JP2009138485A - Corrugated steel plate earthquake-resistant wall - Google Patents

Corrugated steel plate earthquake-resistant wall Download PDF

Info

Publication number
JP2009138485A
JP2009138485A JP2007318208A JP2007318208A JP2009138485A JP 2009138485 A JP2009138485 A JP 2009138485A JP 2007318208 A JP2007318208 A JP 2007318208A JP 2007318208 A JP2007318208 A JP 2007318208A JP 2009138485 A JP2009138485 A JP 2009138485A
Authority
JP
Japan
Prior art keywords
corrugated steel
steel plate
steel plates
corrugated
valley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007318208A
Other languages
Japanese (ja)
Other versions
JP5291331B2 (en
Inventor
Hidemi Ikeda
英美 池田
Yasuaki Hirakawa
恭章 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2007318208A priority Critical patent/JP5291331B2/en
Publication of JP2009138485A publication Critical patent/JP2009138485A/en
Application granted granted Critical
Publication of JP5291331B2 publication Critical patent/JP5291331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a corrugated steel plate earthquake-resistant wall, preventing shearing buckling of a corrugated steel plate in simple constitution. <P>SOLUTION: A plurality of corrugated steel plates are fitted opposite to a peripheral member constituting a frame. At least either the crest parts of the opposite corrugated steel plates or the valley parts, or the crest part and the valley part are joined to each other by a joining means. When the opposite corrugated steel plates are not joined, the shearing buckling yield strength of the corrugated steel plate earthquake-resistant wall is determined by flexural rigidity of each corrugated plate. The opposite corrugated steel plates are joined and united in a body to thereby increase the geometrical moment of inertia, so that the flexural rigidity (rigidity to bending in the out-of-plane direction) of the corrugated steel plate earthquake-resistant wall can be secured. Accordingly, the shearing buckling yield strength is improved to restrain shearing buckling. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、架構を構成する周辺部材へ対向する波形鋼板を取り付けて構成された波形鋼板耐震壁に関する。   The present invention relates to a corrugated steel earthquake resistant wall constructed by attaching corrugated steel plates facing peripheral members constituting a frame.

耐震壁としては、特許文献1に示すように、鋼板を波形に加工した波形鋼板を、波形の折筋の向きを水平にして架構の構面に配置した波形鋼板耐震壁が提案されている。この波形鋼板耐震壁は、垂直方向にアコーディオンのように伸縮するため鉛直力を負担しないが、水平せん断力に対しては抵抗可能であり、せん断剛性・せん断耐力を確保しつつ、優れた変形性能を有している。更に、せん断剛性及び強度については、鋼板の材質強度、板厚、重ね合わせ枚数、波形のピッチ、波高等を変えることにより調整可能であり、剛性及び設計強度の自由度が高い耐震壁を実現している。   As a seismic wall, as shown in Patent Document 1, a corrugated steel shear wall is proposed in which a corrugated steel sheet obtained by processing a steel sheet into a corrugated shape is disposed on the construction surface of the frame with the corrugated crease direction oriented horizontally. This corrugated steel shear wall does not bear vertical force because it expands and contracts in the vertical direction like an accordion, but it can resist horizontal shearing force and has excellent deformation performance while ensuring shear rigidity and shear strength have. Furthermore, the shear rigidity and strength can be adjusted by changing the material strength, thickness, number of overlapping sheets, corrugation pitch, wave height, etc. of the steel sheet, realizing a shear wall with a high degree of freedom in rigidity and design strength. ing.

ところで、このように耐震性能に優れた波形鋼板耐震壁は、板厚を薄く抑えることが可能であるため、一般的な鉄筋コンクリート造の耐震壁に比べて、その設置幅を小さく抑えることができる。更に、板厚を薄く抑えることで一般的なプレス機を用いて鋼板を波形に加工できるため、全体的な経済性が向上する。しかし、板厚を薄くした場合には、せん断座屈を防止するための手段を講じることが望ましい。   By the way, since the corrugated steel shear wall excellent in earthquake resistance as described above can reduce the plate thickness, its installation width can be suppressed smaller than that of a general reinforced concrete earthquake resistant wall. Furthermore, since the steel plate can be processed into a corrugated shape by using a general press machine by keeping the plate thickness thin, the overall economy is improved. However, when the plate thickness is reduced, it is desirable to take measures to prevent shear buckling.

せん断座屈を防止する手段としては、図12に示すように、波形鋼板耐震壁100を構成する波形鋼板102に、複数の補剛リブ104を溶接することが考えられる。しかしながら、この溶接作業には熟練を要し、更に、溶接熱によって波形鋼板102が歪み、波形鋼板耐震壁100の寸法誤差が大きくなる場合がある。   As a means for preventing shear buckling, it is conceivable to weld a plurality of stiffening ribs 104 to the corrugated steel plate 102 constituting the corrugated steel shear wall 100 as shown in FIG. However, this welding operation requires skill, and further, the corrugated steel plate 102 may be distorted by welding heat, and the dimensional error of the corrugated steel earthquake resistant wall 100 may increase.

また、同一の構面に複数の波形鋼板を配置する場合は、一枚当たりの波形鋼板が負担する耐力が小さくなるため、波形鋼板の板厚を更に薄くできるが、各波形鋼板に座屈防止用の補剛リブを溶接する必要があり、また、板厚が薄くなるに従って波形鋼板に溶接する補剛リブの数が増えるため、上記の寸法誤差等に注意する必要がある。   In addition, when multiple corrugated steel sheets are placed on the same surface, the strength of the corrugated steel sheet per sheet is reduced, so the corrugated steel sheet thickness can be further reduced. It is necessary to weld the stiffening ribs for use, and the number of the stiffening ribs to be welded to the corrugated steel sheet increases as the plate thickness decreases.

一方、特許文献2には、図13に示すように、ロングスパンに対応すべく提案されたハニカム型デッキプレート106が開示されている。このハニカム型デッキプレート106は、2枚のデッキプレート108、110を上下対称に重ね合わせ、接触する部分112を溶接して一体化したものである。しかし、デッキプレート108の凸部114と、デッキプレート110の凸部116との間に、断面6角形(ハニカム形状)の空洞部118が形成されるため、空洞部118の長手方向に力(水平力F)が作用すると、空洞部118が外側(面外方向)にはらみ出し、凸部114、凸部116がせん断座屈する恐れがある。   On the other hand, as shown in FIG. 13, Patent Document 2 discloses a honeycomb deck plate 106 that has been proposed to cope with a long span. The honeycomb type deck plate 106 is obtained by stacking two deck plates 108 and 110 symmetrically in a vertical direction, and welding and integrating the contacting portions 112. However, since a hollow portion 118 having a hexagonal cross section (honeycomb shape) is formed between the convex portion 114 of the deck plate 108 and the convex portion 116 of the deck plate 110, a force (horizontal) is generated in the longitudinal direction of the hollow portion 118. When the force F) is applied, the cavity 118 protrudes outward (in the out-of-plane direction), and the protrusion 114 and the protrusion 116 may be sheared.

また、特許文献3には、大きさの異なる波形をした2枚の小波鋼板と大波鋼板とを上下に重ね合わせたデッキプレートが提案されている。しかし、このデッキプレートも、特許文献2と同様に、大波鋼板と小波鋼板との間に大きな空洞部が形成されており、この空洞部の長手方向に力(水平力)が作用すると、空洞部が外側(面外方向)にはらみ出し、小波鋼板の凸部、大波鋼板の凸部がせん断座屈する恐れがある。
特開2005−264713号公報 特開平11−117441号公報 特開平5−106292号公報
Further, Patent Document 3 proposes a deck plate in which two small-wave steel plates and large-wave steel plates each having a corrugated shape different from each other are vertically stacked. However, similarly to Patent Document 2, this deck plate also has a large cavity formed between the large wave steel plate and the small wave steel plate, and when a force (horizontal force) acts in the longitudinal direction of the cavity, May protrude outward (out-of-plane direction), and the convex portion of the small wave steel plate and the convex portion of the large wave steel plate may be shear buckled.
JP 2005-264713 A Japanese Patent Laid-Open No. 11-117441 JP-A-5-106292

本発明は、上記の事実を考慮し、簡易な構成で波形鋼板のせん断座屈を防止できる波形鋼板耐震壁を提供することを目的とする。   An object of the present invention is to provide a corrugated steel shear wall that can prevent shear buckling of the corrugated steel sheet with a simple configuration in consideration of the above facts.

請求項1に記載の発明は、架構を構成する周辺部材に複数の波形鋼板を取り付け、対向する前記波形鋼板を正面視したとき、前側に凸の部分を山部とし後側に凹の部分を谷部として構成された波形鋼板耐震壁において、対向する前記波形鋼板の前記山部同士及び前記谷部同士の少なくとも一方、若しくは前記山部と前記谷部とを接合手段により接合したことを特徴としている。   According to the first aspect of the present invention, when a plurality of corrugated steel plates are attached to the peripheral members constituting the frame, and the corrugated steel plates facing each other are viewed from the front, the convex portion on the front side is a peak and the concave portion is on the rear side. In the corrugated steel shear wall configured as a trough, at least one of the crests and the troughs of the corrugated steel plates facing each other, or the crest and the trough are joined by a joining means. Yes.

上記の構成によれば、架構を構成する周辺部材に、複数の波形鋼板を対向して取り付ける。そして、対向する波形鋼板の山部同士及び谷部同士の少なくとも一方、若しくは山部と谷部とを接合手段により接合する。ここで、対向する波形鋼板を接合しない場合は、各波形鋼板の曲げ剛性によって波形鋼板耐震壁のせん断座屈耐力が決定されるが、対向する波形鋼板を接合して一体化することで、断面2次モーメントが大きくなるため、波形鋼板耐震壁の曲げ剛性を確保することができる。従って、せん断座屈耐力が向上してせん断座屈が抑制される。また、板厚を厚くしたり、補剛リブを形成する等の特別な補強を波形鋼板に施す必要がないため施工性が向上し、また、接合する波形鋼板の枚数を増減することにより、所定の設計剛性・強度が得られるため、設計自由度が向上する。   According to said structure, a some corrugated steel plate is attached facing the peripheral member which comprises a frame. Then, at least one of the crests and troughs of the corrugated steel plates facing each other, or the crests and troughs are joined by a joining means. Here, when the corrugated steel plates facing each other are not joined, the shear buckling strength of the corrugated steel shear wall is determined by the bending rigidity of each corrugated steel plate. Since the secondary moment increases, the bending rigidity of the corrugated steel shear wall can be secured. Therefore, the shear buckling strength is improved and shear buckling is suppressed. In addition, it is not necessary to apply special reinforcement to the corrugated steel sheet, such as increasing the plate thickness or forming stiffening ribs, so that workability is improved, and by increasing or decreasing the number of corrugated steel sheets to be joined, Design rigidity and strength can be obtained, and the degree of freedom in design is improved.

請求項2に記載の発明は、請求項1に記載の波形鋼板耐震壁において、一方の前記波形鋼板の前記山部に、該山部と大きさの異なる他方の前記波形鋼板の前記山部とを突き合わせると共に、一方の前記波形鋼板の前記谷部に、該谷部と大きさの異なる他方の前記波形鋼板の前記谷部とを突き合わせ、前記山部同士及び前記谷部同士の少なくとも一方を前記接合手段により接合したことを特徴としている。   The invention according to claim 2 is the corrugated steel earthquake resistant wall according to claim 1, wherein the peak portion of one of the corrugated steel sheets has the peak portion of the other corrugated steel sheet different in size from the peak portion. And abutting the trough of one of the corrugated steel sheets with the trough of the other corrugated steel sheet having a different size from the trough, and at least one of the peak portions and the trough portions It joined by the said joining means, It is characterized by the above-mentioned.

上記の構成によれば、対向する波形鋼板において、大きさの異なる山部同士及び大きさの異なる谷部同士を突き合わせ、山部同士及び谷部同士の少なくとも一方を接合手段により接合している。このように、対向する山部同士及び谷部同士を突き合わせることで、波形鋼板耐震壁の設置幅を、1枚の波形鋼板を取り付けた場合と同程度の設置幅に抑えることができる。また、対向する山部同士及び谷部同士の大きさが異なるため、波形鋼板の加工誤差を吸収することができ、波形鋼板の生産性が向上する。   According to said structure, in the corrugated steel plate which opposes, peak parts from which a magnitude | size differs and trough parts from which a magnitude | size differ are faced | matched, and at least one of peak parts and trough parts are joined by the joining means. Thus, the installation width | variety of a corrugated steel plate earthquake-resistant wall can be restrained to the same installation width as the case where one corrugated steel plate is attached by abutting facing peak parts and trough parts. Moreover, since the magnitude | sizes of the peak parts and trough parts which oppose differ, the processing error of a corrugated steel plate can be absorbed, and the productivity of a corrugated steel plate improves.

請求項3に記載の発明によれば、請求項1に記載の波形鋼板耐震壁において、一方の前記波形鋼板の前記谷部に、他方の前記波形鋼板の前記山部を突き合わせて前記接合手段で接合し、一方の前記波形鋼板の前記山部と、該山部と対向する他方の前記波形鋼板の前記谷部との間に形成される空間に配置された長ナットに、面外方向からボルトをねじ込んで該山部と該谷部とを連結したことを特徴としている。   According to the invention described in claim 3, in the corrugated steel shear wall according to claim 1, the corrugated portion of one corrugated steel plate is abutted with the peak portion of the other corrugated steel plate by the joining means. A long nut disposed in a space formed between the crest portion of one of the corrugated steel plates and the trough portion of the other corrugated steel plate facing the crest portion. And the crest and the trough are connected.

上記の構成によれば、一方の波形鋼板の谷部に、他方の波形鋼板の山部を突き合わせて接合手段により接合する。このように波形鋼板を突き合わせると、一方の波形鋼板の山部と他方の波形鋼板の谷部との間に空間が形成される。この空間に長ナットを配置し、面外方向からボルトをねじ込むことで、当該山部と当該谷部とを連結して一体化している。このため、波形鋼板耐震壁の曲げ剛性が向上し、面外方向へのはらみ出しが抑制されるため、せん断座屈を抑制することができる。   According to said structure, the peak part of the other corrugated steel plate is faced | matched to the trough part of one corrugated steel plate, and it joins by a joining means. When corrugated steel plates are thus brought into contact with each other, a space is formed between a peak portion of one corrugated steel plate and a valley portion of the other corrugated steel plate. By arranging a long nut in this space and screwing a bolt from the out-of-plane direction, the peak and the valley are connected and integrated. For this reason, since the bending rigidity of a corrugated steel shear wall improves and the protrusion to an out-of-plane direction is suppressed, shear buckling can be suppressed.

請求項4に記載の発明によれば、請求項1〜3の何れか1項に記載の波形鋼板耐震壁において、前記接合手段は、溶接又はリベットであることを特徴としている。   According to a fourth aspect of the present invention, in the corrugated steel earthquake proof wall according to any one of the first to third aspects, the joining means is welding or a rivet.

上記の構成によれば、簡易な手段により、波形鋼板同士を接合することができる。   According to said structure, corrugated steel plates can be joined by simple means.

請求項5に記載の発明によれば、請求項1〜4の何れか1項に記載の波形鋼板耐震壁において、前記波形鋼板が、デッキプレートであることを特徴としている。   According to the invention described in claim 5, in the corrugated steel earthquake resistant wall according to any one of claims 1-4, the corrugated steel sheet is a deck plate.

上記の構成によれば、波形鋼板として、規格化されたデッキプレートを用いることで、経済性が向上する。   According to said structure, economical efficiency improves by using the standardized deck plate as a corrugated steel plate.

本発明は、上記の構成としたので、簡易な構成で波形鋼板のせん断座屈を防止し、波形鋼板耐震壁の耐震性能を向上させることができる。   Since this invention was set as said structure, it can prevent the shear buckling of a corrugated steel plate with a simple structure, and can improve the seismic performance of a corrugated steel earthquake resistant wall.

以下、図面を参照して本発明の第1の実施形態に係る波形鋼板耐震壁について説明する。   The corrugated steel shear wall according to the first embodiment of the present invention will be described below with reference to the drawings.

先ず、図1、図2に示すように、鉄筋コンクリート造の柱10、12及び鉄筋コンクリート造の梁14、16に囲まれた架構18の構面に、鋼板を波形に加工した2枚の波形鋼板20、22が折り筋の向きを水平方向として対向配置され、波形鋼板20、22によって波形鋼板耐震壁24が構成されている。波形鋼板20、22の外周部には、接合用フレーム枠26が溶接され、接合用フレーム枠26を介して波形鋼板20、22が、後述する接合方法によって柱10、12及び梁14、16と接合されている。   First, as shown in FIGS. 1 and 2, two corrugated steel plates 20 are formed by corrugating steel plates on the surface of a frame 18 surrounded by reinforced concrete columns 10 and 12 and reinforced concrete beams 14 and 16. , 22 are opposed to each other with the direction of the crease being in the horizontal direction, and the corrugated steel plates 20 and 22 constitute corrugated steel earthquake resistant walls 24. The joining frame frame 26 is welded to the outer peripheral portions of the corrugated steel plates 20 and 22, and the corrugated steel plates 20 and 22 are connected to the columns 10 and 12 and the beams 14 and 16 via the joining frame frame 26 by a joining method described later. It is joined.

波形鋼板20は、山部28と谷部30とが交互に連続する波形とされ、波形鋼板22は、山部32と谷部34とが交互に連続する波形とされている。そして、対向する山部28の山頂28Aと山部32の山頂32Aとを突き合わせると共に、対向する谷部30の谷底30Aと谷部34の谷底34Aとを突き合わせ、山頂28A又は谷底34Aの中央部において、山頂28Aと山頂32A、谷底30Aと谷底34Aとが溶接接合されている。なお、図2中の黒丸は溶接場所を示しており、一般的なデッキプレート等の接合に用いられる焼抜き栓溶接によって接合されている。   The corrugated steel plate 20 has a waveform in which crests 28 and troughs 30 are alternately continued, and the corrugated steel plate 22 has a waveform in which crests 32 and troughs 34 are alternately continued. Then, the peak 28A of the peak 28 and the peak 32A of the peak 32 are abutted, the valley 30A of the valley 30 is opposed to the valley 34A of the valley 34, and the center of the peak 28A or the valley 34A is centered. , The summit 28A and the summit 32A, and the valley bottom 30A and the valley bottom 34A are welded. In addition, the black circle in FIG. 2 has shown the welding place, and it joins by the quenching plug welding used for joining common deck plates etc.

ここで、波形鋼板20と波形鋼板22とは同一形状の波形とされ、即ち、図2において、波形鋼板22を、鉛直方向を軸として左右に反転させて波形鋼板20の上に重ねると、山部28と谷部34、谷部30と山部32の形状がそれぞれ一致する。一方、各波形鋼板20、22について見ると、山部28と谷部30、山部32と谷部34がそれぞれ異なる大きさにされている。具体的には、山頂28Aの鉛直方向の長さが谷底30Aよりも長く、谷底34Aの鉛直方向の長さが山頂32Aよりも長くされている。このため、山部28と山部32、谷部30、谷部34を嵌め合わせると、山部28と山部32との間及び谷部30と谷部34との間に空間36、38がそれぞれ形成される。   Here, the corrugated steel plate 20 and the corrugated steel plate 22 have the same shape, that is, in FIG. 2, when the corrugated steel plate 22 is reversed left and right with the vertical direction as an axis and is superimposed on the corrugated steel plate 20, The shapes of the portion 28 and the valley portion 34, and the valley portion 30 and the mountain portion 32 are the same. On the other hand, when it sees about each corrugated steel plate 20 and 22, the peak part 28 and the trough part 30, and the peak part 32 and the trough part 34 are made into the respectively different magnitude | size. Specifically, the vertical length of the peak 28A is longer than the valley bottom 30A, and the vertical length of the valley bottom 34A is longer than the peak 32A. For this reason, when the mountain part 28, the mountain part 32, the valley part 30, and the valley part 34 are fitted together, spaces 36 and 38 are formed between the mountain part 28 and the mountain part 32 and between the valley part 30 and the valley part 34. Each is formed.

なお、波形鋼板耐震壁24を正面(矢印A)から見たときに、前側に凸の部分を山部28、32とし、後側に凹の部分を谷部30、34としている。波形鋼板耐震壁24の正面の捉え方により、即ち、波形鋼板耐震壁24の表面と裏面のうち、何れの面を正面とするかによって各波形鋼板20、22の山部と谷部とが入れ替わるが、上記の前提は、波形鋼板20、22の接合場所を特定すべく便宜的に定めたものである。従って、正面の捉え方を変えた場合は、各波形鋼板20、22の山部と谷部を適宜入れ替えて解釈すれば良い。以下、全ての実施形態において、波形鋼板耐震壁24を正面(矢印A)から見た時に前側に凸の部分を山部とし、後側に凹の部分を谷部とする。   In addition, when the corrugated steel shear wall 24 is viewed from the front (arrow A), the convex portions on the front side are the peak portions 28 and 32, and the concave portions on the rear side are the valley portions 30 and 34. The crests and troughs of each corrugated steel plate 20 and 22 are switched depending on how the corrugated steel seismic wall 24 is caught, that is, which one of the front and back surfaces of the corrugated steel seismic wall 24 is the front surface. However, the above premise is set for convenience in order to specify the joining location of the corrugated steel plates 20 and 22. Therefore, when the way of capturing the front is changed, the corrugated steel plates 20 and 22 may be interpreted by appropriately replacing the crests and troughs. Hereinafter, in all the embodiments, when the corrugated steel shear wall 24 is viewed from the front (arrow A), the convex portion on the front side is a peak and the concave portion on the rear side is a valley.

図3には、第1の実施形態に係る波形鋼板耐震壁の変形例として、架構18に4枚の波形鋼板20、22、40、42を配置して構成された波形鋼板耐震壁44を示す。波形鋼板耐震壁44は、図2に示す一体的に接合された波形鋼板20、22と、波形鋼板20、22と同様に一体的に接合された波形鋼板40、42とを架構18の構面に対向配置して構成されている。そして、波形鋼板20の山部28と、波形鋼板40の谷部46とを突き合わせ、山頂28Aと谷底46Aとを溶接することで、波形鋼板20、22、40、及び42が一体的に接合されている。なお、波形鋼板40、42は、波形鋼板20、22と同一形状の波形とされている。   In FIG. 3, as a modified example of the corrugated steel earthquake proof wall according to the first embodiment, a corrugated steel earthquake proof wall 44 configured by arranging four corrugated steel plates 20, 22, 40, 42 on the frame 18 is shown. . The corrugated steel seismic wall 44 is composed of the integrally joined corrugated steel plates 20 and 22 shown in FIG. 2 and the corrugated steel plates 40 and 42 integrally joined in the same manner as the corrugated steel plates 20 and 22. Are arranged opposite to each other. And the corrugated steel plates 20, 22, 40, and 42 are integrally joined by butting the crest 28 of the corrugated steel plate 20 and the trough 46 of the corrugated steel plate 40 and welding the crest 28A and the trough bottom 46A. ing. The corrugated steel plates 40 and 42 have the same shape as the corrugated steel plates 20 and 22.

図4(A)、(B)は、対向配置された波形鋼板20と波形鋼板22との接合場所を上下方向にずらして接合した第1の実施形態に係る波形鋼板耐震壁の変形例である。図2に示す構成では、山部28と山部32、谷部30と谷部34とを、山部28の山頂28A又は谷部34の谷部34Aの中央部において接合したが、図4(A)に示す構成では、山部28と山部32を山頂28Aの下部で接合し、谷部30と谷部34とを谷底34Aの上部で接合することで、空間36を広く確保している。なお、山部28と山部32、谷部30と谷部34との接合位置を、更に上下方向にずらして空間38を無くし、空間36を広げても良い。   4 (A) and 4 (B) are modified examples of the corrugated steel shear wall according to the first embodiment in which the joining locations of the corrugated steel plates 20 and the corrugated steel plates 22 arranged in opposition are shifted in the vertical direction. . In the configuration shown in FIG. 2, the peak portion 28 and the peak portion 32 and the valley portion 30 and the valley portion 34 are joined at the central portion of the peak portion 28 </ b> A of the peak portion 28 or the valley portion 34 </ b> A of the valley portion 34. In the configuration shown in A), the crest 28 and the crest 32 are joined at the bottom of the crest 28A, and the trough 30 and the trough 34 are joined at the top of the trough 34A, thereby ensuring a wide space 36. . In addition, the joining position of the mountain part 28 and the mountain part 32, and the valley part 30 and the valley part 34 may be further shifted in the vertical direction to eliminate the space 38 and expand the space 36.

図4(B)は、空間36に、長ナット48を配置した例である。長ナット48には、波形鋼板20の面外方向から山頂28Aに形成された貫通孔を通じてボルト50がねじ込まれる共に、波形鋼板22の面外方向から谷底34Aに形成された貫通孔を通じてボルト50がねじ込まれ、山部28と谷部34とが一体的に連結されている。なお、長ナット48は、波形鋼板20と波形鋼板22とを接合する前に、波形鋼板22の谷底34Aに溶接等で固定しておく。   FIG. 4B shows an example in which a long nut 48 is arranged in the space 36. Bolts 50 are screwed into the long nuts 48 from the out-of-plane direction of the corrugated steel sheet 20 through the through holes formed in the peak 28A, and the bolts 50 are passed through the through-holes formed in the valley bottom 34A from the out-of-plane direction of the corrugated steel sheet 22. The peak portion 28 and the valley portion 34 are integrally connected by being screwed. The long nut 48 is fixed to the valley bottom 34A of the corrugated steel plate 22 by welding or the like before the corrugated steel plate 20 and the corrugated steel plate 22 are joined.

以上の実施形態では、波形鋼板20と波形鋼板22との接合において、山部28、32の山頂同士28A、32A及び谷部30、34の谷底同士30A、34Aを溶接接合したがこれに限られず、溶接に替えて、例えばリベット、ボルト及びナット等で接合しても良い。また、山部同士28、32及び谷部同士30、34を全て接合する必要はなく、波形鋼板耐震壁24の設計強度に応じて適宜選択して接合すれば良い。長ナット48についても同様に、全ての空間36に配置する必要はなく、適宜選択して山部28と谷部34とを連結すれば良い。   In the above embodiment, in the joining of the corrugated steel plate 20 and the corrugated steel plate 22, the crests 28A, 32A of the crests 28A, 32A and the troughs 30, 34A are welded to each other, but the invention is not limited thereto. Instead of welding, for example, rivets, bolts, nuts and the like may be joined. Moreover, it is not necessary to join the peak portions 28 and 32 and the valley portions 30 and 34, and may be appropriately selected and bonded according to the design strength of the corrugated steel shear wall 24. Similarly, the long nuts 48 need not be arranged in all the spaces 36, and may be appropriately selected to connect the peak portions 28 and the valley portions 34.

更に、本実施形態では、同一形状の波形に加工された波形鋼板20、22を架構18の構面に配置したがこれに限られず、図5(A)に示すように、異なる波形形状をした2枚の波形鋼板52、54を架構18の構面に対向配置しても良い。波形鋼板52、54の波形形状を比較すると、山部56の山頂56A(h)、谷部62の谷底62A(i)、山部60の山頂60A(j)、谷部58の谷底58A(k)の順に、鉛直方向の長さが長くなっている。このように、異なる形状の波形であっても、山頂56Aと山頂60A及び谷底58Aと谷底62Aを突き合わせることができれば、波形鋼板52、54を接合することができる。また、山部56と山部60との間、谷部58と谷部62との間に空間64、66が形成されるが、図5(B)に示すように、空間64に長ナット48を配置し、波形鋼板52の面外方向から山頂56Aを貫通するボルト50をねじ込んで締め付けると共に、波形鋼板54の面外方向から谷底62Aを貫通するボルト50をねじ込んで締め付け、山部56と谷部62とを一体的に連結しても良い。   Further, in the present embodiment, the corrugated steel plates 20 and 22 processed into the corrugated shape of the same shape are arranged on the structural surface of the frame 18, but the present invention is not limited to this, and as shown in FIG. Two corrugated steel plates 52 and 54 may be disposed opposite the construction surface of the frame 18. Comparing the corrugated shapes of the corrugated steel plates 52 and 54, the peak 56A (h) of the peak 56, the valley bottom 62A (i) of the valley 62, the peak 60A (j) of the peak 60, and the valley 58A (k) of the valley 58 ) In the order of the vertical length. Thus, even if it is a waveform of a different shape, if the peak 56A and the peak 60A and the valley bottom 58A and the valley bottom 62A can be faced together, the corrugated steel plates 52 and 54 can be joined. In addition, spaces 64 and 66 are formed between the mountain portion 56 and the mountain portion 60 and between the valley portion 58 and the valley portion 62. As shown in FIG. The bolt 50 that penetrates the peak 56A from the out-of-plane direction of the corrugated steel plate 52 is screwed and tightened, and the bolt 50 that penetrates the valley bottom 62A from the out-of-plane direction of the corrugated steel plate 54 is screwed and tightened. The part 62 may be integrally connected.

次に、波形鋼板20、22と架構18との接合方法の例について説明する。なお、第1の実施形態における接合方法について説明するが、本接合方法は、全ての実施形態に適用可能である。   Next, an example of a method for joining the corrugated steel plates 20 and 22 and the frame 18 will be described. In addition, although the joining method in 1st Embodiment is demonstrated, this joining method is applicable to all embodiment.

図6に示すように、接合用フレーム枠26には、水平力伝達要素としてのスタッド68が溶接等によって取り付けられている。そして、架構18の施工時に、柱10、12及び梁14、16の内部にスタッド68を埋め込むことで、波形鋼板20、22と架構18とが一体的に接合される。このため、波形鋼板20、22に作用する水平力(地震力)がスタッド68を介して、架構18に伝達される。   As shown in FIG. 6, a stud 68 as a horizontal force transmission element is attached to the joining frame 26 by welding or the like. Then, when the frame 18 is constructed, the corrugated steel plates 20 and 22 and the frame 18 are integrally joined by embedding the studs 68 inside the columns 10 and 12 and the beams 14 and 16. For this reason, a horizontal force (earthquake force) acting on the corrugated steel plates 20 and 22 is transmitted to the frame 18 via the stud 68.

なお、本実施形態では、接合用フレーム枠26にスタッド68を取り付け、このスタッド68を左右の柱10、12及び上下の梁14、16の内部に埋め込んで接合したが、これに限られず、波形鋼板20、22に作用する水平力を架構18に伝達できれば良い。例えば、柱10、12及び梁14、16の内周部にスタッド68等の水平力伝達要素を備えた接合用プレートを埋め込み、接合用プレートと波形鋼板20、22に取り付けられた接合用フレーム枠26とをボルト又は溶接によって接合しても良い。更に、柱10、12及び梁14、16に水平力を伝達可能なナット等のジョイント部材を、柱10、12及び梁14、16の内周部に埋め込み、このジョイント部材に波形鋼板20、22に取り付けられた接合用フレーム枠26を貫通するボルト等をねじ込んで定着させても良い。更に、波形鋼板20、22は、必ずしも柱10、12及び梁14、16の全てに接合する必要はなく、設計強度に応じて柱10、12又は梁14、16と接合しても良い。   In the present embodiment, a stud 68 is attached to the joining frame 26 and the stud 68 is embedded in the left and right columns 10 and 12 and the upper and lower beams 14 and 16 and joined. It is sufficient that the horizontal force acting on the steel plates 20 and 22 can be transmitted to the frame 18. For example, a joining plate having a horizontal force transmission element such as a stud 68 embedded in the inner peripheral portions of the columns 10 and 12 and the beams 14 and 16, and a joining frame frame attached to the joining plate and the corrugated steel plates 20 and 22. 26 may be joined by bolts or welding. Further, a joint member such as a nut capable of transmitting a horizontal force to the columns 10 and 12 and the beams 14 and 16 is embedded in the inner peripheral portions of the columns 10 and 12 and the beams 14 and 16, and the corrugated steel plates 20 and 22 are embedded in the joint members. A bolt or the like penetrating through the joining frame 26 attached to the screw may be screwed in and fixed. Furthermore, the corrugated steel plates 20 and 22 do not necessarily have to be joined to all of the columns 10 and 12 and the beams 14 and 16, and may be joined to the columns 10 and 12 or the beams 14 and 16 according to the design strength.

次に、本発明の第1の実施形態に係る波形鋼板耐震壁の作用及び効果について説明する。   Next, operations and effects of the corrugated steel shear wall according to the first embodiment of the present invention will be described.

架構18の構面に、2枚の波形鋼板20、22を配置することで、1枚当たりの波形鋼板が負担する耐力が小さくなるため、波形鋼板20、22の板厚を薄く抑えることができる。このように、波形鋼板の板厚を薄く抑えると、波形の加工がし易く、また、一枚一枚の波形鋼板が軽量となるため、波形鋼板の運搬や、現場での設置作業が容易となり、経済的に好ましい。更に、板厚が薄肉であれば、ルーフデッキ等のような規格化された汎用品をも流用することができるため、更に経済性が向上する。   By disposing the two corrugated steel plates 20 and 22 on the surface of the frame 18, the proof stress borne by the corrugated steel plate per sheet is reduced, so that the corrugated steel plates 20 and 22 can be kept thin. . In this way, if the thickness of the corrugated steel sheet is kept thin, the corrugated steel sheet can be easily processed, and each corrugated steel sheet can be made lighter, making it easy to transport the corrugated steel sheet and install it on site. Economically preferable. Furthermore, if the plate thickness is thin, a standardized general-purpose product such as a roof deck can be used, and the economic efficiency is further improved.

一方、波形鋼板20、22の板厚を薄くしても、山部28と山部32又は谷部30と谷部34とを接合することで、せん断座屈を効果的に抑制することができる。即ち、図7(A)、(B)に示すように、地震等によって波形鋼板20、22に水平力(矢印B)が作用すると、波形鋼板20、22は、変形(せん断変形)を伴いながらせん断力を架構18に伝達する。このような場合、波形鋼板20、22が面外方向(矢印C)にはらみ出し、せん断座屈(弾性全体座屈)する恐れがあるが、波形鋼板20、22を接合して一体化することで、波形鋼板耐震壁24の断面2次モーメントが飛躍的に大きくなるため、上記した面外方向の変形に対する剛性(曲げ剛性)、即ち、上記した弾性全体座屈に対する座屈強度(弾性全体座屈強度)が向上し、せん断座屈が抑制される。   On the other hand, even if the corrugated steel plates 20 and 22 are thinned, shear buckling can be effectively suppressed by joining the crest 28 and crest 32 or the trough 30 and trough 34. . That is, as shown in FIGS. 7A and 7B, when a horizontal force (arrow B) acts on the corrugated steel plates 20 and 22 due to an earthquake or the like, the corrugated steel plates 20 and 22 are deformed (shear deformation). Shear force is transmitted to the frame 18. In such a case, the corrugated steel plates 20 and 22 may protrude in the out-of-plane direction (arrow C) and may be sheared buckled (elastically buckled). Since the second moment of section of the corrugated steel shear wall 24 is remarkably increased, the rigidity against the out-of-plane deformation (bending rigidity), that is, the buckling strength against the elastic whole buckling (elastic whole seat). (Bending strength) is improved and shear buckling is suppressed.

上記した弾性全体座屈強度と断面2次モーメントとの関係を図8(A)、(B)に示す1枚の波形鋼板70の断片70Aを例に説明すると、断片70Aの弾性全体座屈強度は、式(1)で与えられる。

Figure 2009138485
ここで、τ cr,all:弾性全体座屈強度、r:波形鋼板の波形形状端部の回転拘束による係数、D:=η×E×t/12、η:長さ効率(η=(a+c)/(a+b))、a:折り目長さ、b:折り目長さ、c:折り目の投影長さ、t:板厚、E:鋼板のヤング係数、D:=E×I、I:X軸回り(図8(B)のX軸方向回り)の断面2次モーメント、hi:図12に示す補剛リブ104等を取り付けた場合の取り付け間隔である。なお、X軸は、波形鋼板70の折り筋と直交する方向の軸であり、Y軸は、波形鋼板70の折り筋と平行な方向の軸である。このように、D(=E×I)が断面2次モーメントIに比例するため、波形鋼板70の断片70Aの断面2次モーメントIを大きくすると、弾性全体座屈強度τ cr,allが大きくなることがわかる。 The relationship between the elastic total buckling strength and the cross-sectional secondary moment will be described with reference to an example of a piece 70A of a single corrugated steel sheet 70 shown in FIGS. 8A and 8B. Is given by equation (1).
Figure 2009138485
Here, τ e cr, all: Elastic overall buckling strength, r: coefficient by the rotation restraint of the waveform-shaped end of the corrugated steel, D x: = η × E 0 × t 3/12, η: Length efficiency ( η = (a + c) / (a + b)), a: crease length, b: crease length, c: crease projection length, t: plate thickness, E 0 : Young's modulus of steel sheet, D y : = E 0 × I X , I X : Cross section secondary moment around the X axis (around the X axis direction in FIG. 8B), hi: Mounting interval when the stiffening rib 104 shown in FIG. The X axis is an axis in a direction perpendicular to the fold line of the corrugated steel sheet 70, and the Y axis is an axis in a direction parallel to the fold line of the corrugated steel sheet 70. Thus, D for y (= E 0 × I X ) is proportional to the second moment I X, by increasing the second moment I X pieces 70A of corrugated steel 70, the overall buckling elastic tau e It turns out that cr and all become large.

波形鋼板耐震壁24について見ると、波形鋼板20、22の山部同士28、32及び谷部同士30、34を接合し、また、山部28と谷部34とを長ナット48で連結するため、断面2次モーメントが飛躍的に大きくなる。従って、弾性全体座屈強度τ cr,allが向上し、更に、波形鋼板耐震壁24のせん断座屈耐力は、弾性全体座屈強度τ cr,allに比例にするため、せん断座屈耐力が向上する。従って、波形鋼板耐震壁24のせん断座屈が抑制される。 Looking at the corrugated steel shear wall 24, the crests 28 and 32 and the troughs 30 and 34 of the corrugated steel plates 20 and 22 are joined together, and the crest 28 and the trough 34 are connected by a long nut 48. , The moment of inertia of the cross section increases dramatically. Accordingly, the elastic overall buckling strength τ e cr, all is improved, and the shear buckling strength of the corrugated steel shear wall 24 is proportional to the elastic total buckling strength τ e cr, all , so that the shear buckling strength is increased. Will improve. Therefore, shear buckling of the corrugated steel shear wall 24 is suppressed.

加えて、山部28と山部32、谷部30と谷部34を嵌め合わせることで、波形鋼板耐震壁24の厚さを最小限に抑えることができ、架構18への設置幅を、1枚の波形鋼板の設置幅と同程度に小さく抑えることができる。更に、山部同士28、32、谷部30、34同士の大きさが異なるため、波形鋼板20、22の波形の加工誤差を吸収できるため、波形鋼板20、22の生産性が向上する。   In addition, by fitting the peak portion 28 and the peak portion 32, and the valley portion 30 and the valley portion 34, the thickness of the corrugated steel seismic wall 24 can be minimized, and the installation width to the frame 18 can be reduced to 1 It can be kept as small as the installation width of the corrugated steel sheets. Furthermore, since the sizes of the crests 28 and 32 and the troughs 30 and 34 are different, the processing errors of the corrugated steel sheets 20 and 22 can be absorbed, so the productivity of the corrugated steel sheets 20 and 22 is improved.

なお、せん断座屈を防止する手段としては、山部と谷部とを同じ大きさにした複数の波形鋼板を重ね合わせ、ボルト接合によって一体的に接合する方法も考えられる。しかし、波形鋼板に加工誤差があると、対向する山部同士、谷部同士を嵌め合わせることができない場合がある。また、ボルト接合のみで所定の接合強度を得るためには、多くのボルトが必要となるためボルト孔の数が増え、せん断剛性・耐力の低下を招く。この点、本実施形態は、溶接又はリベット接合を基本として、必要な箇所にのみボルト接合を使用するため、せん断剛性・耐力の低下を最小限に抑えることができる。   As a means for preventing shear buckling, a method in which a plurality of corrugated steel sheets having the same size in the crest and trough are overlapped and integrally joined by bolt joining is also conceivable. However, if the corrugated steel sheet has a processing error, it may not be possible to fit the opposing ridges and valleys together. Further, in order to obtain a predetermined joint strength only by bolt joining, a large number of bolts are required, so the number of bolt holes increases, leading to a decrease in shear rigidity and yield strength. In this respect, the present embodiment uses welding or rivet joining as a basis and uses bolt joining only where necessary, so that a reduction in shear rigidity and proof stress can be minimized.

次に、本発明の第2の実施形態に係る波形鋼板耐震壁について説明する。なお、第1の実施形態と同じ構成のものは、同符号を付すると共に、適宜省略して説明する。   Next, the corrugated steel shear wall according to the second embodiment of the present invention will be described. In addition, the thing of the same structure as 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits suitably and demonstrates.

図9、10の示すように、架構18の構面には、鋼板を波形に加工した2枚の波形鋼板72、74が、折り筋の向きを水平方向として対向配置され、波形鋼板耐震壁76が構成されている。波形鋼板72、74の外周部には、接合用フレーム枠26が溶接され、接合用フレーム枠26を介して波形鋼板72、74が架構18を構成する柱10、12及び梁14、16と接合されている。波形鋼板72は、山部78と谷部80とが交互に連続する波形とされ、波形鋼板74は、山部82と谷部84とが交互に連続する波形とされている。また、波形鋼板72と波形鋼板74とは、同一形状の波形に加工されており、即ち、波形鋼板74を、鉛直方向を軸として左右に反転させて波形鋼板72の上に重ねると、山部78と谷部84、谷部80と山部82の形状がそれぞれ一致する。一方、各波形鋼板72、74について見ると、山部78と谷部80、山部82と谷部84とがそれぞれ異なる大きさにされ、具体的には、山頂78Aの鉛直方向の長さが谷底80Aよりも長く、谷底84Aの鉛直方向の長さが山頂82Aよりも長くされている。   As shown in FIGS. 9 and 10, two corrugated steel plates 72 and 74 obtained by processing the steel plates into corrugated surfaces are opposed to each other with the crease direction in the horizontal direction on the surface of the frame 18. Is configured. The joining frame frame 26 is welded to the outer peripheral portions of the corrugated steel plates 72 and 74, and the corrugated steel plates 72 and 74 are joined to the columns 10 and 12 and the beams 14 and 16 constituting the frame 18 through the joining frame frame 26. Has been. The corrugated steel plate 72 has a waveform in which crests 78 and troughs 80 are alternately continued, and the corrugated steel plate 74 has a waveform in which crests 82 and troughs 84 are alternately continued. In addition, the corrugated steel plate 72 and the corrugated steel plate 74 are processed to have the same shape, that is, when the corrugated steel plate 74 is reversed left and right with the vertical direction as an axis, 78 and the valley part 84, and the shape of the valley part 80 and the mountain part 82 correspond, respectively. On the other hand, when the corrugated steel plates 72 and 74 are viewed, the peak portion 78 and the valley portion 80, and the peak portion 82 and the valley portion 84 are made to have different sizes. It is longer than the valley bottom 80A, and the vertical length of the valley bottom 84A is longer than the peak 82A.

波形鋼板72、74は、対向する谷底80Aと山頂82Aを突き合わせて溶接接合されると共に、山頂78Aと谷底84Aとの間に形成された空間86に長ナット48が配置されている。長ナット48には、波形鋼板72の面外方向から山頂78Aに形成された貫通孔を通じてボルト50がねじ込まれると共に、波形鋼板74の面外方向から谷底84Aに形成された貫通孔を通じてボルト50がねじ込まれ、山部78と谷部84とが一体的に連結されている。なお、長ナット48は、波形鋼板72と波形鋼板74とを接合する前に、波形鋼板74の谷底84Aに溶接等で固定しておく。なお、第1の実施形態と同様に、波形鋼板耐震壁76を正面(矢印A)から見た時に前側に凸の部分を山部78、82とし、後側に凹の部分を谷部80、84としている。   The corrugated steel plates 72 and 74 are welded and joined to each other with the valley bottom 80A and the peak 82A facing each other, and a long nut 48 is disposed in a space 86 formed between the peak 78A and the valley bottom 84A. The bolt 50 is screwed into the long nut 48 through the through hole formed in the peak 78A from the out-of-plane direction of the corrugated steel plate 72, and the bolt 50 is passed through the through-hole formed in the valley bottom 84A from the out-of-plane direction of the corrugated steel plate 74. The crest 78 and the trough 84 are integrally connected by being screwed. The long nut 48 is fixed to the valley bottom 84A of the corrugated steel plate 74 by welding or the like before the corrugated steel plate 72 and the corrugated steel plate 74 are joined. As in the first embodiment, when the corrugated steel shear wall 76 is viewed from the front (arrow A), the convex portions on the front side are ridge portions 78 and 82, and the concave portions on the rear side are trough portions 80 and 82. 84.

また、本実施形態では、谷底80Aと山頂82Aを溶接によって接合したが、これに限られず、溶接に替えて例えばリベット、ボルト及びナット等で接合しても良い。また、全ての谷底80Aと山頂82Aを接合する必要はなく、波形鋼板耐震壁76の設計強度に応じて適宜選択して接合すれば良い。長ナット48についても同様に、適宜選択して空間86に配置し、山部78と谷部84とを連結すれば良い。更に、本実施形態では、同一形状の波形に加工された波形鋼板72、74を対向配置して波形鋼板耐震壁76を構成したがこれに限られず、波形の形状は、本実施形態が適用可能な範囲で適宜設計変更をすれば良い。   In this embodiment, the valley bottom 80A and the peak 82A are joined by welding. However, the present invention is not limited to this, and may be joined by, for example, rivets, bolts, nuts, or the like instead of welding. Moreover, it is not necessary to join all the valley bottoms 80 </ b> A and the summits 82 </ b> A, and they may be appropriately selected and joined according to the design strength of the corrugated steel shear wall 76. Similarly, the long nut 48 may be appropriately selected and disposed in the space 86 to connect the peak portion 78 and the valley portion 84. Further, in the present embodiment, the corrugated steel plates 72 and 74 processed into the corrugated shape of the same shape are arranged to face each other to form the corrugated steel earthquake resistant wall 76. The design may be changed as appropriate within a range.

次に、本発明の第2の実施形態に係る波形鋼板耐震壁の作用及び効果について説明する。   Next, the operation and effect of the corrugated steel shear wall according to the second embodiment of the present invention will be described.

第1の実施形態と同様に、架構18の構面に2枚の波形鋼板72、74を配置することで、一枚当りの波形鋼板が負担する耐力が小さくなるため、波形鋼板72、74の板厚を薄く抑えることができる。また、谷底80Aと山頂82Aとを突き合わせて接合すると共に、山部78と谷部84とを長ナット48で連結して、2枚の波形鋼板72、74を一体化することで、第1の実施形態と同様に、波形鋼板耐震壁76の断面2次モーメントが飛躍的に大きくなる。従って、せん断座屈を抑制することができる。   Similar to the first embodiment, by arranging the two corrugated steel plates 72 and 74 on the surface of the frame 18, the proof stress borne by the corrugated steel plates per sheet is reduced. The plate thickness can be kept thin. Further, the valley bottom 80A and the peak 82A are brought into contact with each other, and the peak portion 78 and the valley portion 84 are connected by the long nut 48 to integrate the two corrugated steel plates 72 and 74, whereby the first Similar to the embodiment, the cross-sectional secondary moment of the corrugated steel shear wall 76 increases dramatically. Therefore, shear buckling can be suppressed.

なお、上記全ての実施形態では、柱10、12及び梁14、16から構成された架構18の構面に各種の波形鋼板20、22、72、74等を配置した場合の例について説明したがこれに限られず、例えば、梁14、16に替えてコンクリートスラブ又は小梁等であっても良い。更に、鉄筋コンクリート造に限られず、鉄骨鉄筋コンクリート造、プレストレスコンクリート造、更には、現場打ち工法であっても、プレキャスト工法によるものであっても良い。   In all the embodiments described above, examples have been described in which various corrugated steel plates 20, 22, 72, 74, etc. are arranged on the surface of the frame 18 composed of the columns 10, 12 and the beams 14, 16. For example, a concrete slab or a small beam may be used instead of the beams 14 and 16. Furthermore, it is not limited to a reinforced concrete structure, but may be a steel-framed reinforced concrete structure, a prestressed concrete structure, or a spot casting method or a precast method.

また、各種の波形鋼板20、22、72、74等は、図11(A)〜(D)に示すような断面形状をした波形鋼板を用いても良く、また、JIS G 3352:2003に規定されるデッキプレート等を用いても良い。更に、各種の波形鋼板20、22、72、74等は、その折り筋の向きが水平方向となるように架構18に配置したがこれに限られず、折り筋の向きを鉛直方向となるように架構18に配置しても良い。このように配置しても波形鋼板に特有の変形性能に影響はなく、優れた耐震性能は確保される。   Moreover, the various corrugated steel sheets 20, 22, 72, 74, etc. may use corrugated steel sheets having a cross-sectional shape as shown in FIGS. 11A to 11D, and are defined in JIS G 3352: 2003. A deck plate or the like to be used may be used. Further, the various corrugated steel plates 20, 22, 72, 74, etc. are arranged on the frame 18 so that the direction of the crease is horizontal, but not limited to this, so that the direction of the crease is vertical. It may be arranged on the frame 18. Even if it arrange | positions in this way, there will be no influence on the deformation performance peculiar to a corrugated steel plate, and the outstanding seismic performance will be ensured.

以上、本発明の第1、第2の実施形態について説明したが、本発明はこうした実施形態に限定されるものではなく、第1、第2の実施形態を組み合わせて用いても良いし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   The first and second embodiments of the present invention have been described above, but the present invention is not limited to such embodiments, and the first and second embodiments may be used in combination. Of course, various embodiments can be implemented without departing from the scope of the invention.

本発明の第1の実施形態に係る波形鋼板耐震壁を示す、正面図である。It is a front view which shows the corrugated steel earthquake-resistant wall which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る波形鋼板耐震壁を示す、図1の1−1線断面図である。It is the 1-1 sectional view taken on the line of FIG. 1 which shows the corrugated steel shear wall according to the first embodiment of the present invention. 本発明の第1の実施形態に係る波形鋼板耐震壁の変形例を示す、図1の1−1線断面図である。1. It is the 1-1 sectional view taken on the line of FIG. 1 which shows the modification of the corrugated steel earthquake proof wall which concerns on the 1st Embodiment of this invention. (A)、(B)は、本発明の第1の実施形態に係る波形鋼板耐震壁の変形例を示す、図1の1−1線断面の拡大図である。(A), (B) is the enlarged view of the 1-1 line cross section of FIG. 1 which shows the modification of the corrugated steel earthquake-resistant wall which concerns on the 1st Embodiment of this invention. (A)、(B)は、本発明の第1の実施形態に係る波形鋼板耐震壁の変形例を示す、図1の1−1線断面の拡大図である。(A), (B) is the enlarged view of the 1-1 line cross section of FIG. 1 which shows the modification of the corrugated steel earthquake-resistant wall which concerns on the 1st Embodiment of this invention. 波形鋼板耐震壁の断片を示し、本発明の全ての実施形態に係る波形鋼板耐震壁の取付構造を示す説明図である。It is explanatory drawing which shows the attachment structure of the corrugated steel earthquake proof wall which shows the fragment | piece of a corrugated steel earthquake proof wall and which concerns on all embodiment of this invention. (A)は、本発明の第1の実施形態に係る波形鋼板耐震壁の平面図であり、(B)は、(A)の7−7線断面を示す斜視図である。(A) is a top view of the corrugated steel earthquake proof wall which concerns on the 1st Embodiment of this invention, (B) is a perspective view which shows the 7-7 line cross section of (A). (A)は、1枚の波形鋼板の断片を示す斜視図であり、(B)は、波形鋼板の断面形状を示す断面図である。(A) is a perspective view which shows the fragment | piece of one corrugated steel plate, (B) is sectional drawing which shows the cross-sectional shape of a corrugated steel plate. 本発明の第2の実施形態に係る波形鋼板耐震壁を示す、平面図である。It is a top view which shows the corrugated steel earthquake-resistant wall which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る波形鋼板耐震壁を示す、図9の9−9線断面図である。FIG. 10 is a cross-sectional view taken along line 9-9 of FIG. 9 showing a corrugated steel shear wall according to the second embodiment of the present invention. 本発明の全ての実施形態に係る波形鋼板の断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape of the corrugated steel plate which concerns on all the embodiment of this invention. 従来の波形鋼板耐震壁を示す正面図である。It is a front view which shows the conventional corrugated steel shear wall. 従来技術を示す斜視図である。It is a perspective view which shows a prior art.

符号の説明Explanation of symbols

10 柱(周辺部材)
12 柱(周辺部材)
14 梁(周辺部材)
16 梁(周辺部材)
18 架構
20 波形鋼板
22 波形鋼板
24 波形鋼板耐震壁
28 山部
30 谷部
32 山部
34 谷部
40 波形鋼板耐震壁
48 長ナット
50 ボルト
52 波形鋼板
54 波形鋼板
56 山部
58 谷部
60 山部
62 谷部
72 波形鋼板
74 波形鋼板
76 波形鋼板耐震壁
78 山部
80 谷部
82 山部
84 谷部
86 空間
10 pillars (peripheral members)
12 pillars (peripheral members)
14 Beam (peripheral members)
16 Beam (peripheral member)
18 frame 20 corrugated steel plate 22 corrugated steel plate 24 corrugated steel plate earthquake resistant wall 28 crest 30 trough portion 32 crest portion 34 trough portion 40 corrugated steel plate seismic wall 48 long nut 50 bolt 52 corrugated steel plate 54 corrugated steel plate 56 crest portion 58 trough portion 60 crest portion 62 Valley part 72 Corrugated steel sheet 74 Corrugated steel sheet 76 Corrugated steel sheet earthquake resistant wall 78 Mountain part 80 Valley part 82 Mountain part 84 Valley part 86 Space

Claims (5)

架構を構成する周辺部材に複数の波形鋼板を取り付け、対向する前記波形鋼板を正面視したとき、前側に凸の部分を山部とし後側に凹の部分を谷部として構成された波形鋼板耐震壁において、
対向する前記波形鋼板の前記山部同士及び前記谷部同士の少なくとも一方、若しくは前記山部と前記谷部とを接合手段により接合したことを特徴とする波形鋼板耐震壁。
A plurality of corrugated steel plates are attached to the peripheral members constituting the frame, and when facing the corrugated steel plates facing each other, when viewed from the front, the corrugated steel plate is configured with a convex portion on the front side and a concave portion on the rear side as a trough On the wall,
A corrugated steel earthquake resistant wall characterized in that at least one of the crests and the troughs of the corrugated steel plates facing each other, or the crests and the troughs are joined by a joining means.
一方の前記波形鋼板の前記山部に、該山部と大きさの異なる他方の前記波形鋼板の前記山部とを突き合わせると共に、一方の前記波形鋼板の前記谷部に、該谷部と大きさの異なる他方の前記波形鋼板の前記谷部とを突き合わせ、前記山部同士及び前記谷部同士の少なくとも一方を前記接合手段により接合したことを特徴とする請求項1に記載の波形鋼板耐震壁。   The crest of one of the corrugated steel plates is abutted with the crest of the other corrugated steel plate having a size different from that of the crest, and the trough of one of the corrugated steel plates is larger than the trough. The corrugated steel shear wall according to claim 1, wherein the corrugated steel plates of the other corrugated steel plates having different thicknesses are butted and at least one of the peak portions and the trough portions are joined by the joining means. . 一方の前記波形鋼板の前記谷部に、他方の前記波形鋼板の前記山部を突き合わせて前記接合手段で接合し、一方の前記波形鋼板の前記山部と、該山部と対向する他方の前記波形鋼板の前記谷部との間に形成される空間に配置された長ナットに、面外方向からボルトをねじ込んで該山部と該谷部とを連結したことを特徴とする請求項1に記載の波形鋼板耐震壁。   The crests of one of the corrugated steel sheets are butted against the crests of the other corrugated steel sheet by the joining means, and the crests of one of the corrugated steel sheets are opposed to the crests. The peak portion and the valley portion are connected to each other by screwing a bolt from an out-of-plane direction to a long nut disposed in a space formed between the valley portions of the corrugated steel sheet. Corrugated steel shear wall as described. 前記接合手段は、溶接又はリベットであることを特徴とする請求項1〜3の何れか1項に記載の波形鋼板耐震壁。   The corrugated steel earthquake resistant wall according to any one of claims 1 to 3, wherein the joining means is welding or rivets. 前記波形鋼板が、デッキプレートであることを特徴とする請求項1〜4の何れか1項に記載の波形鋼板耐震壁。   The corrugated steel earthquake-resistant wall according to any one of claims 1 to 4, wherein the corrugated steel plate is a deck plate.
JP2007318208A 2007-12-10 2007-12-10 Corrugated steel shear wall Active JP5291331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007318208A JP5291331B2 (en) 2007-12-10 2007-12-10 Corrugated steel shear wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007318208A JP5291331B2 (en) 2007-12-10 2007-12-10 Corrugated steel shear wall

Publications (2)

Publication Number Publication Date
JP2009138485A true JP2009138485A (en) 2009-06-25
JP5291331B2 JP5291331B2 (en) 2013-09-18

Family

ID=40869375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007318208A Active JP5291331B2 (en) 2007-12-10 2007-12-10 Corrugated steel shear wall

Country Status (1)

Country Link
JP (1) JP5291331B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102839769A (en) * 2012-08-31 2012-12-26 清华大学 Corrugated steel plate composite shear wall
CN102926479A (en) * 2012-10-25 2013-02-13 沈阳建筑大学 Waveform mild steel energy dissipation support
JP2016204113A (en) * 2015-04-22 2016-12-08 三菱電機ビルテクノサービス株式会社 Ceiling of elevator car
CN107931882A (en) * 2017-12-19 2018-04-20 重庆南涪铝精密制造有限公司 Welding strengthening structure of corrugated plate
CN110130517A (en) * 2019-04-29 2019-08-16 同济大学 Corrugated steel board wall superposed type splices connecting node and connection method
CN110145056A (en) * 2019-06-05 2019-08-20 华东建筑设计研究院有限公司 Assembled overlaps corrugated steel energy-consuming shear wall

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559842A (en) * 1991-03-11 1993-03-09 Aoki Corp Waveform steel plate concrete anti-earthquake wall structure
JPH05106292A (en) * 1991-05-20 1993-04-27 Atsushi Nakagawa Steel plate floor structure
JP3105758U (en) * 2004-06-07 2004-11-25 擴實 浦田 Two-ply corrugated sheet tin
JP2005163298A (en) * 2003-11-28 2005-06-23 Matsumoto Tekkosho:Kk Bearing wall structure
JP2006037628A (en) * 2004-07-29 2006-02-09 Takenaka Komuten Co Ltd Earthquake resistant reinforcement method for existing building

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559842A (en) * 1991-03-11 1993-03-09 Aoki Corp Waveform steel plate concrete anti-earthquake wall structure
JPH05106292A (en) * 1991-05-20 1993-04-27 Atsushi Nakagawa Steel plate floor structure
JP2005163298A (en) * 2003-11-28 2005-06-23 Matsumoto Tekkosho:Kk Bearing wall structure
JP3105758U (en) * 2004-06-07 2004-11-25 擴實 浦田 Two-ply corrugated sheet tin
JP2006037628A (en) * 2004-07-29 2006-02-09 Takenaka Komuten Co Ltd Earthquake resistant reinforcement method for existing building

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102839769A (en) * 2012-08-31 2012-12-26 清华大学 Corrugated steel plate composite shear wall
CN102926479A (en) * 2012-10-25 2013-02-13 沈阳建筑大学 Waveform mild steel energy dissipation support
CN102926479B (en) * 2012-10-25 2016-01-06 沈阳建筑大学 Waveform mild steel energy dissipation support
JP2016204113A (en) * 2015-04-22 2016-12-08 三菱電機ビルテクノサービス株式会社 Ceiling of elevator car
CN107931882A (en) * 2017-12-19 2018-04-20 重庆南涪铝精密制造有限公司 Welding strengthening structure of corrugated plate
CN110130517A (en) * 2019-04-29 2019-08-16 同济大学 Corrugated steel board wall superposed type splices connecting node and connection method
CN110145056A (en) * 2019-06-05 2019-08-20 华东建筑设计研究院有限公司 Assembled overlaps corrugated steel energy-consuming shear wall

Also Published As

Publication number Publication date
JP5291331B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5113597B2 (en) Corrugated steel shear wall
JP5291331B2 (en) Corrugated steel shear wall
JP4881092B2 (en) Seismic wall or seismic control wall made of corrugated steel sheet and its manufacturing method
JP2011127278A (en) Earthquake-resisting steel wall and building having the same
JP5336145B2 (en) Damping structure and building with damping structure
WO2010122992A1 (en) Composite steel sheet pile and steel sheet pile wall using the composite steel sheet pile
KR102175516B1 (en) Permanent Beam Form
JP4766625B2 (en) Through-hole reinforcing member for steel beam and its through-hole reinforcing structure
JP5601882B2 (en) Steel seismic wall and building with the same
JP6393516B2 (en) Heterogeneous steel beam joint structure
JP6536323B2 (en) Longitudinal structure of steel sheet pile and steel sheet pile wall
JP5291330B2 (en) Corrugated steel shear wall
JP4563872B2 (en) Seismic wall
JP4414832B2 (en) Seismic walls using corrugated steel plates with openings
JP6027391B2 (en) Pile head joint structure
JP2009161984A (en) Corrugated steel plate earthquake-resisting wall
JP2011127279A (en) Earthquake resisting wall formed by corrugated steel plate and building having the same
JP5095492B2 (en) Corrugated steel shear wall
JP2010070989A (en) Earthquake-resistant structure, method for designing earthquake-resistant structure, and building
JP5443694B2 (en) Brace damper
JP5134836B2 (en) H-shaped cross-section joint structure
JP4760948B2 (en) Combination steel sheet pile and steel sheet pile wall using the combination steel sheet pile
JP4666088B2 (en) Combination steel sheet pile and steel sheet pile wall using the combination steel sheet pile
JP2001040782A (en) Reinforcing member joining structure
JP4563875B2 (en) An improved method for reducing the eccentricity of a structure using corrugated steel sheets and a structure having a reduced eccentricity using corrugated steel sheets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R150 Certificate of patent or registration of utility model

Ref document number: 5291331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150