JP2009132630A - Method for producing benzoxathiin compound - Google Patents

Method for producing benzoxathiin compound Download PDF

Info

Publication number
JP2009132630A
JP2009132630A JP2007308162A JP2007308162A JP2009132630A JP 2009132630 A JP2009132630 A JP 2009132630A JP 2007308162 A JP2007308162 A JP 2007308162A JP 2007308162 A JP2007308162 A JP 2007308162A JP 2009132630 A JP2009132630 A JP 2009132630A
Authority
JP
Japan
Prior art keywords
compound
carbon atoms
group
acid
benzoxathiin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007308162A
Other languages
Japanese (ja)
Other versions
JP5071795B2 (en
Inventor
Masao Shimizu
政男 清水
Teruo Shimazaki
輝朗 島▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007308162A priority Critical patent/JP5071795B2/en
Publication of JP2009132630A publication Critical patent/JP2009132630A/en
Application granted granted Critical
Publication of JP5071795B2 publication Critical patent/JP5071795B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for safely and simply producing a benzoxathiin compound without using an aldehyde compound and in a waste-reduced state. <P>SOLUTION: This method for producing the benzoxathiin compound represented by general formula (A) [wherein, R<SP>1</SP>is a group or atom selected from chain or cyclic alkyl groups, alkoxy groups, alkoxycarbonyl groups, a phenyl group, and halogen atoms; when there are a plurality of R<SP>1</SP>s, R<SP>1</SP>s may be identical or different each other; (n) is an integer of 0 or 1 to 3; R<SP>2</SP>is a 1 to 6C alkyl group] is characterized by reacting a thiosalicylic acid compound with an allyl alcohol compound preferably in the presence of an acid catalyst. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ベンゾオキサチイン化合物の効率的な製造方法に関するものである。   The present invention relates to an efficient method for producing a benzooxathiin compound.

ベンゾオキサチインの誘導体は、殺虫剤の原料として有用である(特許論文1)だけでなく、抗菌・抗バクテリア作用を有するもの(非特許文献1)として知られている重要な化合物である。   Benzoxathiin derivatives are not only useful as raw materials for insecticides (Patent Document 1) but also important compounds known as those having antibacterial and antibacterial activities (Non-Patent Document 1).

このようなベンゾオキサチイン化合物を製造する方法として、これまでに、チオサリチル酸を、硫酸あるいはパラトルエンスルホン酸等の酸の存在下でアルデヒドを反応させる方法(非特許文献1)や、チオサリチル酸と酢酸ビニルを酢酸水銀と硫酸の存在下で反応させる方法(特許文献1、非特許文献2)などが知られている。
しかし、前者の方法において、沸点の低いアルデヒド化合物を用いる場合には、その揮発性を考慮して大過剰量のアルデヒド化合物を用いる必要があり、また反応中にアルデヒドの損失がないような合成操作を必要とする。
後者の方酢酸水銀を用いる方法においては、有毒な水銀廃液の処理を行わなければならないといった難点があった。
As a method for producing such a benzooxathiin compound, a method in which thiosalicylic acid is reacted with an aldehyde in the presence of an acid such as sulfuric acid or paratoluenesulfonic acid (Non-patent Document 1), or thiosalicylic acid and A method of reacting vinyl acetate in the presence of mercury acetate and sulfuric acid (Patent Document 1, Non-Patent Document 2) is known.
However, in the former method, when an aldehyde compound having a low boiling point is used, it is necessary to use a large excess of the aldehyde compound in consideration of its volatility, and the synthetic operation is such that there is no loss of aldehyde during the reaction. Need.
In the latter method using mercury acetate, there is a problem that a toxic mercury waste solution must be treated.

以上のことから、チオサリチル酸を出発原料とし、ベンゾオキサチイン化合物を製造する場合に、簡便な合成操作で有毒な廃棄処理工程も採ることなく安全に、所望のベンゾオキサチイン化合物を製造する方法の確立が切望されている。   From the above, when producing a benzoxathiin compound using thiosalicylic acid as a starting material, a method for producing the desired benzoxathiin compound safely without using a toxic disposal process by a simple synthesis operation. Establishment is eagerly desired.

米国特許第2496741号明細書US Pat. No. 2,496,741 A. Senning and S.-O. Lawesson,Acta Chem. Scand., 16, 1175 (1962).A. Senning and S.-O. Lawesson, Acta Chem. Scand., 16, 1175 (1962). D. T. Mowry, W. H. Yanko, and E. L. Ringwald, J. Amer. Chem. Soc., 69, 2358 (1947).D. T. Mowry, W. H. Yanko, and E. L. Ringwald, J. Amer. Chem. Soc., 69, 2358 (1947).

本発明は、チオサリチル酸を出発原料とし、ベンゾオキサチイン化合物を製造する場合に、簡便な合成操作で有毒な廃棄処理工程も採ることなく安全に、所望のベンゾオキサチイン化合物を製造できる方法を提供することを目的とする。   The present invention provides a method for producing a desired benzoxathiin compound safely by using a simple synthetic operation without using a toxic disposal process when producing a benzoxathiin compound from thiosalicylic acid as a starting material. The purpose is to do.

本発明者らは、チオサリチル酸化合物を出発原料とするベンゾオキサチイン化合物の製法について鋭意研究を重ねた結果、該チオサリチル酸に対してアリルアルコールを、好ましくは酸の存在下で反応させると、意外にも高収率でベンゾオキサチイン化合物が簡便かつ安全に得られることを知見し、本発明を完成するに至った。   As a result of intensive research on a method for producing a benzooxathiin compound using a thiosalicylic acid compound as a starting material, the present inventors have unexpectedly found that allyl alcohol is reacted with the thiosalicylic acid, preferably in the presence of an acid. In addition, the inventors have found that a benzoxathiin compound can be obtained simply and safely in a high yield, and have completed the present invention.

すなわち、この出願は、下記の発明を提供するものである。
(1)一般式(B)で表されるチオサリチル酸化合物と一般式(C)で表されるアリルアルコール化合物を反応させることを特徴とする一般式(A)で示されるベンゾオキサチイン化合物の製造方法。

Figure 2009132630
(式中、Rは、炭素数1〜8の鎖状あるいは炭素数3〜8の環状のアルキル基、炭素数1〜8のアルコキシル基、炭素数2〜12のアルコキシカルボニル基、フェニル基、及びハロゲン原子から選ばれる基又は原子を表す。Rが複数ある場合は、各Rは互いに同一であっても異なっていてもよく、nは、0または1〜3の整数である。Rは、炭素数1〜6のアルキル基を示す。)
Figure 2009132630
(式中、Rは、炭素数1〜8の鎖状あるいは炭素数3〜8の環状のアルキル基、炭素数1〜8のアルコキシル基、炭素数2〜12のアルコキシカルボニル基、フェニル基、及びハロゲン原子から選ばれる基又は原子を表す。Rが複数ある場合は、各Rは互いに同一であっても異なっていてもよく、nは、0または1〜3の整数である。)
Figure 2009132630
(Rは、炭素数1〜6のアルキル基を示す。)
(2)酸触媒を用いることを特徴とする(1)に記載の一般式(A)で示されるベンゾオキサチイン化合物の製造方法。
(3)酸触媒が酸性イオン交換樹脂であることを特徴とする(2)に記載の一般式(A)で示されるベンゾオキサチイン化合物の製造方法。 That is, this application provides the following invention.
(1) Production of a benzooxathiin compound represented by the general formula (A), which comprises reacting a thiosalicylic acid compound represented by the general formula (B) with an allyl alcohol compound represented by the general formula (C) Method.
Figure 2009132630
(In the formula, R 1 is a chain alkyl group having 1 to 8 carbon atoms or a cyclic alkyl group having 3 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 12 carbon atoms, a phenyl group, and if .R 1 represents a group or atom selected from a halogen atom is more, each R 1 may be the being the same or different, n is an integer of 0 or 1 to 3 .R 2 represents an alkyl group having 1 to 6 carbon atoms.)
Figure 2009132630
(In the formula, R 1 is a chain alkyl group having 1 to 8 carbon atoms or a cyclic alkyl group having 3 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 12 carbon atoms, a phenyl group, and if .R 1 represents a group or atom selected from a halogen atom is more, each R 1 may be the being the same or different, n is an integer of 0 or 1-3.)
Figure 2009132630
(R 2 represents an alkyl group having 1 to 6 carbon atoms.)
(2) A method for producing a benzoxathiin compound represented by the general formula (A) according to (1), wherein an acid catalyst is used.
(3) The method for producing a benzooxathiin compound represented by the general formula (A) according to (2), wherein the acid catalyst is an acidic ion exchange resin.

本発明方法によれば、収率よくベンゾオキサチイン化合物を安全かつ簡便に合成することができる。すなわち、本発明方法は、従来の沸点の低いアルデヒド化合物を用いる方法のように、大過剰量の原料アルデヒドの使用せずに、また原料アルデヒドの反応中での損失を防止する装置・操作を用いることなく、適正な原料の使用量の範囲でかつ簡便な合成操作によりベンゾオキサチイン化合物を製造することができる。また、従来の酢酸水銀を用いる方法のように、有毒な水銀廃液を使用しないので、安全かつ簡便な操作でベンゾオキサチイン化合物を効率よく製造することができる。
また、本発明で得られるベンゾオキサチイン化合物は、従来と同様に殺虫剤や抗菌剤の原料物質として利用することができる。
According to the method of the present invention, a benzoxathiin compound can be synthesized safely and simply with good yield. That is, the method of the present invention does not use a large excess of raw material aldehyde, and uses an apparatus / operation for preventing loss of raw material aldehyde during the reaction, as in the conventional method using an aldehyde compound having a low boiling point. Therefore, the benzoxathiin compound can be produced by a simple synthesis operation within the range of the appropriate amount of the raw material used. In addition, unlike conventional methods using mercury acetate, no toxic mercury waste solution is used, and therefore a benzoxathiin compound can be efficiently produced by a safe and simple operation.
Moreover, the benzoxathiin compound obtained by this invention can be utilized as a raw material of an insecticide or an antibacterial agent like the past.

本発明の目的化合物は、以下の一般式(A)により示されるベンゾオキサチイン化合物である。

Figure 2009132630
前記式中、Rは、炭素数1〜8の鎖状あるいは炭素数3〜8の環状のアルキル基、炭素数1〜8のアルコキシル基、炭素数2〜12のアルコキシカルボニル基、フェニル基、及びハロゲン原子から選ばれる基又は原子を示す。Rが複数ある場合は、各Rは互いに同一であっても異なっていてもよく、nは、0または1〜3の整数である。
は、炭素数1〜6のアルキル基を示す。 The target compound of the present invention is a benzoxathiin compound represented by the following general formula (A).
Figure 2009132630
In the above formula, R 1 is a chain alkyl group having 1 to 8 carbon atoms or a cyclic alkyl group having 3 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 12 carbon atoms, a phenyl group, And a group or atom selected from halogen atoms. When R 1 are a plurality, each R 1 may be the being the same or different, n is an integer of 0 or 1-3.
R 2 represents an alkyl group having 1 to 6 carbon atoms.

