JP2009135593A - Acoustic input device - Google Patents

Acoustic input device Download PDF

Info

Publication number
JP2009135593A
JP2009135593A JP2007307794A JP2007307794A JP2009135593A JP 2009135593 A JP2009135593 A JP 2009135593A JP 2007307794 A JP2007307794 A JP 2007307794A JP 2007307794 A JP2007307794 A JP 2007307794A JP 2009135593 A JP2009135593 A JP 2009135593A
Authority
JP
Japan
Prior art keywords
sound source
observation
observation signal
sound
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007307794A
Other languages
Japanese (ja)
Other versions
JP5032959B2 (en
Inventor
Kana Kawahigashi
香菜 川東
Minoru Fukushima
実 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007307794A priority Critical patent/JP5032959B2/en
Publication of JP2009135593A publication Critical patent/JP2009135593A/en
Application granted granted Critical
Publication of JP5032959B2 publication Critical patent/JP5032959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To emphasize and output sound from a sound source present in an object direction. <P>SOLUTION: A phase difference correction part 20 extracts discrete values of first and second observation signals generated by first and second directional microphones 10 and 11, and shifts only the phase difference in the case where a sound source is present in the object direction with respect to the discrete value of the second observation signal. A sound source direction determination part 21 calculates first and second observation power values being power values of the first and second observation signals. When at least one of the first and second observation power values is not larger than a threshold value, it is determined that the sound source is not present in the object direction and, when both the first and second observation power values are larger than the threshold value and a relative ratio of the first and second observation power values is smaller than another threshold value, it is determined that the sound source is present in the object direction. An output calculation part 22 outputs a synthesized signal of the first and second observation signals by amplifying it with a large amplification factor when the sound source is present in the object direction, and outputs the synthesized signal by amplifying it with a small amplification factor when the sound source is not present in the object direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、予め決められた目的方向に存在する音源からの音を強調して出力する音響入力装置に関するものである。   The present invention relates to an acoustic input device that emphasizes and outputs sound from a sound source that exists in a predetermined target direction.

音源からの音を集音する音響入力装置としては、例えばインターホンシステムのドアホン子器などに設けられ、このドアホン子器の前に存在する特定の話者(音源)の音声(音)を集音するものがある。このようなドアホン子器などに設けられた音響入力装置では、話者の音声のみを集音し、話者の音声以外の音(例えば壁面からの反射音や周囲の騒音など)を集音しないために、話者が存在する方向(目的方向)を予め予想し、予想した目的方向に指向性を向けておく必要がある。   As an acoustic input device that collects sound from a sound source, for example, it is provided in a door phone sub unit of an interphone system, and the sound (sound) of a specific speaker (sound source) existing in front of the door phone sub unit is collected. There is something to do. In the acoustic input device provided in such a door phone sub unit, only the voice of the speaker is collected, and the sound other than the voice of the speaker (for example, reflected sound from the wall surface or ambient noise) is not collected. Therefore, it is necessary to predict in advance the direction in which the speaker exists (target direction) and to direct the directivity to the predicted target direction.

目的方向に存在する音源からの音を集音する従来の音響入力装置としては、単一の指向性マイクロホンを用いて集音するものがある。指向性マイクロホンは、ある程度小さい指向角度の集音領域に存在する音源からの音を集音することができる。   As a conventional acoustic input device that collects sound from a sound source that exists in a target direction, there is one that collects sound using a single directional microphone. The directional microphone can collect sound from a sound source that exists in a sound collection region with a somewhat small directivity angle.

また、音源からの音を集音する従来の音響入力装置の他の例として、特許文献1には、圧力型マイクロホンである無指向性マイクロホンと、速度型マイクロホンである双指向性マイクロホンと、無指向性マイクロホンの波形信号に対して双指向性マイクロホンの波形信号の位相が進んでいるのか又は遅れているのかを判定する位相比較器とを備える音源方向判定装置が開示されている。   As another example of a conventional acoustic input device that collects sound from a sound source, Patent Document 1 discloses a omnidirectional microphone that is a pressure microphone, a bidirectional microphone that is a speed microphone, and a non-directional microphone. A sound source direction determination apparatus is disclosed that includes a phase comparator that determines whether the phase of the waveform signal of the bidirectional microphone is advanced or delayed with respect to the waveform signal of the directional microphone.

特許文献1の音源方向判定装置では、双指向性マイクロホン(速度型マイクロホン)の波形信号は、2つのマイクロホン(無指向性マイクロホン及び双指向性マイクロホン)の正面側に音源が存在する場合、無指向性マイクロホン(圧力型マイクロホン)の波形信号より90度位相が進み、2つのマイクロホンの背面側に音源が存在する場合、無指向性マイクロホンの波形信号より90度位相が遅れる。位相比較器は、双指向性マイクロホンの波形信号の位相が無指向性マイクロホンの波形信号より進んでいると判断した場合、音源が正面側に存在すると判断する一方、無指向性マイクロホンの波形信号より遅いと判断した場合、音源が背面側に存在すると判断する。   In the sound source direction determination apparatus of Patent Document 1, the waveform signal of the bidirectional microphone (speed microphone) is omnidirectional when the sound source is present on the front side of two microphones (omnidirectional microphone and bidirectional microphone). When the sound source is present on the back side of the two microphones, the phase is delayed by 90 degrees from the waveform signal of the omnidirectional microphone. When the phase comparator determines that the phase of the waveform signal of the bi-directional microphone is ahead of the waveform signal of the omnidirectional microphone, the phase comparator determines that the sound source is present on the front side, while the waveform signal of the omnidirectional microphone If it is determined that the sound source is slow, it is determined that the sound source exists on the back side.

上記より、特許文献1の音源方向判定装置によれば、音源が2つのマイクロホンの正面側に存在するのか背面側に存在するのかを判定することができる。
特開2003−333680号公報(段落0028〜0048及び図1〜3)
From the above, according to the sound source direction determination device of Patent Document 1, it can be determined whether the sound source exists on the front side or the back side of the two microphones.
JP 2003-333680 A (paragraphs 0028 to 0048 and FIGS. 1 to 3)

しかしながら、1つのマイクロホンを用いた従来の音響入力装置には、ある程度の範囲内に存在する音源からの音を集音して出力することができるものの、実用面から見るとまだ十分ではなく、特定の目的方向以外に存在する騒音なども目的方向に存在する音源からの音(例えば特定の話者の音声)と同様に強調して出力してしまうという問題があった。   However, the conventional sound input device using a single microphone can collect and output sound from a sound source that exists within a certain range, but it is not sufficient from a practical point of view. There is a problem that noise and the like existing outside the target direction are emphasized and output in the same manner as the sound from the sound source existing in the target direction (for example, the voice of a specific speaker).

上記問題を解決する従来の手段として、マイクロホンの音響管を長くすることが考えられるが、実用的ではない。また、ノイズ除去などの信号処理を行うことも考えられるが、演算量が過多となってしまうという新たな問題が発生してしまう。   As a conventional means for solving the above problem, it is conceivable to lengthen the acoustic tube of the microphone, but it is not practical. In addition, although signal processing such as noise removal may be performed, a new problem of excessive calculation amount occurs.

また、特許文献1の音源方向判定装置は、音源が2つのマイクロホンの正面側に存在するのか背面側に存在するのかを判定することができるものの、音源が特定の目的方向に存在する音源からの音を強調して出力することができなかった。   Moreover, although the sound source direction determination device of Patent Document 1 can determine whether a sound source exists on the front side or the back side of two microphones, the sound source is detected from a sound source that exists in a specific target direction. The sound could not be output with emphasis.

本発明は上記の点に鑑みて為されたものであり、その目的は、目的方向に存在する音源からの音を強調して出力することができる音響入力装置を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide an acoustic input device that can emphasize and output sound from a sound source existing in a target direction.

請求項1の発明は、それぞれが、所定の指向角度の集音領域を有し、各集音領域の一部同士が予め決められた目的方向を含んで重なるように近接して設置され、音源からの音波を受波し当該受波した音波に基づく観測信号を生成する第1の指向性マイクロホン及び第2の指向性マイクロホンと、前記第1の指向性マイクロホンから第1の観測信号を受信し前記第2の指向性マイクロホンから第2の観測信号を受信し、当該受信した第1の観測信号と第2の観測信号の位相差を、前記目的方向に音源が存在する場合の第1の観測信号と第2の観測信号の位相差分だけ補正する位相差補正部と、前記位相差補正部で補正された後の第1の観測信号と第2の観測信号とを用いて、前記音源が前記目的方向に存在するか否かを判定する音源方向判定部と、前記音源方向判定部によって前記音源が前記目的方向に存在すると判定された場合、前記第1の観測信号及び前記第2の観測信号の少なくとも一方を第1の増幅率で増幅して出力する一方、前記音源方向判定部によって前記音源が前記目的方向には存在しないと判定された場合、前記第1の観測信号と前記第2の観測信号の位相差を前記位相差分だけ補正し、補正後の第1の観測信号と第2の観測信号の合成信号を前記第1の増幅率より小さい増幅率で増幅して出力する出力演算部とを備えることを特徴とする。   According to the first aspect of the present invention, each of the sound collecting areas has a predetermined directivity angle, and each sound collecting area is installed close to each other so as to include a predetermined target direction. A first directional microphone and a second directional microphone that receive the sound wave from the first wave and generate an observation signal based on the received sound wave, and receive the first observation signal from the first directional microphone. The second observation signal is received from the second directional microphone, and the phase difference between the received first observation signal and the second observation signal is used as the first observation when the sound source exists in the target direction. A phase difference correction unit that corrects only a phase difference between the signal and the second observation signal; and the first observation signal and the second observation signal that have been corrected by the phase difference correction unit. Sound source direction determination unit that determines whether or not the target direction exists When the sound source direction determination unit determines that the sound source is present in the target direction, at least one of the first observation signal and the second observation signal is amplified with a first amplification factor and output. When the sound source direction determination unit determines that the sound source does not exist in the target direction, the phase difference between the first observation signal and the second observation signal is corrected by the phase difference, And an output calculation unit for amplifying and outputting a combined signal of the first observation signal and the second observation signal at an amplification factor smaller than the first amplification factor.

請求項2の発明は、請求項1の発明において、前記音源方向判定部は、前記位相差補正部で補正された後の第1の観測信号のパワー値である第1の観測パワー値と、前記位相差補正部で補正された後の第2の観測信号のパワー値である第2の観測パワー値の何れもが所定の閾値より大きく当該第1の観測パワー値と当該第2の観測パワー値の相対比が所定の設定値未満である条件を満たす場合、前記音源が前記目的方向に存在すると判定する一方、前記条件を満たさない場合、前記音源が前記目的方向には存在しないと判定することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the sound source direction determination unit includes a first observation power value that is a power value of the first observation signal after being corrected by the phase difference correction unit, Both of the second observation power values, which are the power values of the second observation signal after being corrected by the phase difference correction unit, are larger than a predetermined threshold, and the first observation power value and the second observation power. When the condition that the relative ratio of values is less than a predetermined set value is satisfied, it is determined that the sound source exists in the target direction. On the other hand, when the condition is not satisfied, it is determined that the sound source does not exist in the target direction. It is characterized by that.

請求項3の発明は、請求項1の発明において、前記音源方向判定部は、前記位相差補正部で補正された後の第1の観測信号の離散値x1及び第2の観測信号の離散値x2を用いて数3で表わされる相関関数Rij(i=1,2)を求め、相互相関関数R12が自己相関関数R11又は自己相関関数R22に基づいて設定される所定の設定値以上である条件を満たす場合、前記音源が前記目的方向に存在すると判定する一方、前記条件を満たさない場合、前記音源が前記目的方向には存在しないと判定することを特徴とする。 According to a third aspect of the present invention, in the first aspect of the invention, the sound source direction determination unit includes the discrete value x1 of the first observation signal and the discrete value of the second observation signal after being corrected by the phase difference correction unit. x2 is used to obtain a correlation function R ij (i = 1, 2) represented by Equation 3, and a predetermined set value in which the cross correlation function R 12 is set based on the autocorrelation function R 11 or the autocorrelation function R 22 When the above condition is satisfied, it is determined that the sound source is present in the destination direction. On the other hand, when the condition is not satisfied, it is determined that the sound source is not present in the destination direction.

Figure 2009135593
Figure 2009135593

請求項4の発明は、請求項1の発明において、前記第1の指向性マイクロホンと前記第2の指向性マイクロホンの中間位置に設置され前記音源からの音波を受波し当該受波した音波に基づく基準観測信号を生成する無指向性マイクロホンを備え、前記位相差補正部は、前記基準観測信号を受信し、当該受信した基準観測信号と第1の観測信号の位相差を、前記目的方向に音源が存在する場合の基準観測信号と第1の観測信号の位相差分だけ補正し、前記音源方向判定部は、前記位相差補正部で補正された後の基準観測信号のパワー値である基準観測パワー値に対する前記位相差補正部で補正された後の第1の観測信号のパワー値である第1の観測パワー値の相対比が予め設定された第1の範囲に含まれ前記基準観測パワー値に対する前記位相差補正部で補正された後の第2の観測信号のパワー値である第2の観測パワー値の相対比が予め設定された第2の範囲に含まれる条件を満たす場合、前記音源が前記目的方向に存在すると判定する一方、前記条件を満たさない場合、前記音源が前記目的方向には存在しないと判定することを特徴とする。   According to a fourth aspect of the present invention, in the first aspect of the present invention, the sound wave received from the sound source installed at an intermediate position between the first directional microphone and the second directional microphone is received. An omnidirectional microphone that generates a reference observation signal based on the reference difference, and the phase difference correction unit receives the reference observation signal and sets the phase difference between the received reference observation signal and the first observation signal in the target direction. Only the phase difference between the reference observation signal and the first observation signal when a sound source is present is corrected, and the sound source direction determination unit is a reference observation that is a power value of the reference observation signal after being corrected by the phase difference correction unit. A relative ratio of the first observation power value that is the power value of the first observation signal after being corrected by the phase difference correction unit with respect to the power value is included in a preset first range, and the reference observation power value Said phase with respect to When the relative ratio of the second observation power values, which are the power values of the second observation signal after being corrected by the correction unit, satisfies the condition included in the preset second range, the sound source is in the target direction If the condition is not satisfied, it is determined that the sound source does not exist in the target direction.

請求項5の発明は、請求項1の発明において、前記第1の指向性マイクロホンと前記第2の指向性マイクロホンの中間位置に設置され前記音源からの音波を受波し当該受波した音波に基づく基準観測信号を生成する無指向性マイクロホンを備え、前記位相差補正部は、前記受信した第1の観測信号の離散値を所定時間間隔で抽出し、前記受信した第2の観測信号を受信し当該第2の観測信号の離散値を当該所定時間間隔で抽出し、前記基準観測信号を受信し当該基準観測信号の離散値を当該所定時間間隔で抽出するとともに、当該抽出した第1の観測信号の離散値と第2の観測信号の位相差を、前記目的方向に音源が存在する場合の第1の観測信号と第2の観測信号の位相差分だけ補正し、当該抽出した基準観測信号の離散値と第1の観測信号の位相差を、前記目的方向に音源が存在する場合の基準観測信号と第1の観測信号の位相差分だけ補正し、前記音源方向判定部は、前記位相差補正部で補正された後の第1の観測信号の離散値x1、前記位相差補正部で補正された後の第2の観測信号の離散値x2及び前記位相差補正部で補正された後の基準観測信号の離散値x0を用いて数4で表わされる相関関数Rij(i,j=0,1,2)を求め、自己相関関数R00に対する相互相関関数R01の相対比が予め設定された第1の範囲に含まれ前記自己相関関数R00に対する相互相関関数R02の相対比が予め設定された第2の範囲に含まれる条件を満たす場合、前記音源が前記目的方向に存在すると判定する一方、前記条件を満たさない場合、前記音源が前記目的方向には存在しないと判定することを特徴とする。 According to a fifth aspect of the present invention, in the first aspect of the present invention, the sound wave received from the sound source is installed at an intermediate position between the first directional microphone and the second directional microphone, and the received sound wave is converted into the received sound wave. An omnidirectional microphone that generates a reference observation signal based on the phase difference correction unit that extracts a discrete value of the received first observation signal at predetermined time intervals and receives the received second observation signal The discrete value of the second observation signal is extracted at the predetermined time interval, the reference observation signal is received, the discrete value of the reference observation signal is extracted at the predetermined time interval, and the extracted first observation The phase difference between the discrete value of the signal and the second observation signal is corrected by the phase difference between the first observation signal and the second observation signal when a sound source exists in the target direction, and the extracted reference observation signal Discrete value and first observation signal Is corrected by the phase difference between the reference observation signal and the first observation signal when a sound source is present in the target direction, and the sound source direction determination unit is corrected by the phase difference correction unit. The discrete value x1 of one observation signal, the discrete value x2 of the second observation signal after correction by the phase difference correction unit, and the discrete value x0 of the reference observation signal after correction by the phase difference correction unit are used. Correlation function R ij (i, j = 0,1,2,2) expressed by Equation 4 is obtained, and the relative ratio of cross-correlation function R 01 to autocorrelation function R 00 is included in the preset first range. If the condition is satisfied the relative ratio of the cross-correlation function R 02 for said autocorrelation function R 00 is included in the second range set beforehand, while determines that the sound source is present in the target direction, it does not satisfy the condition If the sound source is in the target direction And judging that no standing.

Figure 2009135593
Figure 2009135593

請求項6の発明は、請求項1乃至5のいずれか1項の発明において、前記音源方向判定部は、前記音源が前記目的方向には存在しないと判定したときに当該音源が当該目的方向の近傍に存在するか否かを判定し、前記出力演算部は、前記音源方向判定部によって前記音源が前記目的方向の近傍に存在すると判定された場合、前記目的方向から離れていくにつれて前記第1の増幅率から単調減少する連続変化特性の増幅率で前記合成信号を増幅して出力することを特徴とする。   The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the sound source direction determination unit determines that the sound source is in the target direction when it is determined that the sound source does not exist in the target direction. It is determined whether or not the sound source exists in the vicinity, and when the sound source direction determination unit determines that the sound source exists in the vicinity of the target direction, the output calculation unit determines whether the first sound source moves away from the target direction. The synthesized signal is amplified and output with an amplification factor of a continuous change characteristic that monotonously decreases from the amplification factor.

請求項7の発明は、請求項1の発明において、前記第1の指向性マイクロホンと前記第2の指向性マイクロホンの中間位置に設置され前記音源からの音波を受波し当該受波した音波に基づく基準観測信号を生成する無指向性マイクロホンを備え、前記位相差補正部は、前記基準観測信号を受信し、当該受信した基準観測信号と第1の観測信号の位相差を、前記目的方向に音源が存在する場合の基準観測信号と第1の観測信号の位相差分だけ補正し、前記音源方向判定部は、前記位相差補正部で補正された後の第1の観測信号のパワー値である第1の観測パワー値と、前記位相差補正部で補正された後の第2の観測信号のパワー値である前記第2の観測パワー値の何れもが所定の閾値より大きく、当該第1の観測パワー値と当該第2の観測パワー値の相対比が所定の第1の設定値以上である場合において、前記第1の観測信号と前記第2の観測信号の相互相関関数が、前記第1の観測信号の自己相関関数又は前記第2の観測信号の自己相関関数より求められる所定の第2の設定値以上である条件を満たすとき、前記音源が前記目的方向及び当該目的方向以外の他の領域のそれぞれに存在すると判定する一方、前記条件を満たさないとき、前記音源が前記目的方向には存在しないと判定し、前記音源が前記目的方向及び当該目的方向以外の他の領域のそれぞれに存在すると判定した場合、前記位相差補正部で補正された後の基準観測信号のパワー値である基準観測パワー値に対する前記第1の観測パワー値の相対比が予め設定された範囲に含まれ、前記基準観測パワー値に対する前記第2の観測パワー値の相対比が前記範囲に含まれないとき、前記第1の指向性マイクロホンの集音領域に前記音源が存在すると判定し、前記基準観測パワー値に対する前記第2の観測パワー値の相対比が前記範囲に含まれ、前記基準観測パワー値に対する前記第1の観測パワー値の相対比が前記範囲に含まれないとき、前記第2の指向性マイクロホンの集音領域に前記音源が存在すると判定することを特徴とする。   The invention according to claim 7 is the invention according to claim 1, wherein the sound wave received from the sound source installed at an intermediate position between the first directional microphone and the second directional microphone is received. An omnidirectional microphone that generates a reference observation signal based on the reference difference, and the phase difference correction unit receives the reference observation signal and sets the phase difference between the received reference observation signal and the first observation signal in the target direction. The phase difference between the reference observation signal and the first observation signal when a sound source is present is corrected, and the sound source direction determination unit is the power value of the first observation signal after being corrected by the phase difference correction unit. Both the first observation power value and the second observation power value that is the power value of the second observation signal after being corrected by the phase difference correction unit are greater than a predetermined threshold, Observation power value and second observation power When the relative ratio of the values is equal to or greater than a predetermined first set value, the cross-correlation function between the first observation signal and the second observation signal is the autocorrelation function of the first observation signal or the first When satisfying a condition that is equal to or greater than a predetermined second set value obtained from the autocorrelation function of the two observation signals, the sound source is determined to exist in each of the target direction and other regions other than the target direction, When the condition is not satisfied, it is determined that the sound source does not exist in the target direction, and when it is determined that the sound source exists in each of the target direction and other regions other than the target direction, the phase difference correction unit The relative ratio of the first observation power value to the reference observation power value, which is the power value of the reference observation signal after being corrected in step S1, is included in a preset range, and the first observation power value relative to the reference observation power value is When the relative ratio of the observed power values is not included in the range, it is determined that the sound source exists in the sound collection region of the first directional microphone, and the second observed power value with respect to the reference observed power value is When the relative ratio is included in the range and the relative ratio of the first observed power value to the reference observed power value is not included in the range, the sound source exists in the sound collection region of the second directional microphone. Then, it is determined that it is determined.

請求項8の発明は、請求項7の発明において、前記出力演算部は、前記音源方向判定部によって前記第1の指向性マイクロホン又は前記第2の指向性マイクロホンの集音領域に前記音源が存在すると判定された場合、前記集音領域に前記音源が存在しない指向性マイクロホンの観測信号を前記第1の増幅率で増幅して出力することを特徴とする。   According to an eighth aspect of the present invention, in the seventh aspect of the invention, the output calculation unit includes the sound source in a sound collection region of the first directional microphone or the second directional microphone by the sound source direction determination unit. If it is determined, the observation signal of the directional microphone in which the sound source does not exist in the sound collection region is amplified with the first amplification factor and output.

請求項9の発明は、請求項7の発明において、前記第1の指向性マイクロホン又は前記第2の指向性マイクロホンの指向軸を傾ける駆動手段を備え、前記音源方向判定部は、前記音源が、前記目的方向と、前記他の領域のうち前記第1の指向性マイクロホン又は前記第2の指向性マイクロホンの集音領域のどちらか一方に存在すると判定した場合、前記第1の観測パワー値と前記第2の観測パワー値の相対比が前記第1の設定値未満である条件を満たすまで前記駆動手段を制御し、前記出力演算部は、前記音源方向判定部によって前記第1の指向性マイクロホン又は前記第2の指向性マイクロホンの集音領域に前記音源が存在すると判定された場合、前記駆動手段の駆動後における前記第1の観測信号と前記第2の観測信号の合成信号を前記第1の増幅率で増幅して出力する一方、前記音源方向判定部によって前記音源が前記目的方向には存在しないと判定された場合、前記合成信号を前記第1の増幅率より小さい第2の増幅率で増幅して出力することを特徴とする。   The invention according to claim 9 is the invention according to claim 7, further comprising driving means for tilting a directional axis of the first directional microphone or the second directional microphone, and the sound source direction determination unit includes: When it is determined that the target direction and the sound collecting area of the first directional microphone or the second directional microphone among the other areas are present, the first observed power value and the The driving means is controlled until a relative ratio of second observation power values is less than the first set value, and the output calculation unit is configured to control the first directional microphone or the output calculation unit by the sound source direction determination unit. When it is determined that the sound source is present in the sound collection region of the second directional microphone, a combined signal of the first observation signal and the second observation signal after driving the driving unit is When the sound source direction determination unit determines that the sound source does not exist in the target direction, the synthesized signal is output as a second amplification smaller than the first gain. The output is amplified at a rate.

請求項10の発明は、請求項1の発明において、前記第1の指向性マイクロホンと前記第2の指向性マイクロホンの中間位置に設置され前記音源からの音波を受波し当該受波した音波に基づく基準観測信号を生成する無指向性マイクロホンを備え、前記位相差補正部は、前記基準観測信号を受信し、当該受信した基準観測信号と第1の観測信号の位相差を、前記目的方向に音源が存在する場合の基準観測信号と第1の観測信号の位相差分だけ補正し、前記音源方向判定部は、前記位相差補正部で補正された後の第1の観測信号のパワー値である前記第1の観測パワー値と、前記位相差補正部で補正された後の第2の観測信号のパワー値である前記第2の観測パワー値の何れもが所定の閾値より大きい場合において、前記第1の観測信号と前記第2の観測信号の相互相関関数が、前記第1の観測信号の自己相関関数又は前記第2の観測信号の自己相関関数より求められる所定の設定値以上である条件を満たすとき、前記音源が前記目的方向及び当該目的方向以外の他の領域のそれぞれに存在すると判定する一方、前記条件を満たさないとき、前記音源が前記目的方向には存在しないと判定し、前記音源が前記目的方向及び当該目的方向以外の他の領域のそれぞれに存在すると判定した場合、前記位相差補正部で補正された後の基準観測信号のパワー値である基準観測パワー値に対する前記第1の観測パワー値の相対比、及び前記基準観測パワー値に対する前記第2の観測パワー値の相対比のそれぞれが予め設定された範囲に含まれるとき、前記第1の指向性マイクロホン及び前記第2の指向性マイクロホンの集音領域のそれぞれに前記音源が存在すると判定することを特徴とする。   According to a tenth aspect of the present invention, in the first aspect of the present invention, the sound wave received from the sound source is installed at an intermediate position between the first directional microphone and the second directional microphone, and the received sound wave is converted into the received sound wave. An omnidirectional microphone that generates a reference observation signal based on the reference difference, and the phase difference correction unit receives the reference observation signal and sets the phase difference between the received reference observation signal and the first observation signal in the target direction. The phase difference between the reference observation signal and the first observation signal when a sound source is present is corrected, and the sound source direction determination unit is the power value of the first observation signal after being corrected by the phase difference correction unit. When both of the first observation power value and the second observation power value that is the power value of the second observation signal after being corrected by the phase difference correction unit are larger than a predetermined threshold, The first observation signal and said When the cross-correlation function of the two observation signals satisfies a condition that is equal to or greater than a predetermined set value obtained from the autocorrelation function of the first observation signal or the autocorrelation function of the second observation signal, the sound source While determining that the sound source exists in each of the target direction and other regions other than the target direction, the sound source determines that the sound source does not exist in the target direction when the condition is not satisfied. When it is determined that each region other than the direction is present, the relative ratio of the first observation power value to the reference observation power value that is the power value of the reference observation signal after being corrected by the phase difference correction unit, And the relative ratio of the second observed power value to the reference observed power value are included in a preset range, the first directional microphone and the second directional microphone Determining that the sound source to each of the sound collection region of the directional microphone is present and said.

請求項11の発明は、請求項10の発明において、前記第1の指向性マイクロホン又は前記第2の指向性マイクロホンの指向軸を傾ける駆動手段を備え、前記音源方向判定部は、前記音源が、前記目的方向と、前記他の領域のうち前記第1の指向性マイクロホン及び前記第2の指向性マイクロホンの集音領域の何れにも存在すると判定した場合、前記2つの音源が前記目的方向から前記第1の指向性マイクロホンと前記第2の指向性マイクロホンの指向角の最大値の2分の1以上離れているときにおいて、前記第1の観測パワー値と前記第2の観測パワー値の相対比が所定の設定値未満である条件を満たすまで前記前記駆動手段を制御し、前記出力演算部は、前記音源方向判定部によって前記第1の指向性マイクロホン又は前記第2の指向性マイクロホンの集音領域に前記音源が存在すると判定された場合、前記駆動手段の駆動後における前記第1の観測信号と前記第2の観測信号の合成信号を前記第1の増幅率で増幅して出力する一方、前記音源方向判定部によって前記音源が前記目的方向には存在しないと判定された場合、前記合成信号を前記第1の増幅率より小さい第2の増幅率で増幅して出力することを特徴とする。   The invention of claim 11 is the invention of claim 10, further comprising driving means for inclining a directional axis of the first directional microphone or the second directional microphone, and the sound source direction determination unit includes: When it is determined that the target direction and the other directional microphones are present in any of the sound collection regions of the first directional microphone and the second directional microphone, the two sound sources are moved from the target direction to the target direction. The relative ratio between the first observed power value and the second observed power value when the first directional microphone and the second directional microphone are separated from each other by a half or more of the maximum value of the directional angle. The driving means is controlled until a condition that is less than a predetermined set value is satisfied, and the output calculation unit is configured to control the first directional microphone or the second directivity by the sound source direction determination unit. When it is determined that the sound source is present in the sound collection region of the icphone, the combined signal of the first observation signal and the second observation signal after driving the driving means is amplified by the first amplification factor. On the other hand, when the sound source direction determination unit determines that the sound source does not exist in the target direction, the synthesized signal is amplified and output with a second amplification factor smaller than the first amplification factor. It is characterized by.

請求項1の発明によれば、2つのマイクロホンからの観測信号を用いて、音源が目的方向に存在するか否かを判定し、音源が目的方向に存在する場合の増幅率(第1の増幅率)を、音源が目的方向には存在しない場合の増幅率より大きくすることによって、目的方向に存在する音源からの音を強調して出力することができる。   According to the first aspect of the present invention, the observation signals from the two microphones are used to determine whether or not the sound source exists in the target direction, and the amplification factor when the sound source exists in the target direction (first amplification) By making the rate greater than the amplification factor when the sound source does not exist in the target direction, it is possible to emphasize and output the sound from the sound source existing in the target direction.

請求項2の発明によれば、第1の観測パワー値と第2の観測パワー値の相対比を評価することにより、音源が目的方向に存在するか否かを精度よく判定することができる。   According to the invention of claim 2, it is possible to accurately determine whether or not the sound source exists in the target direction by evaluating the relative ratio between the first observation power value and the second observation power value.

請求項3の発明によれば、第1の観測信号の離散値と第2の観測信号の離散値の相互相関関数を評価することにより、音源が目的方向に存在するか否かを精度よく判定することができる。   According to the invention of claim 3, it is accurately determined whether or not the sound source exists in the target direction by evaluating the cross-correlation function between the discrete value of the first observation signal and the discrete value of the second observation signal. can do.

請求項4の発明によれば、無指向性マイクロホンを第1の指向性マイクロホンと第2の指向性マイクロホンの中間位置に設置することによって、無指向性マイクロホンの基準観測パワー値に対する第1,2の観測パワー値を用いることによって、音源が目的方向に存在するか否かを精度よく判定することができる。   According to the fourth aspect of the present invention, the omnidirectional microphone is installed at an intermediate position between the first directional microphone and the second directional microphone, so that the first and second reference power values relative to the reference observing power value of the omnidirectional microphone can be obtained. By using the observed power value, it can be accurately determined whether or not the sound source exists in the target direction.

請求項5の発明によれば、基準観測信号の自己相関関数や基準観測信号と第1,2の観測信号の相互相関関数を用いることによって、無相関ノイズの影響を低減して高S/N比にすることができ、音源が目的方向に存在するか否かの判定精度を高めることができる。   According to the invention of claim 5, by using the autocorrelation function of the reference observation signal or the cross-correlation function of the reference observation signal and the first and second observation signals, the influence of uncorrelated noise is reduced and high S / N It is possible to increase the accuracy of determination as to whether or not the sound source exists in the target direction.

請求項6の発明によれば、合成信号を増幅するための増幅率が音源の存在方向によって不連続になることを防止することができ、その結果、出力信号を常に連続値とすることができる。   According to the invention of claim 6, it is possible to prevent the amplification factor for amplifying the synthesized signal from becoming discontinuous depending on the direction of the sound source, and as a result, the output signal can always be a continuous value. .

請求項7の発明によれば、第1の指向性マイクロホンと第2の指向性マイクロホンの集音領域が重なる領域に1つの音源が存在し、第1の指向性マイクロホンと第2の指向性マイクロホンの何れか一方の集音領域内のみに他の音源が存在することを判定することができる。   According to the seventh aspect of the present invention, there is one sound source in an area where the sound collection areas of the first directional microphone and the second directional microphone overlap, and the first directional microphone and the second directional microphone. It can be determined that another sound source exists only in one of the sound collection areas.

請求項8の発明によれば、目的方向の音源からの信号を増幅して出力することができる。   According to the invention of claim 8, the signal from the sound source in the target direction can be amplified and output.

請求項9の発明によれば、目的方向の音源からの信号を増幅して出力することができる。   According to invention of Claim 9, the signal from the sound source of the target direction can be amplified and output.

請求項10の発明によれば、第1の指向性マイクロホンと第2の指向性マイクロホンの集音領域が重なる領域に1つの音源が存在し、第1の指向性マイクロホンと第2の指向性マイクロホンの何れか一方の集音領域内のみに他の音源が存在することを判定することができる。   According to the invention of claim 10, there is one sound source in a region where the sound collection regions of the first directional microphone and the second directional microphone overlap, and the first directional microphone and the second directional microphone. It can be determined that another sound source exists only in one of the sound collection areas.

請求項11の発明によれば、目的方向の音源からの信号を強調して出力することができる。   According to the eleventh aspect of the invention, it is possible to emphasize and output the signal from the sound source in the target direction.

(実施形態1)
まず、実施形態1の音響入力装置の構成について図1〜6を用いて説明する。この音響入力装置は、図1に示すように、音源(図示せず)からの音を集音する集音部1と、集音部1で集音した音に基づく後述の観測信号x1(t),x2(t)を用いて出力信号y(k,m)を算出する信号処理部2とを備えている。
(Embodiment 1)
First, the structure of the acoustic input device of Embodiment 1 is demonstrated using FIGS. As shown in FIG. 1, the acoustic input device includes a sound collecting unit 1 that collects sound from a sound source (not shown), and an observation signal x1 (t that will be described later based on the sound collected by the sound collecting unit 1 ), X2 (t), and a signal processing unit 2 that calculates an output signal y (k, m).

集音部1は、それぞれが所定の指向角度α1,α2の集音領域を有する第1の指向性マイクロホン10及び第2の指向性マイクロホン11を備えている。第1の指向性マイクロホン10及び第2の指向性マイクロホン11は、図2(b)に示すように、各集音領域の一部同士が特定の目的方向(図2(b)において第1の指向性マイクロホン10と第2の指向性マイクロホン11の中心軸Aの方向)を含んで重なるように、互いに近接して設置されている。   The sound collection unit 1 includes a first directional microphone 10 and a second directional microphone 11 each having a sound collection region with predetermined directivity angles α1 and α2. As shown in FIG. 2B, the first directional microphone 10 and the second directional microphone 11 are configured such that a part of each sound collection area is in a specific target direction (the first directional microphone 10 in FIG. 2B). The directional microphone 10 and the second directional microphone 11 are disposed close to each other so as to overlap each other.

上記のように設置された第1,2のマイクロホン10,11は、図1に示すように、それぞれが音源からの音波を受波し、受波した音波に基づく電気信号である観測信号x1(t),x2(t)を生成する。第1の観測信号x1(t)は第1の指向性マイクロホン10から信号処理部2に、第2の観測信号x2(t)は第2の指向性マイクロホン11から信号処理部2に出力される。   As shown in FIG. 1, each of the first and second microphones 10 and 11 installed as described above receives a sound wave from a sound source, and an observation signal x1 (which is an electric signal based on the received sound wave). t), x2 (t). The first observation signal x1 (t) is output from the first directional microphone 10 to the signal processing unit 2, and the second observation signal x2 (t) is output from the second directional microphone 11 to the signal processing unit 2. .

ところで、上記第1,2の指向性マイクロホン10,11の特性は、図3に示すように、指向性の中心軸A1から角度φの位置における後述の第1,2の観測パワー値Px1(k),Px2(k)は、0°≦|φ|<φ1では高くほぼ一定であり、φ1≦|φ|<φ2では角度φが大きくなるにつれて急速に低下し、φ2<|φ|では低くほぼ一定である。図2(b)において、各集音領域が重なる領域の角度θは、0°<θ<min(α1,α2)となる。なお、φ=0°の感度の半値となる角度を指向角度α1(α2)とする。   Incidentally, as shown in FIG. 3, the characteristics of the first and second directional microphones 10 and 11 are the first and second observed power values Px1 (k) described later at the position of the angle φ from the central axis A1 of the directivity. ), Px2 (k) is high and almost constant when 0 ° ≦ | φ | <φ1, decreases rapidly as the angle φ increases when φ1 ≦ | φ | <φ2, and decreases when φ2 <| φ | It is constant. In FIG. 2B, the angle θ of the region where the sound collection regions overlap is 0 ° <θ <min (α1, α2). In addition, the angle which becomes a half value of the sensitivity of φ = 0 ° is defined as a directivity angle α1 (α2).

なお、本実施形態の第1の指向性マイクロホン10と第2の指向性マイクロホン11は感度が等しいものを用いているが、感度が異なるものであっても、受波した音波に基づく観測信号を感度係数で補正したものを新たな観測信号x1(t),x2(t)とすればよい。具体的には、第1の指向性マイクロホン10の感度係数をm1、第2の指向性マイクロホン11の感度係数をm2(m1≠m2)とする場合、(第1の指向性マイクロホン10が受波した音波に基づく観測信号×m1)を、信号処理部2に送信される第1の観測信号x1(t)とし、(第2の指向性マイクロホン11が受波した音波に基づく観測信号×m2)を、信号処理部2に送信される第2の観測信号x2(t)とすればよい。このとき、感度係数m1,m2は、後述のPx1,Px2を用いて、m1:m2=√(Px2):√(Px1)を満たすように設定される。以下の説明においても同様である。   Although the first directional microphone 10 and the second directional microphone 11 of the present embodiment have the same sensitivity, even if the sensitivities are different, the observation signal based on the received sound wave is used. What is corrected with the sensitivity coefficient may be the new observation signals x1 (t) and x2 (t). Specifically, when the sensitivity coefficient of the first directional microphone 10 is m1 and the sensitivity coefficient of the second directional microphone 11 is m2 (m1 ≠ m2), (the first directional microphone 10 receives the wave) (Observation signal xm1) based on the sound wave received by the second directional microphone 11 is defined as the first observation signal x1 (t) transmitted to the signal processing unit 2 May be the second observation signal x2 (t) transmitted to the signal processing unit 2. At this time, the sensitivity coefficients m1 and m2 are set to satisfy m1: m2 = √ (Px2): √ (Px1) using Px1 and Px2 described later. The same applies to the following description.

図1に示す信号処理部2は、第1,2の観測信号x1(t),x2(t)を受信して第1の観測信号の離散値x1(k,m)と第2の観測信号の離散値x2(k,m)の位相差を補正する位相差補正部20と、第1,2の観測信号の離散値x1(k,m),x2(k,m)に基づく第1,2の観測パワー値Px1(k),Px2(k)を用いて音源が目的方向に存在するか否かを判定する音源方向判定部21と、音源方向判定部21の判定結果に応じて出力信号y(k,m)を出力する出力演算部22とを備えている。   The signal processing unit 2 shown in FIG. 1 receives the first and second observation signals x1 (t) and x2 (t) and receives the discrete value x1 (k, m) of the first observation signal and the second observation signal. Phase difference correction unit 20 for correcting the phase difference of discrete values x2 (k, m) of the first and second values based on discrete values x1 (k, m) and x2 (k, m) of the first and second observation signals. The sound source direction determination unit 21 that determines whether or not the sound source exists in the target direction using the observed power values Px1 (k) and Px2 (k) of 2, and the output signal according to the determination result of the sound source direction determination unit 21 and an output calculation unit 22 that outputs y (k, m).

位相差補正部20は、第1の指向性マイクロホン10から第1の観測信号x1(t)を受信し、図5(b)に示すように、受信した第1の観測信号x1(t)をフレーム長Lのフレームに分割し、各フレームごとに第1の観測信号の離散値x1(k,m)を所定時間間隔Δtで抽出する。同様に、第2の指向性マイクロホン11から第2の観測信号x2(t)を受信し、この第2の観測信号x2(t)をフレーム長Lのフレームに分割し、各フレームごとに第2の観測信号の離散値x2(k,m)を所定時間間隔Δtで抽出する。なお、第1,2の観測信号の離散値x1(k,m),x2(k,m)とは、k番目のフレームにおけるm番目の離散値をいう。   The phase difference correction unit 20 receives the first observation signal x1 (t) from the first directional microphone 10, and receives the received first observation signal x1 (t) as shown in FIG. 5B. The frame is divided into frames having a frame length L, and a discrete value x1 (k, m) of the first observation signal is extracted at each predetermined time interval Δt for each frame. Similarly, the second observation signal x2 (t) is received from the second directional microphone 11, and the second observation signal x2 (t) is divided into frames having the frame length L, and the second observation signal x2 (t) is divided into frames for each frame. A discrete value x2 (k, m) of the observed signal is extracted at a predetermined time interval Δt. The discrete values x1 (k, m) and x2 (k, m) of the first and second observation signals are the mth discrete values in the kth frame.

第1,2の観測信号の離散値x1(k,m),x2(k,m)を抽出した位相差補正部20は、抽出した第1の観測信号の離散値x1(k,m)と第2の観測信号の離散値x2(k,m)の位相差を、目的方向に音源が存在する場合の第1の観測信号x1(t)と第2の観測信号x2(t)の位相差だけ補正する。   The phase difference correction unit 20 that has extracted the discrete values x1 (k, m) and x2 (k, m) of the first and second observation signals and the extracted discrete value x1 (k, m) of the first observation signal. The phase difference between the discrete values x2 (k, m) of the second observation signal is the phase difference between the first observation signal x1 (t) and the second observation signal x2 (t) when a sound source is present in the target direction. Only correct.

例えば、図4(a)に示すように目的方向が第1の指向性マイクロホン10及び第2の指向性マイクロホン11の中心軸Aから角度φだけ傾いた方向Bである場合、図4(b)に示すように、目的方向に音源Sが存在するとき、第1の指向性マイクロホン10と第2指向性のマイクロホン11は近接して設置されているので、音源Sからの音波はほぼ平行に入射する。したがって、第1の観測信号x1(t)と第2の観測信号x2(t)には位相差2dsinφ(2d:第1の指向性マイクロホン10と第2の指向性マイクロホン11の距離)が発生する。音速cとすると、時間τ=2dsinφ/cだけ時間ずれが発生する(図5(a)参照)。上記より、図5(b)に示すように、第2の観測信号の離散値x2(k,m)を時間τだけ遅延させて、新たな第2の観測信号の離散値x2’(k,m)=x2(k,m−τ/Δt)とすることにより、第1の観測信号の離散値x1(k,m)と第2の観測信号の離散値x2(k,m)の位相差を補正することができる。   For example, when the target direction is a direction B inclined by an angle φ from the central axis A of the first directional microphone 10 and the second directional microphone 11 as shown in FIG. As shown in FIG. 2, when the sound source S exists in the target direction, the first directional microphone 10 and the second directional microphone 11 are installed close to each other, so that the sound waves from the sound source S are incident substantially in parallel. To do. Therefore, a phase difference 2dsinφ (2d: distance between the first directional microphone 10 and the second directional microphone 11) is generated between the first observation signal x1 (t) and the second observation signal x2 (t). . If the speed of sound is c, a time lag occurs by the time τ = 2dsinφ / c (see FIG. 5A). From the above, as shown in FIG. 5B, the discrete value x2 (k, m) of the second observation signal is delayed by the time τ, and the new discrete value x2 ′ (k, m, By setting m) = x2 (k, m−τ / Δt), the phase difference between the discrete value x1 (k, m) of the first observation signal and the discrete value x2 (k, m) of the second observation signal Can be corrected.

なお、本実施形態では、図2(b)に示すように、目的方向が第1の指向性マイクロホン10及び第2の指向性マイクロホン11の中心軸Aの方向であることから、目的方向に音源S1が存在する場合の第1の観測信号x1(t)と第2の観測信号x2(t)には位相差が発生しないため、x2’(k,m)=x2(k,m)である。   In the present embodiment, as shown in FIG. 2B, since the target direction is the direction of the central axis A of the first directional microphone 10 and the second directional microphone 11, the sound source is directed to the target direction. Since there is no phase difference between the first observation signal x1 (t) and the second observation signal x2 (t) in the presence of S1, x2 ′ (k, m) = x2 (k, m). .

位相差補正部20で補正された第1,2の観測信号の離散値x1(k,m),x2’(k,m)は音源方向判定部21に出力される。   The discrete values x1 (k, m) and x2 '(k, m) of the first and second observation signals corrected by the phase difference correction unit 20 are output to the sound source direction determination unit 21.

図1に示す音源方向判定部21は、数5のように第1の観測信号の離散値x1(k,m)の二乗和の所定時間(フレーム長)における平均値を各フレームごとに算出して第1の観測パワー値Px1(k)とするとともに、第2の観測信号の離散値x2’(k,m)の二乗和の所定時間における平均値を各フレームごとに算出して第2の観測パワー値Px2(k)とする。なお、数5において、i=1,2である。   The sound source direction determination unit 21 shown in FIG. 1 calculates an average value for a predetermined time (frame length) of the sum of squares of the discrete value x1 (k, m) of the first observed signal for each frame as shown in Equation 5. The first observed power value Px1 (k) is calculated, and the average value of the second sum of squares of the discrete value x2 ′ (k, m) of the second observed signal is calculated for each frame to obtain the second The observed power value is Px2 (k). In Equation 5, i = 1 and 2.

Figure 2009135593
Figure 2009135593

第1,2の観測パワー値Px1(k),Px2(k)を算出した音源方向判定部21は、第1,2の観測パワー値Px1(k),Px2(k)を用いて、音源が目的方向に存在するか否かを判定する。   The sound source direction determination unit 21 that has calculated the first and second observed power values Px1 (k) and Px2 (k) uses the first and second observed power values Px1 (k) and Px2 (k) to determine whether the sound source is It is determined whether or not it exists in the target direction.

ここで、図2(b)に示すように、第1の指向性マイクロホン10の集音領域と第2の指向性マイクロホン11の集音領域が重なる領域(図2(b)のφ1)では、第1の観測パワー値Px1(k)と第2の観測パワー値Px2(k)の相対比が小さく、上記以外の領域(例えば図2(b)のφ2)では、第1の観測パワー値Px1(k)と第2の観測パワー値Px2(k)の相対比が大きくなる。   Here, as shown in FIG. 2B, in a region where the sound collection region of the first directional microphone 10 and the sound collection region of the second directional microphone 11 overlap (φ1 in FIG. 2B), The relative ratio between the first observed power value Px1 (k) and the second observed power value Px2 (k) is small, and the first observed power value Px1 in a region other than the above (for example, φ2 in FIG. 2B). The relative ratio between (k) and the second observed power value Px2 (k) increases.

したがって、図1に示す音源方向判定部21は、第1,2の観測パワー値Px1(k),Px2(k)の何れもが所定の閾値Pthより大きく、第1の観測パワー値Px1(k)と第2の観測パワー値Px2(k)の相対比|10log10(Px1(k)/Px2(k))|(dB)が0以上所定の設定値ε(dB)未満(0≦|10log10(Px1(k)/Px2(k))|<ε)である条件を満たす場合、音源が目的方向に存在すると判定する。一方、上記条件を満たさない場合、音源方向判定部21は、音源が目的方向には存在しないと判定する。 Therefore, the sound source direction determination unit 21 shown in FIG. 1 has both the first and second observation power values Px1 (k) and Px2 (k) larger than the predetermined threshold value Pth, and the first observation power value Px1 (k ) And the second observed power value Px2 (k) | 10log 10 (Px1 (k) / Px2 (k)) | (dB) is 0 or more and less than the predetermined set value ε (dB) (0 ≦ | 10log) When the condition of 10 (Px1 (k) / Px2 (k)) | <ε) is satisfied, it is determined that the sound source exists in the target direction. On the other hand, when the above condition is not satisfied, the sound source direction determination unit 21 determines that the sound source does not exist in the target direction.

出力演算部22は、第1の指向性マイクロホン10から第1の観測信号x1(t)を、第2の指向性マイクロホン11から第2の観測信号x2(t)を受信し、ディジタルシグナルプロセッサ(以下「DSP」という。)を用いて、第1,2の観測信号x1(t),x2(t)から第1,2の観測信号の離散値x1(k,m),x2(k,m)を求め、第2の観測信号の離散値x2(k,m)を時間τだけ遅延させて、新たな第2の観測信号の離散値x2’(k,m)=x2(k,m−τ/Δt)とし、第1,2の観測信号の離散値x1(k,m),x2’(k,m)の和(x1(k,m)+x2’(k,m))を求める。なお、本実施形態では、遅延が生じないので、x2’(k,m)=x2(k,m)となる。   The output calculation unit 22 receives the first observation signal x1 (t) from the first directional microphone 10 and the second observation signal x2 (t) from the second directional microphone 11, and outputs a digital signal processor ( (Hereinafter referred to as “DSP”), the discrete values x1 (k, m) and x2 (k, m) of the first and second observation signals from the first and second observation signals x1 (t) and x2 (t). ), The discrete value x2 (k, m) of the second observation signal is delayed by time τ, and the new discrete value x2 ′ (k, m) = x2 (k, m− τ / Δt), and the sum (x1 (k, m) + x2 ′ (k, m)) of the discrete values x1 (k, m) and x2 ′ (k, m) of the first and second observation signals is obtained. In this embodiment, since no delay occurs, x2 ′ (k, m) = x2 (k, m).

上記出力演算部22は、音源方向判定部21によって音源が目的方向に存在すると判定された場合、第1の観測信号の離散値x1(k,m)と第2の観測信号の離散値x2’(k,m)の合成信号(x1(k,m)+x2’(k,m))を第1の増幅率G1で増幅し、デジタル出力信号の出力信号y(k,m)として出力する。一方、音源方向判定部21によって音源が目的方向には存在しないと判定された場合、出力演算部22は、合成信号(x1(k,m)+x2’(k,m))を第1の増幅率G1より小さい第2の増幅率G2で増幅し、出力信号y(k,m)として出力する。   When the sound source direction determination unit 21 determines that the sound source exists in the target direction, the output calculation unit 22 has a discrete value x1 (k, m) of the first observation signal and a discrete value x2 ′ of the second observation signal. A composite signal (x1 (k, m) + x2 ′ (k, m)) of (k, m) is amplified with a first amplification factor G1 and output as an output signal y (k, m) of a digital output signal. On the other hand, when the sound source direction determination unit 21 determines that the sound source does not exist in the target direction, the output calculation unit 22 performs the first amplification on the combined signal (x1 (k, m) + x2 ′ (k, m)). Amplification is performed at a second amplification factor G2 smaller than the factor G1, and the result is output as an output signal y (k, m).

次に、本実施形態の音響入力装置の動作について図6を用いて説明する。まず、集音部1の第1,2のマイクロホン10,11が音源からの音波を受波すると、第1,2の観測信号x1(t),x2(t)が集音部1から信号処理部2に送信される。信号処理部2では、位相差補正部20が、第1,2の観測信号の離散値x1(k,m),x2(k,m)を抽出する(S1,S2)。その後、位相差補正部20は、第2の観測信号の離散値x2(k,m)に対して、目的方向に音源が存在する場合の位相差だけシフトし、それを第2の観測信号の離散値x2’(k,m)とする(S3)。   Next, the operation of the acoustic input device of this embodiment will be described with reference to FIG. First, when the first and second microphones 10 and 11 of the sound collection unit 1 receive a sound wave from a sound source, the first and second observation signals x1 (t) and x2 (t) are signal-processed from the sound collection unit 1. Transmitted to part 2. In the signal processing unit 2, the phase difference correction unit 20 extracts the discrete values x1 (k, m) and x2 (k, m) of the first and second observation signals (S1, S2). Thereafter, the phase difference correction unit 20 shifts the phase difference of the second observation signal by the phase difference when the sound source exists in the target direction with respect to the discrete value x2 (k, m) of the second observation signal. A discrete value x2 ′ (k, m) is set (S3).

音源方向判定部21は、第1,2の観測パワー値Px1(k),Px2(k)を各フレームごとに算出する(S4,S5)。その後、音源方向判定部21は、第1,2の観測パワー値Px1(k),Px2(k)の何れもが閾値Pthより大きいという条件を満たすか否かを検討する(S6)。上記条件を満たさない場合、音源が目的方向ではない方向(集音エリア外)に存在すると判定される(S9)。一方、上記条件を満たす場合、音源方向判定部21は、相対比|10log10(Px1(k)/Px2(k))|が閾値ε未満という条件を満たすか否かを検討する(S7)。上記条件を満たす場合、音源が目的方向(集音エリア内)に存在すると判定し(S8)、上記条件を満たさない場合、音源が目的方向ではない方向に存在すると判定する(S9)。 The sound source direction determination unit 21 calculates the first and second observation power values Px1 (k) and Px2 (k) for each frame (S4, S5). Thereafter, the sound source direction determination unit 21 examines whether or not the condition that both the first and second observation power values Px1 (k) and Px2 (k) are larger than the threshold value Pth is satisfied (S6). If the above condition is not satisfied, it is determined that the sound source is present in the direction other than the target direction (outside the sound collection area) (S9). On the other hand, when the above condition is satisfied, the sound source direction determination unit 21 examines whether or not the condition that the relative ratio | 10log 10 (Px1 (k) / Px2 (k)) | is less than the threshold ε is satisfied (S7). If the above condition is satisfied, it is determined that the sound source exists in the target direction (in the sound collection area) (S8). If the above condition is not satisfied, it is determined that the sound source exists in a direction other than the target direction (S9).

出力演算部22は、音源が目的方向に存在すると判定された場合、出力信号y(k,m)としてG1(x1(k,m)+x2’(k,m))を出力し(S10)、音源が目的方向には存在しないと判定された場合、出力信号y(k,m)としてG2(x1(k,m)+x2’(k,m))を増幅して出力する(S11)。   When it is determined that the sound source exists in the target direction, the output calculation unit 22 outputs G1 (x1 (k, m) + x2 ′ (k, m)) as the output signal y (k, m) (S10), When it is determined that the sound source does not exist in the target direction, G2 (x1 (k, m) + x2 ′ (k, m)) is amplified and output as the output signal y (k, m) (S11).

以上、本実施形態によれば、2つのマイクロホン(第1の指向性マイクロホン10及び第2の指向性マイクロホン11)からの観測信号(第1の観測信号x1(k,m),第2の観測信号x2(k,m))を用いて、音源が目的方向に存在するか否かを判定し、音源が目的方向に存在する場合の増幅率(第1の増幅率G1)を、音源が目的方向には存在しない場合の増幅率(第2の増幅率G2)より大きくすることによって、目的方向に存在する音源からの音を強調して出力することができる。   As described above, according to the present embodiment, the observation signals (first observation signal x1 (k, m), second observation) from the two microphones (first directional microphone 10 and second directional microphone 11). Signal x2 (k, m)) is used to determine whether the sound source exists in the target direction, and the amplification factor (first amplification factor G1) when the sound source exists in the target direction By making it larger than the amplification factor (second amplification factor G2) when it does not exist in the direction, the sound from the sound source existing in the target direction can be emphasized and output.

また、第1の観測パワー値Px1(k)と第2の観測パワー値Px2(k)の相対比|10log10(Px1(k)/Px2(k))|を評価することにより、音源が目的方向に存在するか否かを精度よく判定することができる。 Further, by evaluating the relative ratio | 10log 10 (Px1 (k) / Px2 (k)) | between the first observed power value Px1 (k) and the second observed power value Px2 (k), the sound source It can be accurately determined whether or not it exists in the direction.

さらに、2つのマイクロホン10,11を各集音領域の一部同士が重なるように設置することによって、単一の指向性マイクロホンの場合に比べて、より鋭い指向性を得ることができる。   Furthermore, by setting the two microphones 10 and 11 so that the sound collecting areas partially overlap each other, sharper directivity can be obtained as compared with a single directional microphone.

なお、実施形態1の第1,2の指向性マイクロホン10,11の指向角度α1,α2は、さまざまな指向角度を有するものであってもよい。具体的には、図2に示すものに限定されるものではなく、図7に示すようなもの(指向角度が90°のもの)や図8に示すようなもの(指向角度180°のもの)でもよい。以下の実施形態においても同様である。   In addition, the directivity angles α1 and α2 of the first and second directional microphones 10 and 11 of the first embodiment may have various directivity angles. Specifically, it is not limited to the one shown in FIG. 2, but as shown in FIG. 7 (with a directivity angle of 90 °) or as shown in FIG. 8 (with a directivity angle of 180 °). But you can. The same applies to the following embodiments.

また、実施形態1の変形例として、図1に示す出力演算部22は、デジタル信号の出力信号y(k,m)を出力するのではなく、第1の観測信号x1(t)と、第2の観測信号x2(t)を時間τだけ遅延させた新たな第2の観測信号x2’(t)=x2(t−τ)との和(x1(t)+x2’(t))を増幅して出力してもよい。つまり、出力演算部22は、音源が目的方向に存在すると判定された場合、出力信号y(t)=G1(x1(t)+x2’(t))を出力し、音源が目的方向には存在しないと判定された場合、出力信号y(t)=G2(x1(t)+x2’(t))(G2<G1)を出力する。以下の実施形態においても同様である。   As a modification of the first embodiment, the output calculation unit 22 illustrated in FIG. 1 does not output the output signal y (k, m) of the digital signal, but the first observation signal x1 (t) 2 (x1 (t) + x2 ′ (t)) is amplified with a new second observation signal x2 ′ (t) = x2 (t−τ) obtained by delaying the second observation signal x2 (t) by time τ. May be output. That is, when it is determined that the sound source exists in the target direction, the output calculation unit 22 outputs the output signal y (t) = G1 (x1 (t) + x2 ′ (t)), and the sound source exists in the target direction. When it is determined not to output, the output signal y (t) = G2 (x1 (t) + x2 ′ (t)) (G2 <G1) is output. The same applies to the following embodiments.

(実施形態2)
実施形態2の音響入力装置は、図1に示す音源方向判定部21が、第1,2の観測信号の離散値x1(k,m),x2’(k,m)の相互相関関数R12(数6)を各フレームごとに算出する点で、実施形態1の音響入力装置と相違している。数6の相関関数Rijは、i=jの場合に自己相関関数となり、i≠jの場合に相互相関関数となる。なお、実施形態1と同様の構成要素については、同一の符号を付して説明を省略する。
(Embodiment 2)
In the acoustic input device according to the second embodiment, the sound source direction determination unit 21 illustrated in FIG. 1 has the cross-correlation function R 12 of the discrete values x1 (k, m) and x2 ′ (k, m) of the first and second observation signals. The difference from the sound input device of the first embodiment is that (Equation 6) is calculated for each frame. The correlation function R ij in Equation 6 is an autocorrelation function when i = j, and a cross-correlation function when i ≠ j. In addition, about the component similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

Figure 2009135593
Figure 2009135593

相互相関関数R12は、図9に示すように、第1の指向性マイクロホン10と第2の指向性マイクロホン11の集音領域が重なるエリア(−θ/2<φ<θ/2)では大きな値をとり、上記以外の他の領域では小さな値となる。したがって、音源方向判定部21は、相互相関関数R12>閾値Rthである条件を満たす場合、音源が目的方向に存在すると判定し、上記条件を満たさない場合、音源が目的方向には存在しないと判定する。 As shown in FIG. 9, the cross-correlation function R 12 is large in an area where the sound collection areas of the first directional microphone 10 and the second directional microphone 11 overlap (−θ / 2 <φ <θ / 2). It takes a value and becomes a small value in other areas than the above. Therefore, the sound source direction determination unit 21 determines that the sound source exists in the target direction when the condition that the cross-correlation function R 12 > threshold Rth is satisfied, and determines that the sound source does not exist in the target direction when the above condition is not satisfied. judge.

上記閾値Rthの決定には、第1の観測信号の離散値x1(k,m)の自己相関関数R11又は第2の観測信号の離散値x2(k,m)の自己相関関数R22が用いられる。自己相関関数R11,R22は音源の存在する方向に関係なく大きな値となるので、Rth=ζRii(i=1,2)、0<ζ<1として決定する。 The determination of the threshold value Rth, the discrete values x1 (k, m) of the first observation signal discrete value x2 (k, m) of the autocorrelation function R 11 or the second observation signal of the autocorrelation function R 22 of Used. Since the autocorrelation functions R 11 and R 22 are large values regardless of the direction in which the sound source exists, Rth = ζR ii (i = 1, 2) and 0 <ζ <1 are determined.

以上、本実施形態によれば、第1の観測信号の離散値x1(k,m)と第2の観測信号の離散値x2’(k,m)の相互相関関数R12を評価することにより、音源が目的方向に存在するか否かを精度よく判定することができる。 As described above, according to this embodiment, the discrete values x1 (k, m) of the first observation signal discrete value x2 '(k, m) of the second observation signal by evaluating the cross-correlation function R 12 in It is possible to accurately determine whether or not the sound source exists in the target direction.

(実施形態3)
実施形態3の音響入力装置は、図10(a)に示すように、集音部1aに、第1の指向性マイクロホン10と第2の指向性マイクロホン11の中間位置に設置され音源からの音波を受波し上記受波した音波に基づく電気信号である基準観測信号を生成する無指向性マイクロホン12を備える点で、実施形態1の音響入力装置(図1参照)と相違している。なお、実施形態1と同様の構成要素については、同一の符号を付して説明を省略する。
(Embodiment 3)
As shown in FIG. 10A, the acoustic input device according to the third embodiment is installed in the sound collection unit 1a at an intermediate position between the first directional microphone 10 and the second directional microphone 11, and the sound wave from the sound source. Is different from the acoustic input device of the first embodiment (see FIG. 1) in that it includes a non-directional microphone 12 that generates a reference observation signal that is an electric signal based on the received sound wave. In addition, about the component similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

なお、本実施形態の無指向性マイクロホン12は、第1,2の指向性マイクロホン10,11と感度が等しいものを用いているが、感度が異なるものであっても、受波した音波に基づく観測信号を感度係数で補正したものを新たな観測信号x0(t)とすればよい。具体的には、無指向性マイクロホン12の感度係数をm0とする場合、(無指向性マイクロホン12が受波した音波に基づく観測信号×m0)を、信号処理部2aに送信される基準観測信号x0(t)とすればよい。このとき、感度係数m0は、後述のPx0を用いて、m0:m1=√(Px1):√(Px0)を満たすように設定される。以下の説明においても同様である。   The omnidirectional microphone 12 of the present embodiment uses the one having the same sensitivity as that of the first and second directional microphones 10 and 11, but it is based on the received sound wave even if the sensitivity is different. The observation signal corrected with the sensitivity coefficient may be used as a new observation signal x0 (t). Specifically, when the sensitivity coefficient of the omnidirectional microphone 12 is m0, (the observation signal based on the sound wave received by the omnidirectional microphone 12 × m0) is the reference observation signal transmitted to the signal processing unit 2a. x0 (t) may be used. At this time, the sensitivity coefficient m0 is set to satisfy m0: m1 = √ (Px1): √ (Px0) using Px0 described later. The same applies to the following description.

本実施形態の信号処理部2aでは、図11に示すように、位相差補正部20aが、無指向性マイクロホン12から基準観測信号x0(t)を受信し、受信した基準観測信号x0(t)の離散値x0(k,m)を所定時間間隔Δtで抽出し、抽出した基準観測信号の離散値x0(k,m)を、目的方向に音源が存在する場合の基準観測信号x0(t)と第1の観測信号x1(t)の位相差だけシフトする。   In the signal processing unit 2a of the present embodiment, as shown in FIG. 11, the phase difference correction unit 20a receives the reference observation signal x0 (t) from the omnidirectional microphone 12, and receives the received reference observation signal x0 (t). Discrete values x0 (k, m) are extracted at a predetermined time interval Δt, and the discrete reference values x0 (k, m) of the extracted reference observation signals are used as reference observation signals x0 (t) when a sound source exists in the target direction. And the first observation signal x1 (t) are shifted by the phase difference.

また、音源方向判定部21aは、位相差補正部20aでシフトされた基準観測信号の離散値x0(k,m)の二乗和の所定時間(フレーム長L)における平均値を算出して基準観測パワー値Px0(k)とする。この基準観測パワー値Px0(k)は、無指向性マイクロホン12から音源までの距離が一定であれば、音源がどの方向に存在する場合でも一定となる。   In addition, the sound source direction determination unit 21a calculates an average value in a predetermined time (frame length L) of the square sum of the discrete values x0 (k, m) of the reference observation signal shifted by the phase difference correction unit 20a to perform the reference observation. The power value is Px0 (k). If the distance from the omnidirectional microphone 12 to the sound source is constant, the reference observation power value Px0 (k) is constant regardless of the direction of the sound source.

基準観測パワー値Px0(k)を算出した音源方向判定部21aは、基準観測パワー値Px0(k)に対する第1の観測パワー値Px1(k)の相対比(Px1(k)/Px0(k))が予め設定された第1の範囲に含まれ、基準観測パワー値Px0(k)に対する第2の観測パワー値Px2(k)の相対比(Px2(k)/Px0(k))が予め設定された第2の範囲に含まれる条件を満たす場合、音源が目的方向に存在すると判定する。一方、上記条件を満たさない場合、音源方向判定部21aは、音源が目的方向には存在しないと判定する。   The sound source direction determination unit 21a that has calculated the reference observation power value Px0 (k) has a relative ratio (Px1 (k) / Px0 (k) of the first observation power value Px1 (k) to the reference observation power value Px0 (k). ) Is included in the preset first range, and the relative ratio (Px2 (k) / Px0 (k)) of the second observed power value Px2 (k) to the reference observed power value Px0 (k) is preset. If the condition included in the second range is satisfied, it is determined that the sound source exists in the target direction. On the other hand, when the above condition is not satisfied, the sound source direction determination unit 21a determines that the sound source does not exist in the target direction.

ここで、本実施形態の第1の範囲は、初期設定される閾値δより大きく1以下の範囲(δ<Px1(k)/Px0(k)≦1)である。本実施形態の第2の範囲も、初期設定される閾値δより大きく1以下の範囲(δ<Px2(k)/Px0(k)≦1)である。   Here, the first range of the present embodiment is a range greater than the initially set threshold value δ and 1 or less (δ <Px1 (k) / Px0 (k) ≦ 1). The second range of the present embodiment is also a range greater than the initially set threshold value δ and 1 or less (δ <Px2 (k) / Px0 (k) ≦ 1).

以上、本実施形態によれば、無指向性マイクロホン12を第1の指向性マイクロホン10と第2の指向性マイクロホン11の中間位置に設置することによって、無指向性マイクロホン12の基準観測パワー値Px0(k)に対する第1,2の観測パワー値Px1(k),Px2(k)を用いることによって、音源が目的方向に存在するか否かを精度よく判定することができる。   As described above, according to the present embodiment, the reference observation power value Px0 of the omnidirectional microphone 12 is provided by installing the omnidirectional microphone 12 at an intermediate position between the first directional microphone 10 and the second directional microphone 11. By using the first and second observed power values Px1 (k) and Px2 (k) for (k), it can be accurately determined whether or not the sound source exists in the target direction.

(実施形態4)
実施形態4の音響入力装置は、図11に示す音源方向判定部21aが、第1,2の観測信号x1(k,m),x2(k,m)及び基準観測信号x0(k,m)を用いて、数7で表わされる相関関数Rij(i,j=0,1,2)を求め、この相関関数Rijを用いて、音源が目的方向に存在するか否かを判定する点で、実施形態3の音響入力装置と相違している。なお、実施形態3と同様の構成要素については、同一の符号を付して説明を省略する。
(Embodiment 4)
In the acoustic input device according to the fourth embodiment, the sound source direction determination unit 21a illustrated in FIG. 11 includes the first and second observation signals x1 (k, m), x2 (k, m) and the reference observation signal x0 (k, m). Is used to determine the correlation function R ij (i, j = 0,1,2,2) expressed by Equation 7 and determine whether or not the sound source exists in the target direction using this correlation function R ij Thus, it is different from the acoustic input device of the third embodiment. In addition, about the component similar to Embodiment 3, the same code | symbol is attached | subjected and description is abbreviate | omitted.

Figure 2009135593
Figure 2009135593

数7の相関関数Rijは、i=jの場合に自己相関関数となり、i≠jの場合に相互相関関数となる。 The correlation function R ij in Equation 7 is an autocorrelation function when i = j, and a cross-correlation function when i ≠ j.

本実施形態の音源方向判定部21aは、実施形態3とは異なり、基準観測信号x0(k,m)の自己相関関数R00に対する基準観測信号x0(k,m)と第1の観測信号x1(k,m)の相互相関関数R01の相対比(R01/R00)が予め設定された第1の範囲に含まれ、上記自己相関関数R00に対する基準観測信号x0(k,m)と第2の観測信号x2(k,m)の相互相関関数R02の相対比(R02/R00)が予め設定された第2の範囲に含まれる条件を満たす場合、音源が目的方向に存在すると判定する。一方、上記条件を満たさない場合、音源方向判定部21aは、音源が目的方向には存在しないと判定する。 The sound source direction determination unit 21a of the present embodiment is different from the embodiment 3, the reference observation signal x0 (k, m) a reference observation signal x0 (k, m) for the autocorrelation function R 00 between the first observation signals x1 The relative ratio (R 01 / R 00 ) of the cross-correlation function R 01 of (k, m) is included in the first preset range, and the reference observation signal x 0 (k, m) with respect to the autocorrelation function R 00 When the relative ratio (R 02 / R 00 ) of the cross-correlation function R 02 between the second observation signal x 2 (k, m) satisfies the condition included in the preset second range, the sound source is in the target direction. It is determined that it exists. On the other hand, when the above condition is not satisfied, the sound source direction determination unit 21a determines that the sound source does not exist in the target direction.

ここで、本実施形態の第1の範囲は、初期設定される閾値ξより大きく1以下の範囲(ξ<R01/R00≦1)である。本実施形態の第2の範囲も、初期設定される閾値ξより大きく1以下の範囲(ξ<R02/R00≦1)である。 Here, the first range of the present embodiment is a range greater than the initially set threshold value ξ and 1 or less (ξ <R 01 / R 00 ≦ 1). The second range of the present embodiment is also a range greater than the initially set threshold value ξ and 1 or less (ξ <R 02 / R 00 ≦ 1).

以上、本実施形態によれば、基準観測信号x0(k,m)の自己相関関数R00や基準観測信号x0(k,m)と第1,2の観測信号x1(k,m),x2(k,m)の相互相関関数R01,R02を用いることによって、無相関ノイズの影響を低減して高S/N比にすることができ、音源が目的方向に存在するか否かの判定精度を高めることができる。 As described above, according to the present embodiment, the autocorrelation function R 00 of the reference observation signal x 0 (k, m), the reference observation signal x 0 (k, m), and the first and second observation signals x 1 (k, m), x 2. By using the cross-correlation functions R 01 and R 02 of (k, m), the influence of uncorrelated noise can be reduced and a high S / N ratio can be achieved, and whether or not the sound source exists in the target direction. The determination accuracy can be increased.

(実施形態5)
実施形態1,3の音響入力装置では、音源の存在する方向に対して、図10(b)に示すように、出力信号y(k,m)(出力信号のパワー値Py(k)が不連続となってしまう。
(Embodiment 5)
In the acoustic input devices of the first and third embodiments, the output signal y (k, m) (the power value Py (k) of the output signal is not as shown in FIG. 10B) with respect to the direction in which the sound source exists. It will be continuous.

そこで、実施形態5の音響入力装置は、図1に示す音源方向判定部21が、音源が目的方向には存在しないと判定したときに、音源が目的方向の近傍に存在するか否かを判定する点、出力演算部22が、音源方向判定部21によって音源が目的方向の近傍に存在すると判定された場合、第1の増幅率G1と第2の増幅率G2の間を単調減少する連続変化特性の増幅率で合成信号を増幅して出力する点で、実施形態1の音響入力装置と相違している。なお、実施形態1と同様の構成要素については、同一の符号を付して説明を省略する。   Therefore, in the sound input device according to the fifth embodiment, when the sound source direction determination unit 21 illustrated in FIG. 1 determines that the sound source does not exist in the target direction, the sound input device determines whether the sound source exists in the vicinity of the target direction. On the other hand, when the output calculation unit 22 determines that the sound source exists in the vicinity of the target direction by the sound source direction determination unit 21, a continuous change that monotonously decreases between the first amplification factor G1 and the second amplification factor G2. The sound input device is different from the sound input device according to the first embodiment in that the synthesized signal is amplified and output with the amplification factor of the characteristic. In addition, about the component similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図12に示すように、増幅率Gは、第1,2の観測パワー値Px1(k),Px2(k)の何れもが所定の閾値Pthより大きく、相対比|10log10(Px1(k)/Px2(k))|が0以上閾値ε未満(0≦|10log10(Px1(k)/Px2(k))|<ε)の場合、実施形態1と同様、第1の増幅率G1となる。 As shown in FIG. 12, the amplification factor G is such that both the first and second observation power values Px1 (k) and Px2 (k) are larger than a predetermined threshold value Pth, and the relative ratio | 10log 10 (Px1 (k) / Px2 (k)) | is 0 or more and less than the threshold value ε (0 ≦ | 10log 10 (Px1 (k) / Px2 (k)) | <ε), as in the first embodiment, the first gain G1 Become.

一方、相対比|10log10(Px1(k)/Px2(k))|が閾値ε以上の場合において、まず、相対比|10log10(Px1(k)/Px2(k))|が閾値ε以上閾値ε1(ε1>ε)未満(ε≦|10log10(Px1(k)/Px2(k))|<ε)のとき、音源が目的方向の近傍に存在すると判定され、増幅率Gは単調減少関数fにしたがって変動する。続いて、相対比|10log10(Px1(k)/Px2(k))|が閾値ε1以上(ε1≦|10log10(Px1(k)/Px2(k))|)のとき、音源が目的方向とは離れた位置に存在すると判定され、増幅率Gは第2の増幅率G2となる。 On the other hand, when the relative ratio | 10log 10 (Px1 (k) / Px2 (k)) | is equal to or greater than the threshold ε, first, the relative ratio | 10log 10 (Px1 (k) / Px2 (k)) | When the threshold is less than ε1 (ε1> ε) (ε ≦ | 10 log 10 (Px1 (k) / Px2 (k)) | <ε), it is determined that the sound source exists in the vicinity of the target direction, and the gain G decreases monotonously. It varies according to the function f. Subsequently, when the relative ratio | 10log 10 (Px1 (k) / Px2 (k)) | is equal to or greater than the threshold ε1 (ε1 ≦ | 10log 10 (Px1 (k) / Px2 (k)) |), the sound source is in the target direction. Is determined to be present at a distant position, and the amplification factor G becomes the second amplification factor G2.

以上、本実施形態によれば、合成信号(x1(k,m)+x2’(k,m))を増幅するための増幅率Gが音源の存在方向によって不連続になることを防止することができ、その結果、出力信号y(k,m)(出力信号のパワー値Py(k))を常に連続値とすることができる(図13参照)。   As described above, according to the present embodiment, it is possible to prevent the amplification factor G for amplifying the combined signal (x1 (k, m) + x2 ′ (k, m)) from becoming discontinuous depending on the direction in which the sound source exists. As a result, the output signal y (k, m) (power value Py (k) of the output signal) can always be a continuous value (see FIG. 13).

なお、実施形態2の音響入力装置については、増幅率Gは、図14に示すように、相互相関関数R12>閾値Rthである場合、実施形態2と同様、第1の増幅率G1となる。 As for the acoustic input device of the second embodiment, the amplification factor G is the first amplification factor G1 as in the second embodiment when the cross-correlation function R 12 > threshold value Rth as shown in FIG. .

一方、相互相関関数R12>閾値Rthではない場合、まず、相互相関関数R12が閾値Rth1(Rth1<Rth)より大きく閾値Rth以下(Rth1<R12≦Rth)のとき、音源が目的方向の近傍に存在すると判定され、増幅率Gは単調増加関数eにしたがって変動する。続いて、相互相関関数R12が0以上閾値Rth1以下(0≦R12≦Rth1)のとき、音源が目的方向とは離れた位置に存在すると判定され、増幅率Gは第2の増幅率G2となる。なお、第1の指向性マイクロホン10、第2の指向性マイクロホン11及び無指向性マイクロホン12の感度は全て等しいものとする。 On the other hand, if it is not the cross-correlation function R 12> threshold Rth, first, when the cross-correlation function R 12 is the threshold value Rth1 (Rth1 <Rth) greater than threshold value Rth following (Rth1 <R 12 ≦ Rth), the sound source is object direction It is determined that it exists in the vicinity, and the amplification factor G varies according to the monotonically increasing function e. Subsequently, when the cross-correlation function R 12 is 0 or larger than the threshold Rth1 less (0 ≦ R 12 ≦ Rth1), the sound source is determined to be present at a position distant from the destination direction, the gain G is a second amplification factor G2 It becomes. Note that the sensitivities of the first directional microphone 10, the second directional microphone 11, and the omnidirectional microphone 12 are all equal.

なお、実施形態3の音響入力装置については、増幅率Gは、図15に示すように、相対比(Px1(k)/Px0(k))及び相対比(Px2(k)/Px0(k))の何れもが閾値δより大きく1以下(δ<Px1(k)/Px0(k)≦1及びδ<Px2(k)/Px0(k)≦1)の場合、実施形態3と同様、第1の増幅率G1となる。   In the acoustic input device according to the third embodiment, the amplification factor G has a relative ratio (Px1 (k) / Px0 (k)) and a relative ratio (Px2 (k) / Px0 (k) as shown in FIG. ) Is greater than the threshold value δ and equal to or less than 1 (δ <Px1 (k) / Px0 (k) ≦ 1 and δ <Px2 (k) / Px0 (k) ≦ 1), as in the third embodiment. A gain G1 of 1.

一方、相対比(Px1(k)/Px0(k))及び相対比(Px2(k)/Px0(k))が上記の範囲にない場合、まず、相対比(Px1(k)/Px0(k))又は相対比(Px2(k)/Px0(k))の何れかが閾値δ1(δ1<δ)より大きく閾値δ以下(δ1<Px1(k)/Px0(k)≦δ又はδ1<Px2(k)/Px0(k)≦δ)のとき、音源が目的方向の近傍に存在すると判定され、増幅率Gは単調増加関数gにしたがって変動する。続いて、相対比(Px1(k)/Px0(k))又は相対比(Px2(k)/Px0(k))の何れかが0以上閾値δ1以下(0≦Px1(k)/Px0(k)≦δ1又は0≦Px2(k)/Px0(k)≦δ1)のとき、音源が目的方向とは離れた位置に存在すると判定され、増幅率Gは第2の増幅率G2となる。なお、第1の指向性マイクロホン10、第2の指向性マイクロホン11及び無指向性マイクロホン12の感度は全て等しいものとする。   On the other hand, when the relative ratio (Px1 (k) / Px0 (k)) and the relative ratio (Px2 (k) / Px0 (k)) are not within the above ranges, first, the relative ratio (Px1 (k) / Px0 (k) )) Or the relative ratio (Px2 (k) / Px0 (k)) is greater than the threshold δ1 (δ1 <δ) and less than or equal to the threshold δ (δ1 <Px1 (k) / Px0 (k) ≦ δ or δ1 <Px2 When (k) / Px0 (k) ≦ δ), it is determined that the sound source exists in the vicinity of the target direction, and the amplification factor G varies according to the monotonically increasing function g. Subsequently, either the relative ratio (Px1 (k) / Px0 (k)) or the relative ratio (Px2 (k) / Px0 (k)) is 0 or more and the threshold δ1 or less (0 ≦ Px1 (k) / Px0 (k) ) ≦ δ1 or 0 ≦ Px2 (k) / Px0 (k) ≦ δ1), it is determined that the sound source exists at a position away from the target direction, and the amplification factor G becomes the second amplification factor G2. Note that the sensitivities of the first directional microphone 10, the second directional microphone 11, and the omnidirectional microphone 12 are all equal.

また、実施形態4の音響入力装置については、増幅率Gは、図16に示すように、相対比(R01/R00)及び相対比(R02/R00)の何れもが閾値ξより大きく1以下(ξ<R01/R00≦1及びξ<R02/R00≦1)の場合、実施形態4と同様、第1の増幅率G1となる。 In the acoustic input device according to the fourth embodiment, as shown in FIG. 16, the amplification factor G has a relative ratio (R 01 / R 00 ) and a relative ratio (R 02 / R 00 ) that are both higher than a threshold ξ. In the case of large 1 or less (ξ <R 01 / R 00 ≦ 1 and ξ <R 02 / R 00 ≦ 1), the first amplification factor G1 is obtained as in the fourth embodiment.

一方、相対比(R01/R00)及び相対比(R02/R00)が上記の範囲にない場合、まず、相対比(R01/R00)又は相対比(R02/R00)の何れかが閾値ξ1(ξ1<ξ)より大きく閾値ξ以下(ξ1<R01/R00≦ξ又はξ1<R02/R00≦ξ)の場合、音源が目的方向の近傍に存在すると判定され、増幅率Gは単調増加関数hにしたがって変動する。続いて、相対比(R01/R00)又は相対比(R02/R00)の何れかが0以上閾値ξ1以下(0≦R01/R00≦ξ1又は0≦R02/R00≦ξ1)の場合、音源が目的方向とは離れた位置に存在すると判定され、増幅率Gは第2の増幅率G2となる。なお、第1の指向性マイクロホン10、第2の指向性マイクロホン11及び無指向性マイクロホン12の感度は全て等しいものとする。 On the other hand, when the relative ratio (R 01 / R 00 ) and the relative ratio (R 02 / R 00 ) are not in the above ranges, first, the relative ratio (R 01 / R 00 ) or the relative ratio (R 02 / R 00 ) If either threshold ξ1 (ξ1 <ξ) greater than threshold value xi] or less (ξ1 <R 01 / R 00 ≦ ξ or ξ1 <R 02 / R 00 ≦ ξ) of determining a sound source is present in the vicinity of the target direction The amplification factor G varies according to the monotonically increasing function h. Subsequently, either the relative ratio (R 01 / R 00 ) or the relative ratio (R 02 / R 00 ) is 0 or more and the threshold ξ1 or less (0 ≦ R 01 / R 00ξ 1 or 0 ≦ R 02 / R 00 ≦ In the case of ξ1), it is determined that the sound source exists at a position away from the target direction, and the amplification factor G becomes the second amplification factor G2. Note that the sensitivities of the first directional microphone 10, the second directional microphone 11, and the omnidirectional microphone 12 are all equal.

以上、実施形態3,4のような音響入力装置であっても、実施形態5と同様に、合成信号(x1(k,m)+x2’(k,m))を増幅するための増幅率Gが音源の存在方向によって不連続になることを防止することができ、その結果、図10(b)とは異なり、出力信号y(k,m)(出力信号のパワー値Py(k))を常に連続値とすることができる。   As described above, even in the acoustic input device as in the third and fourth embodiments, the amplification factor G for amplifying the combined signal (x1 (k, m) + x2 ′ (k, m)) as in the fifth embodiment. Can be prevented from becoming discontinuous depending on the direction in which the sound source exists. As a result, unlike FIG. 10B, the output signal y (k, m) (power value Py (k) of the output signal) is obtained. It can always be a continuous value.

(実施形態6)
実施形態1〜5では、音源が1つの場合について説明してきたが、実施形態6では、音源が2つの場合について説明する。ここで、複数の音源が存在する組み合わせとしては、(1)目的音源のみ存在する場合、(2)目的音源と1つの騒音源が存在する場合、(3)目的音源と2つの騒音源が存在する場合、(4)目的音源も騒音源も存在しない場合、(5)目的音源は存在せず、1つの騒音源のみ存在する場合、(6)目的音源が存在せず、2つの騒音源が存在する場合がある。その中で、2つの音源の組み合わせは、(2)と(6)の場合である。具体的には、図17(a)に示すように第1の指向性マイクロホン10と第2の指向性マイクロホン11の集音領域が重なるエリアに目的音源Sが存在し、第1の指向性マイクロホン10の集音領域内のみに騒音源N1が存在する場合について説明する。
(Embodiment 6)
In the first to fifth embodiments, the case of one sound source has been described. In the sixth embodiment, the case of two sound sources will be described. Here, as a combination of a plurality of sound sources, (1) only a target sound source exists, (2) a target sound source and one noise source exist, and (3) a target sound source and two noise sources exist. (4) No target sound source and no noise source, (5) No target sound source and only one noise source, (6) No target sound source and two noise sources May exist. Among them, the combination of the two sound sources is the case of (2) and (6). Specifically, as shown in FIG. 17A, the target sound source S exists in an area where the sound collection areas of the first directional microphone 10 and the second directional microphone 11 overlap, and the first directional microphone. A case where the noise source N1 exists only in the ten sound collection regions will be described.

図17(a)に示すような場合、実施形態1の音源方向判定条件のうち、Px1(k)>Pth(第1条件)とPx2(k)>Pth(第2条件)は満たすが、第2の指向性マイクロホン11の第2の観測信号x2(t)には目的音源Sに基づく信号のみが含まれるのに対し、第1の指向性マイクロホン10の第1の観測信号x1(t)には目的音源Sだけでなく騒音源N1に基づく信号も含まれるため、|10log10(Px1(k)/Px2(k)|<ε(第3条件)を満たさない。 In the case shown in FIG. 17A, among the sound source direction determination conditions of the first embodiment, Px1 (k)> Pth (first condition) and Px2 (k)> Pth (second condition) are satisfied, The second observation signal x2 (t) of the second directional microphone 11 includes only a signal based on the target sound source S, whereas the first observation signal x1 (t) of the first directional microphone 10 includes Since not only the target sound source S but also a signal based on the noise source N1 is included, | 10log 10 (Px1 (k) / Px2 (k) | <ε (third condition) is not satisfied.

上記のように第1,2条件を満たすが第3条件を満たさない場合、さらに実施形態2の音源方向判定条件R12>Rth(第4条件)を用いる。第1,2の指向性マイクロホン10,11の集音領域が重なるエリアに目的音源Sが存在し、第1の指向性マイクロホン10の集音領域内のみに騒音源N1が存在する場合であっても、目的音源Sに基づく信号は、第1,2の指向性マイクロホン10,11の両方の観測信号x1(t),x2(t)に含まれるため、第4条件を満たす。したがって、音源方向判定部21は、第1,2の指向性マイクロホン10,11の集音領域が重なるエリアに目的音源Sが存在すると判定することができる。 As described above, when the first and second conditions are satisfied but the third condition is not satisfied, the sound source direction determination condition R 12 > Rth (fourth condition) of the second embodiment is further used. The target sound source S exists in an area where the sound collection areas of the first and second directional microphones 10 and 11 overlap, and the noise source N1 exists only in the sound collection area of the first directional microphone 10. However, since the signal based on the target sound source S is included in the observation signals x1 (t) and x2 (t) of both the first and second directional microphones 10 and 11, the fourth condition is satisfied. Therefore, the sound source direction determination unit 21 can determine that the target sound source S exists in an area where the sound collection regions of the first and second directional microphones 10 and 11 overlap.

続いて、音源方向判定部21は、騒音源N1が第1,2の指向性マイクロホン10,11のうち何れの集音領域に存在するかを判定する必要がある。そこで、図17(a)に示すように、第1の指向性マイクロホン10と第2の指向性マイクロホン11の間に無指向性マイクロホン12を配置する。無指向性マイクロホン12は無指向であるので、目的音源Sと騒音源N1の両方に基づく信号を基準観測信号x0(t)に含む。したがって、音源方向判定部21は、第1,2の指向性マイクロホン10,11の観測パワー値Px1(k),Px2(k)のうち、δ<Pxi(k)/Px0(k)≦1(i=1,2)(第5条件)を満たす第1,2の指向性マイクロホン10,11の集音領域に騒音源N1が存在すると判定する。   Subsequently, the sound source direction determination unit 21 needs to determine in which sound collection area the noise source N1 is present among the first and second directional microphones 10 and 11. Therefore, as shown in FIG. 17A, the omnidirectional microphone 12 is disposed between the first directional microphone 10 and the second directional microphone 11. Since the omnidirectional microphone 12 is omnidirectional, the reference observation signal x0 (t) includes a signal based on both the target sound source S and the noise source N1. Therefore, the sound source direction determination unit 21 among the observed power values Px1 (k) and Px2 (k) of the first and second directional microphones 10 and 11, δ <Pxi (k) / Px0 (k) ≦ 1 ( i = 1, 2) It is determined that the noise source N1 is present in the sound collection region of the first and second directional microphones 10 and 11 satisfying (fifth condition).

目的音源Sが第1,2の指向性マイクロホン10,11の集音領域が重なるエリアに存在し、騒音源N1が第1の指向性マイクロホン10の集音領域にのみ存在すると判定された場合、出力演算部22は、目的音源Sに基づく信号のみを含む第2の指向性マイクロホン11の第2の観測信号の離散値x2(k,m)を増幅率G1で増幅し、出力信号y(k,m)=G1×x2(k,m)を出力する。   When it is determined that the target sound source S exists in the area where the sound collection areas of the first and second directional microphones 10 and 11 overlap and the noise source N1 exists only in the sound collection area of the first directional microphone 10, The output calculation unit 22 amplifies the discrete value x2 (k, m) of the second observation signal of the second directional microphone 11 including only the signal based on the target sound source S with the amplification factor G1, and outputs the output signal y (k , M) = G1 × x2 (k, m) is output.

一方、目的音源Sが第1,2の指向性マイクロホン10,11の集音領域が重なるエリアには存在しないと判定された場合、出力演算部22は、第1,2の指向性マイクロホン10,11の観測信号の離散値x1(k,m),x2(k,m)の合成信号(x1(k,m)+x2(k,m))を増幅率G2(G1>G2)で増幅し、出力信号y(k,m)=G2(x1(k,m)+x2(k,m))を出力する。   On the other hand, when it is determined that the target sound source S does not exist in the area where the sound collection areas of the first and second directional microphones 10 and 11 overlap, the output calculation unit 22 selects the first and second directional microphones 10 and 11. A composite signal (x1 (k, m) + x2 (k, m)) of the discrete values x1 (k, m) and x2 (k, m) of the 11 observation signals is amplified with an amplification factor G2 (G1> G2). Output signal y (k, m) = G2 (x1 (k, m) + x2 (k, m)) is output.

以上、本実施形態によれば、目的音源Sが第1,2の指向性マイクロホン10,11の集音領域が重なるエリアに存在し、騒音源N1が第1,2の指向性マイクロホン10,11のうち何れか一方の集音領域内のみに存在する場合も、目的音源Sに基づく信号のみを増幅して出力することができる。   As described above, according to the present embodiment, the target sound source S exists in the area where the sound collection areas of the first and second directional microphones 10 and 11 overlap, and the noise source N1 is the first and second directional microphones 10 and 11. Even when the signal exists only in one of the sound collection regions, only the signal based on the target sound source S can be amplified and output.

なお、実施形態6の変形例として、以下のようにして出力信号y(k,m)を出力することもできる。音源方向判定部21は、目的音源Sが第1,2の指向性マイクロホン10,11の集音領域が重なるエリアに存在し、第1の指向性マイクロホン10の集音領域にのみ騒音源N1が存在すると判定した場合、図17(b)に示すように第3条件を満たすまで、第1の指向性マイクロホン10の指向軸を傾けた後に、第1,2の指向性マイクロホン10,11の観測信号の離散値x1(k,m),x2(k,m)の合成信号(x1(k,m)+x2(k,m))を増幅率G1で増幅し、出力信号y(k,m)=G1(x1(k,m)+x2(k,m))を出力する。なお、目的音源Sが第1,2の指向性マイクロホン10,11の集音領域が重なるエリアには存在しない場合については、実施形態6と同様である。   As a modification of the sixth embodiment, the output signal y (k, m) can be output as follows. The sound source direction determination unit 21 includes the target sound source S in an area where the sound collection areas of the first and second directional microphones 10 and 11 overlap, and the noise source N1 is present only in the sound collection area of the first directional microphone 10. If it is determined that it exists, the first and second directional microphones 10 and 11 are observed after the directional axis of the first directional microphone 10 is tilted until the third condition is satisfied as shown in FIG. A composite signal (x1 (k, m) + x2 (k, m)) of the discrete values x1 (k, m) and x2 (k, m) of the signal is amplified by the amplification factor G1, and the output signal y (k, m) = G1 (x1 (k, m) + x2 (k, m)) is output. The case where the target sound source S does not exist in the area where the sound collection areas of the first and second directional microphones 10 and 11 overlap is the same as that in the sixth embodiment.

(実施形態7)
実施形態6では、音源が2つの場合について説明したが、実施形態7では、音源が3つの場合について説明する。3つの音源の組み合わせは、(3)目的音源と2つの騒音源が存在する場合のみであるが、音源が2つの場合((2),(6))と切り分ける必要がある。具体的には、図18(a)に示すように第1,2の指向性マイクロホン10,11の集音領域が重なるエリアに目的音源Sが存在し、第1の指向性マイクロホン10の集音領域内のみに騒音源N1が存在し、第2の指向性マイクロホン11の集音領域内のみに騒音源N2が存在する場合について説明する。
(Embodiment 7)
In the sixth embodiment, the case of two sound sources has been described. In the seventh embodiment, the case of three sound sources will be described. The combination of the three sound sources is (3) only when the target sound source and the two noise sources exist, but it is necessary to distinguish between the two sound sources ((2) and (6)). Specifically, as shown in FIG. 18A, the target sound source S exists in an area where the sound collection areas of the first and second directional microphones 10 and 11 overlap, and the sound collection of the first directional microphone 10 is performed. A case where the noise source N1 exists only in the area and the noise source N2 exists only in the sound collection area of the second directional microphone 11 will be described.

図18(a)に示すような場合、実施形態1の音源方向判定条件のうち、Px1(k)>Pth(第1条件)とPx2(k)>Pth(第2条件)は満たすが、第1の指向性マイクロホン10の第1の観測信号x1(t)には目的音源Sと騒音源N1に基づく信号が含まれ、第2の指向性マイクロホン11の第2の観測信号x2(t)には目的音源Sと騒音源N2に基づく信号が含まれるため、|10log10(Px1(k)/Px2(k)|<ε(第3条件)を必ず満たすとは限らない。 In the case shown in FIG. 18A, among the sound source direction determination conditions of the first embodiment, Px1 (k)> Pth (first condition) and Px2 (k)> Pth (second condition) are satisfied. The first observation signal x1 (t) of one directional microphone 10 includes a signal based on the target sound source S and the noise source N1, and the second observation signal x2 (t) of the second directional microphone 11 is included in the first observation signal x1 (t). Includes a signal based on the target sound source S and the noise source N2, and thus | 10log 10 (Px1 (k) / Px2 (k) | <ε (third condition) is not always satisfied.

上記のように第1,2条件を満たすが第3条件を満たさない場合、さらに実施形態2の音源方向判定条件R12>Rth(第4条件)を用いる。第1,2の指向性マイクロホン10,11の集音領域が重なるエリアに目的音源Sが存在し、第1の指向性マイクロホン10の集音領域内のみに騒音源N1が存在し、第2の指向性マイクロホン11の集音領域内のみに騒音源N2が存在する場合であっても、目的音源Sに基づく信号は、第1,2の指向性マイクロホン10,11の両方の観測信号x1(t),x2(t)に含まれるため、第4条件を満たす。したがって、音源方向判定部21は、第1,2の指向性マイクロホン10,11の集音領域が重なるエリアに目的音源Sが存在すると判定することができる。 As described above, when the first and second conditions are satisfied but the third condition is not satisfied, the sound source direction determination condition R 12 > Rth (fourth condition) of the second embodiment is further used. The target sound source S exists in an area where the sound collection areas of the first and second directional microphones 10 and 11 overlap, the noise source N1 exists only in the sound collection area of the first directional microphone 10, and the second Even when the noise source N2 exists only in the sound collection region of the directional microphone 11, the signal based on the target sound source S is the observation signal x1 (t of both the first and second directional microphones 10 and 11). ), X2 (t), the fourth condition is satisfied. Therefore, the sound source direction determination unit 21 can determine that the target sound source S exists in an area where the sound collection regions of the first and second directional microphones 10 and 11 overlap.

続いて、音源方向判定部21は、実施形態6のように第1,2の指向性マイクロホン10,11の集音領域のうち何れか一方に騒音源N1が存在する場合か、本実施形態のように第1,2の指向性マイクロホン10,11の各集音領域にそれぞれ異なる騒音源N1,N2が存在する場合かを判定する必要がある。そこで、図18(a)に示すように、第1の指向性マイクロホン10と第2の指向性マイクロホン11の間に無指向性マイクロホン12を配置する。無指向性マイクロホン12は無指向であるので、目的音源Sと騒音源N1,N2に基づく信号を基準観測信号x0(t)に含み、第1の指向性マイクロホン10は目的音源Sと騒音源N1に基づく信号を第1の観測信号x1(t)に含み、第2の指向性マイクロホン11は目的音源Sと騒音源N2に基づく信号を第2の観測信号x2(t)に含む。したがって、音源方向判定部21は、騒音源N1,N2が第1の指向性マイクロホン10と第2の指向性マイクロホン11の集音領域外に存在する場合における無指向性マイクロホン12と第1の指向性マイクロホン10又は無指向性マイクロホン12と第2の指向性マイクロホン11の観測パワー値の比δ2を閾値として、第1,2の指向性マイクロホン10,11の観測パワー値Px1(k),Px2(k)がそれぞれδ2<Pxi(k)/Px0(k)≦δ(i=1,2)(第5条件)を満たす場合、第1,2の指向性マイクロホン10,11の集音領域にそれぞれ異なる騒音源N1,N2が存在すると判定する。   Subsequently, the sound source direction determination unit 21 determines whether the noise source N1 is present in any one of the sound collection regions of the first and second directional microphones 10 and 11 as in the sixth embodiment, or in the present embodiment. Thus, it is necessary to determine whether different noise sources N1 and N2 exist in the sound collection areas of the first and second directional microphones 10 and 11, respectively. Therefore, as shown in FIG. 18A, the omnidirectional microphone 12 is disposed between the first directional microphone 10 and the second directional microphone 11. Since the omnidirectional microphone 12 is omnidirectional, the reference observation signal x0 (t) includes a signal based on the target sound source S and the noise sources N1 and N2, and the first directional microphone 10 includes the target sound source S and the noise source N1. Is included in the first observation signal x1 (t), and the second directional microphone 11 includes a signal based on the target sound source S and the noise source N2 in the second observation signal x2 (t). Therefore, the sound source direction determination unit 21 includes the omnidirectional microphone 12 and the first directivity when the noise sources N1 and N2 are outside the sound collection region of the first directional microphone 10 and the second directional microphone 11. The observed power values Px1 (k), Px2 (1) of the first and second directional microphones 10 and 11 with the ratio δ2 of the observed power values of the directional microphone 10 or the omnidirectional microphone 12 and the second directional microphone 11 as a threshold. k) satisfies δ2 <Pxi (k) / Px0 (k) ≦ δ (i = 1, 2) (fifth condition), respectively, the sound collecting areas of the first and second directional microphones 10 and 11 respectively. It is determined that different noise sources N1 and N2 exist.

目的音源Sが第1,2の指向性マイクロホン10,11の集音領域が重なるエリアに存在し、騒音源N1,N2がそれぞれ第1の指向性マイクロホン10と第2の指向性マイクロホン11の集音領域内のみに存在すると判定された場合、図18(a)に示すように、騒音源N1,N2が第1,2の指向性マイクロホン10,11の集音領域が重なるエリアの中心軸からMax(α1/2,α2/2)以上離れている場合、図18(b)に示すように第1,2の指向性マイクロホン10,11の指向軸を第3条件を満たすまで傾けることにより、目的音源Sに基づく信号のみを第1,2の指向性マイクロホン10,11において集音することができる。このとき、出力演算部22は、第1,2の指向性マイクロホン10,11の観測信号の離散値x1(k,m),x2(k,m)の合成信号(x1(k,m)+x2(k,m))を増幅率G1で増幅し、出力信号y(k,m)=G1(x1(k,m)+x2(k,m))を出力する。   The target sound source S exists in an area where the sound collection areas of the first and second directional microphones 10 and 11 overlap, and the noise sources N1 and N2 are collected by the first directional microphone 10 and the second directional microphone 11, respectively. When it is determined that the sound source exists only in the sound region, as shown in FIG. 18A, the noise sources N1 and N2 are separated from the central axis of the area where the sound collection regions of the first and second directional microphones 10 and 11 overlap. When the distance is greater than Max (α1 / 2, α2 / 2), as shown in FIG. 18B, the directional axes of the first and second directional microphones 10 and 11 are tilted until the third condition is satisfied. Only signals based on the target sound source S can be collected by the first and second directional microphones 10 and 11. At this time, the output calculation unit 22 is a composite signal (x1 (k, m) + x2) of the discrete values x1 (k, m) and x2 (k, m) of the observation signals of the first and second directional microphones 10 and 11. (K, m)) is amplified with an amplification factor G1, and an output signal y (k, m) = G1 (x1 (k, m) + x2 (k, m)) is output.

一方、目的音源Sが第1,2の指向性マイクロホン10,11の集音領域が重なるエリアには存在しないと判定された場合、出力演算部22は、第1,2の指向性マイクロホン10,11の第1,2の観測信号の離散値x1(k,m),x2(k,m)の合成信号(x1(k,m)+x2(k,m))を増幅率G2(G1>G2)で増幅し、出力信号y(k,m)=G2(x1(k,m)+x2(k,m))を出力する。   On the other hand, when it is determined that the target sound source S does not exist in the area where the sound collection areas of the first and second directional microphones 10 and 11 overlap, the output calculation unit 22 selects the first and second directional microphones 10 and 11. A composite signal (x1 (k, m) + x2 (k, m)) of the discrete values x1 (k, m) and x2 (k, m) of the first and second observation signals of 11 is amplified by a gain G2 (G1> G2). ) And output an output signal y (k, m) = G2 (x1 (k, m) + x2 (k, m)).

以上、本実施形態によれば、第1,2の指向性マイクロホン10,11の集音領域が重なるエリアに目的音源Sが存在し、第1の指向性マイクロホン10と第2の指向性マイクロホン11のそれぞれの集音領域内に異なる騒音源N1,N2が存在する場合も、目的音源Sに基づく信号を強調して出力することができる。   As described above, according to the present embodiment, the target sound source S exists in the area where the sound collection areas of the first and second directional microphones 10 and 11 overlap, and the first directional microphone 10 and the second directional microphone 11 are present. Even when different noise sources N1 and N2 exist in the respective sound collection regions, signals based on the target sound source S can be emphasized and output.

なお、図19(a),(b)に示すように、騒音源N1と騒音源N2の少なくとも一方が第1,2の指向性マイクロホン10,11の集音領域が重なるエリアの中心軸からMax(α1/2,α2/2)以上離れていない場合、第1,2の指向性マイクロホン10,11の指向軸を傾けても目的音源Sの信号のみを集音することができない。しかしながら、目的音源Sに基づく信号は第1,2の観測信号x1(t),x2(t)の両方に含まれ、騒音源N1に基づく信号は第1の観測信号x1(t)のみに、騒音源N2に基づく信号は第2の観測信号x2(t)のみに含まれるため、第1,2の観測信号の離散値x1(k,m),x2(k,m)の合成信号(x1(k,m)+x2(k,m))を増幅率G1で増幅して出力することにより、無指向性マイクロホン12のみで集音する場合よりも目的音源Sに基づく信号を強調することができる。   As shown in FIGS. 19A and 19B, at least one of the noise source N1 and the noise source N2 is Max from the central axis of the area where the sound collection areas of the first and second directional microphones 10 and 11 overlap. If they are not separated by (α1 / 2, α2 / 2) or more, even if the directional axes of the first and second directional microphones 10 and 11 are tilted, only the signal of the target sound source S cannot be collected. However, the signal based on the target sound source S is included in both the first and second observation signals x1 (t) and x2 (t), and the signal based on the noise source N1 is only in the first observation signal x1 (t). Since the signal based on the noise source N2 is included only in the second observation signal x2 (t), a composite signal (x1) of the discrete values x1 (k, m) and x2 (k, m) of the first and second observation signals. By amplifying (k, m) + x2 (k, m)) with the amplification factor G1 and outputting the signal, the signal based on the target sound source S can be emphasized as compared with the case where the sound is collected by the omnidirectional microphone 12 alone. .

なお、実施形態6,7の音響入力装置は、図20に示すような判定動作を行うことによって、(1)目的音源のみ存在する場合、(2)目的音源と1つの騒音源が存在する場合、(3)目的音源と2つの騒音源が存在する場合、(4)目的音源も騒音源も存在しない場合、(5)目的音源は存在せず、1つの騒音源のみ存在する場合、(6)目的音源が存在せず、2つの騒音源が存在する場合を切り分けて判定することができる。   Note that the sound input devices of Embodiments 6 and 7 perform the determination operation as shown in FIG. 20 to (1) when only the target sound source exists, or (2) when there is the target sound source and one noise source. (3) When there is a target sound source and two noise sources, (4) When there is neither a target sound source nor a noise source, (5) When there is no target sound source and there is only one noise source, (6 ) The case where there is no target sound source and there are two noise sources can be determined separately.

実施形態1,2の音響入力装置の構成を示すブロック図である。It is a block diagram which shows the structure of the acoustic input device of Embodiment 1,2. 同上の音響入力装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of an acoustic input device same as the above. 実施形態1〜8の音響入力装置において第1の指向性マイクロホン及び第2の指向性マイクロホンの特性を説明するための図である。It is a figure for demonstrating the characteristic of a 1st directional microphone and a 2nd directional microphone in the acoustic input device of Embodiments 1-8. 同上の音響入力装置において位相調整について説明するための図である。It is a figure for demonstrating phase adjustment in an acoustic input device same as the above. 同上の音響入力装置において位相調整について説明するための図である。It is a figure for demonstrating phase adjustment in an acoustic input device same as the above. 実施形態1の音響入力装置の動作を示すフローチャートである。3 is a flowchart illustrating an operation of the sound input device according to the first embodiment. 実施形態1〜8の音響入力装置において第1の指向性マイクロホン及び第2の指向性マイクロホンの変形例の特性を説明するための図である。It is a figure for demonstrating the characteristic of the modification of a 1st directional microphone and a 2nd directional microphone in the acoustic input device of Embodiments 1-8. 実施形態1〜8の音響入力装置において第1の指向性マイクロホン及び第2の指向性マイクロホンの他の変形例の特性を説明するための図である。It is a figure for demonstrating the characteristic of the other modification of a 1st directional microphone and a 2nd directional microphone in the acoustic input device of Embodiments 1-8. 実施形態2の音響入力装置の動作を説明するための図である。FIG. 10 is a diagram for explaining the operation of the acoustic input device according to the second embodiment. 実施形態3の音響入力装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the acoustic input device of Embodiment 3. 実施形態3,4の音響入力装置の構成を示すブロック図である。It is a block diagram which shows the structure of the acoustic input device of Embodiment 3,4. 実施形態5の音響入力装置における増幅率を示す図である。It is a figure which shows the amplification factor in the acoustic input device of Embodiment 5. 同上の音響入力装置における出力信号を示す図である。It is a figure which shows the output signal in an acoustic input device same as the above. 同上の変形例の音響入力装置における増幅率を示す図である。It is a figure which shows the gain in the acoustic input device of the modification same as the above. 同上の他の変形例の音響入力装置における増幅率を示す図である。It is a figure which shows the gain in the acoustic input device of the other modification same as the above. 同上の他の変形例の音響入力装置における増幅率を示す図である。It is a figure which shows the gain in the acoustic input device of the other modification same as the above. 実施形態6の音響入力装置の動作を説明するための図である。FIG. 10 is a diagram for explaining the operation of the sound input device according to the sixth embodiment. 実施形態7の音響入力装置の動作を説明するための図である。FIG. 10 is a diagram for explaining the operation of the acoustic input device according to the seventh embodiment. 同上の音響入力装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of an acoustic input device same as the above. 実施形態6,7の音響入力装置の動作を示すフローチャートである。10 is a flowchart illustrating an operation of the acoustic input device according to the sixth and seventh embodiments.

符号の説明Explanation of symbols

1,1a 集音部
10 第1の指向性マイクロホン
11 第2の指向性マイクロホン
12 無指向性マイクロホン
2,2a 信号処理部
20,20a 位相差補正部
21,21a 音源方向判定部
22 出力演算部
DESCRIPTION OF SYMBOLS 1,1a Sound collecting part 10 1st directional microphone 11 2nd directional microphone 12 Non-directional microphone 2, 2a Signal processing part 20, 20a Phase difference correction part 21, 21a Sound source direction determination part 22 Output calculation part

Claims (11)

それぞれが、所定の指向角度の集音領域を有し、各集音領域の一部同士が予め決められた目的方向を含んで重なるように近接して設置され、音源からの音波を受波し当該受波した音波に基づく観測信号を生成する第1の指向性マイクロホン及び第2の指向性マイクロホンと、
前記第1の指向性マイクロホンから第1の観測信号を受信し前記第2の指向性マイクロホンから第2の観測信号を受信し、当該受信した第1の観測信号と第2の観測信号の位相差を、前記目的方向に音源が存在する場合の第1の観測信号と第2の観測信号の位相差分だけ補正する位相差補正部と、
前記位相差補正部で補正された後の第1の観測信号と第2の観測信号とを用いて、前記音源が前記目的方向に存在するか否かを判定する音源方向判定部と、
前記音源方向判定部によって前記音源が前記目的方向に存在すると判定された場合、前記第1の観測信号及び前記第2の観測信号の少なくとも一方を第1の増幅率で増幅して出力する一方、前記音源方向判定部によって前記音源が前記目的方向には存在しないと判定された場合、前記第1の観測信号と前記第2の観測信号の位相差を前記位相差分だけ補正し、補正後の第1の観測信号と第2の観測信号の合成信号を前記第1の増幅率より小さい増幅率で増幅して出力する出力演算部と
を備えることを特徴とする音響入力装置。
Each of them has a sound collection area with a predetermined directivity angle, and is installed close to each other so that a part of each sound collection area includes a predetermined target direction, and receives sound waves from a sound source. A first directional microphone and a second directional microphone that generate an observation signal based on the received sound wave;
A first observation signal is received from the first directional microphone, a second observation signal is received from the second directional microphone, and a phase difference between the received first observation signal and the second observation signal is received. A phase difference correction unit that corrects only the phase difference between the first observation signal and the second observation signal when a sound source is present in the target direction,
A sound source direction determination unit that determines whether or not the sound source exists in the target direction, using the first observation signal and the second observation signal that have been corrected by the phase difference correction unit;
When the sound source direction determination unit determines that the sound source is present in the target direction, while at least one of the first observation signal and the second observation signal is amplified by a first amplification factor and output, When the sound source direction determination unit determines that the sound source does not exist in the target direction, the phase difference between the first observation signal and the second observation signal is corrected by the phase difference, and the corrected second An acoustic input device comprising: an output calculation unit that amplifies and outputs a combined signal of one observation signal and a second observation signal with an amplification factor smaller than the first amplification factor.
前記音源方向判定部は、前記位相差補正部で補正された後の第1の観測信号のパワー値である第1の観測パワー値と、前記位相差補正部で補正された後の第2の観測信号のパワー値である第2の観測パワー値の何れもが所定の閾値より大きく当該第1の観測パワー値と当該第2の観測パワー値の相対比が所定の設定値未満である条件を満たす場合、前記音源が前記目的方向に存在すると判定する一方、前記条件を満たさない場合、前記音源が前記目的方向には存在しないと判定することを特徴とする請求項1記載の音響入力装置。   The sound source direction determination unit includes a first observation power value that is a power value of the first observation signal after being corrected by the phase difference correction unit, and a second value after being corrected by the phase difference correction unit. The condition that any of the second observation power values that are the power values of the observation signals is greater than a predetermined threshold and the relative ratio between the first observation power value and the second observation power value is less than a predetermined set value. The sound input device according to claim 1, wherein when the condition is satisfied, the sound source is determined to exist in the target direction, and when the condition is not satisfied, it is determined that the sound source does not exist in the target direction. 前記音源方向判定部は、前記位相差補正部で補正された後の第1の観測信号の離散値x1及び第2の観測信号の離散値x2を用いて数1で表わされる相関関数Rij(i=1,2)を求め、相互相関関数R12が自己相関関数R11又は自己相関関数R22に基づいて設定される所定の設定値以上である条件を満たす場合、前記音源が前記目的方向に存在すると判定する一方、前記条件を満たさない場合、前記音源が前記目的方向には存在しないと判定することを特徴とする請求項1記載の音響入力装置。
Figure 2009135593
The sound source direction determination unit uses the discrete value x1 of the first observation signal and the discrete value x2 of the second observation signal that have been corrected by the phase difference correction unit, and the correlation function R ij ( i = 1, 2), and when the cross-correlation function R 12 satisfies the condition that the cross-correlation function R 12 is equal to or larger than a predetermined set value set based on the auto-correlation function R 11 or the auto-correlation function R 22 , the sound source The sound input device according to claim 1, wherein if the condition is not satisfied, it is determined that the sound source does not exist in the target direction.
Figure 2009135593
前記第1の指向性マイクロホンと前記第2の指向性マイクロホンの中間位置に設置され前記音源からの音波を受波し当該受波した音波に基づく基準観測信号を生成する無指向性マイクロホンを備え、
前記位相差補正部は、前記基準観測信号を受信し、当該受信した基準観測信号と第1の観測信号の位相差を、前記目的方向に音源が存在する場合の基準観測信号と第1の観測信号の位相差分だけ補正し、
前記音源方向判定部は、前記位相差補正部で補正された後の基準観測信号のパワー値である基準観測パワー値に対する前記位相差補正部で補正された後の第1の観測信号のパワー値である第1の観測パワー値の相対比が予め設定された第1の範囲に含まれ前記基準観測パワー値に対する前記位相差補正部で補正された後の第2の観測信号のパワー値である第2の観測パワー値の相対比が予め設定された第2の範囲に含まれる条件を満たす場合、前記音源が前記目的方向に存在すると判定する一方、前記条件を満たさない場合、前記音源が前記目的方向には存在しないと判定する
ことを特徴とする請求項1記載の音響入力装置。
An omnidirectional microphone installed at an intermediate position between the first directional microphone and the second directional microphone to receive a sound wave from the sound source and generate a reference observation signal based on the received sound wave;
The phase difference correction unit receives the reference observation signal, and calculates the phase difference between the received reference observation signal and the first observation signal, and the reference observation signal and the first observation when a sound source exists in the target direction. Correct only the phase difference of the signal,
The sound source direction determination unit includes a power value of the first observation signal after being corrected by the phase difference correction unit with respect to a reference observation power value that is a power value of the reference observation signal after being corrected by the phase difference correction unit. Is a power value of the second observation signal after being corrected by the phase difference correction unit with respect to the reference observation power value that is included in the first range set in advance. When the relative ratio of the second observed power values satisfies the condition included in the second range set in advance, the sound source is determined to exist in the target direction, and when the condition is not satisfied, the sound source is The sound input device according to claim 1, wherein the sound input device is determined not to exist in the target direction.
前記第1の指向性マイクロホンと前記第2の指向性マイクロホンの中間位置に設置され前記音源からの音波を受波し当該受波した音波に基づく基準観測信号を生成する無指向性マイクロホンを備え、
前記位相差補正部は、前記受信した第1の観測信号の離散値を所定時間間隔で抽出し、前記受信した第2の観測信号を受信し当該第2の観測信号の離散値を当該所定時間間隔で抽出し、前記基準観測信号を受信し当該基準観測信号の離散値を当該所定時間間隔で抽出するとともに、当該抽出した第1の観測信号の離散値と第2の観測信号の位相差を、前記目的方向に音源が存在する場合の第1の観測信号と第2の観測信号の位相差分だけ補正し、当該抽出した基準観測信号の離散値と第1の観測信号の位相差を、前記目的方向に音源が存在する場合の基準観測信号と第1の観測信号の位相差分だけ補正し、
前記音源方向判定部は、前記位相差補正部で補正された後の第1の観測信号の離散値x1、前記位相差補正部で補正された後の第2の観測信号の離散値x2及び前記位相差補正部で補正された後の基準観測信号の離散値x0を用いて数2で表わされる相関関数Rij(i,j=0,1,2)を求め、自己相関関数R00に対する相互相関関数R01の相対比が予め設定された第1の範囲に含まれ前記自己相関関数R00に対する相互相関関数R02の相対比が予め設定された第2の範囲に含まれる条件を満たす場合、前記音源が前記目的方向に存在すると判定する一方、前記条件を満たさない場合、前記音源が前記目的方向には存在しないと判定する
ことを特徴とする請求項1記載の音響入力装置。
Figure 2009135593
An omnidirectional microphone installed at an intermediate position between the first directional microphone and the second directional microphone to receive a sound wave from the sound source and generate a reference observation signal based on the received sound wave;
The phase difference correction unit extracts a discrete value of the received first observation signal at a predetermined time interval, receives the received second observation signal, and calculates the discrete value of the second observation signal for the predetermined time. Extracting at an interval, receiving the reference observation signal, extracting a discrete value of the reference observation signal at the predetermined time interval, and calculating a phase difference between the extracted discrete value of the first observation signal and the second observation signal , Correcting only the phase difference between the first observation signal and the second observation signal when a sound source is present in the target direction, and calculating the phase difference between the discrete value of the extracted reference observation signal and the first observation signal, Correct only the phase difference between the reference observation signal and the first observation signal when there is a sound source in the target direction,
The sound source direction determination unit includes a discrete value x1 of the first observation signal after correction by the phase difference correction unit, a discrete value x2 of the second observation signal after correction by the phase difference correction unit, and the A correlation function R ij (i, j = 0, 1, 2) represented by Equation 2 is obtained using the discrete value x0 of the reference observation signal after being corrected by the phase difference correction unit, and a mutual correlation with respect to the autocorrelation function R 00 is obtained. When the relative ratio of the correlation function R 01 is included in the first range set in advance and the relative ratio of the cross-correlation function R 02 to the autocorrelation function R 00 satisfies the condition included in the second range set in advance The sound input device according to claim 1, wherein it is determined that the sound source is present in the target direction while the sound source is not present in the target direction when the condition is not satisfied.
Figure 2009135593
前記音源方向判定部は、前記音源が前記目的方向には存在しないと判定したときに当該音源が当該目的方向の近傍に存在するか否かを判定し、
前記出力演算部は、前記音源方向判定部によって前記音源が前記目的方向の近傍に存在すると判定された場合、前記目的方向から離れていくにつれて前記第1の増幅率から単調減少する連続変化特性の増幅率で前記合成信号を増幅して出力する
ことを特徴とする請求項1乃至5のいずれか1項に記載の音響入力装置。
The sound source direction determination unit determines whether the sound source exists in the vicinity of the target direction when it is determined that the sound source does not exist in the target direction.
When the sound source direction determination unit determines that the sound source exists in the vicinity of the target direction, the output calculation unit has a continuously changing characteristic that monotonously decreases from the first amplification factor as the distance from the target direction increases. The acoustic input device according to claim 1, wherein the synthesized signal is amplified and output with an amplification factor.
前記第1の指向性マイクロホンと前記第2の指向性マイクロホンの中間位置に設置され前記音源からの音波を受波し当該受波した音波に基づく基準観測信号を生成する無指向性マイクロホンを備え、
前記位相差補正部は、前記基準観測信号を受信し、当該受信した基準観測信号と第1の観測信号の位相差を、前記目的方向に音源が存在する場合の基準観測信号と第1の観測信号の位相差分だけ補正し、
前記音源方向判定部は、前記位相差補正部で補正された後の第1の観測信号のパワー値である第1の観測パワー値と、前記位相差補正部で補正された後の第2の観測信号のパワー値である前記第2の観測パワー値の何れもが所定の閾値より大きく、当該第1の観測パワー値と当該第2の観測パワー値の相対比が所定の第1の設定値以上である場合において、前記第1の観測信号と前記第2の観測信号の相互相関関数が、前記第1の観測信号の自己相関関数又は前記第2の観測信号の自己相関関数より求められる所定の第2の設定値以上である条件を満たすとき、前記音源が前記目的方向及び当該目的方向以外の他の領域のそれぞれに存在すると判定する一方、前記条件を満たさないとき、前記音源が前記目的方向には存在しないと判定し、
前記音源が前記目的方向及び当該目的方向以外の他の領域のそれぞれに存在すると判定した場合、前記位相差補正部で補正された後の基準観測信号のパワー値である基準観測パワー値に対する前記第1の観測パワー値の相対比が予め設定された範囲に含まれ、前記基準観測パワー値に対する前記第2の観測パワー値の相対比が前記範囲に含まれないとき、前記第1の指向性マイクロホンの集音領域に前記音源が存在すると判定し、前記基準観測パワー値に対する前記第2の観測パワー値の相対比が前記範囲に含まれ、前記基準観測パワー値に対する前記第1の観測パワー値の相対比が前記範囲に含まれないとき、前記第2の指向性マイクロホンの集音領域に前記音源が存在すると判定する
ことを特徴とする請求項1記載の音響入力装置。
An omnidirectional microphone installed at an intermediate position between the first directional microphone and the second directional microphone to receive a sound wave from the sound source and generate a reference observation signal based on the received sound wave;
The phase difference correction unit receives the reference observation signal, and calculates the phase difference between the received reference observation signal and the first observation signal, and the reference observation signal and the first observation when a sound source exists in the target direction. Correct only the phase difference of the signal,
The sound source direction determination unit includes a first observation power value that is a power value of the first observation signal after being corrected by the phase difference correction unit, and a second value after being corrected by the phase difference correction unit. Any of the second observation power values that are the power values of the observation signals is greater than a predetermined threshold, and the relative ratio between the first observation power value and the second observation power value is a predetermined first set value. In this case, the cross-correlation function between the first observation signal and the second observation signal is a predetermined value obtained from the autocorrelation function of the first observation signal or the autocorrelation function of the second observation signal. When the condition that is equal to or greater than the second set value is satisfied, it is determined that the sound source exists in each of the target direction and other regions other than the target direction, and when the condition is not satisfied, the sound source Judge that it does not exist in the direction,
When it is determined that the sound source is present in each of the target direction and other regions other than the target direction, the first relative to the reference observation power value that is the power value of the reference observation signal after being corrected by the phase difference correction unit. When the relative ratio of one observation power value is included in a preset range and the relative ratio of the second observation power value to the reference observation power value is not included in the range, the first directional microphone And the relative ratio of the second observation power value to the reference observation power value is included in the range, and the first observation power value relative to the reference observation power value is The sound input device according to claim 1, wherein when the relative ratio is not included in the range, it is determined that the sound source exists in a sound collection region of the second directional microphone.
前記出力演算部は、前記音源方向判定部によって前記第1の指向性マイクロホン又は前記第2の指向性マイクロホンの集音領域に前記音源が存在すると判定された場合、前記集音領域に前記音源が存在しない指向性マイクロホンの観測信号を前記第1の増幅率で増幅して出力することを特徴とする請求項7記載の音響入力装置。   When the sound source direction determination unit determines that the sound source exists in the sound collection region of the first directional microphone or the second directional microphone, the output calculation unit determines that the sound source is in the sound collection region. The acoustic input device according to claim 7, wherein an observation signal of a non-existing directional microphone is amplified by the first amplification factor and output. 前記第1の指向性マイクロホン又は前記第2の指向性マイクロホンの指向軸を傾ける駆動手段を備え、
前記音源方向判定部は、前記音源が、前記目的方向と、前記他の領域のうち前記第1の指向性マイクロホン又は前記第2の指向性マイクロホンの集音領域のどちらか一方に存在すると判定した場合、前記第1の観測パワー値と前記第2の観測パワー値の相対比が前記第1の設定値未満である条件を満たすまで前記駆動手段を制御し、
前記出力演算部は、前記音源方向判定部によって前記第1の指向性マイクロホン又は前記第2の指向性マイクロホンの集音領域に前記音源が存在すると判定された場合、前記駆動手段の駆動後における前記第1の観測信号と前記第2の観測信号の合成信号を前記第1の増幅率で増幅して出力する一方、前記音源方向判定部によって前記音源が前記目的方向には存在しないと判定された場合、前記合成信号を前記第1の増幅率より小さい第2の増幅率で増幅して出力する
ことを特徴とする請求項7記載の音響入力装置。
Drive means for tilting the directional axis of the first directional microphone or the second directional microphone;
The sound source direction determination unit determines that the sound source exists in one of the target direction and the sound collection region of the first directional microphone or the second directional microphone among the other regions. And controlling the driving means until a condition that a relative ratio between the first observed power value and the second observed power value is less than the first set value is satisfied,
When the sound source direction determination unit determines that the sound source exists in the sound collection region of the first directional microphone or the second directional microphone, the output calculation unit is A synthesized signal of the first observation signal and the second observation signal is amplified and output at the first amplification factor, while the sound source direction determination unit determines that the sound source does not exist in the target direction. 8. The acoustic input device according to claim 7, wherein the combined signal is amplified by a second amplification factor smaller than the first amplification factor and output.
前記第1の指向性マイクロホンと前記第2の指向性マイクロホンの中間位置に設置され前記音源からの音波を受波し当該受波した音波に基づく基準観測信号を生成する無指向性マイクロホンを備え、
前記位相差補正部は、前記基準観測信号を受信し、当該受信した基準観測信号と第1の観測信号の位相差を、前記目的方向に音源が存在する場合の基準観測信号と第1の観測信号の位相差分だけ補正し、
前記音源方向判定部は、前記位相差補正部で補正された後の第1の観測信号のパワー値である前記第1の観測パワー値と、前記位相差補正部で補正された後の第2の観測信号のパワー値である前記第2の観測パワー値の何れもが所定の閾値より大きい場合において、前記第1の観測信号と前記第2の観測信号の相互相関関数が、前記第1の観測信号の自己相関関数又は前記第2の観測信号の自己相関関数より求められる所定の設定値以上である条件を満たすとき、前記音源が前記目的方向及び当該目的方向以外の他の領域のそれぞれに存在すると判定する一方、前記条件を満たさないとき、前記音源が前記目的方向には存在しないと判定し、
前記音源が前記目的方向及び当該目的方向以外の他の領域のそれぞれに存在すると判定した場合、前記位相差補正部で補正された後の基準観測信号のパワー値である基準観測パワー値に対する前記第1の観測パワー値の相対比、及び前記基準観測パワー値に対する前記第2の観測パワー値の相対比のそれぞれが予め設定された範囲に含まれるとき、前記第1の指向性マイクロホン及び前記第2の指向性マイクロホンの集音領域のそれぞれに前記音源が存在すると判定する
ことを特徴とする請求項1記載の音響入力装置。
An omnidirectional microphone installed at an intermediate position between the first directional microphone and the second directional microphone to receive a sound wave from the sound source and generate a reference observation signal based on the received sound wave;
The phase difference correction unit receives the reference observation signal, and calculates the phase difference between the received reference observation signal and the first observation signal, and the reference observation signal and the first observation when a sound source exists in the target direction. Correct only the phase difference of the signal,
The sound source direction determination unit includes a first observation power value that is a power value of the first observation signal after correction by the phase difference correction unit, and a second after correction by the phase difference correction unit. When any of the second observed power values that are power values of the observed signals is larger than a predetermined threshold, the cross-correlation function between the first observed signal and the second observed signal is When the condition that is equal to or greater than a predetermined set value obtained from the autocorrelation function of the observation signal or the autocorrelation function of the second observation signal is satisfied, the sound source is in each of the target direction and other regions other than the target direction. On the other hand, when the condition is not satisfied, the sound source is determined not to exist in the target direction when the condition is not satisfied.
When it is determined that the sound source is present in each of the target direction and other regions other than the target direction, the first relative to the reference observation power value that is the power value of the reference observation signal after being corrected by the phase difference correction unit. When the relative ratio of the first observed power value and the relative ratio of the second observed power value to the reference observed power value are included in a preset range, the first directional microphone and the second directional microphone The sound input device according to claim 1, wherein the sound source is determined to exist in each of the sound collection regions of the directional microphone.
前記第1の指向性マイクロホン又は前記第2の指向性マイクロホンの指向軸を傾ける駆動手段を備え、
前記音源方向判定部は、前記音源が、前記目的方向と、前記他の領域のうち前記第1の指向性マイクロホン及び前記第2の指向性マイクロホンの集音領域の何れにも存在すると判定した場合、前記2つの音源が前記目的方向から前記第1の指向性マイクロホンと前記第2の指向性マイクロホンの指向角の最大値の2分の1以上離れているときにおいて、前記第1の観測パワー値と前記第2の観測パワー値の相対比が所定の設定値未満である条件を満たすまで前記前記駆動手段を制御し、
前記出力演算部は、前記音源方向判定部によって前記第1の指向性マイクロホン又は前記第2の指向性マイクロホンの集音領域に前記音源が存在すると判定された場合、前記駆動手段の駆動後における前記第1の観測信号と前記第2の観測信号の合成信号を前記第1の増幅率で増幅して出力する一方、前記音源方向判定部によって前記音源が前記目的方向には存在しないと判定された場合、前記合成信号を前記第1の増幅率より小さい第2の増幅率で増幅して出力する
ことを特徴とする請求項10記載の音響入力装置。
Drive means for tilting the directional axis of the first directional microphone or the second directional microphone;
When the sound source direction determination unit determines that the sound source exists in both the target direction and the sound collection area of the first directional microphone and the second directional microphone among the other areas. The first observation power value when the two sound sources are separated from the target direction by more than one half of the maximum value of the directivity angle of the first directional microphone and the second directional microphone. And controlling the driving means until a condition that a relative ratio of the second observed power value is less than a predetermined set value is satisfied,
When the sound source direction determination unit determines that the sound source exists in the sound collection region of the first directional microphone or the second directional microphone, the output calculation unit is A synthesized signal of the first observation signal and the second observation signal is amplified and output at the first amplification factor, while the sound source direction determination unit determines that the sound source does not exist in the target direction. 11. The acoustic input device according to claim 10, wherein the synthesized signal is amplified by a second amplification factor smaller than the first amplification factor and output.
JP2007307794A 2007-11-28 2007-11-28 Acoustic input device Expired - Fee Related JP5032959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007307794A JP5032959B2 (en) 2007-11-28 2007-11-28 Acoustic input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307794A JP5032959B2 (en) 2007-11-28 2007-11-28 Acoustic input device

Publications (2)

Publication Number Publication Date
JP2009135593A true JP2009135593A (en) 2009-06-18
JP5032959B2 JP5032959B2 (en) 2012-09-26

Family

ID=40867079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307794A Expired - Fee Related JP5032959B2 (en) 2007-11-28 2007-11-28 Acoustic input device

Country Status (1)

Country Link
JP (1) JP5032959B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099967A (en) * 2009-11-05 2011-05-19 Fujitsu Ltd Sound signal processing method and sound signal processing device
JP2013126026A (en) * 2011-12-13 2013-06-24 Oki Electric Ind Co Ltd Non-target sound suppression device, non-target sound suppression method and non-target sound suppression program
WO2013111348A1 (en) 2012-01-27 2013-08-01 共栄エンジニアリング株式会社 Method and device for controlling directionality
WO2014103346A1 (en) 2012-12-28 2014-07-03 共栄エンジニアリング株式会社 Sound-source separation method, device, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238394A (en) * 1996-03-01 1997-09-09 Fujitsu Ltd Directivity microphone equipment
JP2001204092A (en) * 2000-01-18 2001-07-27 Nippon Telegr & Teleph Corp <Ntt> Each zone sound collection device
JP2005236407A (en) * 2004-02-17 2005-09-02 Toshiba Corp Acoustic processing apparatus, acoustic processing method, and manufacturing method
WO2006075377A1 (en) * 2005-01-13 2006-07-20 Fujitsu Limited Sound receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238394A (en) * 1996-03-01 1997-09-09 Fujitsu Ltd Directivity microphone equipment
JP2001204092A (en) * 2000-01-18 2001-07-27 Nippon Telegr & Teleph Corp <Ntt> Each zone sound collection device
JP2005236407A (en) * 2004-02-17 2005-09-02 Toshiba Corp Acoustic processing apparatus, acoustic processing method, and manufacturing method
WO2006075377A1 (en) * 2005-01-13 2006-07-20 Fujitsu Limited Sound receiver

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099967A (en) * 2009-11-05 2011-05-19 Fujitsu Ltd Sound signal processing method and sound signal processing device
JP2013126026A (en) * 2011-12-13 2013-06-24 Oki Electric Ind Co Ltd Non-target sound suppression device, non-target sound suppression method and non-target sound suppression program
WO2013111348A1 (en) 2012-01-27 2013-08-01 共栄エンジニアリング株式会社 Method and device for controlling directionality
US9445195B2 (en) 2012-01-27 2016-09-13 Kyoei Engineering Co., Ltd. Directivity control method and device
WO2014103346A1 (en) 2012-12-28 2014-07-03 共栄エンジニアリング株式会社 Sound-source separation method, device, and program
WO2014103066A1 (en) * 2012-12-28 2014-07-03 共栄エンジニアリング株式会社 Sound-source separation method, device, and program
CN104885152A (en) * 2012-12-28 2015-09-02 共荣工程株式会社 Sound-source separation method, device, and program
EP2940686A4 (en) * 2012-12-28 2016-08-03 Kyoei Engineering Co Ltd Sound-source separation method, device, and program
JPWO2014103346A1 (en) * 2012-12-28 2017-01-12 共栄エンジニアリング株式会社 Sound source separation method, apparatus, and program
US9648435B2 (en) 2012-12-28 2017-05-09 Kyoei Engineering Co., Ltd. Sound-source separation method, apparatus, and program
CN104885152B (en) * 2012-12-28 2019-04-26 共荣工程株式会社 Sound source separating method, device and storage medium

Also Published As

Publication number Publication date
JP5032959B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
US8981994B2 (en) Processing signals
US8612217B2 (en) Method and system for noise reduction
KR101715779B1 (en) Apparatus for sound source signal processing and method thereof
DK2961199T3 (en) Omnidirectional perception in a binaural hearing aid system
KR20120071452A (en) Directonal sound source filtering apparatus using microphone array and controlling method thereof
WO2013049737A1 (en) Processing signals
JP6977448B2 (en) Device control device, device control program, device control method, dialogue device, and communication system
JP2001516196A (en) Electronic beam forming method of acoustic signal and acoustic sensor device
JP2009288215A (en) Acoustic processing device and method therefor
JP5737342B2 (en) Sound collecting device and program
JP5032960B2 (en) Acoustic input device
JP5032959B2 (en) Acoustic input device
JP2006245725A (en) Microphone system
JP5648760B1 (en) Sound collecting device and program
JP6375475B1 (en) Sound source direction tracking system
JP5045938B2 (en) Sound source direction detection method, apparatus and program
JP6226885B2 (en) Sound source separation method, apparatus, and program
JP2006217649A (en) Signal processor
JP6879144B2 (en) Device control device, device control program, device control method, dialogue device, and communication system
JPH10126878A (en) Microphone device
JP3341815B2 (en) Receiving state detection method and apparatus
JP2019080246A (en) Directivity control device and directivity control method
KR102324283B1 (en) Sound detecting system based phase-error filter using a dual microphone and its method
JP3540988B2 (en) Sounding body directivity correction method and device
JP5157572B2 (en) Sound processing apparatus and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100816

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees