JP2009133311A - 渦流式空気−油セパレータシステム - Google Patents

渦流式空気−油セパレータシステム Download PDF

Info

Publication number
JP2009133311A
JP2009133311A JP2008300307A JP2008300307A JP2009133311A JP 2009133311 A JP2009133311 A JP 2009133311A JP 2008300307 A JP2008300307 A JP 2008300307A JP 2008300307 A JP2008300307 A JP 2008300307A JP 2009133311 A JP2009133311 A JP 2009133311A
Authority
JP
Japan
Prior art keywords
oil
air
cavity
region
vortex generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008300307A
Other languages
English (en)
Other versions
JP5468244B2 (ja
Inventor
Ning Fang
ニン・ファン
Duane Howard Anstead
ドュアン・ハワード・アンステッド
Robert Proctor
ロバート・プロクター
Pradeep Hemant Sangli
プラディープ・ヘマント・サングリ
Prasad Laxman Kane
プラサッド・ラックスマン・ケイン
Gary Paul Moscarino
ゲーリー・ポール・モスカリーノ
Bala Corattiyil
バラ・コラッティイル
Ray H Kinnaird
レイ・ハリス・キンナード
David William Pugh
デイビッド・ウィリアム・ピュー
Mark Eden Zentgraf
マーク・エデン・ゼントグラフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2009133311A publication Critical patent/JP2009133311A/ja
Application granted granted Critical
Publication of JP5468244B2 publication Critical patent/JP5468244B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/14Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by rotating vanes, discs, drums or brushes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6685Details of collecting or draining, e.g. returning the liquid to a sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0422Separating oil and gas with a centrifuge device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/19Crankcase ventilation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

【課題】本発明は、空気−油混合物から油を分離するようになったシステム内で使用することができる渦流発生器(700)を提供する。
【解決手段】本渦流発生器は、それを貫通して延びる複数の通路(521)を備えたリム(525)を有する回転ディスク(510)と、該回転ディスク(510)及び空洞壁(537)によって形成された空洞(578)とを含み、複数の通路(521)を通しての空洞(578)内への流れが存在する時に、渦流(621)が形成されるようになる。
【選択図】 図2

Description

本発明は、総括的にはガスタービンエンジンに関し、より具体的には、ガスタービンエンジンの軸受及びその他の構成要素を潤滑及び冷却するのに使用した油を回収するための渦流式空気−油セパレータシステムに関する。
ガスタービンエンジンは一般的に、コアを含み、コアは、該コアに流入する空気を加圧するようになった圧縮機と、そこで燃料が加圧空気と混合されかつ次に燃焼されて高エネルギーガスストリームを生成する燃焼器と、ガスストリームからエネルギーを取出して圧縮機を駆動する高圧タービンとを有する。航空機ターボファンエンジンでは、コアの下流に設置した低圧タービンが、ガスストリームからより多くのエネルギーを取出してファンを駆動するようにする。ファンは通常、エンジンが発生する主推進力を供給する。
エンジン内においては、エンジンの圧縮機並びに高圧及び低圧タービン内のステータに対してロータを正確に設置しかつ回転可能に取付けるために、軸受が使用される。軸受は、サンプと呼ばれるエンジンの油含有部分内に封入される。
軸受の過熱を防止するためには、潤滑油を供給しかつシールを設けて、エンジン流路内の高温空気が軸受サンプに到達するのを防止する必要があり、また潤滑油流量は、それらの高い相対回転速度のために軸受が内部で発生する熱及び環境からの熱負荷を運び去るのに十分でなければならない。
油消費量は、エンジンサンプをシール(密封)するために用いる方法に起因する。この密封方法には、サンプ内に流入しかつ該サンプから流出する空気流れ回路が存在することが欠かせない。この流れは、適切に分離しかつサンプに送給して戻さない限り、最終的に回収不能な油を含む。1つの具体的な構成では、前方エンジンサンプは、前方ファンシャフトを通して通気されかつ中心通気管を通してエンジン外に通気される。一旦空気/油混合物がサンプから流出すると、混合物は旋回して、ファンシャフトの内側上に油を付着させる。空気/油混合物内に含まれた油は、通気空気を速やかに逸出させることにより通気孔を通してサンプ内に該油を遠心分離して戻すことができない場合には喪失される。
幾つかの従来型の設計は、油がサンプに再流入するための専用経路を形成することがその機能でありかつ前方ファンシャフト設計内に組み込まれた通路であるウィープ孔を使用することによって油回収を可能にしている。その他の従来型の設計では、ファンシャフトは、通気孔のみであって専用ウィープ孔を有していない。幾つかの従来型の設計は、空気−油混合物をチャンバ内に半径方向に注入して油と空気とを分離するようにしかつその中の通路を通して分離油を導くウィーププラグを回転シャフト内で使用している。このウィーププラグは、該ウィーププラグ内の中心通路を通って空気−油混合物がセパレータ空洞に半径方向に流入するのを可能にする。空気−油混合物が旋回しながらより小さい半径になるにつれて、遠心力は、より大量の油粒子をシャフトの内径に押し戻すと同時に、空気は、通気孔出口を通って逸出する。しかしながら、これらの従来型の設計では、軸方向距離が半径方向入口位置と空気の通気孔入口との間で短い場合には、空気−油分離は非常に不十分なものになる。通気孔又はウィーププラグを通ってチャンバに流入する空気−油混合物の半径方向運動量が高いためにまた通気孔出口に対する軸方向距離が短いために、空気−油混合物の渦流運動のための滞留時間は短くなる。渦流運動のための十分な滞留時間がない状態では、空気−油混合物からの油分離が不十分になることが判明した。軸受は通常、高負荷及び高速で作動し、その結果として通常は高温で動作する。供給される潤滑油は、軸受に対して冷却を与える。しかしながら、サンプ内に形成された空気−油混合物は、高温になる。より高温において空気−油混合物から油を分離することは、より困難である。
空気−油混合物の半径方向運動量を減少させかつ接線方向運動量を増加させる空気−油セパレータシステムを有することは望ましい。軸方向に短いサンプを有するエンジンシステムにおいて油を除去するのに有効である空気−油セパレータを有することは望ましい。空気−油混合物の渦流運動の大きな半径において滞留時間を増加させた渦流式空気−油セパレータシステムを有することは望ましい。空気−油混合物から油を分離するのに先立って、該空気−油混合物を冷却することができる渦流式空気−油セパレータシステムを有することは望ましい。
上述の必要性は、空気−油混合物から油を分離するためのシステム内で使用することができる渦流発生器によって満たすことができる。本渦流発生器は、それを貫通して延びる複数の通路を備えたリムを有する回転ディスクと、該回転ディスク及び空洞壁によって形成された空洞とを含み、複数の通路を通しての空洞内への流れが存在する時に、渦流が形成されるようになる。
本発明とみなされる主題は、提出した特許請求の範囲において具体的に指摘しかつ明確に特許請求している。本発明は、本発明の好ましくかつ例示的な実施形態により、添付の図面に関連させてなした以下の詳細な説明において、その更なる目的及び利点と共に説明する。
様々な図全体にわたって同じ参照番号が同様の要素を示す図面を参照すると、図1は、本発明の渦流式空気−油セパレータシステムの例示的な実施形態を組み込んだその全体を参照符号10で表したガスタービンエンジンを示す。エンジン10は、長手方向中心線又は軸線511と、軸線511の周りに同心にかつ該軸線511に沿って同軸に配置された外側固定環状ケーシング14とを有する。エンジン10は、ガス発生器コア16を含み、ガス発生器コア16は、それら全てが直列軸方向流れ関係でエンジン10の長手方向軸線又は中心線511の周りに同軸に配置された複数段圧縮機18と、燃焼器20と、単段又は複数段のいずれかになった高圧タービン22とから構成される。環状外側駆動シャフト24は、圧縮機18と高圧タービン22とを固定相互連結する。
コア16は、燃焼ガスを発生させるのに有効である。圧縮機18からの加圧空気は、燃焼器20内で燃料と混合されかつ点火され、それによって燃焼ガスを発生する。幾らかの仕事が、高圧タービン22によって取り出され、高圧タービン22は、圧縮機18を駆動する。燃焼ガスの残りの部分は、コア16から低圧タービン26内に吐出される。
内側駆動シャフト38は、外側固定ケーシング14に相互連結された後方軸受32及び軸受40を介してまた好適な前方軸受542を介して外側駆動シャフト24に対して回転するように取付けられる。内側駆動シャフト38は次に、前方ファンシャフト562を駆動し、前方ファンシャフト562は次に、前方ファンロータ44及び幾つかのケースではブースタロータ45を駆動する。ファンブレード48及びブースタブレード54は、ファンロータ44及びブースタロータ45に取付けられてそれらと共に回転するようになる。
図2を参照すると、前方軸受542の周りに軸受サンプ558が形成されたガスタービンエンジン10の領域を示している。軸受サンプ558は一般的に、固定フレーム559、サンプカバー561、前方ファンシャフト562、内側駆動シャフト538及び渦流発生器700に相互連結された外側環状構造体560によって形成される。前方軸受542の内側環状レース542Aと連結された前方ファンシャフト562は、前方軸受542の外側環状レース542Bに連結された固定外側環状構造体560に対して内側駆動シャフト538と共に回転する。図2には1つのタイプの軸受のみを示しているが(符号542を参照)、LPシャフト、前方ファンシャフト562又は内側駆動シャフト538上に付加的軸受(図示せず)を取付けて、エンジン内にファン及びブースタロータ又は圧縮機ロータを支持することが可能である。図2に示す油供給導管568と同様の付加的油供給導管(図示せず)により、これらの付加的軸受に油供給を行うことができる。
軸受潤滑油610は、油供給導管568を通してサンプ558内にポンプ圧送される。軸受潤滑油ストリーム611は、ノズル613によって前方軸受542に導かれる。例えば、図2における符号612として示すような付加的油ストリームは、サンプ内の他の位置に導かれる。図2に符号546として示すような従来型の円周方向ラビリンス又はカーボン式空気及び油シールは、軸受サンプ558を密封するように回転及び固定部分に隣接させて設けて、軸受サンプの内側に適切な圧力を維持しかつ空気−油混合物がサンプから逸出するのを防止する。加圧空気600は、空気供給システム(図示せず)から空気を受けた加圧空気空洞557から注入されて、油シールを通って油が漏洩するのを防止する。図2に符号546として示すような、内側駆動シャフト538と固定構造体547との間のラビリンスシールは、軸受サンプ558の後端部からの油の漏洩を防止する。
軸受サンプ558に流入する注入加圧空気600の一部分は、サンプ圧力を適当なバランスに維持するような制御方式でサンプ558から通気させなければならない。しかしながら、加圧空気は、サンプ558内で油の粒子と混合した状態になる。軸受サンプ558内の空気−油混合物は、図2に符号620として示している。油の大量の喪失は、空気−油混合物620が、油粒子を分離しかつ除去しないで外部に通気された場合に発生することになる。
図2には、空気−油混合物から油を分離するための渦流式空気−油セパレータを使用することによって航空機エンジンにおける油消費量を減少させるためのシステムの例示的な実施形態を示している。本システムは、それを通して油供給610をサンプ内に流す油供給導管568を含む。本システムから油の漏洩を防止するために、加圧空気空洞557からシールを通してサンプ558内に加圧空気600が流される。この図示した例示的な実施形態では、渦流発生器700は、前方ファンシャフト562内の対応する孔534に固締されたファスナ532によって前方ファンシャフト562に剛連結される。渦流発生器700はまた、ファスナ512によって内側駆動シャフト538の前方端部に剛連結される。図2には、ファスナを使用するこれらの連結を示しているが、あらゆるその他の好適な従来型の取付け手段もまた使用することができる。
渦流式空気−油セパレータシステムのこの例示的な実施形態はさらに、以下にさらに説明するように、その中で空気−油混合物からの油粒子の分離を行うセパレータ空洞578を含む。セパレータ空洞578は、渦流発生器700及び好適な形状の空洞壁537によって形成される。空洞壁537は、図2に示すように前方内側駆動シャフトと一体形に形成することができる。それに代えて、空洞壁537は、別個に製作し、次に従来型の取付け手段を使用して内側駆動シャフト538の前方端部に取付けることができる。分離した油粒子692は、セパレータ空洞壁537の内側面に沿って半径方向に外方に移動し、かつセパレータ空洞壁537の半径方向外方領域内に形成したオリフィス572を通して該セパレータ空洞から流出する。空気は、内側駆動シャフト538の内部を通って通気される。従来型の通気管(図示せず)もまた、この目的のために使用することができる。
回転渦流発生器700は、サンプ558から空気−油混合物620を受けかつ該空気−油混合物をセパレータ空洞578内に流して、該セパレータ空洞内に渦流621を形成する。図3には、渦流発生器700の例示的な実施形態を示している。渦流発生器700は、中心線511の周りで回転するディスク510を有する。ディスクは、半径方向外方領域517内に設置されたリム525を有する。渦流発生器700のリム525は、その周辺部の周りに配列された1つ又はそれ以上の通気孔520列を有する。通路521は、リム525の厚さを貫通して通気孔520から延びる。これらの通路の配向は、サンプ558からこれらの通気孔に流入しかつ通路521を通って流れる空気−油混合物が、中心線511に対して軸方向、接線方向及び半径方向に向け直されるようになっている。一般的には、その各列が異なる半径方向位置に設置された状態でこれらの孔520の複数列が設けられる。図4は、渦流発生器700の半径方向外方領域の断面斜視図を示す。渦流発生器700は、通気孔520への入口においてほぼ軸方向の空気−油混合物流れ620を受け、かつ渦流発生器700内でその流れの方向を接線方向に向けて再配向し、かつ空気−油混合物620をセパレータ空洞578内に注入する。図2及び図3に示すこの例示的な実施形態では、セパレータ空洞578は、渦流発生器700と内側駆動シャフト538と一体型に形成された空洞壁537との間に形成される。渦流発生器700及び内側駆動シャフト538は、対応する孔513及びファスナ514の列を有するフランジ512及び539を使用して連結される。
セパレータ空洞578内において、回転空気/油混合物渦流621は、該回転空気/油混合物渦流が空気通気孔出口に向けて軸方向に流れるにつれて、旋回しながらより小さい半径になる。この空気−油混合物の旋回する渦流621は、高い接線方向速度を生じかつ空気及び油粒子に作用する大きな遠心力を生じる。これらの遠心力は、空洞壁537の内部領域に対してより大量の油粒子を半径方向外方に(図2に符号692として示す)押し出す。
本発明の1つの態様では、油粒子分離はさらに、空気−油混合物620をセパレータ空洞578内に流すのに先立って、任意選択的に該空気−油混合物を冷却することによってさらに改善される。空気−油混合物を冷却することによって、油粒子の密度は増大し、その結果として、セパレータ空洞578内における渦流旋回流内においてこれら油粒子に作用する遠心力によって、より大量の油粒子が一層容易に除去されることになる。サンプ558内で高温空気−油混合物を冷却する1つの方法は、サンプに供給された比較的より低温の油と混合することによるものである。これは、図2に示す渦流式空気−油セパレータシステムの例示的な実施形態に示している。そこに示すこの例示的な実施形態では、比較的より低温の油612は、油ストリームを回転デフレクタ800に向かって導くノズル614を通して供給される。より低温の油ストリーム612が回転デフレクタ800上に衝突すると、比較的より高温の空気−油混合物620と混合した油液滴が形成される。これにより、比較的より低温の空気−油混合物が生じ、この比較的より低温の空気−油混合物が渦流発生器通気孔520内に引き込まれる。図3に示すように、この例示的な実施形態では、デフレクタ800は、渦流発生器700に取付けられかつ該渦流発生器700と共に回転する。ファスナのようなあらゆる従来型の手段を使用して、デフレクタ800を渦流発生器及び/又は前方ファンシャフト562に固定することができる。
任意選択的に、デフレクタ800は、例えば図3に符号810として示すような油ストリーム612の一部分をデフレクタの内部側に流して潤滑油をエンジン内のその他の軸受位置に供給するようになった、その壁を貫通する選択数のスロット/ウインドウを含むことができる。スロット810の相対的寸法及び間隔を調整して、壁を通過する油の量と、サンプ558内にスプラッシュバックさせて空気−油混合物620を冷却する油の量とを制御することができる。
空気−油混合物から分離された油粒子は、図2に符号572として示すような回転シャフト空洞壁537上の溝及び/又は孔によってセパレータチャンバ578から除去される。図2及び図3に符号692として示す除去油は、サンプ558内に流入する。空気粒子は、例えば従来型の通気管(図示せず)を通してのような通気孔出口を通してセパレータ空洞578から除去される(図2に符号694として示す)。それに代えて、油は、渦流発生器700の内側通路520を通って流れる空気−油混合物の比較的高い質量流量を必要としない状態で該油をサンプ558に戻す経路を形成するチャネルを渦流発生器700上に設けることによって、セパレータ空洞578から除去することができる。従来型の掃気システム(図示せず)は、サンプ空洞558から油を除去して、軸受潤滑システム内にポンプ圧送して戻す前にさらに処理するようにする。
前述のように、滞留時間、接線方向速度及び温度は、空気−油混合物からの油粒子の渦流式分離の有効性を決定する3つの重要な要因である。回転渦流発生器700は、空気−油混合物620が通気孔520を通って流れる時に該空気−油混合物の接線方向速度を増大させる。セパレータ空洞578に流入する空気−油混合物621は、主に接線方向及び軸方向運動量、並びに少量の半径方向運動量を有する。空気−油混合物621は、回転軸線511から半径方向外方位置においてセパレータ空洞に流入する。この特徴は、通気孔及び半径方向プラグを使用する従来型の設計と比べて、大きな半径における接線方向流れの大きな滞留時間を有する渦流621を可能にする。これは、渦流発生器700の通気孔520内における流れを方向転換させて回転方向の接線方向速度成分を与えることによって達成される。従って、空気−油混合物620が通気孔520内を流れる時に、空気−油混合物は、渦流発生器700の回転によってそれに与えられた接線方向速度に加えて付加的な接線方向速度を取得する。
空気−油混合物流れの接線方向速度の増大は、セパレータ空洞578内でより強力な渦流及びより高い遠心加速度を生じて、空気/油混合物から油粒子を分離する。空気は、より大きな半径の外部領域位置で接線方向に注入されるので、空気/油混合物621は、渦流式セパレータ出口に到達する前に非常に長い経路に従うことになり、従って、空気−油混合物の滞留時間は、従来型の構成の滞留時間よりも大きくなる。
図2には、渦流発生器700を使用した渦流式空気−油セパレータシステムの例示的な実施形態を示している。図3及び図4には、渦流発生器700の例示的な実施形態を示している。図3では、図示したX軸は、軸方向を表し、Y軸は、半径方向を表し、またZ軸は、内側駆動シャフト538の回転方向を正とした接線方向を表す。図3及び図4に示す渦流発生器700のこの例示的な実施形態では、その各列が約100個の通気孔を有する状態で周辺部の周りに4列の通気孔520が設置されている。通気孔520は、約0.100インチの直径「D」を有し、かつ一般的には様々な列において0.015インチ〜0.025インチの範囲にあるそれら通気孔間の間隔距離「S」を有する。図4に示すこの例示的な実施形態における列間の間隔「H」は、約0.020インチである。渦流発生器700のリム525の厚さTは、約0.36インチである。通気孔520は、ほぼ軸方向の空気−油混合物流れ620を受け、かつその流れ方向を該流れが接線方向軸Zに対して角度Aで内側駆動シャフト538の回転方向に沿ったほぼ接線方向に通気孔520からセパレータ空洞578内に流出するように再配向する。一般的には、通路521から流出する空気−油混合物のストリームの配向角度は、Z軸に対する接線方向成分、X軸に対する軸方向成分、及びY軸に対する半径方向成分を有するように選択される。本発明のこの例示的な実施形態では、4列の通気孔520を使用し、角度Aは約45度になるように選択し、また軸方向(X軸)に対する角度Bは約45度である。
図3に示すデフレクタ800の例示的な実施形態では、デフレクタ800は、渦流発生器700に取付けられ、かつ該渦流発生器700と共に約3000〜5000rpmの回転速度で回転する。デフレクタは、約0.20インチの壁厚さを有し、かつ油をその内部に流して潤滑油をエンジン内のその他の軸受位置にさらに供給するようになった12個のスロットを有する。
渦流発生器700は、およそ149℃(300°F)であるサンプ558内では一般的である温度に耐えかつエンジン潤滑油による腐食に抗することができる材料で製作される。「インコネル」718のような従来型のタービンロータ材料は、渦流発生器700及びシャフト538、562を製作するために用いることができる。渦流発生器700は、例えば鍛造後の機械加工又は材料ブランクからの機械加工のようなあらゆる公知の方法によって形成することができる。
一般的には、渦流式セパレータの油分離効率は、油粒子サイズと共に増大する傾向があり、また15ミクロン又はそれ以上の大きな油粒子では100パーセントに近づくことができることが判明した。しかしながら、本明細書に記載した実施形態は、15ミクロンよりも小さい油粒子を分離する上でも高効率であることが、従来型の計算流体力学分析を用いて判明した。例えば、巡航状態下の航空機エンジンにおいて、10ミクロンの油粒子サイズの場合に、本発明を用いた油分離効率が95パーセントよりも高いのに対して、従来型の方法を用いた油分離効率は20パーセントよりも低いことが分析的に判明した。
様々な特定の実施形態に関して本発明を説明してきたが、本発明が特許請求の範囲の技術思想及び技術的範囲内の変更で実施することができることは、当業者には分かるであろう。
ガスタービンエンジンの長手方向軸線方向断面図。 本発明の渦流式空気−油セパレータシステムの例示的な実施形態を組み込んだ、図1のガスタービンエンジンの軸受サンプ領域の拡大軸線方向断面図。 本発明の渦流発生器の例示的な実施形態を示す斜視図。 図3に示す渦流発生器の断面を示す斜視図。
符号の説明
10 エンジン
14 ケーシング
16 コア
18 圧縮機
20 燃焼器
22 高圧タービン
24 外側駆動シャフト
26 低圧タービン
32、40 後方軸受
38 内側駆動シャフト
44 ファンロータ
45 ブースタロータ
48 ファンブレード
54 ブースタブレード
400 軸受潤滑システム
500 空気−油セパレータシステム
510 ディスク
511 軸線
517 半径方向外方領域
521 通路
525 リム
537 空洞壁
538 内側駆動シャフト、回転構成要素
542 前方軸受
547 固定構造体
557 加圧空気空洞
558 サンプ空洞、第1の領域
562 前方ファンシャフト
568 油供給導管
572 オリフィス
578 セパレータ空洞、第2の領域
610 軸受潤滑油
612 油ストリーム
613、614 ノズル
620 空気−油混合物
621 渦流
700 渦流発生器
800 デフレクタ
810 スロット

Claims (15)

  1. 空気及び油の混合物を有する第1の領域(558)と、
    前記空気−油混合物からの前記油の少なくとも幾らかの分離が生じる第2の領域(578)と、
    回転軸線(511)から半径方向外方領域(517)内に設置されたリム(525)と前記リム(525)を貫通して延びて前記第1の領域(558)及び第2の領域(578)と流れ連通状態になった複数の通路(521)とを有するディスク(510)を備えた渦流発生器(700)と、を含み、
    前記渦流発生器(700)が、前記第2の領域(578)内に空気−油混合物渦流(621)が生成されるように回転構成要素(538)に結合される、
    空気−油セパレータシステム(500)。
  2. 前記通路(521)の少なくとも幾つかが、該通路から吐出された前記空気−油混合物の少なくとも一部が前記回転構成要素の回転方向に対して接線方向である速度成分を有するように、配向される、請求項1記載の空気−油セパレータシステム(500)。
  3. 前記第2の領域(578)の少なくとも一部が、前記渦流発生器(700)と前記回転構成要素(538)の一部分である空洞壁(537)とによって囲まれる、請求項1又は2記載の空気−油セパレータシステム(500)。
  4. 前記回転構成要素(538)が、前記第1の領域(558)及び第2の領域(578)と流れ連通状態になって該第2の領域(578)から油を除去するようになった少なくとも1つの通路(572)を有する、請求項1乃至3のいずれか1項に記載の空気−油セパレータシステム(500)。
  5. 前記渦流発生器(700)が、前記第1の領域(558)及び第2の領域(578)と流れ連通状態になって該第2の領域(578)から油を除去するようになった少なくとも1つの開口部を有する、請求項1乃至4のいずれか1項に記載の空気−油セパレータシステム(500)。
  6. 回転構成要素(562)に取付けられたデフレクタ(800)をさらに含む、請求項1乃至5のいずれか1項に記載の空気−油セパレータシステム(500)。
  7. 前記渦流発生器(700)に取付けられたデフレクタ(800)をさらに含む、請求項1乃至5のいずれか1項に記載の空気−油セパレータシステム(500)。
  8. 油ストリーム(612)の少なくとも一部を前記デフレクタ(800)上に導くようになったノズル(614)をさらに含む、請求項6記載の空気−油セパレータシステム(500)。
  9. 前記デフレクタ(800)が、それを通して前記油ストリーム(612)の少なくとも一部が流れるようになった少なくとも1つのスロット(810)を有する、請求項6記載の空気−油セパレータシステム(500)。
  10. 回転軸線(511)から半径方向外方領域(517)内に設置されたリム(525)を有する回転ディスク(510)と、
    前記リム(525)を貫通して延びる複数の通路(521)と、
    空洞壁(537)と、
    前記回転ディスク(510)及び空洞壁によって形成された空洞(578)と、を含み、
    前記空洞(578)への複数の通路(521)を通しての該空洞(578)内への流れが存在する時に、渦流(621)が形成される、
    渦流発生器(700)。
  11. 前記空洞壁(537)が、前記空洞(578)から油を除去するようになった少なくとも1つの通路を有する、請求項10記載の渦流発生器(700)。
  12. 前記複数の通路(521)の少なくとも幾つかが、前記回転軸線(511)に対してある角度で配向される、請求項10又は11記載の渦流発生器(700)。
  13. 前記複数の通路(521)が、円周方向に配列される、請求項10乃至12のいずれか1項に記載の渦流発生器(700)。
  14. 前記複数の通路(521)が、その各々が異なる半径方向位置に設置された複数の円周方向列として配列される、請求項10乃至12のいずれか1項に記載の渦流発生器(700)。
  15. 軸受(542)と、
    前記軸受に潤滑油を供給する油供給導管(568)と、
    空気及び油の混合物(620)を有するサンプ空洞(558)と、
    前記サンプ空洞(558)の外側に設置された加圧空気空洞(557)と、
    前記サンプ空洞(558)の内側に設置されたセパレータ空洞(578)と、
    回転軸線(511)から半径方向外方領域(517)内に設置されたリム(525)と前記リム(525)を貫通して延びて前記サンプ空洞(558)及びセパレータ空洞(578)と流れ連通状態になった複数の通路(521)とを有するディスク(510)を備えた渦流発生器(700)と、を含み、
    前記渦流発生器(700)が、前記セパレータ空洞(578)内に空気−油混合物渦流(621)が生成されるように回転構成要素(538)に結合される、
    軸受潤滑システム(400)。
JP2008300307A 2007-11-28 2008-11-26 渦流式空気−油セパレータシステム Expired - Fee Related JP5468244B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/946,111 2007-11-28
US11/946,111 US7935164B2 (en) 2007-11-28 2007-11-28 Vortex air-oil separator system

Publications (2)

Publication Number Publication Date
JP2009133311A true JP2009133311A (ja) 2009-06-18
JP5468244B2 JP5468244B2 (ja) 2014-04-09

Family

ID=40668631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008300307A Expired - Fee Related JP5468244B2 (ja) 2007-11-28 2008-11-26 渦流式空気−油セパレータシステム

Country Status (3)

Country Link
US (1) US7935164B2 (ja)
JP (1) JP5468244B2 (ja)
CN (1) CN101619677B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065682A (ja) * 2008-09-11 2010-03-25 Rolls Royce Plc 潤滑剤排出構成
JP2015503045A (ja) * 2011-10-28 2015-01-29 ゼネラル・エレクトリック・カンパニイ 耐熱性シール・システム
JP2015507134A (ja) * 2012-02-10 2015-03-05 ゼネラル・エレクトリック・カンパニイ ガスタービンエンジンサンプ加圧システム

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8201389B2 (en) * 2006-10-06 2012-06-19 Pratt & Whitney Canada Corp. Oil distributing unit
US8292034B2 (en) * 2007-11-28 2012-10-23 General Electric Company Air-oil separator
FR2949246B1 (fr) * 2009-08-20 2012-03-09 Snecma Distribution d'huile dans un palier de turbomachine
US20120011824A1 (en) * 2010-07-16 2012-01-19 United Technologies Corporation Integral lubrication tube and nozzle combination
US8876933B2 (en) 2010-12-08 2014-11-04 Hamilton Sundstrand Corporation Core diffuser for deoiler/breather
US9206693B2 (en) * 2011-02-18 2015-12-08 General Electric Company Apparatus, method, and system for separating particles from a fluid stream
US8904746B2 (en) 2011-09-05 2014-12-09 General Electric Company Method and apparatus for segregated oil supply and scavenge in a gas turbine engine
FR3007463B1 (fr) * 2013-06-21 2017-10-20 Hispano-Suiza Boitier d'accessoires de turbomachine equipe d'un separateur air/huile
FR3008738B1 (fr) * 2013-07-16 2015-08-28 Snecma Dispositif de protection contre les fuites d'huile vers les rotors d'une turbine de turbomachine
EP3033496A1 (en) * 2013-08-16 2016-06-22 General Electric Company Flow vortex spoiler
DE102013112771A1 (de) * 2013-11-19 2015-05-21 Rolls-Royce Deutschland Ltd & Co Kg Strahltriebwerk mit einer Einrichtung zum Einsprühen von Öl
DE102013112773A1 (de) 2013-11-19 2015-05-21 Rolls-Royce Deutschland Ltd & Co Kg Strahltriebwerk mit einer Einrichtung zum Einsprühen von Öl in einen Luft-Öl-Volumenstrom
DE102013114638A1 (de) * 2013-12-20 2015-06-25 Rolls-Royce Deutschland Ltd & Co Kg Vorrichtung eines Strahltriebwerks mit wenigstens einem in einem Gehäuse angeordneten und gegenüber dem Gehäuse drehbar ausgeführten Bauteil
FR3020658B1 (fr) * 2014-04-30 2020-05-15 Safran Aircraft Engines Capot de recuperation d'huile de lubrification pour un equipement de turbomachine
GB2542717A (en) 2014-06-10 2017-03-29 Vmac Global Tech Inc Methods and apparatus for simultaneously cooling and separating a mixture of hot gas and liquid
GB201412869D0 (en) * 2014-07-21 2014-09-03 Rolls Royce Plc Pressure controlled chamber
FR3027625B1 (fr) * 2014-10-27 2016-12-30 Snecma Turbomachine comprenant un generateur de courant electrique permettant l'injection d'huile depuis l'interieur d'un arbre de turbine
FR3028781B1 (fr) * 2014-11-25 2016-12-30 Snecma Piece pour rotor de turbomachine d'aeronef comprenant une protuberance annulaire usinable pourvue d'un orifice de deshuilage et procede de preparation de celle-ci
US9932858B2 (en) * 2015-07-27 2018-04-03 General Electric Company Gas turbine engine frame assembly
CN106555622B (zh) * 2015-09-30 2019-01-11 中国航发商用航空发动机有限责任公司 涡轮发动机的轴心通风管结构和涡轮发动机
CN107435590B (zh) * 2016-05-26 2019-05-21 中国航发商用航空发动机有限责任公司 油气分离装置及燃气涡轮发动机
US10570776B2 (en) * 2016-06-07 2020-02-25 United Technologies Corporation Nozzle for delivering fluid to a component
CN108204281B (zh) * 2016-12-20 2019-08-27 中国航发商用航空发动机有限责任公司 油气分离器、油气分离系统及航空发动机
US10794203B2 (en) * 2017-03-22 2020-10-06 General Electric Company Scavenge tube for a gas turbine engine
US10563580B2 (en) * 2017-05-16 2020-02-18 Rolls-Royce Corporation Engine sump with air separation features
US11028717B2 (en) * 2017-06-26 2021-06-08 Raytheon Technologies Corporation Bearing assembly for gas turbine engines
RU2667251C1 (ru) * 2017-10-05 2018-09-18 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Коробка приводных агрегатов
GB201800777D0 (en) * 2018-01-18 2018-03-07 Rolls Royce Plc Gas turbine engine oil circulation
US11058979B2 (en) 2018-01-19 2021-07-13 Ge Aviation Systems Llc Air-oil separator
CA3057920A1 (en) 2019-01-15 2020-07-15 Rolls-Royce Corporation Bearing for use in high speed application
US10544834B1 (en) 2019-01-17 2020-01-28 Rolls-Royce North American Technologies Inc. Bearing for use in high speed application
US11248492B2 (en) * 2019-03-18 2022-02-15 Raytheon Technologies Corporation Seal assembly for a gas turbine engine
FR3097900B1 (fr) * 2019-06-26 2021-06-04 Safran Aircraft Engines Support de palier de sortie de turbomachine
CN110792523A (zh) * 2019-11-14 2020-02-14 中国航发贵州黎阳航空动力有限公司 一种基于plc的发动机油封控制系统及方法
CN111895259B (zh) * 2020-07-10 2021-11-12 中国航发湖南动力机械研究所 集成式储油箱
CN117101313B (zh) * 2023-08-24 2024-05-07 中国航发燃气轮机有限公司 一种油雾分离器及其燃气轮机

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776229A (en) * 1995-12-20 1998-07-07 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Oil separator rotor for lubrication enclosure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3535107A1 (de) * 1985-10-02 1987-04-09 Mtu Muenchen Gmbh Versorgungssystem von lagern
DE3605619A1 (de) * 1986-02-21 1987-08-27 Mtu Muenchen Gmbh Stroemungsmaschine mit versorgungseinrichtung fuer schmiermittel
US5201845A (en) * 1991-10-30 1993-04-13 General Electric Company Low pressure drop radial inflow air-oil separating arrangement and separator employed therein
US6033450A (en) * 1995-12-21 2000-03-07 United Technologies Corporation Deoiler shaft vortex separator
US6398833B1 (en) * 2000-11-06 2002-06-04 Pratt & Whitney Canada Corp. Air/oil separator
US6640933B2 (en) * 2001-07-10 2003-11-04 Rolls Royce Corporation Lubrication system for a bearing
US6705349B2 (en) * 2001-10-22 2004-03-16 General Electric Company Weep plug
US6996968B2 (en) * 2003-12-17 2006-02-14 United Technologies Corporation Bifurcated oil scavenge system for a gas turbine engine
US7124857B2 (en) * 2004-03-18 2006-10-24 Pratt & Whitney Canada Corp. Rotating shaft scavenging scoop
US7063734B2 (en) * 2004-03-23 2006-06-20 Pratt & Whitney Canada Corp. Air/oil separation system and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776229A (en) * 1995-12-20 1998-07-07 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Oil separator rotor for lubrication enclosure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065682A (ja) * 2008-09-11 2010-03-25 Rolls Royce Plc 潤滑剤排出構成
JP2015503045A (ja) * 2011-10-28 2015-01-29 ゼネラル・エレクトリック・カンパニイ 耐熱性シール・システム
JP2015507134A (ja) * 2012-02-10 2015-03-05 ゼネラル・エレクトリック・カンパニイ ガスタービンエンジンサンプ加圧システム

Also Published As

Publication number Publication date
JP5468244B2 (ja) 2014-04-09
US20090133581A1 (en) 2009-05-28
CN101619677A (zh) 2010-01-06
US7935164B2 (en) 2011-05-03
CN101619677B (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5468244B2 (ja) 渦流式空気−油セパレータシステム
US8292034B2 (en) Air-oil separator
US7993425B2 (en) Free vortex air-oil separator
US8561411B2 (en) Air particle separator for a gas turbine engine
US10450951B2 (en) Cyclonic separator for a turbine engine
EP2657465B1 (en) Mitigating Vortex Pumping Effect Upstream of Oil Seal
US10975731B2 (en) Turbine engine, components, and methods of cooling same
US20150345331A1 (en) Shroud assembly for turbine engine
EP3015681A1 (en) A particle separator and particle collector for a turbine engine
JP2004003494A (ja) ガスタービン及びその抽気方法
EP2055895A2 (en) Turbomachine rotor disk
JP2016516932A (ja) サイクロン式汚れ分離タービン加速装置
US5201845A (en) Low pressure drop radial inflow air-oil separating arrangement and separator employed therein
EP2557272B1 (en) Rotor stage for a gas turbine engine and corresponding method of separating oil from an internal flow
US5257903A (en) Low pressure drop radial inflow air-oil separating arrangement and separator employed therein
CA2406479C (en) Weep plug
US11661856B2 (en) Gas turbine engine with embedded generator
JP2018151060A (ja) 複数の排出ポートを有するギヤボックスのための装置
KR102495740B1 (ko) 임펠러
WO2016025056A2 (en) Turbine engine and particle separators therefore
US11560844B2 (en) Inertial particle separator for a turbine section of a gas turbine engine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140129

R150 Certificate of patent or registration of utility model

Ref document number: 5468244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees