JP2009138130A - Method for producing composite and composite produced by the method - Google Patents
Method for producing composite and composite produced by the method Download PDFInfo
- Publication number
- JP2009138130A JP2009138130A JP2007316963A JP2007316963A JP2009138130A JP 2009138130 A JP2009138130 A JP 2009138130A JP 2007316963 A JP2007316963 A JP 2007316963A JP 2007316963 A JP2007316963 A JP 2007316963A JP 2009138130 A JP2009138130 A JP 2009138130A
- Authority
- JP
- Japan
- Prior art keywords
- carbon material
- composite
- compound
- polyquinoxaline
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、炭素材料の存在下で特定のテトラケトン化合物と特定のテトラアミン化合物とを反応させて特定のキノキサリン骨格を有する重合体を合成することにより炭素材料と重合体とが複合した複合物を製造する方法、及びその方法により製造された複合物に関する。 The present invention produces a composite of a carbon material and a polymer by synthesizing a polymer having a specific quinoxaline skeleton by reacting a specific tetraketone compound and a specific tetraamine compound in the presence of a carbon material. And a composite produced by the method.
従来携帯端末や、可搬電子機器等に用いられる電池としては、ニッケル水素電池、ニッケルカドミウム電池、リチウム電池などが用いられている。これらの電池は、有害であったり、稀少であったり、ときに発火事故などを起こして、公害、資源の枯渇、安全性の観点から問題があった。さらに、充電の遅さ、急速放電によるIRドロップや、電池の劣化などの問題があった。これらの問題を解決するために、正負極とも有機分子で、電解液に導電率の高い酸性溶液を使用し、電子のキャリアーとしてプロトンを用いるプロトン電池が提唱されている(特許文献1)。 Conventionally, nickel hydride batteries, nickel cadmium batteries, lithium batteries, and the like have been used as batteries used for portable terminals, portable electronic devices, and the like. These batteries are harmful or rare, sometimes cause fire accidents, and have problems in terms of pollution, resource depletion, and safety. Furthermore, there are problems such as slow charging, IR drop due to rapid discharge, and battery deterioration. In order to solve these problems, a proton battery has been proposed in which both positive and negative electrodes are organic molecules, an acidic solution having high conductivity is used as an electrolyte, and protons are used as electron carriers (Patent Document 1).
当初のプロトン電池では、正負極ともポリアニリンが使用されていたが、エネルギー密度、起電力などが十分満足のいくものではなかった。粉末状の炭素の表面を有機物質で被覆した複合体を電極活物質に用いることにより、プロトン電池の性能は大きく向上した(特許文献2)。負極にはポリピリジンが使用されたが、エネルギー密度、サイクル性に問題があり、十分な実用性能を持つには至らなかった。負極にポリフェニルキノキサリン(PPQ)を用い、かつ粉末状炭素とポリフェニルキノキサリンを複合することにより、十分なエネルギー密度、起電力、サイクル性が達成され実用に供することができた(特許文献3)。 In the original proton battery, polyaniline was used for both the positive and negative electrodes, but the energy density, electromotive force, etc. were not fully satisfactory. By using a composite in which the surface of powdery carbon is coated with an organic material as an electrode active material, the performance of the proton battery is greatly improved (Patent Document 2). Polypyridine was used for the negative electrode, but there were problems with energy density and cycleability, and sufficient practical performance was not achieved. By using polyphenylquinoxaline (PPQ) for the negative electrode and combining powdered carbon and polyphenylquinoxaline, sufficient energy density, electromotive force, and cycleability were achieved, and it was possible to put to practical use (Patent Document 3). .
プロトン電池負極活物質はポリフェニルキノキサリンであり、ビスベンジル(BBZ)と3,3’−ジアミノベンジジン(DABZ)の重縮合反応により合成される(反応式(A))。3,3’−ジアミノベンジジンは強変異原性のベンジジン骨格を有し、かつその合成中間体に製造禁止物質のベンジジンを含む問題があった。 The proton battery negative electrode active material is polyphenylquinoxaline, which is synthesized by a polycondensation reaction of bisbenzyl (BBZ) and 3,3'-diaminobenzidine (DABZ) (reaction formula (A)). 3,3'-Diaminobenzidine has a strong mutagenic benzidine skeleton, and has a problem of containing benzidine as a production prohibition substance in its synthesis intermediate.
本発明は、プロトン電池負極活物質のポリフェニルキノキサリン化合物の原料として毒性の極めて高いベンジジン骨格を有するジアミノベンジジンを用いることなく、十分な電気化学的性能を有するポリキノキサリン化合物を提供することにある。 An object of the present invention is to provide a polyquinoxaline compound having sufficient electrochemical performance without using a diaminobenzidine having a highly toxic benzidine skeleton as a raw material of a polyphenylquinoxaline compound as a proton battery negative electrode active material.
本発明者等は、前記課題を解決するため鋭意検討を重ねた結果、プロトン電池の負極材料に非ベンジジン骨格を有するポリキノキサリン化合物を用いることにより前記課題が解決できることを見出し、本発明を完成した。
すなわち、本発明は下記[1]〜[8]のポリキノキサリン複合物及びその製造方法に関する。
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using a polyquinoxaline compound having a non-benzidine skeleton as a negative electrode material of a proton battery, and completed the present invention. .
That is, the present invention relates to the following [1] to [8] polyquinoxaline composite and a method for producing the same.
[1]ビスベンジルと3,3’,4,4’−テトラアミノジフェニルメタンを炭素材料の存在下に縮合重合することを特徴とする
下記式(1)
[1] Condensation polymerization of bisbenzyl and 3,3 ′, 4,4′-tetraaminodiphenylmethane in the presence of a carbon material is represented by the following formula (1)
[2]炭素材料が導電性炭素材料である[1]に記載の製造方法。
[3]導電性炭素材料が、カーボンブラック、アセチレンブラック、ケッチェンブラック、気相法炭素繊維からなる群から選ばれる少なくとも1種の炭素材料である[2]に記載の製造方法。
[4]溶媒の存在下に縮合重合を行うことを特徴とする[1]から[3]のいずれかに記載の製造方法。
[5]溶媒がジメチルホルムアミド、ジメチルアセトアミド、m−クレゾール、o−クレゾールからなる群から選ばれる少なくとも1種の溶媒である[4]に記載の製造方法。
[6]ビスベンジルと3,3’,4,4’−テトラアミノジフェニルメタンを炭素材料の存在下に縮合重合することを特徴とする
下記式(1)
[2] The production method according to [1], wherein the carbon material is a conductive carbon material.
[3] The production method according to [2], wherein the conductive carbon material is at least one carbon material selected from the group consisting of carbon black, acetylene black, ketjen black, and vapor grown carbon fiber.
[4] The production method according to any one of [1] to [3], wherein condensation polymerization is performed in the presence of a solvent.
[5] The production method according to [4], wherein the solvent is at least one solvent selected from the group consisting of dimethylformamide, dimethylacetamide, m-cresol, and o-cresol.
[6] A condensation polymerization of bisbenzyl and 3,3 ′, 4,4′-tetraaminodiphenylmethane in the presence of a carbon material, the following formula (1)
[7]炭素材料が導電性炭素材料である[6]に記載の複合物。
[8]導電性炭素材料が、カーボンブラック、アセチレンブラック、ケッチェンブラック、気相法炭素繊維からなる群から選ばれる少なくとも1種の炭素材料である[7]に記載の複合物。
[7] The composite according to [6], wherein the carbon material is a conductive carbon material.
[8] The composite according to [7], wherein the conductive carbon material is at least one carbon material selected from the group consisting of carbon black, acetylene black, ketjen black, and vapor grown carbon fiber.
本発明の製造方法で製造された複合物は、従来のキノキサリン骨格を有する重合体と同等の性能を有する材料であり、かつ、毒性の高いベンジジン骨格を有する原料を使用することがないので、より安全に製造することができる。 The composite produced by the production method of the present invention is a material having performance equivalent to that of a polymer having a conventional quinoxaline skeleton, and a raw material having a highly toxic benzidine skeleton is not used. It can be manufactured safely.
以下に本発明の具体的内容を詳細に説明する。
本発明のポリキノキサリン化合物(PPQM)と炭素材料との複合物は、溶媒中ビスベンジル(BBZ)と3,3’,4,4’−テトラアミノジフェニルメタン(TADM)を炭素材料の存在下で脱水重縮合することにより合成される(反応式(B))。ここで複合とは、炭素材料の表面に重合体が被覆され、あるいは炭素材料と重合体とが混合された状態を総称したものである。
The specific contents of the present invention will be described in detail below.
The composite of the polyquinoxaline compound (PPQM) of the present invention and a carbon material is obtained by dehydrating bisbenzyl (BBZ) and 3,3 ′, 4,4′-tetraaminodiphenylmethane (TADM) in a solvent in the presence of the carbon material. It is synthesized by condensation (reaction formula (B)). Here, “composite” is a generic term for a state in which a polymer is coated on the surface of a carbon material, or a state in which a carbon material and a polymer are mixed.
反応温度は室温から溶媒の還流温度以下で行う。好適には100℃〜180℃である。
反応時間は10時間から60時間であり、好適には20時間から40時間である。
反応終了後、通常は共重合体が沈澱として生成する。この沈殿を濾過により取り出し、沈澱に付着している溶媒は、メタノールなどの沸点の低い有機溶媒で洗浄し、取り出した湿潤固体を乾燥機で乾燥することにより、共重合体が得られる。乾燥条件は共重合反応で使用した溶媒が蒸発する条件であればよく、一般的には加熱乾燥が用いられ、好適には加熱真空乾燥が用いられる。
The reaction temperature is from room temperature to the reflux temperature of the solvent. It is preferably 100 ° C to 180 ° C.
The reaction time is 10 to 60 hours, preferably 20 to 40 hours.
After completion of the reaction, the copolymer is usually formed as a precipitate. The precipitate is removed by filtration, the solvent adhering to the precipitate is washed with an organic solvent having a low boiling point, such as methanol, and the removed wet solid is dried with a drier to obtain a copolymer. The drying conditions may be any conditions that allow the solvent used in the copolymerization reaction to evaporate. In general, heating drying is used, and heating vacuum drying is preferably used.
本発明により得られるポリキノキサリン化合物の分子量はできるだけ高い方が電気材料としての耐久性が良好である。重量平均分子量は20000以上が好ましく、40000以上がさらに好ましい。また、5000未満の低分子量体が5質量%以下であることがさらに好ましい。なお、本明細書において重量平均分子量とはGPCにより測定したポリスチレン換算の重量平均分子量をいう。 The higher the molecular weight of the polyquinoxaline compound obtained by the present invention, the better the durability as an electric material. The weight average molecular weight is preferably 20000 or more, and more preferably 40000 or more. Moreover, it is more preferable that the low molecular weight body less than 5000 is 5 mass% or less. In addition, in this specification, a weight average molecular weight means the weight average molecular weight of polystyrene conversion measured by GPC.
すなわち、前記分子量について、前記式(1)に記載のポリキノキサリン化合物における繰返し単位数nを用いて言い換えるならば、本発明において、nは20以上200以下の整数であるが、41以上が好ましく、81以上がさらに好ましい。また、nが11未満
の低分子量体が5質量%以下であることがさらに好ましい。
That is, in terms of the molecular weight, in other words, using the number of repeating units n in the polyquinoxaline compound described in the formula (1), in the present invention, n is an integer of 20 or more and 200 or less, preferably 41 or more, 81 or more is more preferable. Moreover, it is more preferable that the low molecular weight material having n of less than 11 is 5% by mass or less.
本発明で用いることができる溶媒には特に制限はないが、使用するモノマーが溶解しやすく、また反応しないものなら何でも使用できる。N,N―ジメチルホルムアミド、N,N―ジメチルアセトアミド、N−メチルピロリドン等の含窒素系溶媒、ジメチルスホキシド、スルホランなどの含硫黄系溶媒、m−クレゾール、o−クレゾール等のフェノール系溶媒などが好適に用いられる。 Although there is no restriction | limiting in particular in the solvent which can be used by this invention, If the monomer to be used is easy to melt | dissolve and does not react, what can be used can be used. Nitrogen-containing solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, sulfur-containing solvents such as dimethyl sulfoxide and sulfolane, phenol-based solvents such as m-cresol and o-cresol, etc. Are preferably used.
本発明で用いる炭素材料について説明する。本願における炭素材料とは、単体の炭素を主成分とする材料である。微粉状の炭素材料は概ね導電性を示すので好適であり、所謂導電性炭素材料が好適である。ポリキノキサリン化合物を被覆形成するための導電性炭素材料は特に限定されないが、導電性が高く、比表面積が大きく、粒径が小さいものが好ましい。但し比表面積が大きすぎる場合、または粒径が小さすぎる場合には、活性が高くなり、副反応を起こしやすく、また、得られる複合体が嵩高くなり体積あたりのエネルギー密度(Wh/L)が小さくなることもある。従ってこれらの好ましい範囲としては、導電率は室温で0.1S/cm以上、比表面積はBET法で1000以上100000m2/g以下、平均粒径(遠心沈降型粒度分布計によって測定された2次凝集粒径)は1μm以上20μm以下である。これら導電性炭素材料の具体例としてはケッチェンブラック、アセチレンブラック等のカーボンブラック類、椰子殻活性炭等の活性炭類、気層法炭素繊維、カーボンファイバー、カーボンナノチューブ等の炭素繊維、天然黒鉛、人造黒鉛等の黒鉛類等が挙げられる。 The carbon material used in the present invention will be described. The carbon material in the present application is a material mainly composed of simple carbon. A fine powdery carbon material is generally preferable because it exhibits conductivity, and a so-called conductive carbon material is preferable. The conductive carbon material for coating the polyquinoxaline compound is not particularly limited, but a material having high conductivity, a large specific surface area, and a small particle size is preferable. However, if the specific surface area is too large or the particle size is too small, the activity becomes high and side reactions are likely to occur, and the resulting composite becomes bulky and the energy density per volume (Wh / L) is high. Sometimes it gets smaller. Accordingly, preferred ranges thereof include a conductivity of 0.1 S / cm or more at room temperature, a specific surface area of 1,000 to 100,000 m 2 / g by BET method, an average particle size (secondary measured by a centrifugal sedimentation type particle size distribution meter). The agglomerated particle diameter is 1 μm or more and 20 μm or less. Specific examples of these conductive carbon materials include carbon blacks such as ketjen black and acetylene black, activated carbons such as coconut shell activated carbon, carbon fibers such as air-layer carbon fiber, carbon fiber and carbon nanotube, natural graphite, artificial graphite Examples thereof include graphites such as graphite.
炭素材料は、溶媒中に、原料のビスベンジル(BBZ)および3,3’,4,4’−テトラアミノジフェニルメタン(TADM)と一括に添加することができる。炭素材料の添加量としては生成する共重合体との質量比が、5/95から50/50の範囲が好ましく、8/92から30/70が特に好ましい。炭素材料の添加量が少なすぎると、重合体の被覆量が多すぎ導電率が低下するので好ましくない。炭素材料の添加が多すぎると、得られる複合体が嵩高くなり、成型しづらくなり、また電極中の活性物質であるキノキサリン構造単位を繰り返し構造として含む共重合体量が少なくなり、複合物としての体積当たり及び質量あたりの電池容量が低下するので好ましくない。 The carbon material can be added together with the raw materials bisbenzyl (BBZ) and 3,3 ′, 4,4′-tetraaminodiphenylmethane (TADM) in a solvent. The amount of the carbon material added is preferably in the range of 5/95 to 50/50, particularly preferably 8/92 to 30/70, with respect to the resulting copolymer. If the amount of the carbon material added is too small, the coating amount of the polymer is too large, and the electrical conductivity is lowered. If the carbon material is added too much, the resulting composite becomes bulky and difficult to mold, and the amount of the copolymer containing the quinoxaline structural unit, which is the active substance in the electrode, as a repeating structure decreases, resulting in a composite. This is not preferable because the battery capacity per unit volume and mass is reduced.
本発明におけるポリキノキサリン化合物と炭素材料の複合物を電極として使用するには適度な導電性が必要である。そのために複合物を適切な粒径に粉砕して用いることが好ましい。好ましい粒径としては平均粒径(例えば遠心沈降型粒度分布計によって測定された2次凝集粒径)が1μm以上20μm以下かつ最大粒径が200μm以下である。平均粒径が1μm以上15μm以下で、かつ最大粒径が100μm以下であるとさらに好ましい。ここで、最大粒径の測定方法は、前記平均粒径の測定の場合と同様である。粉砕法には特に限定されるものではないが、ビーズミル等の湿式法、パルベライザー、バンタムミル、ボールミル、ジェットミル、ピンミル等の乾式法が挙げられる。こうして粉砕された複合物の導電率は、25℃の体積導電率として、0.1S/cm以上が好ましく、0.2S/cm以上がさらに好ましい。 In order to use the composite of the polyquinoxaline compound and the carbon material in the present invention as an electrode, appropriate conductivity is required. For this purpose, the composite is preferably used after being pulverized to an appropriate particle size. As a preferable particle diameter, an average particle diameter (for example, a secondary aggregation particle diameter measured by a centrifugal sedimentation type particle size distribution meter) is 1 μm or more and 20 μm or less, and a maximum particle diameter is 200 μm or less. More preferably, the average particle size is 1 μm or more and 15 μm or less, and the maximum particle size is 100 μm or less. Here, the method for measuring the maximum particle size is the same as that for measuring the average particle size. The pulverization method is not particularly limited, and examples thereof include wet methods such as a bead mill, and dry methods such as a pulverizer, a bantam mill, a ball mill, a jet mill, and a pin mill. The conductivity of the composite thus pulverized is preferably 0.1 S / cm or more, and more preferably 0.2 S / cm or more as a volume conductivity at 25 ° C.
本発明におけるポリキノキサリン化合物と炭素材料の複合物は電池用電極、特にプロトン電池の電極材料として使用することができる。プロトン電池の構成は、基本的には、正極/イオン電導層/負極の積層構造からなっているが、本発明のポリキノキサリン化合物と炭素材料の複合物は負極材料として有用である。 The composite of the polyquinoxaline compound and the carbon material in the present invention can be used as an electrode material for a battery, particularly a proton battery. The structure of the proton battery basically has a laminated structure of a positive electrode / ion conductive layer / negative electrode, but the composite of the polyquinoxaline compound and the carbon material of the present invention is useful as a negative electrode material.
以下に本発明について代表的な例を示し具体的に説明する。尚これらは説明のための単なる例示であって、本発明はこれらに何ら制限されるものではない。 Hereinafter, the present invention will be described in detail by way of typical examples. These are merely examples for explanation, and the present invention is not limited to these.
<各複合物の調製>
実施例1:ポリキノキサリン化合物/ケッチェンブラック複合物(PPQM・KB)の合成
N,N−ジメチルホルムアミド(以降「DMF」と略す、純正化学(株)製 試薬特級)600gを加えた容量1リットルのガラス製セパラブルフラスコ(撹拌はね及び冷却管付
き)にビスベンジル34.2g(100mmol)、3,3’,4,4’−テトラアミノ
ジフェニルメタン22.3g(100mmol)を添加し、室温窒素雰囲気下で10分撹拌した。その後ケッチェンブラック(ECP600JDを使用した。以下「KB」と略す。)18.5gを投入し、空気をバブリングにより導入しながら、130℃で20時間反応させた。得られた黄橙色沈殿を濾過、メタノール洗浄後、130℃で12時間、真空乾燥することにより、68.7gのPPQM・KB黒色粉末を得た。この粉末の元素分析値(wt%)はC:86.77、H:3.29、N:8.60であり、複合比は質量比で、PPQ:KB=76:24と計算された。また、ヘキサフルオロイソプロパノールを溶離液としたGPCからの光散乱法による絶対分子量(重量平均)は32000であった。
<Preparation of each composite>
Example 1 Synthesis of Polyquinoxaline Compound / Ketjen Black Complex (PPQM · KB) 1 L with a capacity of 600 g of N, N-dimethylformamide (hereinafter abbreviated as “DMF”, a reagent special grade manufactured by Pure Chemical Co., Ltd.) 34.2 g (100 mmol) of bisbenzyl and 22.3 g (100 mmol) of 3,3 ′, 4,4′-tetraaminodiphenylmethane were added to a glass separable flask (with stirring and cooling tube), and a nitrogen atmosphere at room temperature Stirred under for 10 minutes. Thereafter, 18.5 g of ketjen black (ECP600JD was used, hereinafter abbreviated as “KB”) was added, and the mixture was allowed to react at 130 ° C. for 20 hours while introducing air by bubbling. The obtained yellow-orange precipitate was filtered, washed with methanol, and vacuum dried at 130 ° C. for 12 hours to obtain 68.7 g of PPQM · KB black powder. The elemental analysis values (wt%) of this powder were C: 86.77, H: 3.29, N: 8.60, and the composite ratio was calculated as PPQ: KB = 76: 24 by mass ratio. Further, the absolute molecular weight (weight average) by light scattering from GPC using hexafluoroisopropanol as an eluent was 32,000.
比較例1:ポリフェニルキノキサリン/ケッチェンブラック複合物(PPQ・KB)の合成
ビスベンジル(BBZ)を34.24g(100mmol)、3,3’−ジアミノベンジジン
を22.23g(100mmol)使用し、テレフタルアルデヒド(TPAL)を使用せずに、
空気バブリングの代わりに窒素雰囲気下で重合をした以外は実施例1と同様の方法により、68.6gのPPQ・KB黒色粉末を得た。この粉末の元素分析値(wt%)はC:86.75、H:3.30、N:8.61であり、複合比は質量比で、PPQ:KB=76:24と計算された。また、絶対分子量(重量平均)は27000であった。
Comparative Example 1 Synthesis of Polyphenylquinoxaline / Ketjen Black Complex (PPQ · KB) Using 34.24 g (100 mmol) of bisbenzyl (BBZ) and 22.23 g (100 mmol) of 3,3′-diaminobenzidine, Without using aldehyde (TPAL)
68.6 g of PPQ · KB black powder was obtained in the same manner as in Example 1 except that polymerization was performed in a nitrogen atmosphere instead of air bubbling. The elemental analysis values (wt%) of this powder were C: 86.75, H: 3.30, N: 8.61, and the composite ratio was calculated as PPQ: KB = 76: 24 in terms of mass ratio. The absolute molecular weight (weight average) was 27000.
<各複合物の導電率測定>
実施例2:複合物(PPQM・KB)の導電率測定
実施例1で得られた黒色粉末(PPQM・KB)を14時間100℃で真空乾燥後、乾燥空気雰囲気下で約0.9g秤取り、結着剤としてポリフロン(登録商標、ダイキン工業(株)製)約0.1gとともにアナリティカルミル(20000rpm)にて粉砕した。この粉砕物約0.1gを直径13mmの錠剤成型器にて加圧成型し、ペレット電極を得た。これらのペレット電極について4端子直流法で導電率を測定した。結果を表1に示す。
比較例2:複合物(PPQ・KB)の導電率測定
比較例1で得られた黒色粉末(PPQ・KB)を実施例2と同様の方法で導電率を測定した。結果を表1に示す。
<Measurement of conductivity of each composite>
Example 2: Conductivity measurement of composite (PPQM · KB) The black powder (PPQM · KB) obtained in Example 1 was vacuum-dried at 100 ° C for 14 hours and then weighed about 0.9 g in a dry air atmosphere. In addition, about 0.1 g of Polyflon (registered trademark, manufactured by Daikin Industries, Ltd.) as a binder was pulverized with an analytical mill (20000 rpm). About 0.1 g of this pulverized product was press-molded with a tablet molding machine having a diameter of 13 mm to obtain a pellet electrode. The conductivity of these pellet electrodes was measured by a 4-terminal direct current method. The results are shown in Table 1.
Comparative Example 2: Conductivity Measurement of Composite (PPQ · KB) The conductivity of the black powder (PPQ · KB) obtained in Comparative Example 1 was measured in the same manner as in Example 2. The results are shown in Table 1.
参考例1:ポリアニリン(PAn)の合成
1N塩酸500ml中アニリン0.22モルを0.05モル過硫酸アンモニウム存在下1時間攪拌した。反応液が青緑に変化し得られた沈殿物をガラスフィルターで濾過し、これを1N塩酸で洗浄後、100℃14時間真空乾燥し青緑色の目的物12gを得た。目的物をアンモニア水溶液で中和し得られた濃紫色の元素分析、IRから目的物はポリアニリ
ンの構造であると推定された。Nーメチルピロリドン中でのGPCの結果から、分子量(PMMA換算)は数平均で約50000、重量平均で約120000であった。
Reference Example 1: Synthesis of polyaniline (PAn) 0.22 mol of aniline in 500 ml of 1N hydrochloric acid was stirred for 1 hour in the presence of 0.05 mol of ammonium persulfate. The precipitate obtained by changing the reaction solution to blue-green was filtered through a glass filter, washed with 1N hydrochloric acid, and then vacuum-dried at 100 ° C. for 14 hours to obtain 12 g of a blue-green target product. From the IR analysis of the deep purple color obtained by neutralizing the target product with an aqueous ammonia solution, the target product was estimated to have a polyaniline structure. From the result of GPC in N-methylpyrrolidone, the molecular weight (in terms of PMMA) was about 50,000 in terms of number average and about 120,000 in terms of weight average.
参考例2:PAn正極の製造
参考例1で合成したPAn粉末とアセチレンブラック、VGCF(登録商標、昭和電工製気相法炭素繊維)、ポリフッ化ビニリデンの85:7:1:7の混合物に過剰のNーメチルピロリドンを加え、ゲル状組成物を得た。この組成物をリード線付きの白金板上の白金網集電体1×1cm上に塗布後、1ton加圧成型し、80℃で8時間真空乾燥することにより、PAn電極(平均200mg)を作成した。
Reference Example 2: Production of PAn positive electrode An excess of the PAn powder synthesized in Reference Example 1, acetylene black, VGCF (registered trademark, Showa Denko vapor phase carbon fiber), and polyvinylidene fluoride 85: 7: 1: 7 N-methylpyrrolidone was added to obtain a gel composition. After applying this composition onto a platinum mesh current collector 1 × 1 cm on a platinum plate with lead wires, press molding of 1 ton and vacuum drying at 80 ° C. for 8 hours to prepare a PAn electrode (average 200 mg) did.
実施例3:複合物(PPQM・KB)のプロトン電池の調製
参考例2で製造したPAn正極、ついで厚さ1mmのガラス繊維製のセパレーター(25μm、1.2×1.2cm)を重ねた。ついで、リード線付きの白金板上の白金網に加圧成型した実施例2で製造した複合物電極を重ねた。これら積層体を加圧して密着させたあと、ポリイミドテープで両端部を固定した。ついでこの積層体をアルミラミネート外装体の中にいれ、2つの白金リード線を短絡しないように外部に取り出した。ついで電解液として20%硫酸水溶液を外装体内部に注入し、減圧で余分な硫酸水溶液を抜き出しながら、外装体内を密着させた後、加熱融着で封止し、PPQM・KB複合物PAn系プロトン電池(二次電池)(各n=3)を作成した。この電池を25℃、作動電圧0〜0.8V、電流2mA、10mAで充放電を行ったところ明確な充放電挙動を示し、正味のPPQ1g当たりの最大放電容量を測定した。結果を表2に示した。
Example 3 Preparation of Proton Battery of Composite (PPQM · KB) The PAn positive electrode manufactured in Reference Example 2 and then a 1 mm thick glass fiber separator (25 μm, 1.2 × 1.2 cm) were stacked. Subsequently, the composite electrode manufactured in Example 2 formed by pressure molding on a platinum net on a platinum plate with a lead wire was stacked. After pressurizing and adhering these laminated bodies, both ends were fixed with a polyimide tape. Then, this laminate was put in an aluminum laminate outer package and taken out outside so as not to short-circuit the two platinum lead wires. Next, 20% sulfuric acid aqueous solution was injected into the exterior body as an electrolyte, and the exterior body was brought into close contact while extracting excess sulfuric acid aqueous solution under reduced pressure, then sealed by heat fusion, and then PPQM / KB composite PAn proton Batteries (secondary batteries) (each n = 3) were prepared. When this battery was charged / discharged at 25 ° C., operating voltage 0-0.8 V, current 2 mA, 10 mA, a clear charge / discharge behavior was shown, and the maximum maximum discharge capacity per 1 g PPQ was measured. The results are shown in Table 2.
比較例3:複合物(PPQ・KB)のプロトン電池の調製
比較例2で製作した複合物電極(PPQ・KB)を用いて、実施例3と同様の方法でプロトン電池を作成し(n=3)、最大放電容量を測定した。結果を表2に示した。
Comparative Example 3 Preparation of Proton Battery of Composite (PPQ · KB) Using the composite electrode (PPQ · KB) manufactured in Comparative Example 2, a proton battery was prepared in the same manner as in Example 3 (n = 3) The maximum discharge capacity was measured. The results are shown in Table 2.
Claims (8)
下記式(1)
下記式(1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007316963A JP2009138130A (en) | 2007-12-07 | 2007-12-07 | Method for producing composite and composite produced by the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007316963A JP2009138130A (en) | 2007-12-07 | 2007-12-07 | Method for producing composite and composite produced by the method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009138130A true JP2009138130A (en) | 2009-06-25 |
Family
ID=40869069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007316963A Pending JP2009138130A (en) | 2007-12-07 | 2007-12-07 | Method for producing composite and composite produced by the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009138130A (en) |
-
2007
- 2007-12-07 JP JP2007316963A patent/JP2009138130A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | NiCo2O4 nanofibers as carbon‐free sulfur immobilizer to fabricate sulfur‐based composite with high volumetric capacity for lithium–sulfur battery | |
Shetti et al. | Nanostructured organic and inorganic materials for Li-ion batteries: A review | |
Liu et al. | Porous polythiophene as a cathode material for lithium batteries with high capacity and good cycling stability | |
Gu et al. | A polyimide–MWCNTs composite as high performance anode for aqueous Na-ion batteries | |
CN106848318B (en) | A kind of lithium sulfur battery anode material and its preparation method and application | |
JP5136733B2 (en) | Conductive polymer / porous carbon material composite and electrode material using the same | |
Shambharkar et al. | Production and characterization of polyaniline/Co3O4 nanocomposite as a cathode of Zn–polyaniline battery | |
TWI553048B (en) | Conducting material composition, slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same | |
JP2011100594A (en) | Conduction aid composition for lithium ion battery, method of manufacturing the same, electrode mixture composition for lithium ion battery, method of manufacturing the electrode mixture composition, and lithium ion battery | |
CN107148692A (en) | Electrode conductive composition, electrode and lithium rechargeable battery using the conductive composition | |
JP2009230951A (en) | Polymer radical material-conductive material complex, method of manufacturing the same, and energy storage device | |
US7226695B2 (en) | Method for producing composite material for electrode comprising quinoxaline based polymer, such material, electrode and battery using the same | |
Wang et al. | Organic–rare earth hybrid anode with superior cyclability for lithium ion battery | |
Gao et al. | Crosslinked Polyimide and Reduced Graphene Oxide Composites as Long Cycle Life Positive Electrode for Lithium‐Ion Cells | |
CN105655593A (en) | Conductive adhesive for positive electrode of lithium-sulfur battery and preparation method of conductive adhesive | |
Cui et al. | Functional binder for high-performance Li–O2 batteries | |
CN110970606B (en) | Nitrogen-doped hollow spherical carbon-coated sulfur positive electrode material and preparation method and application thereof | |
JP2003142100A (en) | Polymer, electrode material composite including the polymer, manufacturing method for the composite, electrode using the composite, and secondary battery using the electrode | |
JP2009163918A (en) | Composite of copolymer and carbon material and its manufacturing method | |
JP2003068307A (en) | Method for manufacturing composite for electrode material having polymer containing quinoxaline structure, composite for electrode material obtained by the manufacturing method, electrode comprising the composite for electrode material, manufacturing method of electrode and battery comprising the electrode | |
CN111584867B (en) | Electrode and preparation method and application thereof | |
KR102346504B1 (en) | 1 dimension electroconductive nickel-metal-organic frameworks and super capacitor electrode comprising the same | |
KR20060022230A (en) | Improved graphite granules and their method of fabrication | |
JP2009138130A (en) | Method for producing composite and composite produced by the method | |
CN110305313B (en) | Purple refined functionalized polyarylether electrode active material and preparation method thereof |