前記Rのアルキル基の具体例としては、メチル、エチル、プロピル、イソプロピル、ブチル、t−ブチル、イソブチル、ペンチル、イソペンチル、ヘキシル、イソヘキシル、ヘプチル、オクチル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基等が挙げられる。
前記Rのアルコキシル基の具体例としては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、シクロプロポキシ、ブトキシ、イソブトキシ、t−ブトキシ、ペンチロキシ、ヘキシロキシ、シクロヘキシロキシル基等が挙げられる。
前記Rのアルコキシカルボニル基の具体例としては、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、シクロプロポキシカルボニル、ブトキシカルボニル、イソブトキシカルボニル、t−ブトキシカルボニル、ペンチロキシカルボニル、ヘキシロキシカルボニル、シクロヘキシロキシルカルボニル基等が挙げられる。
前記Rのハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
前記Rのアルキル基の具体例としては、メチル、エチル、プロピル、イソプロピル、ブチル、t−ブチル、イソブチル、ペンチル、イソペンチル、ヘキシル、イソヘキシル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル基等が挙げられる。
Specific examples of the alkyl group for R 1 include methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, isopentyl, hexyl, isohexyl, heptyl, octyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclo A heptyl, a cyclooctyl group, etc. are mentioned.
Specific examples of the alkoxyl group for R 1 include methoxy, ethoxy, propoxy, isopropoxy, cyclopropoxy, butoxy, isobutoxy, t-butoxy, pentyloxy, hexyloxy, cyclohexyloxyl groups and the like.
Specific examples of the alkoxycarbonyl group for R 1 include methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, cyclopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, t-butoxycarbonyl, pentyloxycarbonyl, hexyloxycarbonyl, Examples thereof include a cyclohexyloxycarbonyl group.
Examples of the halogen atom for R 1 include fluorine, chlorine, bromine and iodine.
Specific examples of the alkyl group for R 2 include methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, isopentyl, hexyl, isohexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl group and the like.

前記一般式(A)で表されるベンゾオキサチイン化合物を製造する方法は、以下の通りである。
下記一般式(B)で表されるチオサリチル酸化合物に対し、下記一般式(C)で表されるアリルアルコール化合物を酸性イオン交換樹脂存在下反応させる。

Figure 2009132630
式中、Rは、炭素数1〜8の鎖状あるいは炭素数3〜8の環状のアルキル基、炭素数1〜8のアルコキシル基、炭素数2〜12のアルコキシカルボニル基、フェニル基、及びハロゲン原子から選ばれる基又は原子を表す。Rが複数ある場合は、各Rは互いに同一であっても異なっていてもよく、nは、0または1〜3の整数である。
前記式中、Rは、前記一般式(A)により示されるベンゾオキサチイン化合物のRの場合と同じである。
Figure 2009132630
式中、Rは、炭素数1〜6の環状のアルキル基を示す。
前記式中、Rは、前記一般式(A)により示されるベンゾオキサチイン化合物のRの場合と同じである。 The method for producing the benzooxathiin compound represented by the general formula (A) is as follows.
The thiosalicylic acid compound represented by the following general formula (B) is reacted with an allyl alcohol compound represented by the following general formula (C) in the presence of an acidic ion exchange resin.
Figure 2009132630
In the formula, R 1 is a chain alkyl group having 1 to 8 carbon atoms or a cyclic alkyl group having 3 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 12 carbon atoms, a phenyl group, and A group or atom selected from halogen atoms is represented. When R 1 are a plurality, each R 1 may be the being the same or different, n is an integer of 0 or 1-3.
In the above formula, R 1 is the same as R 1 of the benzooxathiin compound represented by the general formula (A).
Figure 2009132630
Wherein, R 2 represents a cyclic alkyl group having 1 to 6 carbon atoms.
In the above formula, R 2 is the same as R 2 of the benzooxathiin compound represented by the general formula (A).

本発明の、原料物質としてアリルアルコールを用いる、ベンゾオキサチイン化合物の新規な合成反応は以下の通りである。

Figure 2009132630
The novel synthesis reaction of a benzoxanthine compound using allyl alcohol as a raw material of the present invention is as follows.
Figure 2009132630

この新規な合成反応は無触媒反応でも行うことができるが、酸触媒の存在下で行うことが好ましい。
酸触媒としては、無機酸、有機酸のいずれもが使用できる。無機酸としては、塩酸、硫酸、リン酸、リンモリブデン酸、リンタングステン酸などが挙げられる。また、有機酸としては、蟻酸、酢酸、トリフルオロ酢酸のようなカルボン酸、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸のようなスルホン酸、酸性イオン交換樹脂などが挙げられる。この中でも、反応効率や反応後の触媒分離回収の容易性等からみて酸性イオンオン交換樹脂を用いることが好ましい。酸性イオン交換樹脂としては、公知のものなら何ら制限が無くスルホン酸型、カルボン酸型等が使用でき、好ましくはスルホン酸型等の強酸性イオン交換樹脂が使用される。酸性イオン交換樹脂の種類には特に制限されないが、たとえばアンバーライト(Amberlite:登録商標)、アンバーリスト(Amberlyst:登録商標)、ダウエックス(Dowex:登録商標)、ナフィオン(Nafion:登録商標)等を使用することができる。また、ゲル型、ポーラス型のいずれも使用できる。粒度範囲については25〜120μm程度の範囲のものが使用でき、架橋度についてはどのような範囲のものも使用できるが、2〜30%の架橋度のものを使用するのが最も好ましい。酸性イオン交換樹脂の使用量は、通常チオサリチル酸の重量に対して0.01倍〜10倍であり,好ましくは0.1〜1倍である。
Although this novel synthesis reaction can be carried out without a catalyst, it is preferably carried out in the presence of an acid catalyst.
As the acid catalyst, either an inorganic acid or an organic acid can be used. Examples of the inorganic acid include hydrochloric acid, sulfuric acid, phosphoric acid, phosphomolybdic acid, and phosphotungstic acid. Examples of the organic acid include carboxylic acids such as formic acid, acetic acid, and trifluoroacetic acid, sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, and toluenesulfonic acid, and acidic ion exchange resins. Among these, it is preferable to use an acidic ion-on exchange resin from the viewpoint of reaction efficiency and ease of catalyst separation and recovery after the reaction. The acidic ion exchange resin is not particularly limited as long as it is a known one, and a sulfonic acid type, a carboxylic acid type and the like can be used, and a strong acidic ion exchange resin such as a sulfonic acid type is preferably used. Although it does not restrict | limit in particular in the kind of acidic ion exchange resin, For example, Amberlite (Amberlite (registered trademark)), Amberlyst (Amberlyst: registered trademark), Dowex (Dowex: registered trademark), Nafion (Nafion: registered trademark), etc. Can be used. Either a gel type or a porous type can be used. A particle size range of about 25 to 120 [mu] m can be used, and a cross-linking degree of any range can be used, but a cross-linking degree of 2 to 30% is most preferable. The usage-amount of acidic ion exchange resin is 0.01 to 10 times normally with respect to the weight of thiosalicylic acid, Preferably it is 0.1 to 1 time.

本発明のこの新規な合成反応は、アリルアルコール化合物を反応試薬兼反応溶媒として用いるが、クロロホルム、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、アニソール、アセトニトリル、テトラヒドロフラン、1,4−ジオキサン等の有機溶媒との混合溶媒の形で使用してもかまわない。   In this novel synthesis reaction of the present invention, an allyl alcohol compound is used as a reaction reagent and reaction solvent, but organic compounds such as chloroform, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, anisole, acetonitrile, tetrahydrofuran, and 1,4-dioxane are used. It may be used in the form of a mixed solvent with a solvent.

反応温度は、50℃〜150℃の範囲の温度で行うことができる。この温度範囲以下の低温の場合には反応時間が遅くなり、この範囲を超えて高すぎる場合には、異常な分解反応や副反応が多い結果となる。このようなことから、前記温度範囲は、70℃〜120℃の範囲であることが好ましい。
反応時間は、反応温度、アルコール化合物の種類により左右され、一概に定めることはできないが、通常は1〜10時間である。
Reaction temperature can be performed at the temperature of the range of 50 to 150 degreeC. When the temperature is lower than this temperature range, the reaction time is delayed, and when it is too high beyond this range, there are many abnormal decomposition reactions and side reactions. Therefore, the temperature range is preferably in the range of 70 ° C to 120 ° C.
The reaction time depends on the reaction temperature and the type of alcohol compound, and cannot be determined in general, but is usually 1 to 10 hours.

前記反応の原料物質である(B)、(C)は公知物質である。
(B)の製法の一例を挙げれば、塩化2−カルボキシベンゼンジアゾニウム化合物と硫化ナトリウムから得られるジスルフィド化合物を還元する製造方法を挙げることができる。
(C)は市販されている化合物を用いることができる。
(B) and (C), which are raw materials for the reaction, are known substances.
If an example of the manufacturing method of (B) is given, the manufacturing method which reduces the disulfide compound obtained from a 2-carboxybenzene diazonium chloride compound and sodium sulfide can be mentioned.
(C) may be a commercially available compound.

本発明で得られるベンゾオキサチイン化合物の代表例について例示すると以下の化学式(1)〜(8)で示される化合物である。しかしながら、これらの化合物に限定されるものではない。

Figure 2009132630
Illustrative examples of the benzoxathiin compound obtained in the present invention are compounds represented by the following chemical formulas (1) to (8). However, it is not limited to these compounds.
Figure 2009132630

本発明方法で得られる化合物は、従来と同様に、殺虫剤、抗菌剤の原料として用いられる。   The compound obtained by the method of the present invention is used as a raw material for insecticides and antibacterial agents, as in the past.

次に、本発明を実施例により詳細に説明する。
以下に述べる実施例は本発明の理解を容易にするために代表的な化合物の一例をあげたものであり、本発明はこれに限定されるものではない。下記実施例に記載されているベンゾオキサチイン化合物は、構造決定に際しては、各種スペクトルと元素分析の結果により同定した。
また、製造された化合物(1)〜(8)は、前記で示した化合物(1)〜(8)に対応するもので、その物性値としては、沸点あるいは融点、核磁気共鳴スペクトル(H−NMR,13C−NMR)、赤外吸収スペクトル(IR)、元素分析値の順にそれぞれ記した。
Next, the present invention will be described in detail with reference to examples.
Examples described below are examples of typical compounds for facilitating the understanding of the present invention, and the present invention is not limited thereto. The benzooxathiin compounds described in the following examples were identified based on the results of various spectra and elemental analysis when determining the structure.
Further, the produced compounds (1) to (8) correspond to the compounds (1) to (8) shown above, and their physical property values include boiling point or melting point, nuclear magnetic resonance spectrum ( 1 H -NMR, 13 C-NMR), infrared absorption spectrum (IR), and elemental analysis value, respectively.

実施例1
内容積50mLのガラス製容器中にチオサリチル酸(154mg、1.0mmol)をトルエン(15mL)に溶解させ、アリルアルコール(581mg、10.0mmol)およびアンバーリスト(Amberlyst:登録商標 15,78mg)を加えて加熱還流下で2時間攪拌した。酸性イオン交換樹脂を濾別した後、溶媒と過剰のアルコールを減圧下留去させ、粗生成物を得た。これをシリカゲルカラムクロマトグラフィー(溶媒、塩化メチレン:ヘキサン=2:1)で分離精製し、目的化合物である化合物(1)のベンゾオキサチインを得た(収率:81%)。
沸点:bp 173℃(1.3 Torr).
1H NMR (CDCl3, 500 MHz) δ1.16 (3H, t, J = 7.6 Hz), 2.04-2.21 (2H, m), 5.54 (1H, t, J= 6.1 Hz), 7.29-7.34 (2H,m), 7.48 (1H, ddd, J = 7.9, 7.3, 1.5 Hz), 8.17 (1H, dd, J= 7.9, 1.2 Hz).
13C NMR (CDCl3, 125 MHz) δ9.6, 27.7, 84.3, 124.3, 126.6, 127.7, 132.6, 133.5, 138.5, 164.3.
IR (neat) νmax 2973, 1727, 1593, 1461, 1442, 1296, 1275, 1247, 1224, 1125, 1095, 1051, 1032, 973, 742 cm-1.
元素分析:Calcd for C10H10O2S: C, 61.83; H, 5.19. Found: C, 62.25; H, 5.14.
Example 1
Thiosalicylic acid (154 mg, 1.0 mmol) was dissolved in toluene (15 mL) in a glass container with an internal volume of 50 mL, and allyl alcohol (581 mg, 10.0 mmol) and Amberlyst (registered trademark 15, 78 mg) were added. The mixture was stirred for 2 hours with heating under reflux. After the acidic ion exchange resin was filtered off, the solvent and excess alcohol were distilled off under reduced pressure to obtain a crude product. This was separated and purified by silica gel column chromatography (solvent, methylene chloride: hexane = 2: 1) to obtain the target compound, compound (1), benzooxathiin (yield: 81%).
Boiling point: bp 173 ° C (1.3 Torr).
1 H NMR (CDCl 3 , 500 MHz) δ1.16 (3H, t, J = 7.6 Hz), 2.04-2.21 (2H, m), 5.54 (1H, t, J = 6.1 Hz), 7.29-7.34 (2H , m), 7.48 (1H, ddd, J = 7.9, 7.3, 1.5 Hz), 8.17 (1H, dd, J = 7.9, 1.2 Hz).
13 C NMR (CDCl 3 , 125 MHz) δ9.6, 27.7, 84.3, 124.3, 126.6, 127.7, 132.6, 133.5, 138.5, 164.3.
IR (neat) ν max 2973, 1727, 1593, 1461, 1442, 1296, 1275, 1247, 1224, 1125, 1095, 1051, 1032, 973, 742 cm -1 .
Elemental analysis: Calcd for C 10 H 10 O 2 S: C, 61.83; H, 5.19. Found: C, 62.25; H, 5.14.

実施例2
実施例1においてチオサリチル酸の代わりに4−メトキシチオサリチル酸を用いて同様な反応を行い、目的化合物である化合物(2)のベンゾオキサチインを得た(収率:77%)。
沸点:bp 235℃(0.8 Torr).
1H NMR (CDCl3, 500 MHz) δ1.15 (3H, t, J = 7.3 Hz), 2.03 - 2.19 (2H, m), 3.86 (3H, s), 5.54 (1H, t, J = 6.1 Hz), 6.79 (1H, d, J= 2.4 Hz), 6.82 (1H, dd, J = 8.5, 2.4 Hz), 8.12 (1H, t, J = 6.7 Hz).
13C NMR (CDCl3, 125 MHz) δ9.5, 27.7, 55.7, 83.9, 111.7, 113.4, 116.6, 134.6, 140.7, 163.4, 164.3.
IR (neat) νmax 2973, 1720, 1596, 1488, 1256, 1089, 1043, 975, 768 cm-1.
元素分析:Calcd for C11H12O3S: C, 58.91; H, 5.39. Found: C, 58.97; H, 5.17.
Example 2
The same reaction was carried out using 4-methoxythiosalicylic acid instead of thiosalicylic acid in Example 1 to obtain the target compound, compound (2), benzooxathiin (yield: 77%).
Boiling point: bp 235 ° C (0.8 Torr).
1 H NMR (CDCl 3 , 500 MHz) δ1.15 (3H, t, J = 7.3 Hz), 2.03-2.19 (2H, m), 3.86 (3H, s), 5.54 (1H, t, J = 6.1 Hz ), 6.79 (1H, d, J = 2.4 Hz), 6.82 (1H, dd, J = 8.5, 2.4 Hz), 8.12 (1H, t, J = 6.7 Hz).
13 C NMR (CDCl 3 , 125 MHz) δ9.5, 27.7, 55.7, 83.9, 111.7, 113.4, 116.6, 134.6, 140.7, 163.4, 164.3.
IR (neat) ν max 2973, 1720, 1596, 1488, 1256, 1089, 1043, 975, 768 cm -1 .
Elemental analysis: Calcd for C 11 H 12 O 3 S: C, 58.91; H, 5.39. Found: C, 58.97; H, 5.17.

実施例3
実施例1においてチオサリチル酸の代わりに4−メチルチオサリチル酸を用いて同様な反応を行い、目的化合物である化合物(3)のベンゾオキサチインを得た(収率:83%)。
沸点:bp 196 ℃(1 Torr).
1H NMR (CDCl3, 500 MHz) δ1.15 (3H, t, J = 7.3 Hz), 2.03 - 2.20 (2H, m), 2.38 (3H, s), 5.52 (1H, t, J = 6.1 Hz), 7.11 (1H, d, J= 8.5 Hz), 7.14 (1H, s), 8.05 (1H, d, J= 8.5 Hz).
13C NMR (CDCl3, 125 MHz) δ9.5, 21.6, 27.7, 84.1, 121.5, 127.7, 127.9, 132.5, 138.4, 144.8, 164.4.
IR (neat) νmax 2973, 1727, 1601, 1275, 1252, 1101, 1042, 974, 768 cm-1.
元素分析:Calcd for C11H12O2S:C, 63.43; H, 5.81. Found: C, 63.45; H, 5.76.
Example 3
The same reaction was carried out using 4-methylthiosalicylic acid instead of thiosalicylic acid in Example 1 to obtain the target compound, compound (3), benzooxathiin (yield: 83%).
Boiling point: bp 196 ° C (1 Torr).
1 H NMR (CDCl 3 , 500 MHz) δ1.15 (3H, t, J = 7.3 Hz), 2.03-2.20 (2H, m), 2.38 (3H, s), 5.52 (1H, t, J = 6.1 Hz ), 7.11 (1H, d, J = 8.5 Hz), 7.14 (1H, s), 8.05 (1H, d, J = 8.5 Hz).
13 C NMR (CDCl 3 , 125 MHz) δ9.5, 21.6, 27.7, 84.1, 121.5, 127.7, 127.9, 132.5, 138.4, 144.8, 164.4.
IR (neat) ν max 2973, 1727, 1601, 1275, 1252, 1101, 1042, 974, 768 cm -1 .
Elemental analysis: Calcd for C 11 H 12 O 2 S: C, 63.43; H, 5.81. Found: C, 63.45; H, 5.76.

実施例4
実施例1においてチオサリチル酸の代わりに4−クロロチオサリチル酸を用いて同様な反応を行い、目的化合物である化合物(4)のベンゾオキサチインを得た(収率:54%)。
融点:60.1-61.0 ℃(Hexane).
1H NMR (CDCl3, 500 MHz) δ1.16 (3H, t, J = 7.9 Hz), 2.04-2.21 (2H, m), 5.55 (1H, t, J= 5.5 Hz), 7.27 (1H, dd, J = 8.5, 2.4 Hz), 7.35 (1H, d, J = 2.4 Hz), 8.10 (1H, d, J = 8.5 Hz).
13C NMR (CDCl3, 125 MHz) δ9.5, 27.6, 84.2, 122.5, 127.1, 127.4, 133.8, 140.1, 140.3, 163.5.
IR (neat) νmax 1734, 1583, 1338, 1264, 1096, 971, 873, 832, 768 cm-1.
元素分析:Calcd for C10H9ClO2S: C, 52.52; H, 3.97. Found: C, 52.55; H, 3.80.
Example 4
The same reaction was carried out using 4-chlorothiosalicylic acid instead of thiosalicylic acid in Example 1 to obtain the target compound, compound (4), benzoxathiin (yield: 54%).
Melting point: 60.1-61.0 ° C (Hexane).
1 H NMR (CDCl 3 , 500 MHz) δ1.16 (3H, t, J = 7.9 Hz), 2.04-2.21 (2H, m), 5.55 (1H, t, J = 5.5 Hz), 7.27 (1H, dd , J = 8.5, 2.4 Hz), 7.35 (1H, d, J = 2.4 Hz), 8.10 (1H, d, J = 8.5 Hz).
13 C NMR (CDCl 3 , 125 MHz) δ9.5, 27.6, 84.2, 122.5, 127.1, 127.4, 133.8, 140.1, 140.3, 163.5.
IR (neat) ν max 1734, 1583, 1338, 1264, 1096, 971, 873, 832, 768 cm -1 .
Elemental analysis: Calcd for C 10 H 9 ClO 2 S: C, 52.52; H, 3.97. Found: C, 52.55; H, 3.80.

実施例5
実施例1においてチオサリチル酸の代わりに5−メトキシチオサリチル酸を用いて同様な反応を行い、目的化合物である化合物(5)のベンゾオキサチインを得た(収率:67%)。
沸点:220℃(1 Torr).
1H NMR (CDCl3, 500 MHz) δ1.15 (3H, t, J = 7.9 Hz), 2.03-2.20 (2H, m), 3.85 (3H, s), 5.50 (1H, t, J = 6.1 Hz), 7.07 (1H, dd, J= 8.5, 2.4 Hz), 7.24 (1H, d, J = 9.7 Hz), 7.67 (1H, d, J = 2.4 Hz).
13C NMR (CDCl3, 125 MHz) δ9.6, 27.6, 55.7, 84.7, 115.3, 122.0, 125.1, 128.8, 129.4, 158.3, 164.4.
IR (neat) νmax 2972, 1725, 1602, 1477, 1409, 1281, 1128, 1049, 977, 890, 824, 774 cm-1.
元素分析:Calcd for C11H12O3S: C, 58.91; H, 5.39. Found: C, 59.10; H, 5.33.
Example 5
The same reaction was carried out using 5-methoxythiosalicylic acid instead of thiosalicylic acid in Example 1 to obtain the target compound, compound (5), benzooxathiin (yield: 67%).
Boiling point: 220 ° C (1 Torr).
1 H NMR (CDCl 3 , 500 MHz) δ1.15 (3H, t, J = 7.9 Hz), 2.03-2.20 (2H, m), 3.85 (3H, s), 5.50 (1H, t, J = 6.1 Hz ), 7.07 (1H, dd, J = 8.5, 2.4 Hz), 7.24 (1H, d, J = 9.7 Hz), 7.67 (1H, d, J = 2.4 Hz).
13 C NMR (CDCl 3 , 125 MHz) δ9.6, 27.6, 55.7, 84.7, 115.3, 122.0, 125.1, 128.8, 129.4, 158.3, 164.4.
IR (neat) ν max 2972, 1725, 1602, 1477, 1409, 1281, 1128, 1049, 977, 890, 824, 774 cm -1 .
Elemental analysis: Calcd for C 11 H 12 O 3 S: C, 58.91; H, 5.39. Found: C, 59.10; H, 5.33.

実施例6
実施例1においてチオサリチル酸の代わりに5−メチルチオサリチル酸を用いて同様な反応を行い、目的化合物である化合物(6)のベンゾオキサチインを得た(収率:60%)。
沸点:211℃(1 Torr).
1H NMR (CDCl3, 500 MHz) δ1.15 (3H, t, J = 7.9 Hz), 2.03-2.20 (2H, m), 2.37 (3H, s), 5.51 (1H, t, J = 6.1 Hz), 7.22 (1H d, J= 7.3 Hz), 7.29 (1H, dd, J = 7.9, 1.8 Hz), 7.99 (1H, s).
13C NMR (CDCl3, 125 MHz) δ9.6, 20.9, 27.6, 84.4, 124.0, 127.5, 132.8, 134.6, 135.0, 136.7, 164.6.
IR (neat) νmax 1727, 1472, 1298, 1249, 1187, 1114, 978, 775, 512 cm-1.
元素分析:Calcd for C11H12O2S: C, 63.43; H, 5.81. Found: C, 63.54; H, 5.82.
Example 6
The same reaction was carried out using 5-methylthiosalicylic acid instead of thiosalicylic acid in Example 1 to obtain the target compound, compound (6), benzooxathiin (yield: 60%).
Boiling point: 211 ° C (1 Torr).
1 H NMR (CDCl 3 , 500 MHz) δ1.15 (3H, t, J = 7.9 Hz), 2.03-2.20 (2H, m), 2.37 (3H, s), 5.51 (1H, t, J = 6.1 Hz ), 7.22 (1H d, J = 7.3 Hz), 7.29 (1H, dd, J = 7.9, 1.8 Hz), 7.99 (1H, s).
13 C NMR (CDCl 3 , 125 MHz) δ9.6, 20.9, 27.6, 84.4, 124.0, 127.5, 132.8, 134.6, 135.0, 136.7, 164.6.
IR (neat) ν max 1727, 1472, 1298, 1249, 1187, 1114, 978, 775, 512 cm -1 .
Elemental analysis: Calcd for C 11 H 12 O 2 S: C, 63.43; H, 5.81. Found: C, 63.54; H, 5.82.

実施例7
実施例1においてチオサリチル酸の代わりに3−メトキシチオサリチル酸を用いて同様な反応を行い、目的化合物である化合物(7)のベンゾオキサチインを得た(収率:60%)。
沸点207℃(1 Torr).
1H NMR (CDCl3, 500 MHz) δ1.17 (3H, t, J = 7.9 Hz), 2.06-2.23 (2H, m), 3.93 (3H, s), 5.47 (1H, t, J = 6.1 Hz), 7.04 (1H, d, J = 8.5 Hz), 7.27 (1H, t, J = 8.5 Hz), 7.81 (1H, t, J = 8.5 Hz).
13C NMR (CDCl3, 125 MHz) δ9.6, 27.7, 56.3, 83.4, 114.4, 124.4, 124.8, 126.3, 128.2, 154.9, 164.4.
IR (neat) νmax 2973, 1725, 1571, 1469, 1265, 1151, 1052, 980, 747 cm-1.
元素分析:Calcd for C11H12O3S: C, 58.91; H, 5.39. Found: C, 59.22; H, 5.27.
Example 7
The same reaction was carried out using 3-methoxythiosalicylic acid instead of thiosalicylic acid in Example 1 to obtain the target compound, compound (7), benzooxathiin (yield: 60%).
Boiling point 207 ° C (1 Torr).
1 H NMR (CDCl 3 , 500 MHz) δ1.17 (3H, t, J = 7.9 Hz), 2.06-2.23 (2H, m), 3.93 (3H, s), 5.47 (1H, t, J = 6.1 Hz ), 7.04 (1H, d, J = 8.5 Hz), 7.27 (1H, t, J = 8.5 Hz), 7.81 (1H, t, J = 8.5 Hz).
13 C NMR (CDCl 3 , 125 MHz) δ9.6, 27.7, 56.3, 83.4, 114.4, 124.4, 124.8, 126.3, 128.2, 154.9, 164.4.
IR (neat) ν max 2973, 1725, 1571, 1469, 1265, 1151, 1052, 980, 747 cm -1 .
Elemental analysis: Calcd for C 11 H 12 O 3 S: C, 58.91; H, 5.39. Found: C, 59.22; H, 5.27.

実施例8
実施例1においてアリルアルコールの代わりにメタリルアルコールを用いて同様な反応を行い、目的化合物である化合物(8)のベンゾオキサチインを得た(収率:90%)。
沸点:171℃(1.3 Torr).
1H NMR (CDCl3, 500 MHz) δ1.18 (6H, dd, J = 7.3, 4.9 Hz), 2.34 (1H, septet-d, J = 7.3, 6.1 Hz), 5.43 (1H, d, J = 6.1 Hz), 7.30 (1H, t, J = 7.3 Hz), 7.35 (1H, d, J = 7.3 Hz), 7.47 (1H, t, J = 7.9 Hz), 8.17 (1H, d, J = 7.3 Hz).
13C NMR (CDCl3, 125 MHz) δ18.2, 18.4, 32.6, 88.7, 124.3, 126.4, 127.9, 132.5, 133.4, 138.6, 164.4.
IR (neat)νmax 2966, 1729, 1442, 1279, 1099, 1033, 741 cm-1.
Example 8
The same reaction was carried out using methallyl alcohol instead of allyl alcohol in Example 1 to obtain the target compound, compound (8), benzooxathiin (yield: 90%).
Boiling point: 171 ° C (1.3 Torr).
1 H NMR (CDCl 3 , 500 MHz) δ1.18 (6H, dd, J = 7.3, 4.9 Hz), 2.34 (1H, septet-d, J = 7.3, 6.1 Hz), 5.43 (1H, d, J = 6.1 Hz), 7.30 (1H, t, J = 7.3 Hz), 7.35 (1H, d, J = 7.3 Hz), 7.47 (1H, t, J = 7.9 Hz), 8.17 (1H, d, J = 7.3 Hz) ).
13 C NMR (CDCl 3 , 125 MHz) δ 18.2, 18.4, 32.6, 88.7, 124.3, 126.4, 127.9, 132.5, 133.4, 138.6, 164.4.
IR (neat) ν max 2966, 1729, 1442, 1279, 1099, 1033, 741 cm -1 .

Claims (3)

一般式(B)で表されるチオサリチル酸化合物と一般式(C)で表されるアリルアルコール化合物を反応させることを特徴とする一般式(A)で示されるベンゾオキサチイン化合物の製造方法。
Figure 2009132630
(式中、Rは、炭素数1〜8の鎖状あるいは炭素数3〜8の環状のアルキル基、炭素数1〜8のアルコキシル基、炭素数2〜12のアルコキシカルボニル基、フェニル基、及びハロゲン原子から選ばれる基又は原子を表す。Rが複数ある場合は、各Rは互いに同一であっても異なっていてもよく、nは、0または1〜3の整数である。Rは、炭素数1〜6のアルキル基を示す。)
Figure 2009132630
(式中、Rは、炭素数1〜8の鎖状あるいは炭素数3〜8の環状のアルキル基、炭素数1〜8のアルコキシル基、炭素数2〜12のアルコキシカルボニル基、フェニル基、及びハロゲン原子から選ばれる基又は原子を表す。Rが複数ある場合は、各Rは互いに同一であっても異なっていてもよく、nは、0または1〜3の整数である。)
Figure 2009132630
(Rは、炭素数1〜6のアルキル基を示す。)
A method for producing a benzooxathiin compound represented by general formula (A), comprising reacting a thiosalicylic acid compound represented by general formula (B) with an allyl alcohol compound represented by general formula (C).
Figure 2009132630
(In the formula, R 1 is a chain alkyl group having 1 to 8 carbon atoms or a cyclic alkyl group having 3 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 12 carbon atoms, a phenyl group, and if .R 1 represents a group or atom selected from a halogen atom is more, each R 1 may be the being the same or different, n is an integer of 0 or 1 to 3 .R 2 represents an alkyl group having 1 to 6 carbon atoms.)
Figure 2009132630
(In the formula, R 1 is a chain alkyl group having 1 to 8 carbon atoms or a cyclic alkyl group having 3 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 12 carbon atoms, a phenyl group, and if .R 1 represents a group or atom selected from a halogen atom is more, each R 1 may be the being the same or different, n is an integer of 0 or 1-3.)
Figure 2009132630
(R 2 represents an alkyl group having 1 to 6 carbon atoms.)
酸触媒を用いることを特徴とする請求項1に記載の一般式(A)で示されるベンゾオキサチイン化合物の製造方法。   The method for producing a benzoxathiin compound represented by the general formula (A) according to claim 1, wherein an acid catalyst is used. 酸触媒が酸性イオン交換樹脂であることを特徴とする請求項2に記載の一般式(A)で示されるベンゾオキサチイン化合物の製造方法。   The method for producing a benzooxathiin compound represented by the general formula (A) according to claim 2, wherein the acid catalyst is an acidic ion exchange resin.
JP2007308162A 2007-11-29 2007-11-29 Process for producing benzooxathiin compound Expired - Fee Related JP5071795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007308162A JP5071795B2 (en) 2007-11-29 2007-11-29 Process for producing benzooxathiin compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007308162A JP5071795B2 (en) 2007-11-29 2007-11-29 Process for producing benzooxathiin compound

Publications (2)

Publication Number Publication Date
JP2009132630A true JP2009132630A (en) 2009-06-18
JP5071795B2 JP5071795B2 (en) 2012-11-14

Family

ID=40864893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007308162A Expired - Fee Related JP5071795B2 (en) 2007-11-29 2007-11-29 Process for producing benzooxathiin compound

Country Status (1)

Country Link
JP (1) JP5071795B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617428A (en) * 2012-02-29 2012-08-01 长沙理工大学 Synthetic method for chelating agent of 5-methyl-2-hydrosulfuryl benzoic acid
WO2021073736A1 (en) 2019-10-16 2021-04-22 Symrise Ag New aromatic monothioketals as odoriferous substances

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496741A (en) * 1946-06-19 1950-02-07 Monsanto Chemicals 2-methyl-4-keto-1,3-benzothioxane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496741A (en) * 1946-06-19 1950-02-07 Monsanto Chemicals 2-methyl-4-keto-1,3-benzothioxane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617428A (en) * 2012-02-29 2012-08-01 长沙理工大学 Synthetic method for chelating agent of 5-methyl-2-hydrosulfuryl benzoic acid
WO2021073736A1 (en) 2019-10-16 2021-04-22 Symrise Ag New aromatic monothioketals as odoriferous substances

Also Published As

Publication number Publication date
JP5071795B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
RU2729186C2 (en) Method of producing high-purity long-chain cyclohexenone alcohol
HUE026880T2 (en) Methods of making hiv attachment inhibitor prodrug compound and intermediates
Sá et al. Synthesis of allylic thiocyanates and novel 1, 3-thiazin-4-ones from 2-(bromomethyl) alkenoates and S-nucleophiles in aqueous medium
Ghosh et al. A ketal-tethered RCM strategy toward the synthesis of spiroketal related natural products
JP5071795B2 (en) Process for producing benzooxathiin compound
JP2007238472A (en) Monoglycidylisocyanuric acid compound
KR20230117260A (en) Process for the preparation of 1-(3,5-dichlorophenyl)-2,2,2-trifluoroethanone and derivatives thereof
EP1609775B1 (en) 1-acetoxy-3-(substituted phenyl) propen compounds useful as an intermediate material
US20120277458A1 (en) Method for producing difluorocyclopropane compound
KR101109942B1 (en) Method for producing aromatic unsaturated compound
CN104987302B (en) N, N diethyl formic acid 4 halogenated methyl 3,5 xylenol ester compounds and preparation method thereof
EP1833814B1 (en) Method for the production of substituted 2-alkoxycarbonyl-3-aminothiophenes
JP4214220B2 (en) Novel N-sulfenylpyrrole compound and method for producing the same
CN112430205B (en) Preparation method of arylpyrrole compound
JP4258658B2 (en) Method for producing acetylene compound
KR20140067368A (en) Process for preparing eperisone hydrochloride
KR20060136357A (en) Method for producing aromatic unsaturated compound
JP4768999B2 (en) Fluorine-containing compound and method for producing the same
JP2012140380A (en) Method of producing 2-alkoxy-substituted benzoxathiin compound
JP2013151452A (en) Imine derivative containing optically activity trifluoromethyl group, method of manufacturing the same, and method of manufacturing optical activity amine derivative containing trifluoromethyl group using the same
JP2009149595A (en) Method for producing cyanoethyl ether
JP6556476B2 (en) Difluoromethylzinc compound
JP6920917B2 (en) 6-Hydroxy-2-naphthoic acid alkenyl ester and its production method
JP5142241B2 (en) Method for producing nicotinic acid ester compound
KR20230155447A (en) Method for producing 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees