JP2009132555A - Apparatus for heating very pure glass articles, and method of processing very pure glass articles - Google Patents

Apparatus for heating very pure glass articles, and method of processing very pure glass articles Download PDF

Info

Publication number
JP2009132555A
JP2009132555A JP2007309438A JP2007309438A JP2009132555A JP 2009132555 A JP2009132555 A JP 2009132555A JP 2007309438 A JP2007309438 A JP 2007309438A JP 2007309438 A JP2007309438 A JP 2007309438A JP 2009132555 A JP2009132555 A JP 2009132555A
Authority
JP
Japan
Prior art keywords
heating
gas
glass articles
shielding cylinder
purity glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007309438A
Other languages
Japanese (ja)
Other versions
JP5018432B2 (en
Inventor
Tomoya Suzuki
智哉 鈴木
Toshimi Habasaki
利巳 幅崎
Shinji Hasegawa
慎治 長谷川
Takushi Tamura
拓史 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007309438A priority Critical patent/JP5018432B2/en
Publication of JP2009132555A publication Critical patent/JP2009132555A/en
Application granted granted Critical
Publication of JP5018432B2 publication Critical patent/JP5018432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for heating very pure glass articles and a method of processing very pure glass articles capable of preventing foreign matter generated from members in a furnace case from being carried and attached to a glass preform by the purge gas in the furnace case. <P>SOLUTION: In the apparatus 31 for heating very pure glass articles by heating a cylindrical heating body 16, through which the very pure glass articles are to be inserted, by electro-magnetic induction by induction coils arranged around its outer circumference to carry out a prescribed heat treatment onto the glass preform; attachment of foreign matter by the purge gas in the furnace case can be prevented by blocking the very pure glass articles from the purge gas in the furnace case by providing a contaminating substance-blocking cylinder 33 made from a high purity carbon and air-tightly surrounding the outer circumference of the very pure glass articles from the inlet 11 of the apparatus to the outlet 12 of the apparatus in the inner peripheral side of the cylindrical heating body 16. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高純度ガラス物品用加熱装置および高純度ガラス物品の加工方法に関する。   The present invention relates to a heating device for high-purity glass articles and a processing method for high-purity glass articles.

高純度ガラス物品の一例である光ファイバ用ガラス母材の製造方法の一つとして、クラッド層となるガラス管と、コア層となるガラスロッドとを個別に製造した後、前記ガラス管内に、ガラスロッドを挿通して加熱し、溶着一体化する(以下コラプス)所謂ロッドインチューブ法が提案されている。   As one method for producing a glass preform for an optical fiber which is an example of a high-purity glass article, a glass tube serving as a cladding layer and a glass rod serving as a core layer are separately manufactured, and then the glass tube contains glass. A so-called rod-in-tube method has been proposed in which a rod is inserted, heated, and welded and integrated (hereinafter referred to as collapse).

このようなコラプスを実施するガラス母材の製造装置としては、図5に示すように、基台1上の加熱装置2に挿通させたガラス母材3の両端を、基台1上の一対の母材把持チャック5,6に把持させておき、母材把持チャック5,6側からガラス母材3に伝達する回転力によりガラス母材3を自転させながら、図に矢印Xで示すように加熱装置2をガラス母材3の軸方向に順次移動させて、ガラス母材3をその一端側から順にコラプスするものが知られている。
図5に示す製造装置の場合は、加熱装置2に隣接して、ガラス母材3を予備加熱する予熱バーナー8が装備されている。
As shown in FIG. 5, as a glass base material manufacturing apparatus that performs such collapse, both ends of the glass base material 3 inserted into the heating device 2 on the base 1 are connected to a pair of bases 1 on the base 1. Heated as indicated by an arrow X in the figure while being held by the base material gripping chucks 5 and 6 and rotating the glass base material 3 by the rotational force transmitted to the glass base material 3 from the base material gripping chucks 5 and 6 side. It is known that the apparatus 2 is sequentially moved in the axial direction of the glass base material 3 and the glass base material 3 is collapsed sequentially from one end side thereof.
In the case of the manufacturing apparatus shown in FIG. 5, a preheating burner 8 for preheating the glass base material 3 is provided adjacent to the heating apparatus 2.

このような製造装置に使用する加熱装置2としては、加熱温度の切り替えが迅速にできて、温度制御が容易なことが求められるため、誘導加熱式の加熱装置(所謂、誘導炉)が用いられることが多い。なお、誘導炉は、抵抗炉より温度勾配が急峻であるため、コラプスしやすい。また、酸水素バーナーを用いてコラプスするとガラス内にOHが入ってしまうが、誘導炉を用いるとOHが入らない。   As the heating apparatus 2 used in such a manufacturing apparatus, an induction heating type heating apparatus (so-called induction furnace) is used because it is required that the heating temperature can be quickly switched and temperature control is easy. There are many cases. Note that the induction furnace has a steeper temperature gradient than the resistance furnace, and thus is easy to collapse. Further, when collapsing with an oxyhydrogen burner, OH enters the glass, but when an induction furnace is used, OH does not enter.

図6は、上記の加熱装置2として使用される従来の誘導加熱式の加熱装置を示したものである。
この加熱装置2の構成は、下記特許文献1等に開示されたもので、ガラス母材3が挿通する装置入り口11と装置出口12が形成された炉ケース14内に、ガラス母材3が挿通する筒状の発熱体16と、該発熱体16の外周に配置されて該発熱体16を電磁誘導により発熱させる誘導コイル17と、を備えたものである。
FIG. 6 shows a conventional induction heating type heating device used as the heating device 2 described above.
The configuration of the heating device 2 is disclosed in the following Patent Document 1 and the like, and the glass base material 3 is inserted into the furnace case 14 in which the device inlet 11 and the device outlet 12 through which the glass base material 3 is inserted are formed. And a induction coil 17 disposed on the outer periphery of the heating element 16 and generating heat by electromagnetic induction.

炉ケース14は、図に矢印Xで示すように、ガラス母材3の軸方向に移動可能に上記基台1に支持される。
発熱体16は、その両端が、絶縁材18を介して、炉ケース14に支持されている。
また、発熱体16と誘導コイル17との間には、発熱体16からの放熱を抑止する断熱材19が装備されている。
また、炉ケース14内には、高温による炉内部品の酸化反応を抑止するために、不活性ガスによるパージがなされる。
The furnace case 14 is supported by the base 1 so as to be movable in the axial direction of the glass base material 3 as indicated by an arrow X in the figure.
Both ends of the heating element 16 are supported by the furnace case 14 via an insulating material 18.
Further, a heat insulating material 19 that suppresses heat radiation from the heating element 16 is provided between the heating element 16 and the induction coil 17.
The furnace case 14 is purged with an inert gas in order to suppress oxidation reactions of the in-furnace parts due to high temperatures.

特開2003−192369号公報JP 2003-192369 A

ところが、図6に示した従来の加熱装置2で加熱処理したガラス母材3は、母材表層(母材表面から400μm程度の厚さの層)における金属成分の成分分析を行うと、図7に示すように、Cu(銅)の含有率グラフg1やZn(亜鉛)の含有率グラフg2に、ピーク値p1,p2が発生していて、これらの金属粉(微粒子)の付着が発生していることが確認された。
また、実際には、上記の銅や亜鉛以外に、鉄、ニッケル、クロム、アルミニウムも母材表層に付着していることが検出される。
However, when the glass base material 3 heat-treated by the conventional heating device 2 shown in FIG. 6 is subjected to component analysis of the metal component in the base material surface layer (layer having a thickness of about 400 μm from the base material surface), FIG. As shown in the graph, the peak values p1 and p2 are generated in the Cu (copper) content graph g1 and the Zn (zinc) content graph g2, and the adhesion of these metal powders (fine particles) occurs. It was confirmed that
In practice, it is also detected that iron, nickel, chromium, and aluminum are attached to the surface layer of the base material in addition to the above copper and zinc.

これらの付着物は、そのまま残しておくと、光ファイバにおける伝送ロスを増大させる原因となり、光ファイバの製品不良を招いてしまう。
そこで、加熱装置2による加熱処理後に、ガラス母材3の表面に付着している異物をガラス母材の外周研削により除去する工程を設けると、外周研削の追加のために、製品コストが高くなるという問題が生じた。
If these deposits are left as they are, they will cause an increase in transmission loss in the optical fiber, leading to defective optical fiber products.
Therefore, if a step of removing the foreign matter adhering to the surface of the glass base material 3 by the peripheral grinding of the glass base material after the heat treatment by the heating device 2 is provided, the product cost increases due to the addition of the peripheral grinding. The problem that occurred.

本願発明者は、上記のような金属成分の付着を防止するため、上記の金属成分が付着する原因の究明を行った。
その結果、次のことが判明した。
炉ケース14内で隣接する発熱体16や絶縁材18の間は、熱膨張を許容するために、隙間を確保することが不可欠であり、図6に矢印Aで示すように、これらの部材間の隙間を通って、炉ケース14内のパージガスが、ガラス母材3側に侵入する。
そのため、炉ケース14内で発生する金属不純物質が、パージガスによりガラス母材3側に運ばれて、ガラス母材3の表面に付着する事態が発生する。
The inventor of the present application has investigated the cause of the adhesion of the metal component in order to prevent the adhesion of the metal component as described above.
As a result, the following was found.
In order to allow thermal expansion, it is indispensable to secure a gap between the heating elements 16 and the insulating material 18 adjacent in the furnace case 14, and as shown by an arrow A in FIG. The purge gas in the furnace case 14 enters the glass base material 3 side through the gap.
For this reason, the metal impurity generated in the furnace case 14 is carried to the glass base material 3 side by the purge gas, and is attached to the surface of the glass base material 3.

本発明の目的は上記課題を解消することに係り、炉ケース内の部材から発生した異物が炉ケース内のパージガスによって高純度ガラス物品に運ばれて、高純度ガラス物品に異物が付着することを防止することができ、従って、加熱処理後の高純度ガラス物品が異物の付着により製品不良になったり、あるいは、付着した異物の除去加工のために製品コストが増大することを防止することのできる高純度ガラス物品用加熱装置および高純度ガラス物品の加工方法を提供することを目的とする。   It is an object of the present invention to solve the above-mentioned problems, and that foreign matter generated from a member in the furnace case is carried to the high purity glass article by the purge gas in the furnace case, and the foreign matter adheres to the high purity glass article. Therefore, it is possible to prevent the high-purity glass article after the heat treatment from becoming defective due to the adhesion of foreign matter, or the increase in product cost due to the removal processing of the attached foreign matter. It is an object of the present invention to provide a heating device for high-purity glass articles and a method for processing high-purity glass articles.

(1)上記した課題を解決するために、本発明による高純度ガラス物品用加熱装置は、高純度ガラス物品が挿通される筒状発熱体を、その外周囲に配置された誘導コイルによる電磁誘導により発熱させて、前記高純度ガラス物品に所定の加熱処理を行う高純度ガラス物品用加熱装置であって、
前記筒状発熱体の内周側で、且つ、前記高純度ガラス物品を装置内に出入りさせる装置入り口から装置出口まで、前記高純度ガラス物品の外周囲を気密に囲う高純度カーボン製の汚染物質遮蔽筒を備えたことを特徴とする。
(1) In order to solve the above-described problems, a heating apparatus for high-purity glass articles according to the present invention is configured to electromagnetically induce a cylindrical heating element through which a high-purity glass article is inserted by an induction coil disposed on the outer periphery thereof. A high-purity glass article heating device that generates heat by performing a predetermined heat treatment on the high-purity glass article,
A pollutant made of high-purity carbon that hermetically surrounds the outer periphery of the high-purity glass article on the inner peripheral side of the cylindrical heating element and from the apparatus entrance to the apparatus exit for allowing the high-purity glass article to enter and exit the apparatus A shielding cylinder is provided.

(2)また、上記(1)に記載の高純度ガラス物品用加熱装置は、前記汚染物質遮蔽筒が、肉厚が5mm以下の円筒構造であることを特徴としても良い。   (2) Moreover, the heating apparatus for high-purity glass articles described in the above (1) may be characterized in that the contaminant shielding cylinder has a cylindrical structure with a thickness of 5 mm or less.

(3)また、上記(2)に記載の高純度ガラス物品用加熱装置は、前記汚染物質遮蔽筒の両端には、筒の全周囲から略均等に筒の軸中心に向かって不活性ガスを供給するガス供給リングを設けたことを特徴としても良い。   (3) In addition, in the heating device for high-purity glass articles described in (2) above, an inert gas is supplied from the entire periphery of the cylinder toward the axial center of the cylinder almost uniformly from both ends of the pollutant shielding cylinder. A gas supply ring for supplying may be provided.

(4)また、上記(3)に記載の高純度ガラス物品用加熱装置は、前記ガス供給リングの内側に所定の隙間を空けて円筒状のガス誘導筒を設置し、前記ガス供給リングから供給された不活性ガス流を前記ガス誘導筒と前記汚染物質遮蔽筒との間に流し、その後前記汚染物質遮蔽筒の内周面に這わせてガスを流すことを特徴としても良い。   (4) Further, in the heating device for high-purity glass articles described in (3) above, a cylindrical gas induction tube is installed inside the gas supply ring with a predetermined gap, and is supplied from the gas supply ring. The inert gas flow may be caused to flow between the gas guide cylinder and the pollutant shielding cylinder, and then the gas may be caused to flow along the inner peripheral surface of the pollutant shielding cylinder.

(5)上記した課題を解決するために、本発明による高純度ガラス物品の加工方法は、上記の(1)乃至(4)の何れか一つに記載の加熱装置を使用して高純度ガラス物品を加熱することを特徴とする。   (5) In order to solve the above-described problem, a high-purity glass article processing method according to the present invention uses a heating device according to any one of the above (1) to (4) to provide a high-purity glass. The article is heated.

本発明による高純度ガラス物品用加熱装置および高純度ガラス物品の加工方法によれば、加熱装置内に挿通させた高純度ガラス物品は、装置入り口から装置出口までの区間、その外周が汚染物質遮蔽筒によって囲われた構成になっており、装置外壁である炉ケース内の各種の部材から汚染物質遮蔽筒により遮断されているため、炉ケース内の各種の部材から発生した異物が炉ケース内のパージガスによってガラス母材に運ばれてガラス母材に異物が付着することを防止することができる。
従って、加熱処理後のガラス母材が異物の付着により製品不良になるという不都合を防止でき、高品位の高純度ガラス物品を高い歩留まりで生産することができる。
また、加熱処理時に高純度ガラス物品に異物が付着することを防止できるため、付着した異物の除去加工が不要で、異物の除去加工のために製品コストが増大するといった不都合の発生を防止することができ、製品コストの低減を図ることもできる。
According to the heating apparatus for high-purity glass articles and the processing method for high-purity glass articles according to the present invention, the high-purity glass article inserted into the heating apparatus has a section from the apparatus entrance to the apparatus exit, and its outer periphery is shielded from contaminants. Since it is surrounded by a cylinder and is blocked by various contaminant shielding cylinders from various members in the furnace case, which is the outer wall of the device, foreign matter generated from various members in the furnace case It is possible to prevent foreign substances from adhering to the glass base material by being carried to the glass base material by the purge gas.
Accordingly, it is possible to prevent the disadvantage that the glass base material after the heat treatment becomes defective due to the adhesion of foreign matters, and it is possible to produce high-quality high-purity glass articles with a high yield.
In addition, since it is possible to prevent foreign matter from adhering to the high-purity glass article during heat treatment, it is not necessary to remove the attached foreign matter and prevent the occurrence of inconveniences such as increased product costs due to the foreign matter removal processing. It is possible to reduce the product cost.

以下、本発明に係る高純度ガラス物品用加熱装置および高純度ガラス物品の加工方法の好適な実施の形態について、図面を参照して詳細に説明する。
図1は本発明に係る高純度ガラス物品用加熱装置の一実施の形態となる光ファイバ用ガラス母材の加熱装置の概略構成図、図2は図1に示した加熱装置における汚染物質遮蔽筒の端部に装着されたガス供給リング及びガス誘導筒によるガス流の説明図、図3は図1に示した加熱装置における汚染物質遮蔽筒の端部に装着されたガス供給リングによるガス流の説明図、図4は図1の加熱装置で加熱処理されたガラス母材の表層のCu及びZnに関する成分分析結果を示すグラフである。
Hereinafter, preferred embodiments of a heating device for a high-purity glass article and a method for processing a high-purity glass article according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a heating device for a glass preform for an optical fiber, which is an embodiment of a heating device for high-purity glass articles according to the present invention, and FIG. 2 is a pollutant shielding cylinder in the heating device shown in FIG. FIG. 3 is an explanatory diagram of the gas flow by the gas supply ring and the gas induction cylinder attached to the end of the gas flow. FIG. 3 shows the gas flow by the gas supply ring attached to the end of the pollutant shielding cylinder in the heating apparatus shown in FIG. FIG. 4 is an explanatory diagram and FIG. 4 is a graph showing the component analysis results regarding Cu and Zn in the surface layer of the glass base material heat-treated by the heating apparatus of FIG.

図1に示した加熱装置31は、所謂ロッドインチューブ法においてガラス管と該ガラス間に挿通させたガラスロッドとを加熱して溶着一体化するコラプス処理に好適な誘導炉であるが、コラプス処理以外にも、例えば、延伸や線引などの加熱用途にも利用できるものである。   A heating device 31 shown in FIG. 1 is an induction furnace suitable for a collapse process in which a glass tube and a glass rod inserted between the glasses are heated and integrated in a so-called rod-in-tube method. In addition, for example, it can be used for heating applications such as stretching and drawing.

加熱装置31は、高純度ガラス物品であるガラス母材3が挿通する装置入り口11と装置出口12が形成された装置外壁としての炉ケース14内に、ガラス母材3が挿通する筒状の発熱体16と、該発熱体16の外周に配置されて該発熱体16を電磁誘導により発熱させる誘導コイル17と、を備えたものである。   The heating device 31 is a cylindrical heat generating member through which the glass base material 3 is inserted into a furnace case 14 as an outer wall of the device in which the device inlet 11 and the device outlet 12 through which the glass base material 3 which is a high-purity glass article is inserted. A body 16 and an induction coil 17 disposed on the outer periphery of the heating element 16 and generating heat by electromagnetic induction are provided.

炉ケース14は、図に矢印Xで示すように、ガラス母材3の軸方向に移動可能に支持される。
発熱体16は、その両端が、絶縁材18を介して、炉ケース14に支持されている。
また、発熱体16と誘導コイル17との間には、発熱体16からの放熱を抑止する断熱材19が装備されている。
また、炉ケース14内には、高温による炉内部品の酸化反応を抑止するために、不活性ガスによるパージがなされる。
As indicated by an arrow X in the figure, the furnace case 14 is supported so as to be movable in the axial direction of the glass base material 3.
Both ends of the heating element 16 are supported by the furnace case 14 via an insulating material 18.
Further, a heat insulating material 19 that suppresses heat radiation from the heating element 16 is provided between the heating element 16 and the induction coil 17.
The furnace case 14 is purged with an inert gas in order to suppress oxidation reactions of the in-furnace parts due to high temperatures.

本実施の形態の加熱装置31の場合、筒状発熱体16の内周側で、且つ、ガラス母材3を装置内に出入りさせる装置入り口11から装置出口12まで、ガラス母材3の外周囲を気密に囲う高純度カーボン製の汚染物質遮蔽筒33を備えている。   In the case of the heating device 31 of the present embodiment, the outer periphery of the glass base material 3 from the device inlet 11 to the device outlet 12 through which the glass base material 3 enters and exits the device on the inner peripheral side of the cylindrical heating element 16 A high-purity carbon-made pollutant shielding cylinder 33 is provided.

汚染物質遮蔽筒33は、肉厚が5mm以下の円筒構造としている。
また、装置入り口11及び装置出口12に位置する汚染物質遮蔽筒33の両端には、図2及び図3に示すように、汚染物質遮蔽筒33の全周囲から略均等に汚染物質遮蔽筒33の軸中心に向かって不活性ガスを供給するガス供給リング35を設けている。
The pollutant shielding cylinder 33 has a cylindrical structure with a thickness of 5 mm or less.
Further, as shown in FIGS. 2 and 3, the pollutant shielding cylinder 33 is substantially evenly spaced from the entire periphery of the contaminant shielding cylinder 33 at both ends of the contaminant shielding cylinder 33 located at the apparatus inlet 11 and the apparatus outlet 12. A gas supply ring 35 for supplying an inert gas toward the axis center is provided.

更に、図2に示すように、ガス供給リング35の内側に所定の隙間を空けて円筒状のガス誘導筒37が設置されている。このガス誘導筒37により、ガス供給リング35から供給された不活性ガス流をガス誘導筒37と汚染物質遮蔽筒33との間に流し、その後前記汚染物質遮蔽筒33の内周面に這わせてガスを流すようになっている。   Further, as shown in FIG. 2, a cylindrical gas guide cylinder 37 is installed inside the gas supply ring 35 with a predetermined gap. By this gas guide tube 37, the inert gas flow supplied from the gas supply ring 35 is caused to flow between the gas guide tube 37 and the pollutant shielding tube 33, and then is caused to flow over the inner peripheral surface of the pollutant shield tube 33. Gas is flowing.

ガス供給リング35は、図3に示すように、汚染物質遮蔽筒33の開口端を周回する中空リング35aの内周に、周方向に等間隔で複数のガス噴射穴35bを形成した構造で、外部のガス供給路38から中空リング35a内に供給される不活性ガスを、図3に矢印Cで示すように、ガス噴射穴35bから汚染物質遮蔽筒33の軸中心に向かって噴射する。
ガス噴射穴35bは、不活性ガスの供給が汚染物質遮蔽筒33の周方向のどの位置でも均等になるように、配列数や、穴相互の間隔が設定されている。
具体例としては、ガス噴射穴35bは、中空リング35aの内周に、周方向に1列に形成される直径2mmの穴で、穴相互の離間間隔は例えば30度間隔で、合計12個形成される。
As shown in FIG. 3, the gas supply ring 35 has a structure in which a plurality of gas injection holes 35 b are formed at equal intervals in the circumferential direction on the inner periphery of the hollow ring 35 a that circulates around the open end of the contaminant shielding cylinder 33. As shown by an arrow C in FIG. 3, the inert gas supplied from the external gas supply path 38 into the hollow ring 35 a is injected from the gas injection hole 35 b toward the axial center of the contaminant shielding cylinder 33.
The gas injection holes 35b are set in the number of arrays and the interval between the holes so that the supply of the inert gas is uniform at any position in the circumferential direction of the contaminant shielding cylinder 33.
As a specific example, the gas injection holes 35b are holes having a diameter of 2 mm formed in a row in the circumferential direction on the inner periphery of the hollow ring 35a. Is done.

ガス誘導筒37は、図1及び図2に示すように、汚染物質遮蔽筒33の内側に0.5mm程度の隙間を空けて設置される筒部37aと、この筒部37aの端部から径方向外方に延出して中空リング35aの外端面に気密に接触する封止フランジ部37bとを備えたもので、図2に矢印Dで示すように、ガス供給リング35のガス噴射穴35bから噴射された不活性ガス流を、汚染物質遮蔽筒33の内周面に沿ったガス流に方向転換する。
以上のガス誘導筒37は、カーボン、セラミック、石英のいずれかの材質で形成される。また、ガス誘導筒37の筒部37aの軸方向の長さは、50〜100mm程度に設定されている。
As shown in FIGS. 1 and 2, the gas guiding cylinder 37 has a cylindrical portion 37a installed with a gap of about 0.5 mm inside the pollutant shielding cylinder 33, and a diameter from the end of the cylindrical portion 37a. 2 is provided with a sealing flange portion 37b extending outward in the direction and in airtight contact with the outer end surface of the hollow ring 35a. As shown by an arrow D in FIG. The injected inert gas flow is redirected to a gas flow along the inner peripheral surface of the pollutant shielding cylinder 33.
The above gas guide cylinder 37 is formed of any material of carbon, ceramic, and quartz. The axial length of the cylindrical portion 37a of the gas guiding cylinder 37 is set to about 50 to 100 mm.

ガス供給リング35により汚染物質遮蔽筒33の両端の開口部に供給された不活性ガス流は、ガス誘導筒37によって汚染物質遮蔽筒33の内周面に沿うガス流に方向転換され、図1に実線の矢印Bで示したように、汚染物質遮蔽筒33の中間部まで流れた後、装置入り口11及び装置出口12から外部に排気される。
なお、図1では、ガス供給リング35により汚染物質遮蔽筒33の両端の開口部に供給された不活性ガス流は、汚染物質遮蔽筒33の中間部で対向流と衝突して折り返すように示しているが、衝突せずに先方の装置入り口11及び装置出口12から外部に排気される場合もあると考えられる。
The inert gas flow supplied to the openings at both ends of the pollutant shielding cylinder 33 by the gas supply ring 35 is redirected by the gas guiding cylinder 37 to a gas flow along the inner peripheral surface of the pollutant shielding cylinder 33, and FIG. As shown by the solid line arrow B, after flowing to the middle part of the pollutant shielding cylinder 33, it is exhausted to the outside from the apparatus inlet 11 and the apparatus outlet 12.
In FIG. 1, the inert gas flow supplied to the openings at both ends of the pollutant shielding cylinder 33 by the gas supply ring 35 is shown to collide with the counterflow at the middle portion of the pollutant shielding cylinder 33 and turn back. However, it is considered that there is a case where the air is exhausted to the outside from the previous apparatus inlet 11 and apparatus outlet 12 without colliding.

一方、炉ケース14内のパージ用に炉ケース14に供給される不活性ガスは、図1に破線の矢印Eで示すように、炉ケース14内の外周から内周部に向かって流れ、発熱体16や絶縁材18の間の隙間を通ってガラス母材3側に向かうが、ガラス母材3側とは汚染物質遮蔽筒33により遮断されているため、汚染物質遮蔽筒33の外周に沿って装置入り口11及び装置出口12側に流れ、ガス供給リング35と炉ケース14との間に確保された不図示の排気口から外部に排気される。   On the other hand, the inert gas supplied to the furnace case 14 for purging in the furnace case 14 flows from the outer periphery to the inner periphery of the furnace case 14 as indicated by the broken arrow E in FIG. Although it goes to the glass base material 3 side through the gap between the body 16 and the insulating material 18, the glass base material 3 side is cut off by the pollutant shielding cylinder 33, and therefore along the outer periphery of the pollutant shielding pipe 33. Then, the gas flows to the apparatus inlet 11 and the apparatus outlet 12 side, and is exhausted to the outside from an exhaust port (not shown) secured between the gas supply ring 35 and the furnace case 14.

高純度カーボン製の汚染物質遮蔽筒33は、酸素と接触していると、約400℃以上で酸化消耗が始まる。しかし、上記実施の形態のように、その表面に不活性ガスが流れることによって、酸素との接触が回避されると、約3000℃まで酸化消耗を防止することが可能になる。従って、汚染物質遮蔽筒33の酸化消耗による劣化を抑えて、汚染物質遮蔽筒33の交換頻度の低減により、保守コストの低減、装置稼働率の向上を図ることができる。
また、汚染物質遮蔽筒33は高純度カーボン製とは言え、1ppm程度の金属不純物が含まれている。しかし、上記のように、ガス供給リング35及びガス誘導筒37により供給される不活性ガスにより汚染物質遮蔽筒33の酸化消耗による劣化が抑えられることで、汚染物質遮蔽筒33自身が含有する金属不純物の放出が防止されて、ガラス母材3の汚染防止をより徹底することができる。
なお、補足説明すると、ガス供給リング35やガス誘導筒37は比較的温度の低い位置に配置されているので、これらの部品からは、異物は発生しない。
When the contaminant shielding cylinder 33 made of high-purity carbon is in contact with oxygen, the exhaustion of oxidation starts at about 400 ° C. or higher. However, as in the above-described embodiment, when contact with oxygen is avoided by flowing an inert gas on the surface, oxidation exhaustion can be prevented up to about 3000 ° C. Therefore, it is possible to suppress deterioration due to oxidation consumption of the pollutant shielding cylinder 33 and reduce the replacement frequency of the pollutant shielding cylinder 33, thereby reducing the maintenance cost and improving the apparatus operating rate.
Moreover, although the pollutant shielding cylinder 33 is made of high-purity carbon, it contains about 1 ppm of metal impurities. However, as described above, the inert gas supplied by the gas supply ring 35 and the gas guide cylinder 37 suppresses the deterioration of the pollutant shielding cylinder 33 due to oxidation consumption, so that the metal contained in the pollutant shielding cylinder 33 itself is contained. The emission of impurities is prevented, and the glass base material 3 can be more thoroughly prevented from being contaminated.
In addition, since it explains supplementarily, since the gas supply ring 35 and the gas induction cylinder 37 are arrange | positioned in the position where temperature is comparatively low, a foreign material does not generate | occur | produce from these components.

炉ケース14内のパージ用の不活性ガス、及びガス供給リング35により汚染物質遮蔽筒33内に供給する不活性ガスには、通常は、アルゴンガス等と比較して価格が安いことから、窒素ガスが使われる。
但し、高温での窒素ガスのシアン化を防止するため、不活性ガスを供給する環境温度が2200℃を越える場合には、窒素ガスの代わりに、アルゴンガスを使用すると良い。
ガス供給リング35からの不活性ガス供給量は、例えば、毎分20リットル程度として、ガス誘導筒37による汚染物質遮蔽筒33内周面上の不活性ガス流の流速を2〜4m/s程度にすると、汚染物質遮蔽筒33内の炉中心部における酸素濃度を20〜50ppm程度の良好な状態に維持することができる。
Since the inert gas for purging in the furnace case 14 and the inert gas supplied into the pollutant shielding cylinder 33 by the gas supply ring 35 are usually cheaper than argon gas, nitrogen is used. Gas is used.
However, in order to prevent the cyanation of nitrogen gas at a high temperature, argon gas may be used instead of nitrogen gas when the ambient temperature for supplying the inert gas exceeds 2200 ° C.
The amount of inert gas supplied from the gas supply ring 35 is, for example, about 20 liters per minute, and the flow rate of the inert gas flow on the inner peripheral surface of the contaminant shielding cylinder 33 by the gas guiding cylinder 37 is about 2 to 4 m / s. Then, the oxygen concentration at the furnace center in the pollutant shielding cylinder 33 can be maintained in a good state of about 20 to 50 ppm.

以上に説明した本実施の形態の加熱装置31によれば、装置内に挿通させた高純度ガラス物品としての光ファイバ用ガラス母材3は、装置入り口11から装置出口12までの区間、その外周が汚染物質遮蔽筒33によって囲われた構成になっており、装置外壁である炉ケース14内の各種の部材から汚染物質遮蔽筒33により遮断されているため、炉ケース14内の各種の部材から発生した異物が炉ケース14内のパージガスによってガラス母材3に運ばれてガラス母材に異物が付着することを防止することができる。   According to the heating device 31 of the present embodiment described above, the optical fiber glass base material 3 as a high-purity glass article inserted into the device is a section from the device inlet 11 to the device outlet 12, and its outer periphery. Is surrounded by the pollutant shielding cylinder 33 and is blocked by the pollutant shielding cylinder 33 from the various members in the furnace case 14 which is the outer wall of the apparatus. It is possible to prevent the generated foreign matter from being carried to the glass base material 3 by the purge gas in the furnace case 14 and attaching the foreign matter to the glass base material.

従って、加熱処理後のガラス母材3が異物の付着により製品不良になるという不都合を防止でき、高品位の光ファイバ用ガラス母材を高い歩留まりで生産することができる。
また、加熱処理時に光ファイバ用ガラス母材に異物が付着することを防止できるため、付着した異物の除去加工が不要で、異物の除去加工のために製品コストが増大するといった不都合の発生を防止することができ、製品コストの低減を図ることもできる。
Accordingly, it is possible to prevent the disadvantage that the glass base material 3 after the heat treatment becomes a product defect due to adhesion of foreign matters, and it is possible to produce a high-quality optical fiber glass base material with a high yield.
In addition, foreign matter can be prevented from adhering to the optical fiber glass preform during the heat treatment, so there is no need to remove the adhering foreign matter and prevent the occurrence of inconveniences such as increased product costs due to the foreign matter removal processing. It is possible to reduce the product cost.

上記の異物付着防止効果を確認するため、本願発明者等は、上記実施の形態の加熱装置31で加熱処理したガラス母材3について、母材表層における金属成分の成分分析を行うと、図4に示すように、Cu(銅)の含有率グラフg1やZn(亜鉛)の含有率グラフg2に、図7に示したようなピーク値は一切現れず、これらの金属粉(微粒子)の付着が防止されたことが確認できた。
更に、上記の銅や亜鉛以外についても、母材表層における金属成分の成分分析を行って、上記実施の形態による対策後の加熱処理と、対策前(従来の加熱装置)の加熱処理とで、母材表層における各種金属成分による汚染濃度の比較を行った。
次の表1は、その測定結果である。
In order to confirm the foreign matter adhesion preventing effect, the inventors of the present application conducted a component analysis of the metal component in the surface layer of the base material of the glass base material 3 heat-treated with the heating device 31 of the above-described embodiment. As shown in FIG. 7, the peak values as shown in FIG. 7 do not appear in the Cu (copper) content graph g1 or the Zn (zinc) content graph g2, and the adhesion of these metal powders (fine particles) does not occur. It was confirmed that it was prevented.
Furthermore, in addition to the above copper and zinc, the component analysis of the metal component in the base material surface layer is performed, and the heat treatment after the countermeasure according to the above embodiment and the heat treatment before the countermeasure (conventional heating device), The contamination concentration by various metal components on the base material surface layer was compared.
The following Table 1 shows the measurement results.

Figure 2009132555
Figure 2009132555

表1に示すように、銅や亜鉛以外の鉄、ニッケル、クロム、アルミニウム等においても、上記実施の形態により、汚染が低減されることが確認でき、上記実施の形態の有用性を確認することができた。   As shown in Table 1, even in iron, nickel, chromium, aluminum, etc. other than copper and zinc, it can be confirmed that the contamination is reduced by the above embodiment, and the usefulness of the above embodiment is confirmed. I was able to.

また、上記実施の形態では、汚染物質遮蔽筒33は肉厚が5mm以下の高純度カーボン製の円筒構造で、この程度の肉厚ならば、汚染物質遮蔽筒33そのものの誘導加熱の影響が少なく、加熱による汚染物質遮蔽筒33の劣化を防止することができる。
また、5mm以下という汚染物質遮蔽筒33の肉厚の場合には、汚染物質遮蔽筒33の熱容量自体を小さく抑えることができるため、ガラス母材3に伝えるべき加熱エネルギーに与える影響は少なく、発熱体16による加熱効率の低下を抑止することもできる。
Further, in the above embodiment, the pollutant shielding cylinder 33 has a cylindrical structure made of high-purity carbon having a thickness of 5 mm or less. With this thickness, the influence of induction heating of the pollutant shielding cylinder 33 itself is small. Deterioration of the pollutant shielding cylinder 33 due to heating can be prevented.
Further, in the case of the thickness of the pollutant shielding cylinder 33 of 5 mm or less, the heat capacity itself of the pollutant shielding cylinder 33 can be kept small, so that the heating energy to be transmitted to the glass base material 3 has little influence and heat generation. A decrease in heating efficiency due to the body 16 can also be suppressed.

また、本実施の形態の加熱装置31では、汚染物質遮蔽筒33の内周面は、ガス供給リング35及びガス誘導筒37によって汚染物質遮蔽筒33内に供給される不活性ガスによって覆われ、また、汚染物質遮蔽筒33の外周面も、炉ケース14内のパージに使用される不活性ガスに覆われる。即ち、汚染物質遮蔽筒33の内周面及び外周面のそれぞれが、不活性ガスによって覆われて、汚染物質遮蔽筒33の表面への酸素の接触が回避されるため、汚染物質遮蔽筒33の酸化消耗を良好に防止でき、汚染物質遮蔽筒33の酸化消耗による劣化を抑えて、汚染物質遮蔽筒33の交換頻度の低減により、保守コストの低減、装置稼働率の向上を図ることもできる。
また、前述したように、汚染物質遮蔽筒33の酸化消耗による劣化の抑制により、汚染物質遮蔽筒33自身が含有する金属不純物の放出が防止されて、ガラス母材3の汚染防止をより徹底することができる。
Further, in the heating device 31 of the present embodiment, the inner peripheral surface of the pollutant shielding cylinder 33 is covered with an inert gas supplied into the pollutant shielding cylinder 33 by the gas supply ring 35 and the gas guiding cylinder 37, Further, the outer peripheral surface of the pollutant shielding cylinder 33 is also covered with an inert gas used for purging in the furnace case 14. That is, each of the inner peripheral surface and the outer peripheral surface of the pollutant shielding cylinder 33 is covered with an inert gas, and contact of oxygen with the surface of the pollutant shielding cylinder 33 is avoided. Oxidation consumption can be satisfactorily prevented, deterioration due to oxidation consumption of the pollutant shielding cylinder 33 can be suppressed, and the replacement frequency of the pollutant shielding cylinder 33 can be reduced, thereby reducing maintenance costs and improving the apparatus operating rate.
Further, as described above, the suppression of deterioration due to oxidative consumption of the pollutant shielding cylinder 33 prevents the release of metal impurities contained in the pollutant shielding cylinder 33 itself, thereby further preventing the contamination of the glass base material 3. be able to.

なお、本発明に係る高純度ガラス物品用加熱装置において、汚染物質遮蔽筒の両端部の構造は、上記実施の形態に限らない。
例えば、汚染物質遮蔽筒33の両端部には、上記実施の形態で示したガス供給リング35のみを装備し、ガス誘導筒37を省略することにより、構成部品の削減による装置コストの低減を図ることができる。
但し、このように汚染物質遮蔽筒33の両端部の不活性ガス供給をガス供給リング35のみで行うようにした場合には、汚染物質遮蔽筒33の内周面の酸素との接触を回避する性能は、上記実施の形態よりも低下したものになり、酸化消耗による汚染物質遮蔽筒33の劣化は上記実施の形態よりも速まり、汚染物質遮蔽筒33の交換頻度が上記実施の形態よりも高くなる。
In the heating device for high-purity glass articles according to the present invention, the structure of both ends of the contaminant shielding cylinder is not limited to the above embodiment.
For example, both ends of the pollutant shielding cylinder 33 are equipped with only the gas supply ring 35 shown in the above embodiment, and the gas guiding cylinder 37 is omitted, thereby reducing the apparatus cost by reducing the number of components. be able to.
However, when the inert gas supply at both ends of the pollutant shielding cylinder 33 is performed only by the gas supply ring 35 as described above, contact with oxygen on the inner peripheral surface of the pollutant shielding cylinder 33 is avoided. The performance is lower than that in the above embodiment, the deterioration of the pollutant shielding cylinder 33 due to oxidation consumption is faster than in the above embodiment, and the replacement frequency of the pollutant shielding cylinder 33 is higher than that in the above embodiment. Get higher.

また、本発明の高純度ガラス物品用加熱装置において、炉ケース14内の各種の部材から発生した異物が炉ケース14内のパージガスによってガラス母材3に運ばれてガラス母材に異物が付着することを防止すると効果のみが必要な場合には、上記実施の形態に示したガス供給リング35及びガス誘導筒37の双方を省略した構成とすることもできる。
但し、ガス供給リング35及びガス誘導筒37の双方を省略した場合には、ガス供給リング35のみを装備した場合よりも汚染物質遮蔽筒33の内周部が酸化消耗により劣化し易くなり、更に、汚染物質遮蔽筒33の交換頻度が高くなる。
Moreover, in the heating apparatus for high-purity glass articles of the present invention, the foreign matter generated from various members in the furnace case 14 is carried to the glass base material 3 by the purge gas in the furnace case 14 and the foreign matter adheres to the glass base material. If only an effect is required to prevent this, both the gas supply ring 35 and the gas guide tube 37 described in the above embodiment may be omitted.
However, when both the gas supply ring 35 and the gas guide cylinder 37 are omitted, the inner peripheral portion of the pollutant shielding cylinder 33 is more easily deteriorated due to oxidation consumption than the case where only the gas supply ring 35 is provided. The frequency of exchanging the pollutant shielding cylinder 33 is increased.

本願発明者等による測定試験では、上記実施の形態のように汚染物質遮蔽筒33の両端にガス供給リング35とガス誘導筒37とを装備した構成では、汚染物質遮蔽筒33内の炉中心部における酸素濃度は、20〜50ppmに保持することができ、汚染物質遮蔽筒33を交換せずに、1日稼働を30回以上繰り返すことができた。
ここに、上記の1日稼働とは、発熱体16を2000℃前後まで昇温させた状態で3〜5時間保持後、降温させる加熱処理を、1日に3〜4回繰り返し実施する稼働条件を意味している。
In the measurement test by the inventors of the present application, in the configuration in which the gas supply ring 35 and the gas guide tube 37 are provided at both ends of the pollutant shielding cylinder 33 as in the above embodiment, the center of the furnace in the pollutant shielding cylinder 33 is used. The oxygen concentration in can was kept at 20-50 ppm, and the daily operation could be repeated 30 times or more without replacing the pollutant shielding cylinder 33.
Here, the above-mentioned one-day operation is an operation condition in which the heat treatment is repeatedly performed 3 to 4 times a day after the heating element 16 is heated to about 2000 ° C. and held for 3 to 5 hours. Means.

これに対して、汚染物質遮蔽筒33の両端にガス供給リング35のみを装備した構成の場合には、汚染物質遮蔽筒33内の炉中心部における酸素濃度が400〜5000ppmとなり、1日稼働を10回程度繰り返すと、汚染物質遮蔽筒33の交換が必要になることが判明した。これにより、ガス誘導筒37における作用効果が顕著であることが判明した。   On the other hand, in the case where only the gas supply ring 35 is provided at both ends of the pollutant shielding cylinder 33, the oxygen concentration in the center of the furnace in the pollutant shielding cylinder 33 is 400 to 5000 ppm, and the operation is performed for one day. It was found that after repeating about 10 times, it is necessary to replace the pollutant shielding cylinder 33. As a result, it has been found that the effect of the gas guide tube 37 is remarkable.

また、汚染物質遮蔽筒33の両端に、ガス供給リング35及びガス誘導筒37のいずれも装備していない場合には、汚染物質遮蔽筒33内の炉中心部における酸素濃度が大気中と同等の18%程度となり、1日稼働毎に、汚染物質遮蔽筒33の交換が必要になることが判明した。これにより、ガス供給リング35についても、作用効果が顕著であることが判明した。   Further, when neither the gas supply ring 35 nor the gas guide tube 37 is provided at both ends of the pollutant shielding cylinder 33, the oxygen concentration in the furnace center in the pollutant shielding cylinder 33 is equal to that in the atmosphere. It became about 18%, and it turned out that it is necessary to replace the pollutant shielding cylinder 33 every day of operation. Thus, it has been found that the effect of the gas supply ring 35 is also remarkable.

なお、本発明に係る加熱装置により加熱処理される物品は、上記実施の形態に示した光ファイバ用ガラス母材に限らない。異物の付着防止が重要な用件となる各種の高純度ガラス物品を加熱対象とすることができる。   In addition, the articles | goods heat-processed with the heating apparatus which concerns on this invention are not restricted to the glass preform | base_material for optical fibers shown in the said embodiment. Various high-purity glass articles that are important requirements for preventing the adhesion of foreign matters can be heated.

本発明に係る高純度ガラス物品用加熱装置の一実施の形態となる光ファイバ用ガラス母材の加熱装置の概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the heating apparatus of the glass preform for optical fibers used as one embodiment of the heating apparatus for high-purity glass articles according to the present invention. 図1に示した加熱装置における汚染物質遮蔽筒の端部に装着されたガス供給リング及びガス誘導筒によるガス流の説明図である。It is explanatory drawing of the gas flow by the gas supply ring and gas induction cylinder with which the edge part of the contaminant shielding cylinder in the heating apparatus shown in FIG. 1 was mounted | worn. 図1に示した加熱装置における汚染物質遮蔽筒の端部に装着されたガス供給リングによるガス流の説明図である。It is explanatory drawing of the gas flow by the gas supply ring with which the edge part of the contaminant shielding cylinder in the heating apparatus shown in FIG. 1 was mounted | worn. 図1の加熱装置で加熱処理されたガラス母材の表面のCu及びZnに関する成分分析結果を示すグラフである。It is a graph which shows the component analysis result regarding Cu and Zn of the surface of the glass base material heat-processed with the heating apparatus of FIG. 従来のガラス母材の製造装置の概略構成の説明図である。It is explanatory drawing of schematic structure of the manufacturing apparatus of the conventional glass base material. 図5の製造装置に使用される加熱装置の概略構成図である。It is a schematic block diagram of the heating apparatus used for the manufacturing apparatus of FIG. 図6の加熱装置で加熱処理されたガラス母材の表面のCu及びZnに関する成分分析結果を示すグラフである。It is a graph which shows the component analysis result regarding Cu and Zn of the surface of the glass base material heat-processed with the heating apparatus of FIG.

符号の説明Explanation of symbols

3 光ファイバ用ガラス母材(高純度ガラス物品)
11 装置入り口
12 装置出口
14 炉ケース
16 発熱体
17 誘導コイル
18 絶縁材
19 断熱材
31 加熱装置(誘導炉)
33 汚染物質遮蔽筒
35 ガス供給リング
37 ガス誘導筒
3 Glass base material for optical fiber (high-purity glass article)
DESCRIPTION OF SYMBOLS 11 Apparatus inlet 12 Apparatus outlet 14 Furnace case 16 Heating element 17 Induction coil 18 Insulation material 19 Heat insulating material 31 Heating apparatus (induction furnace)
33 Pollutant shielding cylinder 35 Gas supply ring 37 Gas induction cylinder

Claims (5)

高純度ガラス物品が挿通される筒状発熱体を、その外周囲に配置された誘導コイルによる電磁誘導により発熱させて、前記高純度ガラス物品に所定の加熱処理を行う高純度ガラス物品用加熱装置であって、
前記筒状発熱体の内周側で、且つ、前記高純度ガラス物品を装置内に出入りさせる装置入り口から装置出口まで、前記高純度ガラス物品の外周囲を気密に囲う高純度カーボン製の汚染物質遮蔽筒を備えたことを特徴とする高純度ガラス物品用加熱装置。
A heating device for high-purity glass articles that heats a cylindrical heating element through which a high-purity glass article is inserted by electromagnetic induction by an induction coil arranged on the outer periphery of the cylindrical heating element and performs a predetermined heat treatment on the high-purity glass article Because
A pollutant made of high-purity carbon that hermetically surrounds the outer periphery of the high-purity glass article on the inner peripheral side of the cylindrical heating element and from the apparatus entrance to the apparatus exit for allowing the high-purity glass article to enter and exit the apparatus A heating apparatus for high-purity glass articles, comprising a shielding cylinder.
前記汚染物質遮蔽筒が、肉厚が5mm以下の円筒構造であることを特徴とする請求項1に記載の高純度ガラス物品用加熱装置。   The heating apparatus for high-purity glass articles according to claim 1, wherein the pollutant shielding cylinder has a cylindrical structure with a wall thickness of 5 mm or less. 前記汚染物質遮蔽筒の両端には、筒の全周囲から略均等に筒の軸中心に向かって不活性ガスを供給するガス供給リングを設けたことを特徴とする請求項1、又は請求項2に記載の高純度ガラス物品用加熱装置。   3. A gas supply ring for supplying an inert gas from the entire circumference of the cylinder toward the axial center of the cylinder is provided at both ends of the pollutant shielding cylinder. The heating apparatus for high-purity glass articles described in 1. 前記ガス供給リングの内側に所定の隙間を空けて円筒状のガス誘導筒を設置し、前記ガス供給リングから供給された不活性ガス流を前記ガス誘導筒と前記汚染物質遮蔽筒との間に流し、その後前記汚染物質遮蔽筒の内周面に這わせてガスを流すことを特徴とする請求項3に記載の高純度ガラス物品用加熱装置。   A cylindrical gas guide tube is installed inside the gas supply ring with a predetermined gap, and an inert gas flow supplied from the gas supply ring is placed between the gas guide tube and the contaminant shielding tube. The heating apparatus for high-purity glass articles according to claim 3, wherein the gas is allowed to flow, and then the gas is caused to flow over the inner peripheral surface of the pollutant shielding cylinder. 上記請求項1乃至請求項4の何れか一つに記載の加熱装置を使用して高純度ガラス物品を加熱することを特徴とする高純度ガラス物品の加工方法。   A method for processing a high-purity glass article, comprising heating the high-purity glass article using the heating device according to any one of claims 1 to 4.
JP2007309438A 2007-11-29 2007-11-29 Heating apparatus for high-purity glass article and method for processing high-purity glass article Active JP5018432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007309438A JP5018432B2 (en) 2007-11-29 2007-11-29 Heating apparatus for high-purity glass article and method for processing high-purity glass article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007309438A JP5018432B2 (en) 2007-11-29 2007-11-29 Heating apparatus for high-purity glass article and method for processing high-purity glass article

Publications (2)

Publication Number Publication Date
JP2009132555A true JP2009132555A (en) 2009-06-18
JP5018432B2 JP5018432B2 (en) 2012-09-05

Family

ID=40864839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007309438A Active JP5018432B2 (en) 2007-11-29 2007-11-29 Heating apparatus for high-purity glass article and method for processing high-purity glass article

Country Status (1)

Country Link
JP (1) JP5018432B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037509A (en) * 2018-09-03 2020-03-12 ドラカ・コムテツク・ベー・ベー Method, device and system for heating elongated silica cylinder used for manufacturing optical fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027991A (en) * 2004-07-21 2006-02-02 Sumitomo Electric Ind Ltd Method for heating glass body
JP2007131474A (en) * 2005-11-09 2007-05-31 Sumitomo Electric Ind Ltd Heating furnace and method for heating workpiece

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027991A (en) * 2004-07-21 2006-02-02 Sumitomo Electric Ind Ltd Method for heating glass body
JP2007131474A (en) * 2005-11-09 2007-05-31 Sumitomo Electric Ind Ltd Heating furnace and method for heating workpiece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037509A (en) * 2018-09-03 2020-03-12 ドラカ・コムテツク・ベー・ベー Method, device and system for heating elongated silica cylinder used for manufacturing optical fiber
JP7398224B2 (en) 2018-09-03 2023-12-14 ドラカ・コムテツク・ベー・ベー Method, heating device and heating system for heating stretched silica cylinders used in the production of optical fibers

Also Published As

Publication number Publication date
JP5018432B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
US8134100B2 (en) Heat processing furnace and method of manufacturing the same
EP1181255B1 (en) Method and induction furnace for drawing large diameter preforms to optical fibres
JP5023016B2 (en) Optical fiber manufacturing apparatus and drawing furnace sealing method
TWI445090B (en) Longitudinal heat treatment device and heat treatment method
US20080073334A1 (en) Heat-processing furnace and manufacuring method thereof
JPH0248500B2 (en)
JP3785782B2 (en) Glass rod heating furnace and glass rod drawing method
JP5018432B2 (en) Heating apparatus for high-purity glass article and method for processing high-purity glass article
JP5718617B2 (en) Silicon single crystal manufacturing apparatus, silicon single crystal manufacturing method, and induction heating coil processing method
JP2012136761A (en) Vacuum deposition device
JP2002013031A (en) Method for graphitizing carbon material and apparatus therefor
JP2009526732A (en) A heater having a plurality of high temperature zones, a melting furnace for drawing an optical fiber from a preform of an optical fiber having the heater, and a method of drawing an optical fiber using the melting furnace
KR0153584B1 (en) Furnace system equipped with protected combustion nozzle in fabrication of semiconductor device
JP2013060321A (en) Quartz burner and method of producing glass preform for optical fiber
KR20040076775A (en) Method and apparatus for efficient dehydration in mcvd process
JPH04240604A (en) Optical fiber drawing furnace
JP2005072468A (en) Heat treatment apparatus of semiconductor wafer
KR100746793B1 (en) Apparatus for preventing furnace element from destructive oxidation and method thereof
JP7276190B2 (en) Manufacturing method of silicon single crystal
JP4581844B2 (en) Manufacturing method of glass base material
WO2007017977A1 (en) High-frequency induction thermal plasma torch and method for synthesizing solid material
JP4973440B2 (en) Glass article heating method and induction furnace
JP4019255B2 (en) Glass article processing method and processing apparatus
JP2522544B2 (en) Vertical heat treatment furnace
JP2001007036A (en) Furnace of thermally treating semiconductor and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5018432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250