, the gap G between the magnetic flux passage surface 42 and the bottom portion 15 can be made smaller than the thickness of the friction material 26, and a decrease in the amount of magnetic flux between the armature 25 and the bottom portion 15 is suppressed, and the armature 25 is Sufficient suction is possible. Therefore, the friction material 26 and the bottom portion 15 can be frictionally engaged while securing a torque capacity, and good torque transmission characteristics can be maintained over a long period of time with a simple configuration that does not require surface treatment. In addition, since it is not necessary to perform surface treatment such as formation of a DLC film and fine grooves on each clutch plate, the manufacturing cost of the outer housing 12 and the armature 25 can be reduced, and the amount of magnetic flux associated with the surface treatment is reduced. Can be prevented.

また、底部15とアーマチャ25とが摩擦係合した状態で、潤滑油が磁束通過面42と底部15との間で流動可能となるため、潤滑油の動圧によって底部15とアーマチャ25とが離間されて引きずりトルクの低減が図られ、精度よく伝達トルクを制御できる。   In addition, since the lubricating oil can flow between the magnetic flux passage surface 42 and the bottom portion 15 in a state where the bottom portion 15 and the armature 25 are frictionally engaged, the bottom portion 15 and the armature 25 are separated by the dynamic pressure of the lubricating oil. Thus, drag torque can be reduced, and transmission torque can be controlled with high accuracy.

(2)第1駆動力伝達部材としてアーマチャ25を用い、第2駆動力伝達部材として底部15を用いたため、駆動力伝達部材としてのクラッチプレートを用いずに済み、部品点数を削減できる。また、アーマチャ25と底部15との間にクラッチプレートを設ける場合に比べ磁路が短くなるとともに、アーマチャ25を通過せずクラッチプレート内を通過して電磁コイル31側に戻る磁束がなくなることで磁気効率の向上を図ることができる。   (2) Since the armature 25 is used as the first driving force transmission member and the bottom portion 15 is used as the second driving force transmission member, it is not necessary to use a clutch plate as the driving force transmission member, and the number of parts can be reduced. Further, the magnetic path is shortened as compared with the case where the clutch plate is provided between the armature 25 and the bottom portion 15, and the magnetic flux passing through the clutch plate without passing through the armature 25 and returning to the electromagnetic coil 31 side is eliminated. Efficiency can be improved.

(3)磁束通過面42をアーマチャ25の径方向内側端部から径方向外側端部まで連続する放射状に形成した。そのため、電磁クラッチ11が回転した際に、遠心力によって潤滑油がアーマチャ25及び底部15の径方向内側から径方向外側に向かって流動しやすくなり、効率的にアーマチャ25と底部15を離間させることができ、より引きずりトルクの低減を図ることができる。   (3) The magnetic flux passage surface 42 is formed in a radial pattern that continues from the radially inner end of the armature 25 to the radially outer end. Therefore, when the electromagnetic clutch 11 rotates, the lubricating oil easily flows from the radially inner side to the radially outer side of the armature 25 and the bottom portion 15 by centrifugal force, and efficiently separates the armature 25 and the bottom portion 15. The drag torque can be further reduced.

(4)摩擦材26に軟磁性材料を含有させたため、摩擦材26の透磁率が高くなり、アーマチャ25と底部15との間での磁束量の低下がより抑制され、アーマチャ25をより十分に吸引することができる。   (4) Since a soft magnetic material is contained in the friction material 26, the magnetic permeability of the friction material 26 is increased, a decrease in the amount of magnetic flux between the armature 25 and the bottom portion 15 is further suppressed, and the armature 25 is made more fully. Can be aspirated.

(第2実施形態)
以下、本発明を具体化した第2実施形態を図面に従って説明する。
図4に示すように、駆動力伝達装置51は、カップリングケース52内に回転自在に収容された有底筒状のアウタハウジング53と、同アウタハウジング53の筒内に回転自在に同軸配置された軸状のインナシャフト54とを備えている。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 4, the driving force transmission device 51 is disposed coaxially with a bottomed cylindrical outer housing 53 rotatably accommodated in a coupling case 52 and within the outer housing 53 in a rotatable manner. And an axial inner shaft 54.

第1回転部材としてのアウタハウジング53は、その底部53a(同図中、左側)がカップリングケース52外部に露出された状態で、ボール軸受55により回転自在に支承されるとともに、その開口端53bには、環状のリヤハウジング56が嵌着されている。また、第2回転部材としてのインナシャフト54は、リヤハウジング56の内周に設けられたニードル軸受57及びアウタハウジング53の筒内に設けられたボール軸受58により回転自在に支承されている。そして、アウタハウジング53の筒内は、同アウタハウジング53とリヤハウジング56との嵌合部、及びリヤハウジング56の内周とインナシャフト54の外周との間に設けられたシール部材59,60により封止され、その筒内には潤滑油が収容されている。   The outer housing 53 as the first rotating member is rotatably supported by a ball bearing 55 with its bottom 53a (left side in the figure) exposed to the outside of the coupling case 52, and its open end 53b. A ring-shaped rear housing 56 is fitted into the housing. The inner shaft 54 as the second rotating member is rotatably supported by a needle bearing 57 provided on the inner periphery of the rear housing 56 and a ball bearing 58 provided in a cylinder of the outer housing 53. The cylinder of the outer housing 53 is formed by a fitting portion between the outer housing 53 and the rear housing 56 and seal members 59 and 60 provided between the inner periphery of the rear housing 56 and the outer periphery of the inner shaft 54. Sealed and lubricating oil is contained in the cylinder.

なお、アウタハウジング53の底部53aは、プロペラシャフト(図示略)に設けられたフランジ部(図示略)と、ボルト61によって連結される。これにより、アウタハウジング53は、駆動源であるエンジン(図示略)の発生する駆動力の入力により回転する。また、インナシャフト54の上記ニードル軸受57に支承された側の軸端(同図中、右側)の内周には、図示しないリヤディファレンシャルとの連結部(スプライン嵌合部)62が形成されている。即ち、駆動力伝達装置51は、車両搭載時において、アウタハウジング53は主駆動輪である前輪側と、インナシャフト54は補助駆動輪である後輪側と連結されるようなっている。   The bottom 53a of the outer housing 53 is connected by a bolt 61 to a flange (not shown) provided on a propeller shaft (not shown). As a result, the outer housing 53 rotates in response to the input of driving force generated by an engine (not shown) as a driving source. A connecting portion (spline fitting portion) 62 (not shown) with a rear differential (not shown) is formed on the inner periphery of the shaft end (right side in the drawing) of the inner shaft 54 that is supported by the needle bearing 57. Yes. That is, when the vehicle is mounted on the driving force transmission device 51, the outer housing 53 is connected to the front wheel side that is the main driving wheel, and the inner shaft 54 is connected to the rear wheel side that is the auxiliary driving wheel.

また、アウタハウジング53の筒内には、アウタハウジング53とインナシャフト54とをトルク伝達可能に連結可能なメインクラッチ63が設けられるとともに、メインクラッチ63の軸方向、リヤハウジング56側には電磁クラッチ64が並置されている。そして、これらメインクラッチ63と電磁クラッチ64との間にカム機構65が設けられている。   Further, a main clutch 63 capable of connecting the outer housing 53 and the inner shaft 54 so as to transmit torque is provided in the cylinder of the outer housing 53, and an electromagnetic clutch is provided in the axial direction of the main clutch 63 and on the rear housing 56 side. 64 are juxtaposed. A cam mechanism 65 is provided between the main clutch 63 and the electromagnetic clutch 64.

メインクラッチ63には、軸方向に移動可能に設けられた複数のアウタクラッチプレート66及びインナクラッチプレート67を交互に配置してなる多板式の摩擦クラッチが採用されている。具体的には、各アウタクラッチプレート66はアウタハウジング53の内周に、各インナクラッチプレート67はインナシャフト54の外周にスプライン嵌合されることにより、それぞれ軸方向に移動可能、且つ対応するアウタハウジング53又はインナシャフト54と一体回転可能に設けられている。そして、メインクラッチ63は、これら各アウタクラッチプレート66及びインナクラッチプレート67が軸方向に押圧され、互いに摩擦係合することにより、アウタハウジング53とインナシャフト54とをトルク伝達可能に連結するようになっている。   The main clutch 63 employs a multi-plate friction clutch in which a plurality of outer clutch plates 66 and inner clutch plates 67 that are movably provided in the axial direction are alternately arranged. Specifically, each outer clutch plate 66 is spline-fitted to the inner periphery of the outer housing 53 and each inner clutch plate 67 is spline-fitted to the outer periphery of the inner shaft 54, so that each outer clutch plate 66 can move in the axial direction and has a corresponding outer The housing 53 or the inner shaft 54 is provided so as to be rotatable together. The main clutch 63 connects the outer housing 53 and the inner shaft 54 so that torque can be transmitted by the outer clutch plates 66 and the inner clutch plates 67 being pressed in the axial direction and frictionally engaged with each other. It has become.

カム機構65は、インナシャフト54に回転自在に支承された第1カム68と、インナシャフト54の外周にスプライン嵌合されることにより同インナシャフト54と一体回転可能且つ軸方向に移動可能に設けられた第2カム69と、第1カム68と第2カム69との間に介在されたカムフォロア70とを備えてなる。第1カム68及びカム部材としての第2カム69は、ともに円環状に形成され、第1カム68はリヤハウジング56側に、第2カム69はメインクラッチ63側に配置されている。第1カム68は、リヤハウジング56との間に設けられたニードル軸受71に当接しており、リヤハウジング56と一定の間隔を保持して相対回転可能に支持されている。また、第2カム69は、インナクラッチプレート67が嵌合しているインナシャフト54のスプライン溝の電磁クラッチ64側にスプライン嵌合している。   The cam mechanism 65 is provided with a first cam 68 rotatably supported on the inner shaft 54 and a spline fit on the outer periphery of the inner shaft 54 so that the cam mechanism 65 can rotate integrally with the inner shaft 54 and move in the axial direction. The second cam 69 and a cam follower 70 interposed between the first cam 68 and the second cam 69 are provided. Both the first cam 68 and the second cam 69 as a cam member are formed in an annular shape, and the first cam 68 is disposed on the rear housing 56 side, and the second cam 69 is disposed on the main clutch 63 side. The first cam 68 is in contact with a needle bearing 71 provided between the first housing 68 and the rear housing 56, and is supported so as to be relatively rotatable with a certain distance from the rear housing 56. The second cam 69 is spline-fitted to the electromagnetic clutch 64 side of the spline groove of the inner shaft 54 to which the inner clutch plate 67 is fitted.

これら第1カム68及び第2カム69の対向面には、周方向に対して傾斜する複数のV字溝が互いに対向するように形成されており、カムフォロア70は、これら対向する各V字溝内に配置された状態で第1カム68及び第2カム69により挟持されている。そして、カム機構65は、第1カム68と第2カム69とが相対回転することにより、これら第1カム68と第2カム69との間が離間、即ち第1カム68がメインクラッチ63側に軸方向移動して、メインクラッチ63を押圧するように構成されている。   A plurality of V-shaped grooves inclined with respect to the circumferential direction are formed on the opposing surfaces of the first cam 68 and the second cam 69 so as to oppose each other, and the cam follower 70 is provided with each of the opposing V-shaped grooves. It is clamped by the first cam 68 and the second cam 69 in a state of being disposed inside. In the cam mechanism 65, when the first cam 68 and the second cam 69 rotate relative to each other, the first cam 68 and the second cam 69 are separated from each other, that is, the first cam 68 is on the main clutch 63 side. The main clutch 63 is pressed in the axial direction.

電磁クラッチ64は、第2駆動力伝達部材及び磁路形成部材としてのリヤハウジング56と、電磁コイル72の発生する磁力により吸引される第1駆動力伝達部材としてのアーマチャ73とを備えてなる。具体的には、リヤハウジング56には、アウタハウジング53の筒外(反アウタハウジング53側、図4中右側)に開口する環状溝74が形成されており、電磁コイル72は、この環状溝74内にヨーク75に包囲されて収容され、アーマチャ73の軸方向にリヤハウジング56を介在させて並置されている。なお、リヤハウジング56には、その内周部から軸方向、反アウタハウジング53側に延びる円筒部56aが設けられており、ヨーク75は、この円筒部56aに設けられたボール軸受76によりリヤハウジング56(及びアウタハウジング53)と相対回転可能に支承されている。また、リヤハウジング56の径方向中間部には、非磁性材料であるステンレス製の環状部材77(図5参照)が埋設されている。   The electromagnetic clutch 64 includes a rear housing 56 as a second driving force transmission member and a magnetic path forming member, and an armature 73 as a first driving force transmission member that is attracted by the magnetic force generated by the electromagnetic coil 72. Specifically, the rear housing 56 is formed with an annular groove 74 that opens to the outside of the outer housing 53 (on the side opposite to the outer housing 53, the right side in FIG. 4). The armature 73 is surrounded and accommodated therein, and is arranged in parallel with the rear housing 56 interposed in the axial direction of the armature 73. The rear housing 56 is provided with a cylindrical portion 56a extending axially from the inner peripheral portion thereof to the side opposite to the outer housing 53. The yoke 75 is supported by a ball bearing 76 provided on the cylindrical portion 56a. 56 (and the outer housing 53) are rotatably supported. Further, a stainless steel annular member 77 (see FIG. 5), which is a non-magnetic material, is embedded in a radially intermediate portion of the rear housing 56.

円環状に形成されたアーマチャ73は、第1カム68の外周にスプライン嵌合されることにより、軸方向に摺動可能且つ第1カム68と一体回転可能に設けられている。図5に示すように、本実施形態では、アーマチャ73には、摩擦材78が設けられている。なお、図4及び図5において説明の便宜のため摩擦材78の厚みを誇張して記載している。そして、電磁クラッチ64は、アーマチャ73が電磁コイル72に吸引されて摩擦材78とリヤハウジング56とが摩擦係合することで、アウタハウジング53と第1カム68とをトルク伝達可能に連結するようになっている。   The armature 73 formed in an annular shape is provided so as to be slidable in the axial direction and rotatable integrally with the first cam 68 by being spline fitted to the outer periphery of the first cam 68. As shown in FIG. 5, in this embodiment, the armature 73 is provided with a friction material 78. 4 and 5, the thickness of the friction material 78 is exaggerated for convenience of explanation. The electromagnetic clutch 64 is connected to the outer housing 53 and the first cam 68 so that torque can be transmitted when the armature 73 is attracted to the electromagnetic coil 72 and the friction material 78 and the rear housing 56 are frictionally engaged. It has become.

即ち、第2カム69との間にカムフォロア70を挟持した第1カム68は、電磁クラッチ64の非作動時、同第2カム69、即ちインナシャフト54とともに一体回転する状態となっており、アウタハウジング53と第1カム68との間には、同アウタハウジング53とインナシャフト54との回転差に相当する回転差が生じている。そして、電磁クラッチ64は、その作動により、アウタハウジング53と第1カム68とをトルク伝達可能に連結することで、アウタハウジング53とインナシャフト54(第1カム68)との回転差に基づくトルクをカム機構65に伝達するようになっている。   That is, the first cam 68 having the cam follower 70 sandwiched between the second cam 69 and the second cam 69, that is, the inner shaft 54, is integrally rotated when the electromagnetic clutch 64 is not operated. A rotation difference corresponding to the rotation difference between the outer housing 53 and the inner shaft 54 is generated between the housing 53 and the first cam 68. The electromagnetic clutch 64 is connected to the outer housing 53 and the first cam 68 so that torque can be transmitted by the operation thereof, so that the torque based on the rotational difference between the outer housing 53 and the inner shaft 54 (first cam 68). Is transmitted to the cam mechanism 65.

つまり、駆動力伝達装置51では、電磁クラッチ64の作動により、アウタハウジング53とインナシャフト54との回転差に基づくトルクがカム機構65に伝達され、カム機構65は、そのトルクにより生ずる第2カム69と第1カム68との回転差に基づいて同第2カム69を軸方向メインクラッチ63側に移動させる。即ち、カム機構65は、電磁クラッチ64を介して伝達されたアウタハウジング53とインナシャフト54との回転差に基づくトルクを軸方向の推力に変換し、かつ増幅する。そして、その第2カム69がメインクラッチ63を押圧することにより、同メインクラッチ63が作動、即ちアウタハウジング53とインナシャフト54とがトルク伝達可能に連結されるようになっている。このように、駆動力伝達装置51は、電磁コイル72に対する電力供給を通じて電磁クラッチ64の作動を制御することが可能である。そして、この電磁クラッチ64の作動を通じてメインクラッチ63の作動、即ち、アウタハウジング53とインナシャフト54との間で伝達可能なトルクを自在に制御可能な構成となっている。   That is, in the driving force transmission device 51, the torque based on the rotational difference between the outer housing 53 and the inner shaft 54 is transmitted to the cam mechanism 65 by the operation of the electromagnetic clutch 64, and the cam mechanism 65 generates the second cam generated by the torque. Based on the rotation difference between the first cam 68 and the first cam 68, the second cam 69 is moved to the axial main clutch 63 side. That is, the cam mechanism 65 converts the torque based on the rotational difference between the outer housing 53 and the inner shaft 54 transmitted through the electromagnetic clutch 64 into axial thrust and amplifies it. When the second cam 69 presses the main clutch 63, the main clutch 63 is operated, that is, the outer housing 53 and the inner shaft 54 are connected so as to transmit torque. As described above, the driving force transmission device 51 can control the operation of the electromagnetic clutch 64 through the power supply to the electromagnetic coil 72. The operation of the main clutch 63, that is, the torque that can be transmitted between the outer housing 53 and the inner shaft 54 can be freely controlled through the operation of the electromagnetic clutch 64.

本実施形態では、アーマチャ73及び摩擦材78は、上記第1実施形態と同様に形成されている。そして、電磁コイル72に電流が供給されると、環状部材77によりリヤハウジング56内で磁束が短絡することが防止され、駆動力伝達装置51には一点鎖線で示すように循環する磁路M2が発生する。即ち、ヨーク75、リヤハウジング56、アーマチャ73、リヤハウジング56及びヨーク75を循環する磁路M2が形成される。このとき、上記第1実施形態と同様に、トルク容量を確保しつつ、摩擦材78を介してアーマチャ73とリヤハウジング56とが摩擦係合する。   In the present embodiment, the armature 73 and the friction material 78 are formed in the same manner as in the first embodiment. When a current is supplied to the electromagnetic coil 72, the annular member 77 prevents the magnetic flux from being short-circuited in the rear housing 56, and the driving force transmission device 51 has a magnetic path M2 that circulates as shown by a one-dot chain line. appear. That is, the magnetic path M2 that circulates through the yoke 75, the rear housing 56, the armature 73, the rear housing 56, and the yoke 75 is formed. At this time, similarly to the first embodiment, the armature 73 and the rear housing 56 are frictionally engaged via the friction material 78 while ensuring the torque capacity.

以上、本実施形態によれば、第1実施形態で記載した効果と同様の効果を奏する。
なお、上記各実施形態は、以下の態様で実施してもよい。
・上記各実施形態では、磁束通過面42をアーマチャ25,73の径方向内側端部から径方向外側端部まで連続する放射状に形成した。しかし、これに限らず、例えば図6(a)に示すように、貼着面91を螺旋状に形成するとともに、磁束通過面92をアーマチャ25,73の径方向内側端部から径方向外側端部まで連続する螺旋状に形成し、貼着面91に摩擦材93を貼着もよい。また、磁束通過面がアーマチャ25,73の径方向内側端部から径方向外側端部まで連続して形成されていなくともよく、例えば図6(b)に示すように、貼着面94と磁束通過面95とが径方向外側と径方向内側とで互い違いになるように形成し、貼着面94に摩擦材96を貼着してもよい。さらに、磁束通過面がアーマチャ25,73の径方向内側端部及び径方向外側端部と繋がっていなくともよく、例えば図6(c)に示すように、貼着面97及び磁束通過面98とを同心円状に形成するとともに、貼着面97に摩擦材99を貼着してもよい。なお、図6(a)〜(c)において、説明の便宜のため摩擦材93,96,99にハッチングを付して示す。
As mentioned above, according to this embodiment, there exists an effect similar to the effect described in 1st Embodiment.
In addition, you may implement each said embodiment in the following aspects.
In each of the above embodiments, the magnetic flux passage surface 42 is formed in a radial pattern that continues from the radially inner end of the armatures 25 and 73 to the radially outer end. However, the present invention is not limited to this. For example, as shown in FIG. 6A, the sticking surface 91 is formed in a spiral shape, and the magnetic flux passage surface 92 is extended from the radially inner end of the armatures 25 and 73 to the radially outer end. Alternatively, the friction material 93 may be attached to the attaching surface 91. Further, the magnetic flux passing surface may not be continuously formed from the radially inner end to the radially outer end of the armatures 25 and 73. For example, as shown in FIG. The passage surface 95 may be formed so as to alternate between the radially outer side and the radially inner side, and the friction material 96 may be attached to the attaching surface 94. Further, the magnetic flux passing surface may not be connected to the radially inner end and the radially outer end of the armatures 25 and 73. For example, as shown in FIG. May be formed concentrically, and the friction material 99 may be attached to the attachment surface 97. 6A to 6C, the friction materials 93, 96, and 99 are hatched for convenience of explanation.

・上記各実施形態では、アーマチャ25,73を第1駆動力伝達部材として該アーマチャ25,73に磁束通過面42及び貼着面41を形成したが、これに限らず、底部15及びリヤハウジング56を第1駆動力伝達部材として該底部15又はリヤハウジング56に磁束通過面及び貼着面を形成してもよい。   In each of the above embodiments, the armatures 25 and 73 are used as the first driving force transmission member, and the magnetic flux passage surface 42 and the sticking surface 41 are formed on the armatures 25 and 73. However, the present invention is not limited thereto, and the bottom 15 and the rear housing 56 As a first driving force transmission member, a magnetic flux passage surface and a sticking surface may be formed on the bottom portion 15 or the rear housing 56.

・上記各実施形態において、磁束通過面42に潤滑油をアーマチャ25,73の径方向内側端部から径方向外側端部に導く油溝を形成してもよい。また、アーマチャ25に対向する底部15の対向面、及びアーマチャ73に対向するリヤハウジング56の対向面に、潤滑油を底部15及びリヤハウジング56の径方向内側端部から径方向外側端部に導く油溝を形成してもよい。このようにすることで、アーマチャ25,73と底部15又はリヤハウジング56との間に導入される潤滑油の増加を図り、より引きずりトルクの低減を図ることができる。   In each of the above embodiments, an oil groove that guides the lubricating oil from the radially inner ends of the armatures 25 and 73 to the radially outer ends of the magnetic flux passage surface 42 may be formed. The lubricating oil is guided from the radially inner end of the bottom 15 and the rear housing 56 to the radially outer end of the bottom 15 facing the armature 25 and the facing surface of the rear housing 56 facing the armature 73. An oil groove may be formed. By doing so, the lubricating oil introduced between the armatures 25 and 73 and the bottom 15 or the rear housing 56 can be increased, and the drag torque can be further reduced.

・上記各実施形態では、摩擦材26,78に軟磁性材料を含有させたが、軟磁性材料を含有させなくともよい。
・上記第1実施形態では、電磁コイル31をアーマチャ25の軸方向に底部15を介在させて並置させ、上記第2実施形態では、電磁コイル72をアーマチャ73の軸方向にリヤハウジング56を介在させて並置させた。しかしながら、これに限らず、電磁コイル31の発生する磁束により、アーマチャ25と底部15とが摩擦係合すれば、電磁コイル31をアーマチャ25の軸方向に並置しなくともよく、同様に、電磁コイル72をアーマチャ73の軸方向に並置しなくともよい。
In each of the above embodiments, the soft magnetic material is included in the friction materials 26 and 78, but the soft magnetic material may not be included.
In the first embodiment, the electromagnetic coil 31 is juxtaposed with the bottom portion 15 interposed in the axial direction of the armature 25. In the second embodiment, the electromagnetic coil 72 is interposed in the axial direction of the armature 73. And juxtaposed. However, the present invention is not limited to this, and if the armature 25 and the bottom portion 15 are frictionally engaged by the magnetic flux generated by the electromagnetic coil 31, the electromagnetic coil 31 may not be juxtaposed in the axial direction of the armature 25. 72 need not be juxtaposed in the axial direction of the armature 73.

・上記第1実施形態では、底部15が円筒部14と一体回転するとともに、アーマチャ25をインナシャフト13と一体回転するようにしたが、これに限らず、底部15がインナシャフト13と一体回転するとともに、アーマチャ25が円筒部14と一体回転するようにしてもよい。また、上記第2実施形態では、リヤハウジング56がアウタハウジング53と一体回転するとともに、アーマチャ73をインナシャフト54と一体回転するようにしたが、これに限らず、リヤハウジング56がインナシャフト54と一体回転するとともに、アーマチャ73がアウタハウジング53と一体回転するようにしてもよい。   In the first embodiment, the bottom 15 rotates integrally with the cylindrical portion 14 and the armature 25 rotates integrally with the inner shaft 13. However, the present invention is not limited to this, and the bottom 15 rotates integrally with the inner shaft 13. At the same time, the armature 25 may rotate integrally with the cylindrical portion 14. In the second embodiment, the rear housing 56 rotates integrally with the outer housing 53 and the armature 73 rotates integrally with the inner shaft 54. However, the present invention is not limited thereto, and the rear housing 56 and the inner shaft 54 rotate. The armature 73 may rotate integrally with the outer housing 53 while rotating integrally.

・上記第1実施形態では、第1駆動力伝達部材としてアーマチャ25を用い、第2駆動力伝達部材として底部15を用いた。また上記第2実施形態では、第1駆動力伝達部材としてアーマチャ73を用い、第2駆動力伝達部材としてリヤハウジング56を用いた。しかし、これに限らず、第1及び第2駆動力伝達部材として、アーマチャと磁路形成部材との間に配置される複数のアウタクラッチプレート及びインナクラッチプレートを用い、これらアウタクラッチプレート及びインナクラッチプレートの何れか一方に磁束通過面及び貼着面を形成してもよい。   In the first embodiment, the armature 25 is used as the first driving force transmission member, and the bottom 15 is used as the second driving force transmission member. In the second embodiment, the armature 73 is used as the first driving force transmission member, and the rear housing 56 is used as the second driving force transmission member. However, the present invention is not limited to this, and a plurality of outer clutch plates and inner clutch plates arranged between the armature and the magnetic path forming member are used as the first and second driving force transmission members, and these outer clutch plates and inner clutches are used. A magnetic flux passage surface and a sticking surface may be formed on either one of the plates.

・上記第2実施形態では、駆動力伝達装置51を、4輪駆動車両における補助駆動輪側への駆動力伝達経路に設け、補助駆動輪に伝達するトルクを制御したが、これに限らず、左右駆動力配分装置としての機能を有するディファレンシャル装置などに用いてもよい。   In the second embodiment, the driving force transmission device 51 is provided on the driving force transmission path to the auxiliary driving wheel side in the four-wheel drive vehicle, and the torque transmitted to the auxiliary driving wheel is controlled. You may use for the differential apparatus etc. which have a function as a right-and-left driving force distribution apparatus.

・上記第2実施形態では、電磁クラッチを4輪駆動車両における前輪と後輪との間の駆動力配分を変更する駆動力伝達装置に用いたが、これに限らず、その他差動制限装置等の電磁クラッチを用いる装置に適用してもよい。   In the second embodiment, the electromagnetic clutch is used in the driving force transmission device that changes the driving force distribution between the front wheels and the rear wheels in the four-wheel drive vehicle. You may apply to the apparatus which uses this electromagnetic clutch.

電磁クラッチの概略構成を示す断面図。Sectional drawing which shows schematic structure of an electromagnetic clutch. アーマチャの平面図。The top view of an armature. アーマチャと底部との間の磁束の流れを示す模式図。The schematic diagram which shows the flow of the magnetic flux between an armature and a bottom part. 駆動力伝達装置の概略構成を示す断面図。Sectional drawing which shows schematic structure of a driving force transmission apparatus. 駆動力伝達装置の概略構成を示す一部拡大断面図。The partial expanded sectional view which shows schematic structure of a driving force transmission apparatus. (a)〜(c)別のアーマチャの平面図。(A)-(c) The top view of another armature.

符号の説明Explanation of symbols

11,64…電磁クラッチ、13,54…インナシャフト、14…円筒部、15…底部、25,73…アーマチャ、26,78,93,96,99…摩擦材、31,72…電磁コイル、41,91,94,97…貼着面、42,92,95,98…磁束通過面、51…駆動力伝達装置、53…アウタハウジング、56…リヤハウジング、63…メインクラッチ、65…カム機構、69…第2カム、G…ギャップ、M1,M2…磁路。   DESCRIPTION OF SYMBOLS 11,64 ... Electromagnetic clutch, 13,54 ... Inner shaft, 14 ... Cylindrical part, 15 ... Bottom part, 25, 73 ... Armature, 26, 78, 93, 96, 99 ... Friction material, 31, 72 ... Electromagnetic coil, 41 91, 94, 97 ... sticking surface, 42, 92, 95, 98 ... magnetic flux passing surface, 51 ... driving force transmission device, 53 ... outer housing, 56 ... rear housing, 63 ... main clutch, 65 ... cam mechanism, 69 ... second cam, G ... gap, M1, M2 ... magnetic path.

Claims (5)

円筒部を有する第1回転部材と、前記第1回転部材内に回転自在に同軸配置された軸状の第2回転部材と、前記第1回転部材及び前記第2回転部材のうちの何れか一方と一体回転可能に設けられた第1駆動力伝達部材と、前記第1回転部材及び前記第2回転部材のうちの何れか他方と一体回転可能に設けられた第2駆動力伝達部材と、前記第1及び第2駆動力伝達部材を通過する磁路に磁束を発生させることにより両駆動力伝達部材を摩擦係合させる電磁コイルと、前記第1回転部材内に所定の充填率で収容された潤滑油と、を備えた電磁クラッチであって、
前記第1駆動力伝達部材の前記第2駆動力伝達部材と対向する対向面は、該第2駆動力伝達部材と摩擦係合する摩擦材が貼着される貼着面と、前記貼着面よりも前記第2駆動力伝達部材に近接して形成されて該貼着面よりも磁束密度の高い磁束が通過する磁束通過面と、を有し、
前記摩擦材は、該摩擦材と前記第2駆動力伝達部材とが摩擦係合した状態において、前記第2駆動力伝達部材と前記磁束通過面とのギャップを維持し、前記潤滑油を前記第2駆動力伝達部材と前記磁束通過面との間で流動可能とする厚みに形成されたことを特徴とする電磁クラッチ。
One of a first rotating member having a cylindrical portion, a shaft-shaped second rotating member coaxially disposed in the first rotating member, and the first rotating member and the second rotating member. A first driving force transmission member provided so as to be integrally rotatable with the first driving force transmission member, a second driving force transmission member provided so as to be integrally rotatable with any one of the first rotating member and the second rotating member, An electromagnetic coil that frictionally engages both driving force transmission members by generating magnetic flux in a magnetic path that passes through the first and second driving force transmission members, and is housed in the first rotating member at a predetermined filling rate. An electromagnetic clutch comprising lubricating oil,
The opposing surface of the first driving force transmission member that faces the second driving force transmission member includes an adhesion surface to which a friction material that frictionally engages with the second driving force transmission member is adhered, and the adhesion surface A magnetic flux passage surface that is formed closer to the second driving force transmission member and through which a magnetic flux having a higher magnetic flux density than the sticking surface passes,
The friction material maintains a gap between the second driving force transmission member and the magnetic flux passage surface in a state where the friction material and the second driving force transmission member are frictionally engaged with each other, and the lubricating oil is supplied to the friction material. 2. An electromagnetic clutch formed to a thickness allowing flow between the driving force transmission member and the magnetic flux passage surface.
前記第1駆動力伝達部材は、前記第1回転部材及び前記第2回転部材のうちの何れか一方と一体回転可能、且つ軸方向移動可能に取着されるアーマチャであり、
前記第2駆動力伝達部材は、前記第1回転部材及び前記第2回転部材のうちの何れか他方と一体回転可能、且つ前記アーマチャと前記電磁コイルとの間に介在された磁路形成部材であることを特徴とする請求項1に記載の電磁クラッチ。
The first driving force transmission member is an armature that can be integrally rotated with any one of the first rotating member and the second rotating member, and can be moved in the axial direction.
The second driving force transmission member is a magnetic path forming member that can rotate integrally with one of the first rotating member and the second rotating member, and is interposed between the armature and the electromagnetic coil. The electromagnetic clutch according to claim 1, wherein the electromagnetic clutch is provided.
前記磁束通過面が前記第1駆動力伝達部材の径方向内側端部から径方向外側端部まで連続する放射状に形成されたことを特徴とする請求項1又は2に記載の電磁クラッチ。   3. The electromagnetic clutch according to claim 1, wherein the magnetic flux passage surface is formed radially from the radially inner end to the radially outer end of the first driving force transmission member. 前記摩擦材には、軟磁性材料が含有されたことを特徴とする請求項1〜3のうちの何れか一項に記載の電磁クラッチ。   The electromagnetic clutch according to claim 1, wherein the friction material contains a soft magnetic material. 円筒部を有する第1回転部材と、前記第1回転部材内に回転自在に同軸配置された第2回転部材と、前記第1回転部材と前記第2回転部材との間でトルクを伝達するメインクラッチと、前記メインクラッチの軸方向に並置された電磁クラッチと、前記メインクラッチと前記電磁クラッチとの間に設けられ該電磁クラッチを介して伝達される前記第1回転部材と前記第2回転部材との回転差に基づくトルクを軸方向の押圧力に変換してカム部材を軸方向移動させることにより前記メインクラッチを押圧するカム機構と、前記第1回転部材内に所定の充填率で収容された潤滑油と、を備え、前記電磁クラッチは、前記第1回転部材及び前記第2回転部材のうちの何れか一方と一体回転可能に設けられた第1駆動力伝達部材と、前記第1回転部材及び前記第2回転部材のうちの何れか他方と一体回転可能に設けられた第2駆動力伝達部材と、前記第1及び第2駆動力伝達部材を通過する磁路に磁束を発生させることにより両駆動力伝達部材を摩擦係合させる電磁コイルとから構成された駆動力伝達装置であって、
前記第1駆動力伝達部材の前記第2駆動力伝達部材と対向する対向面は、該第2駆動力伝達部材と摩擦係合する摩擦材が貼着される貼着面と、前記貼着面よりも前記第2駆動力伝達部材に近接して形成されて該貼着面よりも磁束密度の高い磁束が通過する磁束通過面と、を有し、
前記摩擦材は、該摩擦材と前記第2駆動力伝達部材とが摩擦係合した状態において、前記第2駆動力伝達部材と前記磁束通過面とのギャップを維持し、前記潤滑油を前記第2駆動力伝達部材と前記磁束通過面との間で流動可能とする厚みに形成されたことを特徴とする駆動力伝達装置。
A first rotating member having a cylindrical portion, a second rotating member coaxially disposed in the first rotating member, and a main that transmits torque between the first rotating member and the second rotating member. A clutch, an electromagnetic clutch juxtaposed in the axial direction of the main clutch, and the first rotating member and the second rotating member that are provided between the main clutch and the electromagnetic clutch and are transmitted via the electromagnetic clutch. And a cam mechanism that presses the main clutch by converting the torque based on the rotation difference to an axial pressing force and moving the cam member in the axial direction, and is accommodated in the first rotating member at a predetermined filling rate. A first driving force transmitting member provided so as to be integrally rotatable with any one of the first rotating member and the second rotating member, and the first rotation. Material By generating a magnetic flux in a second driving force transmission member provided so as to be integrally rotatable with either one of the second rotating members, and in a magnetic path passing through the first and second driving force transmission members, both are generated. A driving force transmission device composed of an electromagnetic coil that frictionally engages the driving force transmission member;
The opposing surface of the first driving force transmission member that faces the second driving force transmission member includes an adhesion surface to which a friction material that frictionally engages with the second driving force transmission member is adhered, and the adhesion surface A magnetic flux passage surface that is formed closer to the second driving force transmission member and through which a magnetic flux having a higher magnetic flux density than the sticking surface passes,
The friction material maintains a gap between the second driving force transmission member and the magnetic flux passage surface in a state where the friction material and the second driving force transmission member are frictionally engaged with each other, and the lubricating oil is supplied to the friction material. (2) A driving force transmission device having a thickness allowing flow between the driving force transmission member and the magnetic flux passage surface.
JP2007313617A 2007-12-04 2007-12-04 Electromagnetic clutch and driving force transmission device Pending JP2009138798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007313617A JP2009138798A (en) 2007-12-04 2007-12-04 Electromagnetic clutch and driving force transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007313617A JP2009138798A (en) 2007-12-04 2007-12-04 Electromagnetic clutch and driving force transmission device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013106006A Division JP2013155882A (en) 2013-05-20 2013-05-20 Electromagnetic clutch and drive force transmission device

Publications (1)

Publication Number Publication Date
JP2009138798A true JP2009138798A (en) 2009-06-25

Family

ID=40869616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007313617A Pending JP2009138798A (en) 2007-12-04 2007-12-04 Electromagnetic clutch and driving force transmission device

Country Status (1)

Country Link
JP (1) JP2009138798A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9488233B2 (en) 2014-03-12 2016-11-08 Jtekt Corporation Control device for electromagnetic clutch
CN113544399A (en) * 2019-03-08 2021-10-22 舍弗勒技术股份两合公司 Wet clutch friction plate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139113A (en) * 1977-05-11 1978-12-05 Hitachi Ltd Clutch motor
JPS58196331A (en) * 1982-05-12 1983-11-15 Matsushita Electric Ind Co Ltd Electromagnetic driving device
JPH0493529U (en) * 1991-01-09 1992-08-13
JPH11141652A (en) * 1997-11-05 1999-05-25 Mazda Motor Corp Power transmission device
JP2003113253A (en) * 2001-07-30 2003-04-18 Nisshinbo Ind Inc Non-asbestos-based friction material
JP2005036847A (en) * 2003-07-17 2005-02-10 Sanden Corp Electromagnetic clutch
JP2005282648A (en) * 2004-03-29 2005-10-13 Aisin Chem Co Ltd Wet type friction member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139113A (en) * 1977-05-11 1978-12-05 Hitachi Ltd Clutch motor
JPS58196331A (en) * 1982-05-12 1983-11-15 Matsushita Electric Ind Co Ltd Electromagnetic driving device
JPH0493529U (en) * 1991-01-09 1992-08-13
JPH11141652A (en) * 1997-11-05 1999-05-25 Mazda Motor Corp Power transmission device
JP2003113253A (en) * 2001-07-30 2003-04-18 Nisshinbo Ind Inc Non-asbestos-based friction material
JP2005036847A (en) * 2003-07-17 2005-02-10 Sanden Corp Electromagnetic clutch
JP2005282648A (en) * 2004-03-29 2005-10-13 Aisin Chem Co Ltd Wet type friction member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9488233B2 (en) 2014-03-12 2016-11-08 Jtekt Corporation Control device for electromagnetic clutch
CN113544399A (en) * 2019-03-08 2021-10-22 舍弗勒技术股份两合公司 Wet clutch friction plate

Similar Documents

Publication Publication Date Title
US7677375B2 (en) Drive force transmission device
JP4715690B2 (en) Driving force transmission device
US20130015025A1 (en) Plate element, and friction clutch device and brake device provided with the plate element
JP5909992B2 (en) Driving force transmission device and design method thereof
JP2009138798A (en) Electromagnetic clutch and driving force transmission device
US9651097B2 (en) Friction clutch assembly
JP2013155882A (en) Electromagnetic clutch and drive force transmission device
JP2009138799A (en) Electromagnetic clutch and driving force transmission device
US11499594B2 (en) Magnetorheological fluid clutch apparatus with low permeability drums
JP5267138B2 (en) Electromagnetic clutch
JP5187555B2 (en) Driving force transmission device
JP3777402B2 (en) Driving force transmission device
JP6432228B2 (en) Electromagnetic clutch device
JP4096679B2 (en) Manufacturing method of magnetic path forming member
JP2015129574A (en) Driving force transmission device and electromagnetic clutch
JP6069954B2 (en) Driving force transmission device and manufacturing method thereof
JP4051868B2 (en) Driving force transmission device and torque transmission adjustment method for driving force transmission device
JP2005036863A (en) Friction clutch and driving force transmission device
JP2000081054A (en) Electromagnetic clutch device
JP4513457B2 (en) Driving force transmission device
JP2021173340A (en) Multiple disc clutch
JP2013221541A (en) Driving force transmission device
JP4165038B2 (en) Electromagnetic pilot type clutch device
JP2017166594A (en) Frictional engagement device
JP2002340046A (en) Electromagnetic coupling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219