JP2009135374A - Manufacturing method and manufacturing apparatus for electric double-layer capacitor - Google Patents

Manufacturing method and manufacturing apparatus for electric double-layer capacitor Download PDF

Info

Publication number
JP2009135374A
JP2009135374A JP2007312135A JP2007312135A JP2009135374A JP 2009135374 A JP2009135374 A JP 2009135374A JP 2007312135 A JP2007312135 A JP 2007312135A JP 2007312135 A JP2007312135 A JP 2007312135A JP 2009135374 A JP2009135374 A JP 2009135374A
Authority
JP
Japan
Prior art keywords
container
opening
electrolytic solution
laminate
injection nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007312135A
Other languages
Japanese (ja)
Inventor
Masahisa Horie
正久 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2007312135A priority Critical patent/JP2009135374A/en
Publication of JP2009135374A publication Critical patent/JP2009135374A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method and a manufacturing apparatus for an electric double-layer capacitor, which carries out electrolyte filling/immersion efficiently in a short period of time without using a pressure-resistant chamber, such as a pressure-resistant bath. <P>SOLUTION: The manufacturing apparatus includes: a sealing jig 20 which is attached to seal an opening of a container 10 in a state where an injection nozzle 21 and an air supply/discharge nozzle 22 are inserted through the opening of a container 10 into the inside thereof to let part of the nozzles 21 and 22 project out of the opening of the container 10; a facility (pipeline 61 in Fig.3) for supplying an electrolyte in a reserve tank 60 to the injection nozzle 21; and a facility (pipeline 69 in Fig.3) for selectively connecting a vacuum pump 66 and a supply source of a highly dry constant pressure inert gas to the air supply/discharge nozzle 22. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、電気二重層キャパシタの製造方法およびその製造装置に関する。   The present invention relates to a method for manufacturing an electric double layer capacitor and an apparatus for manufacturing the same.

近年、各種の蓄電装置として、急速充電が可能で充放電サイクル寿命の長い、電気二重層キャパシタの適用技術が注目される。   2. Description of the Related Art In recent years, attention has been focused on application technologies for electric double layer capacitors that can be rapidly charged and have a long charge / discharge cycle life as various power storage devices.

電気二重層キャパシタは、正極体および負極体とセパレータとから積層体(キャパシタ本体)を組成する工程と、積層体を容器に収容する工程と、容器に電解液を充填して積層体に電解液を含浸させる工程(電解液充填含浸工程)と、容器の開口部を密封する工程と、等から製造される(特許文献1)。   The electric double layer capacitor includes a step of forming a laminate (capacitor body) from a positive electrode body and a negative electrode body and a separator, a step of accommodating the laminate in a container, and an electrolyte solution in the laminate by filling the container with an electrolyte solution. And the like, and the process of sealing the opening of the container (Patent Document 1).

従来の場合、電解液充填含浸工程においては、図8のように密閉可能な槽1が用いられる。密閉可能な槽1の内部において、容器2(積層体を収容する)は、その開口部が上向きの起立状態に支持される。3は電解液の貯留タンクであり、高度に乾燥した不活性ガス(アルゴンガス)により液面が加圧される。タンク3の下部に配管の一端が開口され、配管の他端にノズル(図示せず)が接続される。ノズルは、電解液の出口(注入口)を開閉する弁機構が収装され、これを開弁すると、電解液が注入口から容器2の内部に充填される。   In the conventional case, in the electrolytic solution filling and impregnating step, a sealable tank 1 as shown in FIG. 8 is used. Inside the tank 1 that can be sealed, the container 2 (which accommodates the laminated body) is supported in an upright state in which the opening portion faces upward. 3 is a storage tank for the electrolyte, and the liquid surface is pressurized by a highly dry inert gas (argon gas). One end of the pipe is opened at the lower part of the tank 3, and a nozzle (not shown) is connected to the other end of the pipe. The nozzle is equipped with a valve mechanism for opening and closing the outlet (injection port) of the electrolytic solution. When the valve mechanism is opened, the electrolytic solution is filled into the container 2 from the injection port.

積層体への含浸を促進するため、真空ポンプ4および高度に乾燥した常圧の不活性ガスの供給源(図示せず)が備えられる。槽1に配管の一端が接続され、配管の他端側は分岐され、その一方に真空ポンプ4が接続され、もう一方が常圧の不活性ガスの供給源(常圧供給源)に接続される。配管の分岐部に通路切換弁(図示せず)が設けられる。通路切換弁は、槽1側を真空ポンプ4側に接続するAポジションと、槽1側を供給源側に接続するBポジションと、槽1側と真空ポンプ4側との接続および槽1側と常圧供給源側との接続を遮断するCポジションと、の3位置に切り替え可能となっている。   In order to facilitate the impregnation of the laminate, a vacuum pump 4 and a highly dry source of inert gas at normal pressure (not shown) are provided. One end of the pipe is connected to the tank 1, the other end of the pipe is branched, a vacuum pump 4 is connected to one of the pipes, and the other is connected to a supply source of normal pressure inert gas (normal pressure supply source). The A passage switching valve (not shown) is provided at a branch portion of the pipe. The passage switching valve includes an A position for connecting the tank 1 side to the vacuum pump 4 side, a B position for connecting the tank 1 side to the supply source side, a connection between the tank 1 side and the vacuum pump 4 side, and a tank 1 side. It is possible to switch to the three positions, ie, the C position that cuts off the connection with the normal pressure supply source side.

通路切換弁がAポジションに切り替えられると、真空ポンプ4の駆動により、密閉した槽1の内部が減圧される。槽1の内部が所定の真空度に達すると、真空ポンプ4が停止される。その後、通路切換弁がBポジションに切り替えられると、密閉した槽1の内部に常圧の不活性ガスが供給され、槽1の内部が相対的に加圧される。このような処理の繰り返しにより、電解液が積層体の隅々に行き渡るようになり、電解液の含浸を効率よく処理しえるのである。5はグローブボックスであり、その内部は高度に乾燥した不活性ガス(アルゴンガス)の雰囲気に管理される。槽1は、グローブボックスの内部に設備される。   When the passage switching valve is switched to the A position, the inside of the sealed tank 1 is depressurized by driving the vacuum pump 4. When the inside of the tank 1 reaches a predetermined degree of vacuum, the vacuum pump 4 is stopped. Thereafter, when the passage switching valve is switched to the B position, an inert gas at normal pressure is supplied into the sealed tank 1 and the inside of the tank 1 is relatively pressurized. By repeating such treatment, the electrolytic solution spreads over every corner of the laminate, and the impregnation of the electrolytic solution can be treated efficiently. Reference numeral 5 denotes a glove box, and the inside thereof is managed in an atmosphere of a highly dry inert gas (argon gas). The tank 1 is installed inside the glove box.

特許文献2および特許文献3においては、電極群を収容するケースの開口部を気密室に閉塞し、気密室を減圧してケース内を減圧した後、電解液をケース内に圧入する、という充填方法が開示される。
特開2003−297689 特開平09−286418 特開平10−055808
In Patent Document 2 and Patent Document 3, the opening of the case housing the electrode group is closed in an airtight chamber, the airtight chamber is depressurized to depressurize the case, and then the electrolyte is pressed into the case. A method is disclosed.
JP 2003-297689 JP 09-286418 A JP-A-10-055808

このような従来例(特許文献1〜特許文献3)においては、耐圧チャンバ(容器を納める密閉可能な槽やケースの開口部を閉塞する気密室)が用いられるので、これらの体積が大きくなると、密閉した槽や気密室を減圧する処理に時間を長く掛かる。   In such conventional examples (Patent Literature 1 to Patent Literature 3), a pressure-resistant chamber (a hermetic chamber for sealing a container or an airtight chamber for closing an opening of a case) is used. It takes a long time to depressurize a closed tank or hermetic chamber.

特許文献2および特許文献3の充填方法は、1つの装置により1つのケースに対して気密室を減圧してケース内を減圧した後に電解液をケース内に圧入するので、ケースの処理数を増やそうとすると、電解液の充填を処理する装置の数を増やさなければならない。   In the filling methods of Patent Document 2 and Patent Document 3, the pressure of the hermetic chamber is reduced with respect to one case by one device, and then the electrolyte is pressed into the case after the pressure in the case is reduced. If this is the case, the number of devices that handle the filling of the electrolyte must be increased.

特許文献1の場合、密閉可能な槽は、ブローブボックス(高度に乾燥した不活性ガス雰囲気に管理される)の内部に設備されるため、電気二重層キャパシタの大量生産に大きな設備投資が要求される。   In the case of Patent Document 1, since the sealable tank is installed inside a probe box (managed in a highly dry inert gas atmosphere), a large capital investment is required for mass production of electric double layer capacitors. The

この発明は、このような課題に着目してなされたものであり、槽など耐圧チャンバを用いることなく、電解液の充填含浸を短時間に効率よく処理しえる、電気二重層キャパシタの製造方法およびその製造装置の提供を目的とする。   The present invention has been made paying attention to such problems, and a method of manufacturing an electric double layer capacitor capable of efficiently processing filling and impregnation of an electrolytic solution in a short time without using a pressure chamber such as a tank, and It aims at providing the manufacturing apparatus.

第1の発明は、正極体および負極体とセパレータとから積層体を組成する工程と、積層体をラミネートフィルムから形成される容器に収容する工程と、容器の開口部からその内部に電解液を充填して積層体に含浸させる工程と、容器の開口部を密封する工程と、を備える電気二重層キャパシタの製造方法において、前記容器の開口部からその内部に電解液を充填して積層体に含浸させる工程は、容器の開口部からその内部に注液ノズルおよび給排気ノズルを挿入してこれらの一部が容器の開口部から外部へ突出する状態に容器の開口部を密閉すべく封止治具を装着する工程と、給排気ノズルを通して容器の内部を減圧する工程と、給排気ノズルを通して容器の内部を減圧状態から相対的に加圧する工程と、注液ノズルを通して容器の内部に電解液を充填する工程と、を備えることを特徴する。   The first invention comprises a step of composing a laminate from a positive electrode body and a negative electrode body and a separator, a step of accommodating the laminate in a container formed from a laminate film, and an electrolytic solution from the opening of the container to the inside thereof. In a method for manufacturing an electric double layer capacitor comprising the steps of filling and impregnating the laminate, and sealing the opening of the container, the laminate is filled with an electrolyte from the opening of the container In the impregnation step, a liquid injection nozzle and an air supply / exhaust nozzle are inserted into the inside of the opening of the container and sealed so as to seal the opening of the container so that a part of them protrudes from the opening of the container to the outside. A step of attaching a jig, a step of depressurizing the inside of the container through the air supply / exhaust nozzle, a step of relatively pressurizing the inside of the container from the depressurized state through the air supply / exhaust nozzle, and an electric current to the inside of the container through the injection nozzle. To characterized by comprising the step of filling the liquid, the.

第2の発明は、第1の発明に係る電気二重層キャパシタの製造方法において、前記注液ノズルを通して容器の内部に電解液を充填する工程は、電解液の貯留タンクから注液ノズルへ電解液を圧送することを特徴とする。   According to a second aspect of the present invention, in the method for manufacturing the electric double layer capacitor according to the first aspect, the step of filling the inside of the container with the electrolytic solution through the liquid injection nozzle includes the step of supplying the electrolytic solution from the electrolytic solution storage tank to the liquid injection nozzle. It is characterized by pumping.

第3の発明は、第2の発明に係る電気二重層キャパシタの製造方法において、前記注液ノズルを通して容器の内部に電解液を充填する工程は、電解液の貯留タンクから注液ノズルへ電解液を圧送する処理と、給排気ノズルを通して容器の内部を減圧する処理と、を交互に繰り返すことを特徴とする。   According to a third aspect of the present invention, in the method for manufacturing an electric double layer capacitor according to the second aspect of the invention, the step of filling the inside of the container with the electrolytic solution through the liquid injection nozzle is performed from the electrolytic solution storage tank to the liquid injection nozzle. The process of pressure-feeding and the process of decompressing the inside of the container through the air supply / exhaust nozzle are alternately repeated.

第4の発明は、第2の発明または第3の発明に係る電気二重層キャパシタの製造方法において、前記容器の開口部からその内部に電解液を充填して積層体に含浸させる工程は、電解液の貯留タンクの内部を真空引きにより減圧する工程と、電解液の貯留タンクの内部を減圧状態から相対的に加圧する工程と、を備えることを特徴とする。   According to a fourth aspect of the present invention, in the method for manufacturing the electric double layer capacitor according to the second or third aspect, the step of filling the laminate with an electrolyte from the opening of the container and impregnating the laminate is an electrolytic process. And a step of evacuating the inside of the liquid storage tank by evacuation, and a step of relatively pressurizing the inside of the electrolytic solution storage tank from a reduced pressure state.

第5の発明は、第1の発明〜第4の発明の何れか1つに係る電気二重層キャパシタの製造方法において、前記注入ノズルは、前記容器の内部に電解液を充填する工程を処理する設備側の配管と分離可能に接続されるコネクタ部と、その接続口を前記配管との接続時にのみ開く常閉の弁機構と、を備え、また、前記給排気ノズルは、前記容器の内部を減圧する工程および前記容器の内部を減圧状態から相対的に加圧する工程を処理する設備側の配管と分離可能に接続されるコネクタ部と、その接続口を前記配管との接続時にのみ開く常閉の弁機構と、を備えることを特徴とする。   5th invention is a manufacturing method of the electrical double layer capacitor which concerns on any one of 1st invention-4th invention, The said injection nozzle processes the process of filling the inside of the said container with electrolyte solution A connector part that is separably connected to piping on the equipment side, and a normally closed valve mechanism that opens only when the connection port is connected to the pipe, and the air supply / exhaust nozzle is disposed inside the container. A connector part that is detachably connected to the equipment side pipe that processes the step of depressurizing and the step of relatively pressurizing the inside of the container from the depressurized state, and the normally closed that opens the connection port only when the pipe is connected The valve mechanism is provided.

第6の発明は、正極体および負極体とセパレータとから積層体を組成する工程と、積層体をラミネートフィルムから形成される容器に収容する工程と、容器の開口部からその内部に電解液を充填して積層体に含浸させる工程と、容器の開口部を密封する工程と、の各処理手段を備える電気二重層キャパシタの製造装置において、前記容器の開口部からその内部に電解液を充填して積層体に含浸させる工程の処理手段は、容器の開口部からその内部に注液ノズルおよび給排気ノズルを挿入してこれらの一部が容器の開口部から外部へ突出する状態に容器の開口部を密閉すべく装着される封止治具と、前記注液ノズルに貯留タンクの電解液を供給するための設備と、給排気ノズルに対して真空ポンプと高度に乾燥した常圧の不活性ガスの供給源とを選択的に接続するための設備と、を備えることを特徴とする。   The sixth invention includes a step of composing a laminate from a positive electrode body and a negative electrode body and a separator, a step of accommodating the laminate in a container formed from a laminate film, and an electrolytic solution from the opening of the container to the inside thereof. In an electric double layer capacitor manufacturing apparatus provided with each of the processing means of filling and impregnating the laminate, and sealing the opening of the container, the electrolytic solution is filled into the inside from the opening of the container. The processing means of the step of impregnating the laminate is to insert the liquid injection nozzle and the air supply / exhaust nozzle into the inside of the container from the opening of the container so that a part of them protrudes from the container opening to the outside. A sealing jig mounted to seal the part, equipment for supplying the electrolytic solution of the storage tank to the liquid injection nozzle, a vacuum pump and a highly dry normal pressure inertness to the air supply / exhaust nozzle Gas source and Wherein the and a facility for selectively connecting.

第7の発明は、第6の発明に係る電気二重層キャパシタの製造装置において、前記電解液の貯留タンクに対して真空ポンプと高度に乾燥した常圧の不活性ガスの供給源とを選択的に接続するための設備と、を備えることを特徴とする。   According to a seventh aspect of the present invention, in the electric double layer capacitor manufacturing apparatus according to the sixth aspect of the present invention, a vacuum pump and a highly dry inert gas supply source are selectively used for the electrolyte storage tank. And a facility for connecting to the device.

第8の発明は、第6の発明または第7の発明に係る電気二重層キャパシタの製造方法において、前記注入ノズルは、前記貯留タンクの電解液を供給するための設備側の配管と分離可能に接続されるコネクタ部と、その接続口を前記配管との接続時にのみ開く常閉の弁機構と、を備え、また、前記給排気ノズルは、前記真空ポンプと前記不活性ガスの供給源とを選択的に接続するための設備側の配管と分離可能に接続されるコネクタ部と、その接続口を前記配管との接続時にのみ開く常閉の弁機構と、を備えることを特徴とする。   According to an eighth aspect of the present invention, in the method for manufacturing the electric double layer capacitor according to the sixth aspect or the seventh aspect, the injection nozzle is separable from a facility-side pipe for supplying the electrolytic solution of the storage tank. A connector part to be connected, and a normally closed valve mechanism that opens only when the connection port is connected to the pipe, and the air supply / exhaust nozzle includes the vacuum pump and the supply source of the inert gas. It comprises a connector part that is separably connected to piping on the equipment side for selective connection, and a normally closed valve mechanism that opens its connection port only when connected to the pipe.

第1の発明においては、容器の開口部は、封止治具により、注液ノズルおよび給排気ノズルを挿入してこれらの一部が容器の開口部から外部へ突出する状態に密閉(封止)される。この状態において、給排気ノズルを通して容器の内部を減圧する工程、給排気ノズルを通して容器の内部を減圧状態から相対的に加圧する工程、注液ノズルを通して容器の内部に電解液を充填する工程、が所定の手順に従って処理される。つまり、容器は、封止治具により密閉され、注液ノズルおよび給排気ノズルを通して電解液の充填および積層体への含浸が促進されるのであり、減圧も容器の内部に限られるため、電解液充填含浸の処理時間を短縮することができる。   In the first invention, the opening of the container is sealed (sealed) by a sealing jig so that a liquid injection nozzle and a supply / exhaust nozzle are inserted and a part of the opening protrudes from the opening of the container. ) In this state, the step of decompressing the inside of the container through the supply / exhaust nozzle, the step of relatively pressurizing the inside of the container from the decompression state through the supply / exhaust nozzle, and the step of filling the inside of the container with the electrolyte through the injection nozzle Processing is performed according to a predetermined procedure. That is, the container is sealed with a sealing jig, and the filling of the electrolyte and the impregnation into the laminated body are promoted through the injection nozzle and the supply / exhaust nozzle, and the reduced pressure is limited to the inside of the container. The treatment time for filling and impregnation can be shortened.

容器の内部を減圧する工程、容器の内部を減圧状態から相対的に加圧する工程、容器の内部に電解液を充填する工程、については、封止治具により密閉される複数の容器に対し、各注液ノズルを合流させると共に各給排気ノズルを合流させると、同時に処理することができるほか、容器が封止治具により密閉状態に保持されるので、グローボックスの外部において、電解液の充填含浸処理を行うことも可能となる。これらの結果、設備投資を最小限に抑えつつ、電気二重層キャパシタを効率よく大量生産することができる。   About the process of decompressing the inside of the container, the process of relatively pressurizing the interior of the container from the decompressed state, and the process of filling the interior of the container with the electrolyte, a plurality of containers sealed with a sealing jig, When each injection nozzle is merged and each supply / exhaust nozzle is merged, processing can be performed simultaneously, and the container is held in a sealed state by a sealing jig, so the electrolyte is filled outside the glow box. It is also possible to perform an impregnation process. As a result, it is possible to efficiently mass-produce electric double layer capacitors while minimizing capital investment.

第2の発明においては、電解液は注液ノズルへ圧送されるので、容器への充填および積層体への含浸を促進することができる。   In the second invention, since the electrolytic solution is pumped to the injection nozzle, filling of the container and impregnation of the laminate can be promoted.

第3の発明においては、電解液は数回に分けて供給されるのであり、電解液の1回量を容器の内部へ圧送する処理と、容器の内部を減圧する処理と、が交互に繰り返されるため、電解液の充填および積層体への含浸を促進することができる。   In the third invention, the electrolytic solution is supplied in several times, and the process of pumping a single amount of the electrolytic solution into the interior of the container and the process of decompressing the interior of the container are repeated alternately. Therefore, filling of the electrolytic solution and impregnation into the laminate can be promoted.

第4の発明においては、貯留タンクの内部を真空引きにより減圧する処理と、貯留タンクの内部を相対的に加圧する処理と、の繰り返しにより、貯留タンク中の気相に含まれる水分や電解液(液相)に含まれる気泡を除去することができる。   In the fourth aspect of the invention, moisture and electrolyte contained in the gas phase in the storage tank are obtained by repeating the process of depressurizing the interior of the storage tank by evacuation and the process of relatively pressurizing the interior of the storage tank. Bubbles contained in (liquid phase) can be removed.

第5の発明においては、注液ノズルおよび給排気ノズルは、常閉の弁機構を備えるので、封止治具の装着後、容器は、グローボックスの外部に持ち出すことが可能となる。つまり、グローブボックスの外部において、容器の内部を減圧する工程、容器の内部を減圧状態から相対的に加圧する工程、容器の内部に電解液を充填する工程、が行えるため、これら工程の処理手段については、グローブボックスの内部に設備する必要がなくなるのである。   In the fifth invention, since the liquid injection nozzle and the air supply / exhaust nozzle are provided with a normally closed valve mechanism, the container can be taken out of the glow box after the sealing jig is attached. That is, since the process of depressurizing the inside of the container, the process of relatively pressurizing the interior of the container from the depressurized state, and the process of filling the electrolyte inside the container can be performed outside the glove box, the processing means of these processes Is no longer required to be installed inside the glove box.

第6の発明においては、容器の開口部は、封止治具により、注液ノズルおよび給排気ノズルを挿入してこれらの一部が容器の開口部から外部へ突出する状態に密閉(封止)される。この状態において、注液ノズルに貯留タンクの電解液を供給するための設備と、給排気ノズルに対して真空ポンプと高度に乾燥した常圧の不活性ガスの供給源とを選択的に接続するための設備と、により、電解液の充填および積層体への含浸が促進される。減圧が容器の内部に限られるため、電解液充填含浸の処理時間を短縮することができる。また、封止治具により密閉される複数の容器に対し、各注液ノズルを合流させると共に各給排気ノズルを合流させると、電解液の供給、真空ポンプによる減圧、常圧の不活性ガスの供給、を同時に処理することが可能となるほか、容器が封止治具により密閉状態に保持されるので、グローボックスの外部において、電解液の充填含浸処理を行うことも可能となる。   In the sixth invention, the opening of the container is sealed (sealed) by a sealing jig so that a liquid injection nozzle and an air supply / exhaust nozzle are inserted and a part of the opening protrudes from the opening of the container. ) In this state, the equipment for supplying the electrolyte in the storage tank to the liquid injection nozzle and the vacuum pump and the highly dry inert gas supply source at high pressure are selectively connected to the air supply / exhaust nozzle. The facilities for promoting the filling of the electrolytic solution and the impregnation into the laminate are facilitated. Since the decompression is limited to the inside of the container, the treatment time for the electrolyte filling impregnation can be shortened. In addition, when each injection nozzle is joined to each of the containers sealed by the sealing jig and each supply / exhaust nozzle is joined, supply of electrolyte, decompression by a vacuum pump, and inert gas under normal pressure In addition to being able to process the supply simultaneously, since the container is held in a sealed state by the sealing jig, it is also possible to perform the impregnation treatment with the electrolyte solution outside the glow box.

第7の発明においては、貯留タンクの内部を真空ポンプにより減圧する処理と、貯留タンクの内部に常圧の不活性ガスを供給する処理と、の繰り返しにより、貯留タンク中の気相に含まれる水分や液相(電解液)に含まれる気泡を除去することができる。   In 7th invention, it is contained in the gaseous phase in a storage tank by repetition of the process which decompresses the inside of a storage tank with a vacuum pump, and the process which supplies an inert gas of a normal pressure to the inside of a storage tank Bubbles contained in moisture or liquid phase (electrolytic solution) can be removed.

第8の発明においては、注液ノズルおよび給排気ノズルは、常閉の弁機構を備えるので、封止治具の装着後、容器は、グローボックスの外部に持ち出すことが可能となる。つまり、グローブボックスの外部において、注液ノズルに貯留タンクの電解液を供給するための設備と、給排気ノズルに対して真空ポンプと高度に乾燥した常圧の不活性ガスの供給源とを選択的に接続するための設備と、により、電解液の充填および積層体への含浸を促進させることができる。その結果、これらの設備については、グローブボックスの内部に配置する必要がなくなるのである。   In the eighth invention, since the liquid injection nozzle and the air supply / exhaust nozzle are provided with a normally closed valve mechanism, the container can be taken out of the glow box after the sealing jig is attached. In other words, outside the glove box, the equipment for supplying the electrolyte in the storage tank to the injection nozzle and the supply source of the vacuum pump and the highly dry inert gas at high pressure to the supply / exhaust nozzle are selected. With the equipment for connection, the filling of the electrolytic solution and the impregnation into the laminate can be promoted. As a result, these facilities do not need to be placed inside the glove box.

図1に基づいて、電気二重層キャパシタの一例を説明する。図1において、10はキャパシタ本体を電解液と共に収容する容器、は容器10の外部に引き出される1対の端子板11a,11b(セル電極)であり、各端子板11a,11bは軽量かつ抵抗の小さいアルミニウムから短尺状に形成される。12は容器10の内部に発生するガス(CO2など)を容器10の外部へ除去するためのガス抜きバルブであり、容器10の上部において、1対の端子板11a,11bの間に組み付けられる。 An example of the electric double layer capacitor will be described with reference to FIG. In FIG. 1, 10 is a container for storing a capacitor body together with an electrolyte, and a pair of terminal plates 11a and 11b (cell electrodes) drawn out of the container 10, and each terminal plate 11a and 11b is lightweight and has a resistance. It is formed in a short shape from small aluminum. Reference numeral 12 denotes a gas vent valve for removing gas (CO 2 or the like) generated inside the container 10 to the outside of the container 10, and is assembled between the pair of terminal plates 11 a and 11 b at the upper part of the container 10. .

キャパシタ本体については、正極体と負極体とセパレータとから所定の積層体に構成される。正極体および負極体は、集電極とその両面の分極性電極(活性炭電極)とから組成される。これらの集電極は、矩形状の金属箔(たとえば、アルミニウム箔)からなり、その矩形平面の一辺に片側へ寄せて帯状のリード部が一体に成形される。各リード部の同極どうしは束ねられ、この結束部に極性の対応する端子板11a,11bが接合される。正極体と負極体との間に介装されるセパレータは、紙製や樹脂製の多孔質膜から形成される。   The capacitor main body is configured in a predetermined laminate from a positive electrode body, a negative electrode body, and a separator. The positive electrode body and the negative electrode body are composed of a collector electrode and polarizable electrodes (activated carbon electrodes) on both sides thereof. These collector electrodes are made of a rectangular metal foil (for example, an aluminum foil), and a strip-shaped lead portion is integrally formed on one side of the rectangular plane. The same polarity of each lead part is bundled, and terminal board 11a, 11b corresponding to polarity is joined to this binding part. The separator interposed between the positive electrode body and the negative electrode body is formed from a porous film made of paper or resin.

容器10は、複数の樹脂層に金属の中間層を含む柔軟な積層フィルム(たとえば、アルミラミネートフィルム)から冷間プレス加工により成形される2つの容器部材(底側部分と蓋側部分と)からなり、これらを組み合わせると、互いに向き合う凹部により、底側部分と蓋側部分との間にキャパシタ本体(積層体)の収容部が形成される。   The container 10 is composed of two container members (a bottom side portion and a lid side portion) formed by cold pressing from a flexible laminated film (for example, an aluminum laminated film) including a metal intermediate layer in a plurality of resin layers. Thus, when these are combined, the accommodating portion of the capacitor body (laminated body) is formed between the bottom side portion and the lid side portion by the concave portions facing each other.

底側部分の内側に積層体は納められ、その上に蓋側部分が被せられる。容器10の周縁において、1対の端子板11a,11b(その一部)が引き出される一辺を除く三辺が熱溶着(ヒートシール)される。容器10は、1対の端子板11a,11bが突き出る一辺が開口可能となり、その開口部から注液ノズル21(図3〜図5、参照)および給排気ノズル22(図3〜図5、参照)が挿入され、これらの一部が容器の外部に突き出る状態において、容器の開口部を一時的に密閉すべく封止治具20(図3〜図5、参照)が装着され、電解液充填含浸処理および電解精製処理が終わると、封止治具20が外されて注液ノズルおよび給排気ノズルが抜き取られ、容器10の開口可能な一辺が1対の端子板11a,11bおよびガス抜きバルブ12を挟みつつ密閉状態に熱溶着されるのである。   The laminated body is placed inside the bottom side portion, and the lid side portion is put thereon. At the peripheral edge of the container 10, three sides except for one side from which the pair of terminal plates 11a and 11b (parts thereof) are drawn are heat-sealed (heat sealed). The container 10 can be opened on one side from which the pair of terminal plates 11a and 11b protrudes, and the liquid injection nozzle 21 (see FIGS. 3 to 5) and the supply / exhaust nozzle 22 (see FIGS. 3 to 5) from the opening. ) Is inserted and a part of these protrudes to the outside of the container, and a sealing jig 20 (see FIGS. 3 to 5) is attached to temporarily seal the opening of the container, and the electrolyte is filled. When the impregnation process and the electrolytic purification process are finished, the sealing jig 20 is removed, the injection nozzle and the supply / exhaust nozzle are extracted, and the openable side of the container 10 has a pair of terminal plates 11a and 11b and a gas release valve. 12 is heat-sealed in a sealed state.

1対の端子板11a,11b(アルミニウム板)と容器10を形成する積層フィルムの金属層との絶縁性を確保するため、これら端子板11a,11bに予め熱溶着性樹脂53(図3、参照)が付着される。熱溶着性樹脂53としては、PP(ポリプロピレン)を主材とするものが用いられる。容器10の開口可能な一辺において、熱溶着(ヒートシール)処理により、熱溶着性樹脂53が溶融し、容器10の内面(積層フィルムの樹脂層)に1対の端子板11a,11bを溶着させるのである。溶融する熱溶着性樹脂53は、各端子板11a,11bを包み込むようになり、これら端子板11a,11bが積層フィルムの金属層に接触する(リーク電流を生じる)のを防止する。   In order to ensure insulation between the pair of terminal plates 11a and 11b (aluminum plate) and the metal layer of the laminated film forming the container 10, a heat-welding resin 53 (see FIG. 3) is attached to the terminal plates 11a and 11b in advance. ) Is attached. As the heat-welding resin 53, a resin mainly composed of PP (polypropylene) is used. On one side where the container 10 can be opened, the heat-welding resin 53 is melted by a heat-welding (heat-sealing) process, and a pair of terminal plates 11a and 11b are welded to the inner surface of the container 10 (the resin layer of the laminated film). It is. The molten heat-welding resin 53 wraps around the terminal plates 11a and 11b, and prevents the terminal plates 11a and 11b from coming into contact with the metal layer of the laminated film (causing leakage current).

ガス抜きバルブ12は、そのボディに熱溶着部54(図3、参照)が備えられる。容器10の開口可能な一辺において、ヒートシール処理により、容器1の上部(端子板11a,11b間)にボディの熱溶着部12を介して組み付けられる。熱溶着部の溶融により、容器10を形成する積層フィルムの樹脂層に溶着するのである。   The degassing valve 12 is provided with a heat welding portion 54 (see FIG. 3) on its body. On one side of the container 10 that can be opened, the container 10 is assembled to the upper part of the container 1 (between the terminal plates 11a and 11b) via the heat welding part 12 of the body by heat sealing. It is welded to the resin layer of the laminated film forming the container 10 by melting the heat welding part.

図3〜図5は、封止治具20の装着状態を表すものであり、治具20は、断面略コ字形の基部25と、1対の押圧板26と、これら押圧板26の間隔を拡縮するクランプ機構27と、を備える。1対の押圧板26は、基部25の断面略コ字形の内側に配置され、基部25の断面略コ字形の両端部にそれぞれ複数のガイドピン28を介して互いに向き合う方向(基部25の断面略コ字形の両端部に対する直交方向)へ移動可能に支持される。   3 to 5 show the mounting state of the sealing jig 20, and the jig 20 has a base 25 having a substantially U-shaped cross section, a pair of pressing plates 26, and a distance between these pressing plates 26. And a clamp mechanism 27 that expands and contracts. The pair of pressing plates 26 are arranged inside a substantially U-shaped cross section of the base portion 25, and are opposed to each other via a plurality of guide pins 28 at both ends of the substantially U-shaped cross section of the base portion 25 (the cross-section of the base portion 25 is substantially omitted). It is supported so as to be movable in the direction perpendicular to both ends of the U-shape.

クランプ機構27は、基部25の断面略コ字形の両端部をこれに対する直交方向へ進退可能なロッド30が備えられる。ロッド30の先端に押圧板26が結合され、ロッド30の後端は、レバー32にトグル機構31を介して連結され、レバー32が旋回すると、これに伴って1対の押圧板26の間隔を拡縮させるのである。33は容器10の開口部に対する圧接具であり、シリコンスポンジなどの弾性体から形成され、各押圧板26の対向面に取り付けられる。   The clamp mechanism 27 is provided with a rod 30 capable of advancing and retracting both end portions of a substantially U-shaped cross section of the base portion 25 in a direction orthogonal thereto. A pressing plate 26 is coupled to the tip of the rod 30, and the rear end of the rod 30 is connected to a lever 32 via a toggle mechanism 31. When the lever 32 turns, the distance between the pair of pressing plates 26 is increased accordingly. It scales. Reference numeral 33 denotes a pressure contact tool for the opening of the container 10, which is formed of an elastic body such as silicon sponge, and is attached to the opposing surface of each pressing plate 26.

基部25の断面略コ字形の中間部に注液ノズル21と給排気ノズル22が貫通状態に固定される。また、基部25の中間部に容器10の開口可能な一辺から突き出る端子板11a,11bを挿通するスリット状の貫通穴34が形成され、これらの中央部に端子板11a,11bの先端を係止する端子押え部35(端子板11a,11bの高さを位置決めする)がボルト36により取り付けられる。ボルト36の先端部にガス抜きバルブ12のセットガイド38の一端が装着され、セットガイド38の他端にガス抜きバルブ12のボディ(出口側の端部)が嵌め付けられる。セットガイド38は、ボルト36との装着部とガス抜きバルブ12との嵌合部との中間部が扁平に形成され、封止治具20の圧接具33により、容器10の開口部を密閉しやすくなっている。注液ノズル21および給排気ノズル22についても、封止治具20の圧接具33により、容器10の開口部を密閉しやすく、封止領域を貫通する部分が最小径部に設定される。   The liquid injection nozzle 21 and the air supply / exhaust nozzle 22 are fixed in a penetrating state at an intermediate portion of the base 25 having a substantially U-shaped cross section. In addition, a slit-like through hole 34 is formed in the middle portion of the base portion 25 so as to pass through the terminal plates 11a and 11b protruding from one openable side of the container 10, and the tips of the terminal plates 11a and 11b are locked at the center portions thereof. A terminal holding portion 35 (positioning the height of the terminal plates 11a and 11b) is attached by a bolt 36. One end of the set guide 38 of the gas vent valve 12 is attached to the tip of the bolt 36, and the body (end portion on the outlet side) of the gas vent valve 12 is fitted to the other end of the set guide 38. The set guide 38 has a flat middle portion between the mounting portion with the bolt 36 and the fitting portion with the gas vent valve 12, and the opening portion of the container 10 is sealed by the pressure contact tool 33 of the sealing jig 20. It has become easier. For the liquid injection nozzle 21 and the air supply / exhaust nozzle 22 as well, the opening of the container 10 is easily sealed by the pressure contact tool 33 of the sealing jig 20, and the portion that penetrates the sealing region is set to the minimum diameter portion.

注液ノズル21および給排気ノズル22は、後述する設備側の配管61,69と分離可能に接続されるコネクタ部42,43と、その接続口を配管61,69との接続時にのみ開く常閉の弁機構(図示せず)と、を備える。また、設備側のコネクタ部44,45についても、その接続口をノズル側のコネクタ部42,43との接続時にのみ開く常閉の弁機構(図示せず)が備えられる。   The liquid injection nozzle 21 and the air supply / exhaust nozzle 22 are normally closed, which are opened only when the pipes 61 and 69 are connected to the connector parts 42 and 43 that are separably connected to the equipment-side pipes 61 and 69 described later. A valve mechanism (not shown). The facility-side connector portions 44 and 45 are also provided with a normally closed valve mechanism (not shown) that opens only when the connection ports are connected to the nozzle-side connector portions 42 and 43.

図3,図4において、46は容器10のセット治具であり、1対の板部材47、48と、これらの間を一定の間隔に締め付ける手段と、から構成される。1対の板部材の一方47に枠状の台座部49が設けられ、これに容器10の凹部(積層体の収容部)の表側の膨出部を係止しつつ、もう一方の板部材48を重ね合わせ、これらの間を一定の間隔に締め付けることにより、容器10は、開口可能な一辺が上向きの起立状態に支持される。   3 and 4, reference numeral 46 denotes a setting jig for the container 10, which is composed of a pair of plate members 47 and 48, and means for fastening them at a constant interval. A frame-shaped pedestal portion 49 is provided on one 47 of the pair of plate members, and the other plate member 48 is engaged with the bulged portion on the front side of the concave portion (container of the laminated body) of the container 10. The container 10 is supported in an upright state in which one side that can be opened is directed upward.

1対の板部材47,48の間を一定の間隔に締め付ける手段は、締結具50(ボルト等)と、鍔部を持つロッド51と、から構成される。鍔部を持つロッド51は、1対の板部材の一方47に立設され、もう一方の板部材48にロッド51の鍔部に係止する穴が配置される。このセット治具46により、容器10の厚みが規制されるため、製品の均質化が得られる。   Means for tightening the pair of plate members 47 and 48 at a constant interval includes a fastener 50 (such as a bolt) and a rod 51 having a flange. The rod 51 having a flange portion is erected on one 47 of a pair of plate members, and a hole that is engaged with the flange portion of the rod 51 is disposed on the other plate member 48. Since the thickness of the container 10 is regulated by the setting jig 46, the product can be homogenized.

容器10の開口可能な一辺に封止治具20を装着する際は、レバーを開側に倒して1対の圧接具33の間を拡げ、図6のように上方から容器10の開口可能な一辺に被せることにより、容器10の開口可能な一辺を基部25の断面コ字形の内側に進入させる。これに伴って、容器10の開口可能な一辺から突き出る端子板11a,11bがスリット状の貫通穴34を突き抜け、基部25の断面コ字形の内側に突出するガス抜きバルブ12およびそのセットガイド38に続いて注液ノズル21および給排気ノズル22が容器10の開口部からその内部に挿入する。なお、容器10の開口可能な一辺は、ガス抜きバルブ12およびセットガイド38や注液ノズル21および給排気ノズル22の挿入を受け入れやすく上方へ口が開く受口部を付けておくと良い。   When mounting the sealing jig 20 on one openable side of the container 10, the lever is tilted to the open side to expand the space between the pair of pressure contactors 33, and the container 10 can be opened from above as shown in FIG. 6. By covering one side, the openable side of the container 10 enters the inside of the U-shaped cross section of the base 25. Along with this, the terminal plates 11a and 11b protruding from one openable side of the container 10 penetrate the slit-like through hole 34, and the degassing valve 12 and its set guide 38 project inside the U-shaped cross section of the base 25. Subsequently, the liquid injection nozzle 21 and the air supply / exhaust nozzle 22 are inserted into the container 10 through the opening. It should be noted that a side of the container 10 that can be opened is preferably provided with a receiving portion that opens easily so as to accept the insertion of the gas vent valve 12, the set guide 38, the liquid injection nozzle 21, and the air supply / exhaust nozzle 22.

ガス抜きバルブ12およびセットガイド38や注液ノズル21および給排気ノズル22の挿入後、レバー32を閉側に倒すと、1対の押圧板26がこれらの間隔を縮める方向へ動き、圧接具33が容器10の開口可能な一辺を挟圧する(図7,参照)。圧接具33は、シリコンスポンジなどの弾性体から形成され、容器10の開口可能な一辺を端子板11a,11bおよびガス抜きバルブ12のセットガイド38や注液ノズル21および給排気ノズル22の挟む状態に密着(密閉)させることができる。   After the degassing valve 12, the set guide 38, the liquid injection nozzle 21, and the air supply / exhaust nozzle 22 are inserted, when the lever 32 is tilted to the closed side, the pair of pressing plates 26 move in a direction to reduce the interval between them, and the pressure contact 33 Sandwiches one openable side of the container 10 (see FIG. 7). The pressure contact tool 33 is formed of an elastic body such as silicon sponge, and sandwiches the openable side of the container 10 between the terminal plates 11a and 11b and the set guide 38 of the gas vent valve 12, the liquid injection nozzle 21, and the air supply / exhaust nozzle 22. Can be adhered (sealed).

図3において、55a,55bは電解精製を処理する装置の接続端子であり、封止治具20から突出する1対の端子板11a,11bにそれぞれ接続される。   In FIG. 3, reference numerals 55a and 55b denote connection terminals of a device for performing electrolytic purification, which are connected to a pair of terminal plates 11a and 11b protruding from the sealing jig 20, respectively.

図2は、電解液充填含浸処理および電解精製処理を行う装置の構成を説明するものであり、積層体(キャパシタ本体)を収容する容器10は、封止治具20により開口可能な一辺が密閉される。   FIG. 2 illustrates the configuration of an apparatus for performing an electrolytic solution filling impregnation process and an electrolytic purification process. The container 10 that houses the laminated body (capacitor body) is sealed on one side that can be opened by a sealing jig 20. Is done.

60は電解液の貯留タンクであり、配管61の一端がタンク60内の底部に開口され、配管61の他端がコネクタ部45を介して注液ノズル21のコネクタ部43に接続される。配管61の途中に開閉弁62、63が配置され、これらの間に加圧ポンプ64および積算流量計65が介装される。   Reference numeral 60 denotes an electrolyte storage tank. One end of the pipe 61 is opened at the bottom of the tank 60, and the other end of the pipe 61 is connected to the connector part 43 of the liquid injection nozzle 21 via the connector part 45. On-off valves 62 and 63 are arranged in the middle of the pipe 61, and a pressurizing pump 64 and an integrated flow meter 65 are interposed therebetween.

66は真空ポンプであり、モータ67により駆動される。68は真空ポンプ66の減圧計である。また、高度に乾燥した常圧のアルゴンガスの供給源(図示せず)が備えられる。配管69の一端がコネクタ部44を介して給排気ノズル22のコネクタ部42に接続される。配管69の他端側は、2系統に分岐され、その一方に真空ポンプ66が接続され、もう一方に常圧のアルゴンガスの供給源(常圧供給源)が接続される。   A vacuum pump 66 is driven by a motor 67. Reference numeral 68 denotes a decompressor for the vacuum pump 66. In addition, a highly dry source of atmospheric pressure argon gas (not shown) is provided. One end of the pipe 69 is connected to the connector portion 42 of the air supply / exhaust nozzle 22 via the connector portion 44. The other end of the pipe 69 is branched into two systems, a vacuum pump 66 is connected to one of them, and a normal pressure argon gas supply source (normal pressure supply source) is connected to the other.

貯留タンク60に給排気用の配管70が備えられる。配管70の一端は、タンク60内の上部に開口され、配管70の他端は、配管69の常圧供給源側に接続される。   The storage tank 60 is provided with an air supply / exhaust pipe 70. One end of the pipe 70 is opened at the upper part in the tank 60, and the other end of the pipe 70 is connected to the normal pressure supply source side of the pipe 69.

各配管69,70に開閉弁71〜75が配置される。開閉弁74,75を開くと、常圧供給源からアルゴンガスがタンク60内の上部(気相)に導入される。開閉弁62,63を開くと共に加圧ポンプ64を駆動すると、タンク60から注液ノズル21を通して容器10の内部へ電解液が供給される。開閉弁62,63、73を閉じて開閉弁71、72を開くと共に真空ポンプ66を駆動すると、給排気ノズル22を通して容器10の内部が減圧される。開閉弁71、62.63を閉じて開閉弁72〜74を開くと、給排気ノズル22を通して常圧供給源からアルゴンガスが容器10の内部に供給される。開閉弁72,74を閉じて開閉弁71,73,75を開くと共に真空ポンプ66を駆動すると、タンク60の内部が減圧されるのである。   On-off valves 71 to 75 are arranged in the respective pipes 69 and 70. When the on-off valves 74 and 75 are opened, argon gas is introduced into the upper part (gas phase) of the tank 60 from the normal pressure supply source. When the on-off valves 62 and 63 are opened and the pressure pump 64 is driven, the electrolytic solution is supplied from the tank 60 to the inside of the container 10 through the liquid injection nozzle 21. When the on-off valves 62, 63, 73 are closed and the on-off valves 71, 72 are opened and the vacuum pump 66 is driven, the inside of the container 10 is depressurized through the supply / exhaust nozzle 22. When the on-off valves 71 and 62.63 are closed and the on-off valves 72 to 74 are opened, argon gas is supplied from the atmospheric pressure supply source into the container 10 through the air supply / exhaust nozzle 22. When the on-off valves 72, 74 are closed and the on-off valves 71, 73, 75 are opened and the vacuum pump 66 is driven, the inside of the tank 60 is decompressed.

貯留タンク60と真空ポンプ66と常圧供給源と配管61,69,70と開閉弁62,63、71〜75と加圧ポンプ64とから、注液ノズル21に対して貯留タンク10の電解液を供給するための設備と、給排気ノズル22に対して真空ポンプ66と常圧供給源とを選択的に接続するための設備と、電解液の貯留タンク60に対して真空ポンプ66と常圧供給源とを選択的に接続するための設備と、が構成される。   From the storage tank 60, the vacuum pump 66, the normal pressure supply source, the piping 61, 69, 70, the on-off valves 62, 63, 71 to 75, and the pressurization pump 64, , Equipment for selectively connecting the vacuum pump 66 and the normal pressure supply source to the supply / exhaust nozzle 22, and the vacuum pump 66 and normal pressure to the electrolyte storage tank 60 And an equipment for selectively connecting the supply source.

電解液充填含浸処理においては、下記の(1)〜(4)の工程が順次に行われる。   In the electrolytic solution filling impregnation treatment, the following steps (1) to (4) are sequentially performed.

(1)封止治具20を容器10の開口可能な一辺に装着する。容器10の開口可能な一辺は、封止治具20により、端子板11a,11bおよびガス抜きバルブ12のセットガイド38や注液ノズル21および給排気ノズル22の挟む状態に密閉される。また、注液ノズル21のコネクタ部43に配管61のコネクタ部45を接続すると共に給排気ノズル22のコネクタ部42に配管69のコネクタ部44を接続する。   (1) The sealing jig 20 is attached to the openable side of the container 10. The openable side of the container 10 is sealed by the sealing jig 20 so that the terminal plates 11 a and 11 b and the set guide 38 of the gas vent valve 12, the liquid injection nozzle 21, and the air supply / exhaust nozzle 22 are sandwiched. Further, the connector part 45 of the pipe 61 is connected to the connector part 43 of the liquid injection nozzle 21 and the connector part 44 of the pipe 69 is connected to the connector part 42 of the air supply / exhaust nozzle 22.

(2)容器10の内部を所定の真空度に減圧する。開閉弁62,63、73が閉かつ開閉弁71,72が開の状態にセットすると共に真空ポンプ66を駆動すると、真空引きにより、容器10の内部が減圧され、所定の真空度に達したら、開閉弁71を閉じて真空ポンプ66を停止する。これにより、容器10内の水分や不純物が排除される。   (2) The inside of the container 10 is depressurized to a predetermined degree of vacuum. When the on-off valves 62, 63, 73 are closed and the on-off valves 71, 72 are set in an open state and the vacuum pump 66 is driven, the inside of the container 10 is depressurized by evacuation and reaches a predetermined degree of vacuum. The on-off valve 71 is closed and the vacuum pump 66 is stopped. Thereby, moisture and impurities in the container 10 are eliminated.

(3)容器10の内部を減圧状態から相対的に加圧する。開閉弁62,63、71が閉かつ開閉弁72,73,74が開の状態にセットすると、常圧供給源からアルゴンガスが容器の内部へ供給され、容器10の内部を常圧に上昇させる。   (3) The inside of the container 10 is relatively pressurized from the reduced pressure state. When the on-off valves 62, 63, 71 are closed and the on-off valves 72, 73, 74 are opened, argon gas is supplied from the normal pressure supply source to the inside of the container, and the inside of the container 10 is raised to normal pressure. .

(4)容器10の内部に電解液を充填して積層体に含浸させる。開閉弁72が閉かつ開閉弁74,75、62,63が開の状態にセットすると共に加圧ポンプ64を駆動すると、貯留タンク10の電解液が容器10の内部に圧入される。電解液の圧送は、数回に分けて行われ、1回量の圧送が終わると、加圧ポンプ64を停止すると共に開閉弁62、63を閉じる。これと同時的に開閉弁73が閉かつ開閉弁71,72が開の状態にセットすると共に真空ポンプ66を駆動することにより、容器10の内部を所定の真空度に減圧する。容器10の内部が所定の真空度に達したら、開閉弁71,72を閉じて真空ポンプ66を停止する。これらの処理(電解液の圧送と容器内部の減圧と)は、交互に数回、繰り返されるのである。   (4) The container 10 is filled with an electrolytic solution and impregnated into the laminate. When the on-off valve 72 is closed and the on-off valves 74, 75, 62, 63 are set in an open state and the pressurizing pump 64 is driven, the electrolyte in the storage tank 10 is press-fitted into the container 10. The electrolytic solution is pumped in several times. When the pumping of one amount is finished, the pressurizing pump 64 is stopped and the on-off valves 62 and 63 are closed. At the same time, the on-off valve 73 is closed and the on-off valves 71 and 72 are set in an open state, and the vacuum pump 66 is driven to depressurize the inside of the container 10 to a predetermined degree of vacuum. When the inside of the container 10 reaches a predetermined degree of vacuum, the on-off valves 71 and 72 are closed and the vacuum pump 66 is stopped. These processes (electrolyte feeding and decompression inside the container) are repeated several times alternately.

また、(4)の処理の前に貯留タンク60内の気相に含まれる水分や電解液(液相)に含まれる気泡を排除する。開閉弁62,63、74が閉かつ開閉弁71,73,75が開の状態にセットすると共に真空ポンプ66を駆動すると、真空引きにより、タンク60の内部が減圧される。その後、真空ポンプ66を停止すると共に開閉弁71,75が閉かつ開閉弁74,75が開の状態にセットすると、常圧供給源からアルゴンガスがタンク60の内部へ供給され、タンク60の内部を常圧に上昇させる。これらの処理(タンク内部の減圧と常圧の供給)は、(2)の処理と(3)の処理と同時に行うことも考えられる。   Moreover, before the process of (4), the water | moisture content contained in the gaseous phase in the storage tank 60 and the bubble contained in electrolyte solution (liquid phase) are excluded. When the on-off valves 62, 63, 74 are closed and the on-off valves 71, 73, 75 are set in an open state and the vacuum pump 66 is driven, the inside of the tank 60 is decompressed by evacuation. Thereafter, when the vacuum pump 66 is stopped and the on-off valves 71 and 75 are closed and the on-off valves 74 and 75 are set in an open state, argon gas is supplied from the normal pressure supply source to the inside of the tank 60. To normal pressure. These processes (depressurization inside the tank and supply of normal pressure) may be performed simultaneously with the process (2) and the process (3).

電解精製は、積層体(キャパシタ本体)の残存水分や官能基を電気分解してCO2などに変えて除去する処理であり、1対の端子板11a,11bの間に一定の電流を流して設定電圧まで充電し、その後に放電させる。この充放電サイクルは、何回か繰り返され、その際に発生するガス(CO2など)は、真空引きにより、容器10の内部から排気される。そのため、開閉弁62,63,73が閉かつ開閉弁71,72が開の状態にセットされ、真空ポンプ66が駆動される。この処理が終わると、真空ポンプ66が停止され、開閉弁71,72が閉じられるのである。 Electrolytic refining is a process in which residual moisture and functional groups in the laminate (capacitor body) are electrolyzed and removed by changing to CO 2 or the like, and a constant current is passed between the pair of terminal boards 11a and 11b. Charge to set voltage and then discharge. This charging / discharging cycle is repeated several times, and gas (CO 2 or the like) generated at that time is exhausted from the inside of the container 10 by evacuation. Therefore, the on-off valves 62, 63, 73 are closed and the on-off valves 71, 72 are set in an open state, and the vacuum pump 66 is driven. When this process is finished, the vacuum pump 66 is stopped and the on-off valves 71 and 72 are closed.

電気二重層キャパシタの製造過程において、電気二重層キャパシタの各構成材料(正極体や負極体およびセパレータの材料,端子板11a,11b,容器10の底側部分および蓋側部分)は乾燥処理される。その後、グローブボックスの高度に乾燥した不活性ガス(アルゴンガス)の雰囲気中において、正極体や負極体の成形およびセパレータの成形、積層体への組成、端子板11a,11bの接合、積層体の容器10への収容、のほか、電解液充填含浸および電解精製から容器10の開口可能な一辺を密閉(ヒートシール)するまでの工程が順次に処理される。電解液充填含浸および電解精製を処理する装置において、真空ポンプ66の吐出側は、グローブボックスの外部へ配管され、CO2などの浄化装置を含む、不活性ガス(アルゴンガス)の再生装置に接続される。 In the manufacturing process of the electric double layer capacitor, each constituent material of the electric double layer capacitor (the positive electrode body, the negative electrode body and the separator material, the terminal plates 11a and 11b, the bottom side portion and the lid side portion of the container 10) is dried. . Thereafter, in a highly dry inert gas (argon gas) atmosphere of the glove box, the molding of the positive electrode body and the negative electrode body, the molding of the separator, the composition to the laminate, the joining of the terminal plates 11a and 11b, the laminate In addition to housing in the container 10, steps from electrolytic solution filling impregnation and electrolytic purification to sealing (heat-sealing) one openable side of the container 10 are sequentially performed. In the apparatus for processing the electrolytic solution filling impregnation and electrolytic purification, the discharge side of the vacuum pump 66 is connected to the outside of the glove box and connected to an inert gas (argon gas) regenerator including a purifier such as CO 2. Is done.

このような構成により、容器10の開口部は、封止治具20により密閉され、電解液充填処理において、減圧すべき体積が容器10の内部に限られるため、所定の真空度に減圧するのも短時間に済ませることができる。また、従来のように耐圧チャンバ(槽や気密室)を用いる必要がなく、その分、グローブボックスの内部(スペース)を有効活用することができる。   With such a configuration, the opening of the container 10 is sealed by the sealing jig 20, and the volume to be depressurized is limited to the inside of the container 10 in the electrolytic solution filling process. Can be done in a short time. Further, it is not necessary to use a pressure-resistant chamber (tank or airtight chamber) as in the prior art, and the inside (space) of the glove box can be effectively utilized by that amount.

注入ノズル21は、貯留タンク60の電解液を供給するための設備側の配管61と分離可能に接続されるコネクタ部43と、その接続口を配管との接続時にのみ開く常閉の弁機構(図示せず)と、を備え、また、給排気ノズル22は、真空ポンプ66と常圧供給源とを選択的に接続するための設備側の配管69と分離可能に接続されるコネクタ部42と、その接続口を配管との接続時にのみ開く常閉の弁機構(図示せず)と、を備えるため、封止治具20の装着(容器10の開口可能な一辺の密閉)後、容器10は、グローボックスの外部に持ち出すことが可能となる。つまり、注液ノズル21に対して貯留タンク60の電解液を供給するための設備と、給排気ノズル22に対して真空ポンプ66と常圧供給源とを選択的に接続するための設備と、電解液の貯留タンク60に対して真空ポンプ66と常圧供給源とを選択的に接続するための設備と、については、グローブボックスの内部に配置する必要がなくなるのである。   The injection nozzle 21 has a connector part 43 that is separably connected to the equipment-side pipe 61 for supplying the electrolytic solution in the storage tank 60, and a normally closed valve mechanism that opens only when the connection port is connected to the pipe ( And the supply / exhaust nozzle 22 is connected to a facility-side pipe 69 for selectively connecting the vacuum pump 66 and the atmospheric pressure supply source, and a connector part 42 is detachably connected. And a normally closed valve mechanism (not shown) that opens only at the time of connection to the pipe, and after the mounting of the sealing jig 20 (sealing of one side where the container 10 can be opened), the container 10 Can be taken out of the glow box. That is, equipment for supplying the electrolytic solution of the storage tank 60 to the liquid injection nozzle 21, equipment for selectively connecting the vacuum pump 66 and the normal pressure supply source to the air supply / exhaust nozzle 22, The facility for selectively connecting the vacuum pump 66 and the normal pressure supply source to the electrolytic solution storage tank 60 is not required to be disposed inside the glove box.

また、封止治具20により密閉される多数の容器10に対し、各容器10の注液ノズル21を合流させる配管を設け、これを図2の配管61に接続する一方、給排気ノズル22を合流させる配管を設け、これを図2の配管69に接続することにより、電解液充填含浸処理および電解精製処理を同時に行うことも可能となる。   Further, for a large number of containers 10 sealed by the sealing jig 20, a pipe for joining the liquid injection nozzles 21 of each container 10 is provided, and this is connected to the pipe 61 of FIG. By providing a pipe to be merged and connecting it to the pipe 69 of FIG. 2, it is possible to simultaneously perform the electrolyte filling impregnation treatment and the electrolytic purification treatment.

これらの結果、設備投資を最小限に抑えつつ、電気二重層キャパシタを効率よく大量生産できるのである。   As a result, it is possible to efficiently mass-produce electric double layer capacitors while minimizing capital investment.

この発明の実施形態を説明する電気二重層キャパシタの外観図である。1 is an external view of an electric double layer capacitor illustrating an embodiment of the present invention. 同じく電解液充填含浸処理およびその装置を説明する概要図である。It is a schematic diagram explaining an electrolyte solution filling impregnation process and the apparatus similarly. 同じく封止治具の装着状態を説明する正面図である。It is a front view explaining the mounting state of a sealing jig. 同じく一部を省略する側面図である。It is a side view which omits a part similarly. 同じく図3のX−X断面図である。It is XX sectional drawing of FIG. 3 similarly. 同じく封止治具の装着に係る説明図である。It is explanatory drawing which similarly concerns on mounting | wearing of a sealing jig. 同じく説明図である。It is explanatory drawing similarly. 従来技術の説明図である。It is explanatory drawing of a prior art.

符号の説明Explanation of symbols

10 容器
11a,11b 端子板
12 ガス抜きバルブ
20 封止治具
21 注液ノズル
22 給排気ノズル
33 圧接具
38 ガス抜きバルブのセットガイド
42,43 コネクタ部
60 電解液の貯留タンク
64 加圧ポンプ
66 真空ポンプ
62,63、71〜75 開閉弁
DESCRIPTION OF SYMBOLS 10 Container 11a, 11b Terminal board 12 Degassing valve 20 Sealing jig 21 Injection nozzle 22 Supply / exhaust nozzle 33 Pressure contact 38 Degassing valve set guide 42, 43 Connector part 60 Electrolyte storage tank 64 Pressure pump 66 Vacuum pump 62, 63, 71-75 Open / close valve

Claims (8)

正極体および負極体とセパレータとから積層体を組成する工程と、積層体をラミネートフィルムから形成される容器に収容する工程と、容器の開口部からその内部に電解液を充填して積層体に含浸させる工程と、容器の開口部を密封する工程と、を備える電気二重層キャパシタの製造方法において、前記容器の開口部からその内部に電解液を充填して積層体に含浸させる工程は、容器の開口部からその内部に注液ノズルおよび給排気ノズルを挿入してこれらの一部が容器の開口部から外部へ突出する状態に容器の開口部を密閉すべく封止治具を装着する工程と、給排気ノズルを通して容器の内部を減圧する工程と、給排気ノズルを通して容器の内部を減圧状態から相対的に加圧する工程と、注液ノズルを通して容器の内部に電解液を充填する工程と、を備えることを特徴する電気二重層キャパシタの製造方法。 A step of composing a laminate from a positive electrode body and a negative electrode body and a separator, a step of accommodating the laminate in a container formed from a laminate film, and filling the inside with an electrolyte from the opening of the container to form a laminate In the method of manufacturing an electric double layer capacitor comprising the step of impregnating and the step of sealing the opening of the container, the step of impregnating the laminate by filling the electrolyte from the opening of the container A step of attaching a sealing jig to seal the opening of the container so that a liquid injection nozzle and a supply / exhaust nozzle are inserted into the inside of the opening from the opening of the container and a part of these is projected to the outside from the opening of the container And a step of decompressing the inside of the container through the air supply / exhaust nozzle, a step of relatively pressurizing the inside of the container from the decompressed state through the air supply / exhaust nozzle, and filling the inside of the container with the electrolyte through the liquid injection nozzle Method of manufacturing an electric double layer capacitor which comprising: the degree, the. 前記注液ノズルを通して容器の内部に電解液を充填する工程は、電解液の貯留タンクから注液ノズルへ電解液を圧送することを特徴とする請求項1に係る電気二重層キャパシタの製造方法。 2. The method of manufacturing an electric double layer capacitor according to claim 1, wherein the step of filling the inside of the container with the electrolytic solution through the liquid injection nozzle feeds the electrolytic solution from the electrolytic solution storage tank to the liquid injection nozzle. 前記注液ノズルを通して容器の内部に電解液を充填する工程は、電解液の貯留タンクから注液ノズルへ電解液を圧送する処理と、給排気ノズルを通して容器の内部を減圧する処理と、を交互に繰り返すことを特徴とする請求項2に係る電気二重層キャパシタの製造方法。 The process of filling the inside of the container with the electrolytic solution through the liquid injection nozzle is alternately performed by a process of pumping the electrolytic solution from the electrolytic solution storage tank to the liquid injection nozzle and a process of decompressing the interior of the container through the supply / exhaust nozzle. 3. The method of manufacturing an electric double layer capacitor according to claim 2, wherein the method is repeated. 前記容器の開口部からその内部に電解液を充填して積層体に含浸させる工程は、電解液の貯留タンクの内部を真空引きにより減圧する工程と、電解液の貯留タンクの内部を減圧状態から相対的に加圧する工程と、を備えることを特徴とする請求項2または請求項3に係る電気二重層キャパシタの製造方法。 The step of filling the inside of the container with the electrolytic solution from the opening of the container and impregnating the laminate includes the step of depressurizing the inside of the electrolytic solution storage tank by evacuation, and the inside of the electrolytic solution storage tank from the reduced pressure state. The method of manufacturing an electric double layer capacitor according to claim 2, further comprising a relatively pressurizing step. 前記注入ノズルは、前記容器の内部に電解液を充填する工程を処理する設備側の配管と分離可能に接続されるコネクタ部と、その接続口を前記配管との接続時にのみ開く常閉の弁機構と、を備え、また、前記給排気ノズルは、前記容器の内部を減圧する工程および前記容器の内部を減圧状態から相対的に加圧する工程を処理する設備側の配管と分離可能に接続されるコネクタ部と、その接続口を前記配管との接続時にのみ開く常閉の弁機構と、を備えることを特徴とする請求項1〜請求項4の何れか1つに係る電気二重層キャパシタの製造方法。 The injection nozzle includes a connector part that is separably connected to piping on the equipment side that processes the step of filling the electrolytic solution into the container, and a normally closed valve that opens only when the connection port is connected to the pipe And the supply / exhaust nozzle is detachably connected to a facility-side pipe that processes a step of depressurizing the interior of the container and a step of relatively pressurizing the interior of the container from a depressurized state. The electrical double layer capacitor according to any one of claims 1 to 4, further comprising: a connector portion that is closed and a normally closed valve mechanism that opens a connection port only when connecting to the pipe. Production method. 正極体および負極体とセパレータとから積層体を組成する工程と、積層体をラミネートフィルムから形成される容器に収容する工程と、容器の開口部からその内部に電解液を充填して積層体に含浸させる工程と、容器の開口部を密封する工程と、の各処理手段を備える電気二重層キャパシタの製造装置において、前記容器の開口部からその内部に電解液を充填して積層体に含浸させる工程の処理手段は、容器の開口部からその内部に注液ノズルおよび給排気ノズルを挿入してこれらの一部が容器の開口部から外部へ突出する状態に容器の開口部を密閉すべく装着される封止治具と、前記注液ノズルに貯留タンクの電解液を供給するための設備と、給排気ノズルに対して真空ポンプと高度に乾燥した常圧の不活性ガスの供給源とを選択的に接続するための設備と、を備えることを特徴とする電気二重層キャパシタの製造装置。 A step of composing a laminate from a positive electrode body and a negative electrode body and a separator, a step of accommodating the laminate in a container formed from a laminate film, and filling the inside with an electrolyte from the opening of the container to form a laminate In an electric double layer capacitor manufacturing apparatus including the impregnation step and the step of sealing the opening of the container, an electrolytic solution is filled into the laminate from the opening of the container to impregnate the laminate. The processing means of the process is installed to seal the container opening so that a liquid injection nozzle and an air supply / exhaust nozzle are inserted into the inside of the container from the container opening and a part of them protrudes from the container opening to the outside. A sealing jig, a facility for supplying the electrolyte solution of the storage tank to the liquid injection nozzle, a vacuum pump and a highly dry inert gas supply source for the air supply / exhaust nozzle Selective connection Apparatus for manufacturing an electric double layer capacitor comprising: the order of the facilities, the. 前記電解液の貯留タンクに対して真空ポンプと高度に乾燥した常圧の不活性ガスの供給源とを選択的に接続するための設備と、を備えることを特徴とする請求項6に係る電気二重層キャパシタの製造装置。 And a facility for selectively connecting a vacuum pump and a highly dry inert gas supply source to the electrolyte storage tank. Double layer capacitor manufacturing equipment. 前記注入ノズルは、前記貯留タンクの電解液を供給するための設備側の配管と分離可能に接続されるコネクタ部と、その接続口を前記配管との接続時にのみ開く常閉の弁機構と、を備え、また、前記給排気ノズルは、前記真空ポンプと前記不活性ガスの供給源とを選択的に接続するための設備側の配管と分離可能に接続されるコネクタ部と、その接続口を前記配管との接続時にのみ開く常閉の弁機構と、を備えることを特徴とする請求項6または請求項7に係る電気二重層キャパシタの製造装置。 The injection nozzle is a connector part that is separably connected to a pipe on the equipment side for supplying the electrolytic solution of the storage tank, and a normally closed valve mechanism that opens its connection port only when connected to the pipe, And the supply / exhaust nozzle includes a connector part detachably connected to a facility-side pipe for selectively connecting the vacuum pump and the inert gas supply source, and a connection port thereof. An apparatus for manufacturing an electric double layer capacitor according to claim 6 or 7, further comprising a normally closed valve mechanism that opens only when connected to the pipe.
JP2007312135A 2007-12-03 2007-12-03 Manufacturing method and manufacturing apparatus for electric double-layer capacitor Pending JP2009135374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007312135A JP2009135374A (en) 2007-12-03 2007-12-03 Manufacturing method and manufacturing apparatus for electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007312135A JP2009135374A (en) 2007-12-03 2007-12-03 Manufacturing method and manufacturing apparatus for electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2009135374A true JP2009135374A (en) 2009-06-18

Family

ID=40866964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007312135A Pending JP2009135374A (en) 2007-12-03 2007-12-03 Manufacturing method and manufacturing apparatus for electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2009135374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105458609A (en) * 2015-12-28 2016-04-06 中车长江车辆有限公司 Tank sleeving technological method of railway tank car of double-layer structure
CN112652489A (en) * 2020-12-11 2021-04-13 扬州日精电子有限公司 Welding machine for film capacitor for adjustable water-cooled inverter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105458609A (en) * 2015-12-28 2016-04-06 中车长江车辆有限公司 Tank sleeving technological method of railway tank car of double-layer structure
CN105458609B (en) * 2015-12-28 2017-05-10 中车长江车辆有限公司 Tank sleeving technological method of railway tank car of double-layer structure
CN112652489A (en) * 2020-12-11 2021-04-13 扬州日精电子有限公司 Welding machine for film capacitor for adjustable water-cooled inverter

Similar Documents

Publication Publication Date Title
KR101410562B1 (en) Electrolyte pouring device and electrolyte pouring method
CN101818357B (en) Electrochemical apparatus
US20130061461A1 (en) Manufacturing method for film-covered electrical device
US20130312869A1 (en) Method and device for filling an electrochemical cell
JP2007335181A (en) Manufacturing method and device for nonaqueous electrolyte secondary battery
KR100630413B1 (en) Apparatus and Method for pouring electrolyte
KR101726337B1 (en) Method for manufacturing sealed battery
JP2013140782A (en) Method and device for manufacturing film-wrapped electric device
US10396342B2 (en) Method for manufacturing secondary cell having a wound body effectively impregnated with electrolytic solution
JP2013140783A (en) Method and device for manufacturing film-wrapped electric device
KR20190060214A (en) Electrolyte injection apparatus, and Electrolyte injection method
JP2016046178A (en) Method for injecting electrolytic solution
JP2009135374A (en) Manufacturing method and manufacturing apparatus for electric double-layer capacitor
JP6014993B2 (en) Electric device manufacturing method, manufacturing apparatus, and electric device
JP2015220199A (en) Method of manufacturing film-covered battery
JP5381310B2 (en) Electrolyte infiltration apparatus and infiltration method for laminate
JP3973870B2 (en) Method and apparatus for manufacturing electric double layer capacitor
JP2011134642A (en) Method of manufacturing battery
WO2023119401A1 (en) Method for manufacturing secondary battery
JP6542754B2 (en) Method of manufacturing secondary battery
WO2023119402A1 (en) Method for manufacturing secondary battery
JP2015204167A (en) Method and device for manufacturing power storage device
JP2003133186A (en) Method of manufacturing electric double-layer capacitor and the capacitor
JP2009151972A (en) Power generation stopping method of fuel cell, power generation starting method therefor, and fuel cell system
JPH09199108A (en) Device and method for injecting electrolyte in manufacture of battery