JP2009130996A - Rotary field electromagnetic pump having function for preventing back flow - Google Patents

Rotary field electromagnetic pump having function for preventing back flow Download PDF

Info

Publication number
JP2009130996A
JP2009130996A JP2007301417A JP2007301417A JP2009130996A JP 2009130996 A JP2009130996 A JP 2009130996A JP 2007301417 A JP2007301417 A JP 2007301417A JP 2007301417 A JP2007301417 A JP 2007301417A JP 2009130996 A JP2009130996 A JP 2009130996A
Authority
JP
Japan
Prior art keywords
flow path
channel
magnetic field
electromagnetic pump
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007301417A
Other languages
Japanese (ja)
Other versions
JP5105239B2 (en
Inventor
Kuniaki Miura
邦明 三浦
Makoto Asaha
信 浅葉
Hiroyuki Konakawa
広行 粉川
Masatoshi Futagawa
正敏 二川
Katsuhiro Haga
勝洋 羽賀
Takashi Wakui
隆 涌井
Naofumi Takeno
尚文 武野
Toshihiko Ogasawara
俊彦 小笠原
Kazuhiko Hagitani
和彦 萩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sukegawa Electric Co Ltd
Japan Atomic Energy Agency
Original Assignee
Sukegawa Electric Co Ltd
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukegawa Electric Co Ltd, Japan Atomic Energy Agency filed Critical Sukegawa Electric Co Ltd
Priority to JP2007301417A priority Critical patent/JP5105239B2/en
Publication of JP2009130996A publication Critical patent/JP2009130996A/en
Application granted granted Critical
Publication of JP5105239B2 publication Critical patent/JP5105239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve stabilized flow rate-delivery pressure characteristics by setting the thickness of a partially tubular channel in the radial direction and the operational conditions optimally. <P>SOLUTION: In a rotary field electromagnetic pump wherein a channel 5 on the inflow side is connected to one end side of a partially tubular channel 1, a channel 6 on the outflow side is connected to the other end side thereof, and inductors 2 and 2' forming a field which moves rotationally from the channel 5 on the inflow side toward the channel 6 on the outflow side in the circumferential direction of the channel 1 are arranged in the partially tubular channel 1, thickness of the channel 1 in the radial direction from the inner circumferential side to the outer circumferential side thereof is set such that the ratio of flux density ΦB/ΦA on the inner circumferential side and the outer circumferential side becomes 70% or more. Alternatively, thickness of the channel 1 is set such that the ratio of flux density ΦB/ΦA on the inner circumferential side and the outer circumferential side of the channel 1 becomes 55% or more, and the rotary field electromagnetic pump is operated such that the slip value becomes 0.97 or less. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、導電性流体を搬送する形式の導電性流体誘導型電磁ポンプに関し、円筒形の流路の中にその円周方向に回転移動する磁界を形成して同流路の中の導電性流体に電磁誘導による推力を与え、特に部分円筒形の流路の両端側に流入側流路と流出側流路とがそれぞれ連なったΩ形の流路を有する磁場回転式電磁ポンプに関するものである。   The present invention relates to a conductive fluid induction type electromagnetic pump of a type that conveys a conductive fluid, and forms a magnetic field that rotates and moves in a circumferential direction in a cylindrical flow path, thereby providing conductivity in the flow path. The present invention relates to a magnetic field rotating electromagnetic pump that gives thrust by electromagnetic induction to a fluid, and in particular has an Ω-shaped flow channel in which an inflow channel and an outflow channel are connected to both ends of a partially cylindrical flow channel. .

溶融金属等の導電性流体に推力を与えて搬送する駆動ポンプには、シールされた軸受を介して流路の外部にあるモータにより駆動されるインペラを同流路の中で回転させて機械的に導電性流体に推力を与える機械式ポンプと、流路の中に移動磁界を与えて、この移動磁界により流路の中の導電性流体に電磁力による推力を与えるシール部分を必要としない電磁式ポンプとがある。   In a drive pump that applies a thrust to a conductive fluid such as molten metal and conveys it, a mechanical impeller is driven by rotating an impeller driven by a motor outside the flow path through a sealed bearing. An electromagnetic pump that applies a thrust to the conductive fluid and an electromagnetic field that does not require a seal portion that applies a moving magnetic field to the flow path and applies a thrust by the electromagnetic force to the conductive fluid in the flow path. There is a type pump.

シール部分を必要とする機械式ポンプは、シール部分からの導電性流体の漏れが起こる可能性があるという欠点がある。水銀を除く導電性流体の多くは融点が常温以上であり、融点が高い溶融金属の場合に、シール軸受部分に耐熱性の点で限界がある。これに対して、電磁ポンプはインペラに機械的な駆動力を伝えるシール付き軸受等の摺動部分が無いため、常温以上の溶融金属の搬送に適している。   Mechanical pumps that require a seal portion have the disadvantage that conductive fluid leakage from the seal portion can occur. Most of the conductive fluids except mercury have a melting point of room temperature or higher, and when the molten metal has a high melting point, the seal bearing part has a limit in terms of heat resistance. On the other hand, the electromagnetic pump has no sliding parts such as a bearing with a seal that transmits a mechanical driving force to the impeller, and is therefore suitable for transporting molten metal at room temperature or higher.

とりわけ電磁ポンプの中でも、円筒形の流路の中にその円周方向に回転移動する磁界を形成して同流路の中の導電性流体に電磁誘導による推力を与え、搬送する形式の磁場回転式電磁ポンプは、設置スペースが狭い等の利点がある。このような形式の電磁ポンプの流路は、例えば、図1に示すように、部分円筒形の流路1の一端側に流入側流路5が連なり、その他端側に流出側流路6が連なり、前記部分円筒形の流路1の中に、同流路1の円周方向に流入側流路5から流出側流路6に向けて回転移動する磁界を形成する誘導子2、2’を配置したものである。このような磁場回転式電磁ポンプの流路は、部分円筒形の流路1の両端側に流入側流路5と流出側流路6がそれぞれ連なっているため、Ω形の流路(尺取り虫が縮んだ時のような形状の流路)を形成している。   In particular, even in electromagnetic pumps, a magnetic field rotation that forms a magnetic field that rotates and moves in the circumferential direction in a cylindrical flow path, applies thrust to the conductive fluid in the flow path by electromagnetic induction, and conveys it. The electromagnetic pump has advantages such as a small installation space. As shown in FIG. 1, for example, the flow path of the electromagnetic pump of this type is such that the inflow side flow path 5 is connected to one end side of the partial cylindrical flow path 1 and the outflow side flow path 6 is connected to the other end side. Inductors 2, 2 ′ that form a magnetic field that continuously moves from the inflow side flow path 5 toward the outflow side flow path 6 in the circumferential direction of the flow path 1 in the partial cylindrical flow path 1. Is arranged. Since the flow path of such a magnetic field rotation type electromagnetic pump is such that the inflow side flow path 5 and the outflow side flow path 6 are connected to both ends of the partial cylindrical flow path 1, respectively. A flow path having a shape like that when contracted) is formed.

このΩ形の流路を有する磁場回転式電磁ポンプの欠点は、部分円筒形の流路1の流入側流路5と流出側流路6が邪魔になって部分円筒形の流路1の外側に磁路を形成するための誘導子やヨークを取り付け難いことである。このため、部分円筒形の流路1の内側に配置した誘導子2、2’から発生する磁界の磁路の磁気抵抗が距離とともに高くなって、部分円筒形の流路1の内周側の磁界に比べて外周側の磁界が極端に弱くなるという欠点がある。この部分円筒形の流路1の内周側から外周側に至る磁束密度の分布の例を図2に示す。   The disadvantage of the magnetic field rotating electromagnetic pump having the Ω-shaped flow path is that the inflow side flow path 5 and the outflow side flow path 6 of the partial cylindrical flow path 1 interfere with each other and the outside of the partial cylindrical flow path 1. It is difficult to attach an inductor or a yoke for forming a magnetic path. For this reason, the magnetic resistance of the magnetic path of the magnetic field generated from the inductors 2, 2 ′ disposed inside the partial cylindrical flow path 1 increases with distance, and the inner circumferential side of the partial cylindrical flow path 1 is increased. There is a drawback that the magnetic field on the outer peripheral side becomes extremely weak compared to the magnetic field. An example of the distribution of magnetic flux density from the inner circumference side to the outer circumference side of the partial cylindrical flow path 1 is shown in FIG.

例えば図3(A)に示すように、部分円筒形の流路1の内周側に比べて外周側の電磁力が極端に弱くなると、図3(B)に示すように、部分円筒形の流路1の内周側と外周側との間に大きな流速分布差が生じ、時には流路1の外周側において導電性流体の逆流現象が起こり、導電性流体の流量−吐出圧力の特性が不安定となる。図4(A)は、部分円筒形の流路1の外周側の電磁力が十分なため、逆流が生じていない正常な流量−吐出圧力の特性の例である。これに対し、図4(B)は、部分円筒形の流路1の外周側の電磁力が不十分なため、流路1の外周側において逆流が生じている不安定な流量−吐出圧力の特性の例である。図4(B)のような流量−吐出圧力の関係が不安定な範囲SRは、いわゆる脈動範囲と呼ばれる。
特開2007−74837号公報 特開2004−304893号公報 特開平05−42357号公報
For example, as shown in FIG. 3A, when the electromagnetic force on the outer peripheral side becomes extremely weak compared to the inner peripheral side of the partial cylindrical flow path 1, the partial cylindrical shape is changed as shown in FIG. A large flow velocity distribution difference is generated between the inner peripheral side and the outer peripheral side of the flow path 1, and a back flow phenomenon of the conductive fluid sometimes occurs on the outer peripheral side of the flow path 1, and the flow rate-discharge pressure characteristics of the conductive fluid are not good. It becomes stable. FIG. 4A is an example of a normal flow rate-discharge pressure characteristic in which no back flow occurs because the electromagnetic force on the outer peripheral side of the partially cylindrical flow channel 1 is sufficient. On the other hand, in FIG. 4B, the electromagnetic force on the outer peripheral side of the partially cylindrical flow path 1 is insufficient, and therefore an unstable flow rate-discharge pressure in which a reverse flow is generated on the outer peripheral side of the flow path 1. It is an example of a characteristic. A range SR in which the flow rate-discharge pressure relationship is unstable as shown in FIG. 4B is called a so-called pulsation range.
JP 2007-74837 A JP 2004-304893 A JP 05-42357 A

本発明はこのような従来のΩ形の流路を有する磁場回転式電磁ポンプにおける課題に鑑み、部分円筒形の流路の径方向の厚さと運転条件を最適に設定することにより、安定した流量−吐出圧力特性を得ることが出来る磁場回転式電磁ポンプを提供することを目的とする。   In view of the problems in the conventional magnetic field rotary electromagnetic pump having such a conventional Ω-shaped flow path, the present invention can achieve a stable flow rate by optimally setting the radial thickness and operating conditions of the partial cylindrical flow path. -It aims at providing the magnetic field rotation type electromagnetic pump which can acquire discharge pressure characteristic.

本発明では、前記の目的を達成するため、部分円筒形の流路1の内周側から外周側に至る径方向、すなわち当該流路1の厚さ方向の磁束密度分布の最大値と最小値の比を或る値以下に設定し、また流路1における導電性流体の流速と回転移動磁界の速度との差を限定するという対策を講じたものである。これにより、流量−吐出圧力特性の安定化を図るものである。   In the present invention, in order to achieve the above object, the maximum value and the minimum value of the magnetic flux density distribution in the radial direction from the inner peripheral side to the outer peripheral side of the partially cylindrical flow path 1, that is, in the thickness direction of the flow path 1. The ratio is set to a certain value or less, and measures are taken to limit the difference between the flow velocity of the conductive fluid and the velocity of the rotating magnetic field in the flow path 1. This stabilizes the flow rate-discharge pressure characteristics.

すなわち本発明による磁場回転式電磁ポンプは、部分円筒形の流路1の一端側に流入側流路5が連なり、その他端側に流出側流路6が連なり、前記部分円筒形の流路1の中に、同流路1の円周方向に流入側流路5から流出側流路6に向けて回転移動する磁界を形成する誘導子2、2’を配置した磁場回転式電磁ポンプにおいて、流路1の内周側から外周側に至る径方向の当該流路1の厚さをその内周側と外周側における磁束密度の比ΦB/ΦAが70%以上となるよう設定したものである。   That is, in the magnetic field rotating electromagnetic pump according to the present invention, the inflow side flow path 5 is connected to one end side of the partial cylindrical flow path 1, and the outflow side flow path 6 is connected to the other end side. In the magnetic field rotating electromagnetic pump in which the inductors 2 and 2 ′ that form a magnetic field that rotates and moves from the inflow side flow channel 5 toward the outflow side flow channel 6 in the circumferential direction of the flow channel 1 are arranged. The thickness of the flow path 1 in the radial direction from the inner peripheral side to the outer peripheral side of the flow path 1 is set so that the magnetic flux density ratio ΦB / ΦA between the inner peripheral side and the outer peripheral side is 70% or more. .

本件発明者らは、一般的に磁束密度が最も小さくなる部分円筒形の流路1の外周側でどの程度磁束が低減した場合に前述のような逆流現象が起こるかを解析、検討した。この結果、一般的に磁束密度が最も大きい流路1の内周側の磁束密度ΦAと磁束密度が最も小さくなる流路1の外周側の磁束密度の比ΦB/ΦAが70%以上であれば、逆流現状現象が起きないことに着目した。本発明は、この着目によりなされたものである。   The inventors of the present invention analyzed and examined how much the magnetic flux is reduced on the outer peripheral side of the partially cylindrical flow path 1 where the magnetic flux density is generally the smallest, and the above-described reverse flow phenomenon occurs. As a result, generally, if the ratio ΦB / ΦA of the magnetic flux density ΦA on the inner peripheral side of the flow path 1 with the highest magnetic flux density and the magnetic flux density on the outer peripheral side of the flow path 1 with the smallest magnetic flux density is 70% or more, Focused on the fact that the reverse current phenomenon does not occur. The present invention has been made with this attention.

さらに、部分円筒形の流路1の内周側と外周側との磁束密度の比ΦA/ΦBが70%以下であっても、その比ΦB/ΦAが55%以上となるよう設定し、且つスリップ値を0.97以下となるように磁場回転式電磁ポンプを運転すれば、やはり逆流現状現象が起きないことに着目した。ここでスリップ値sは、s=(vs−vf)/vs(vs:流路1内の回転移動磁界の周速、vf:流路1内の導電性流体の周速)であり、流路1内の導電性流体を回転移動磁界の磁束が横切る速度の比である。   Furthermore, even if the ratio ΦA / ΦB of the magnetic flux density between the inner peripheral side and the outer peripheral side of the partial cylindrical flow path 1 is 70% or less, the ratio ΦB / ΦA is set to be 55% or more, and It was noticed that if the magnetic field rotating electromagnetic pump is operated so that the slip value becomes 0.97 or less, the current reverse flow phenomenon does not occur. Here, the slip value s is s = (vs−vf) / vs (vs: the peripheral speed of the rotationally moving magnetic field in the flow path 1, vf: the peripheral speed of the conductive fluid in the flow path 1), and the flow path 1 is the ratio of the speed at which the magnetic flux of the rotationally moving magnetic field traverses the conductive fluid in 1.

以上説明した通り、本発明による磁場回転式電磁ポンプでは、磁束密度が最も大きい流路1の外周側と磁束密度が最も小さくなる流路1の内周側との磁束密度の比が大きいことに起因する逆流現象が起きにくいように流路1の径方向の磁束密度が平準化される。このため、流量−吐出圧力特性が不安定とならず、安定した磁場回転式電磁ポンプの運転が可能となる。   As described above, in the magnetic field rotating electromagnetic pump according to the present invention, the ratio of the magnetic flux density between the outer peripheral side of the flow path 1 having the largest magnetic flux density and the inner peripheral side of the flow path 1 having the smallest magnetic flux density is large. The magnetic flux density in the radial direction of the flow path 1 is leveled so that the resulting back flow phenomenon does not easily occur. For this reason, the flow rate-discharge pressure characteristic does not become unstable, and a stable magnetic field rotating electromagnetic pump can be operated.

本発明では、前記の目的を達成するため、部分円筒形の流路1の一端側に流入側流路5が連なり、その他端側に流出側流路6が連なり、前記部分円筒形の流路1の中に、同流路1の円周方向に流入側流路5から流出側流路6に向けて回転移動する磁界を形成する誘導子2、2’を配置した磁場回転式電磁ポンプについて、磁束密度が最も大きい流路1の内周側の磁束密度ΦAと磁束密度が最も小さくなる流路1の外周側の磁束密度の比ΦB/ΦAやスリップ値sを適切に設定した。
以下、本発明を実施するための最良の形態について、実施例をあげて詳細に説明する。
In the present invention, in order to achieve the above object, the inflow side flow path 5 is connected to one end side of the partial cylindrical flow path 1, and the outflow side flow path 6 is connected to the other end side. 1 is a magnetic field rotating electromagnetic pump in which inductors 2 and 2 ′ that form a magnetic field that rotates and moves from an inflow side flow path 5 toward an outflow side flow path 6 in the circumferential direction of the flow path 1. The ratio ΦB / ΦA and the slip value s of the magnetic flux density ΦA on the inner peripheral side of the flow path 1 having the highest magnetic flux density and the magnetic flux density on the outer peripheral side of the flow path 1 having the smallest magnetic flux density were set appropriately.
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples.

図1は、本発明によるΩ形の流路(尺取り虫が縮んだ時のような形状の流路)を有する磁場回転式電磁ポンプの例を示す概念斜視図である。このような形式の磁場回転式電磁ポンプは、水銀や溶融鉛ビスマス等の低融点の導電性流体を流すために使用される。   FIG. 1 is a conceptual perspective view showing an example of a magnetic field rotating electromagnetic pump having a Ω-shaped channel (a channel shaped as when a scale insect contracts) according to the present invention. This type of magnetic field rotating electromagnetic pump is used to flow a low melting point conductive fluid such as mercury or molten lead bismuth.

磁場回転式電磁ポンプには、部分円筒形の流路1があり、その一端側に流入側流路5が連なり、その他端側に流出側流路6が連なっている。符合3は流入側流路5の流入口であり、符合4は流出側流路6の流出口である。これら流入口3と流出口4には、それぞれ図示してない前後の流路が接続される。流入側流路5と流出側流路6の長さは適宜変更が可能である。   The magnetic field rotation type electromagnetic pump has a partially cylindrical flow path 1, an inflow side flow path 5 connected to one end side thereof, and an outflow side flow path 6 connected to the other end side. Reference numeral 3 is an inlet of the inflow side channel 5, and reference numeral 4 is an outlet of the outflow side channel 6. The inflow port 3 and the outflow port 4 are connected to front and rear flow paths (not shown). The lengths of the inflow channel 5 and the outflow channel 6 can be changed as appropriate.

この部分円筒形の流路1の中心部分には、図示した誘導子2、2’の何れかが配置される。誘導子2は、円筒或いは円柱形を呈しており、その円周方向に所要の間隔で永久磁石を外周側の磁極S極とN極とが交互になるよう配置した構造となっている。この誘導子2を部分円筒形の流路1の中空部分の中に配置し、これをモータ7で回転することにより、部分円筒形の流路1の中にその円周方向に回転移動する移動磁界を形成する。   One of the illustrated inductors 2, 2 ′ is disposed in the central portion of the partial cylindrical flow path 1. The inductor 2 has a cylindrical or columnar shape, and has a structure in which permanent magnets are alternately arranged at a predetermined interval in the circumferential direction so that the magnetic poles S and N poles on the outer peripheral side are alternately arranged. The inductor 2 is disposed in the hollow portion of the partial cylindrical flow path 1 and rotated by the motor 7 to rotate and move in the circumferential direction in the partial cylindrical flow path 1. Create a magnetic field.

他方の誘導子2’は、やはり円筒或いは円柱形を呈しており、その円周方向に所要の間隔で電磁石を配置した構造となっている。この電磁石に三相交流等による交番磁界を与え、部分円筒形の流路1の中にその円周方向に回転移動する移動磁界を形成する。交番磁界の周波数は図示してないインバータにより可変する。   The other inductor 2 ′ also has a cylindrical or columnar shape, and has a structure in which electromagnets are arranged at a predetermined interval in the circumferential direction. An alternating magnetic field by three-phase alternating current or the like is applied to the electromagnet to form a moving magnetic field that rotates and moves in the circumferential direction in the partially cylindrical flow path 1. The frequency of the alternating magnetic field is varied by an inverter not shown.

図5は、部分円筒形の流路1の中の移動磁界により発生する電磁力分布を示す図である。流路1の内周側の最大磁束密度がΦAであり、流路1の外周側の最小磁束密度がΦBである。この最大磁束密度ΦAと最小磁束密度ΦBの比ΦB/ΦAが70%以上のときは、部分円筒形の流路1を流れる導電性流体に逆流は全く起こらない。   FIG. 5 is a diagram showing an electromagnetic force distribution generated by the moving magnetic field in the partially cylindrical flow path 1. The maximum magnetic flux density on the inner peripheral side of the flow path 1 is ΦA, and the minimum magnetic flux density on the outer peripheral side of the flow path 1 is ΦB. When the ratio ΦB / ΦA between the maximum magnetic flux density ΦA and the minimum magnetic flux density ΦB is 70% or more, no backflow occurs in the conductive fluid flowing through the partial cylindrical flow path 1.

また、この最大磁束密度ΦAと最小磁束密度ΦBの比ΦB/ΦAが70%以下であっても、この最大磁束密度ΦAと最小磁束密度ΦBの比ΦB/ΦAが55%以上であれば、前記のスリップ値sが0.97以下の範囲で磁場回転式電磁ポンプを運転すれば、部分円筒形の流路1を流れる導電性流体に逆流は起こらない。   Further, even if the ratio ΦB / ΦA between the maximum magnetic flux density ΦA and the minimum magnetic flux density ΦB is 70% or less, if the ratio ΦB / ΦA between the maximum magnetic flux density ΦA and the minimum magnetic flux density ΦB is 55% or more, If the magnetic field rotation type electromagnetic pump is operated within a slip value s of 0.97 or less, no backflow occurs in the conductive fluid flowing through the partially cylindrical flow path 1.

従って、この何れかの条件に流路1の幅、すなわち同流路1の内周側から外周側に至る径方向の厚さを設定すれば、同流路1内を流れる導電性流体の逆流は起こらず、導電性流体の流量は安定する。ちなみに、導電性流体がHgの場合、最大磁束密度ΦAと最小磁束密度ΦBの比ΦB/ΦAが55%としたときの部分円筒形の流路1の内周側から外周側に至る径方向の厚さ寸法は15mmに相当する。 Therefore, if the width of the flow path 1, that is, the thickness in the radial direction from the inner peripheral side to the outer peripheral side of the flow path 1 is set to any one of these conditions, the backflow of the conductive fluid flowing in the flow path 1 Does not occur, and the flow rate of the conductive fluid is stabilized. Incidentally, when the conductive fluid is Hg, the radial direction from the inner peripheral side to the outer peripheral side of the partial cylindrical flow path 1 when the ratio ΦB / ΦA of the maximum magnetic flux density ΦA and the minimum magnetic flux density ΦB is 55%. The thickness dimension corresponds to 15 mm.

部分円筒形の流路1を流れる導電性流体には、流路1の壁に対する導電性流体の流動エネルギの水力学的圧力損失や磁束の損失等があり、電磁ポンプの出力からこれらの損失を差し引いた分が電磁ポンプとして利用出来る実効出力である。この電磁ポンプの理論出力と、この理論出力から流動エネルギ損失を差し引いた電磁ポンプとして利用可能な実効出力との関係を図6に示す。   The conductive fluid flowing through the partially cylindrical flow path 1 includes hydraulic pressure loss and magnetic flux loss of the flow energy of the conductive fluid with respect to the wall of the flow path 1, and these losses are obtained from the output of the electromagnetic pump. The subtracted amount is the effective output that can be used as an electromagnetic pump. FIG. 6 shows the relationship between the theoretical output of this electromagnetic pump and the effective output that can be used as an electromagnetic pump obtained by subtracting the flow energy loss from this theoretical output.

既に述べた通り、スリップ値sは、s=(vs−vf)/vs(vs:流路1内の回転移動磁界の周速、vf:流路1内の導電性流体の周速)であり、流路1内の導電性流体の流速と導電性流体を移動磁界の磁束が横切っていく速度の比である。流路1内を導電性流体が流れ、その導電性流体の周速vfが回転移動磁界の周速vsと同じときはスリップ値sは0である。この時、流路1内の回転移動磁界(回転移動磁束)と導電性流体の周速が同じであり、導電性流体に誘導電流が発生しないので、出力は0となる。他方、バルブを閉じた状態のように、流路1内の導電性流体の周速vfが0の時は、流路1内を回転移動磁界の周速vsがその速度で流路1内の導電性流体を横切るスリップ値sはs=1となり、出力が最大となり、Ω型流路の入口から出口への圧力勾配が大きくなる。   As already described, the slip value s is s = (vs−vf) / vs (vs: the peripheral speed of the rotating magnetic field in the flow path 1 and vf: the peripheral speed of the conductive fluid in the flow path 1). The ratio of the flow velocity of the conductive fluid in the flow path 1 and the speed at which the magnetic flux of the moving magnetic field crosses the conductive fluid. When the conductive fluid flows in the flow path 1 and the peripheral speed vf of the conductive fluid is the same as the peripheral speed vs of the rotating magnetic field, the slip value s is zero. At this time, the rotational movement magnetic field (rotational movement magnetic flux) in the flow path 1 and the peripheral speed of the conductive fluid are the same, and no induced current is generated in the conductive fluid, so the output is zero. On the other hand, when the peripheral speed vf of the conductive fluid in the flow path 1 is 0, such as when the valve is closed, the peripheral speed vs of the rotationally moving magnetic field in the flow path 1 is at that speed in the flow path 1. The slip value s across the conductive fluid is s = 1, the output is maximized, and the pressure gradient from the inlet to the outlet of the Ω-type channel increases.

前記部分円筒形の流路1の最大磁束密度ΦAと最小磁束密度ΦBの比が大きすぎると、最小磁束密度ΦBを示す部分近傍で電磁力が小さくなり、同流路1の中を流れる導電性流体に逆流が起こる。この逆流が起こると電磁ポンプの出力特性が安定しない。特にスリップsが1に近い範囲、すなわち電磁ポンプの出力が最大に近い範囲で逆流が生じやすい。スリップsが0に近い範囲では、電磁ポンプの出力が小さく、圧力勾配が小さいので逆流が起きにくい。 If the ratio of the maximum magnetic flux density ΦA and the minimum magnetic flux density ΦB of the partial cylindrical flow path 1 is too large, the electromagnetic force becomes small in the vicinity of the portion showing the minimum magnetic flux density ΦB, and the conductivity flowing in the flow path 1 Back flow occurs in the fluid. When this backflow occurs, the output characteristics of the electromagnetic pump are not stable. In particular, backflow tends to occur in the range where the slip s is close to 1, that is, in the range where the output of the electromagnetic pump is close to the maximum. In the range where the slip s is close to 0, the output of the electromagnetic pump is small and the pressure gradient is small, so that the back flow hardly occurs.

このような理由から前記の磁束密度ΦBとΦAの比が出来るだけ高くなるように部分円筒形の流路1の内周側から外周側に至る径方向の厚さを決定する必要がある。このような観点から、有限要素法等の手段により、導電性流体の流量解析を行い、前記部分円筒形の流路1の最小磁束密度ΦBと最大磁束密度ΦAとの比と逆流現象の有無の関係を検討した。この結果、この最大磁束密度ΦAと最小磁束密度ΦBの比ΦB/ΦAが70%以上のときは、部分円筒形の流路1を流れる導電性流体に逆流が起こらないことを見いだした。また、この最大磁束密度ΦAと最小磁束密度ΦBの比ΦB/ΦAが70%以下であっても、ΦB/ΦAが55%以上となるような流路1の厚さとして、しかも前記のスリップ値sを0.97以下で磁場回転式電磁ポンプを運転すれば、部分円筒形の流路1を流れる導電性流体に逆流は起こらないことも見いだした。   For this reason, it is necessary to determine the thickness in the radial direction from the inner peripheral side to the outer peripheral side of the partial cylindrical flow path 1 so that the ratio of the magnetic flux densities ΦB and ΦA is as high as possible. From such a viewpoint, the flow rate of the conductive fluid is analyzed by means such as the finite element method, and the ratio between the minimum magnetic flux density ΦB and the maximum magnetic flux density ΦA of the partial cylindrical flow path 1 and the presence or absence of the backflow phenomenon. The relationship was examined. As a result, it has been found that when the ratio ΦB / ΦA of the maximum magnetic flux density ΦA and the minimum magnetic flux density ΦB is 70% or more, no backflow occurs in the conductive fluid flowing through the partial cylindrical flow path 1. Further, even if the ratio ΦB / ΦA between the maximum magnetic flux density ΦA and the minimum magnetic flux density ΦB is 70% or less, the thickness of the flow path 1 is such that ΦB / ΦA is 55% or more, and the above slip value. It has also been found that if the magnetic field rotating electromagnetic pump is operated at s of 0.97 or less, no back flow occurs in the conductive fluid flowing through the partially cylindrical flow path 1.

図7は、スリップ値sが0.97としたときの逆流現象が起こる範囲と起こらない範囲の境界を「s=0.97の逆流現象範囲」の矢印で指した曲線で示している。図7に示した指した曲線以下にスリップ値sを抑えた状態で磁場回転式電磁ポンプを運転すれば逆流現象は起こらない。   FIG. 7 shows the boundary between the range in which the backflow phenomenon occurs and the range in which the backflow phenomenon does not occur when the slip value s is 0.97, as a curve indicated by an arrow “backflow phenomenon range of s = 0.97”. If the magnetic field rotating electromagnetic pump is operated in a state where the slip value s is suppressed below the indicated curve shown in FIG. 7, no back flow phenomenon occurs.

本来電磁ポンプは、導電性流体に外から電流を流すか又は電磁誘導により導電性流体に誘導電流を発生させ、この導電性流体中の電流と導電性流体に作用する磁界とで電磁力による推進力を発生させる。そのため、導電性流体中に発生する渦電流損等により導電性流体が発熱する。さらに流路1の壁体が金属のような導電性材料であれば、流路1の壁体にも渦電流損により発熱する。   Originally, an electromagnetic pump applies an electric current to the conductive fluid from the outside or generates an induced current in the conductive fluid by electromagnetic induction, and propulsion by an electromagnetic force using the current in the conductive fluid and the magnetic field acting on the conductive fluid. Generate power. Therefore, the conductive fluid generates heat due to eddy current loss or the like generated in the conductive fluid. Further, if the wall of the channel 1 is a conductive material such as metal, the wall of the channel 1 also generates heat due to eddy current loss.

従って、スリップ値sを1の近くとし、流路1内の導電性流体を回転移動磁界の磁束が横切る速度を大きくすることは、流路1やその中の導電性流体の発熱をもたらし、異常高温を招く原因となるので好ましいことではない。このため、一般的に磁場回転式電磁ポンプでは、スリップ値s=1の近傍に非常運転範囲を設けている。図7に斜線を施した範囲がこの非常運転範囲である。   Therefore, setting the slip value s near 1 and increasing the speed at which the magnetic flux of the rotationally moving magnetic field crosses the conductive fluid in the flow path 1 causes heat generation of the flow path 1 and the conductive fluid in the flow path. This is not preferable because it causes high temperatures. For this reason, in general, in the magnetic field rotation type electromagnetic pump, an emergency operation range is provided in the vicinity of the slip value s = 1. The hatched range in FIG. 7 is this emergency operation range.

この非常運転範囲で部分円筒形の流路1の中の導電性流体の逆流現象が起きても問題が無いので、この非常運転範囲の外で逆流が起こらない流路1内の最大磁束密度ΦAと最小磁束密度ΦBの比、換言すればこの比を満足する流路1の厚さを決定することが必要である。図7において、斜線を施した範囲と「s=0.97の逆流現象範囲」の矢印が指した曲線を持ってくるような流路1の厚さにすれば最適設計となる。   Since there is no problem even if the backflow phenomenon of the conductive fluid in the partial cylindrical flow path 1 occurs in this emergency operation range, the maximum magnetic flux density ΦA in the flow path 1 in which backflow does not occur outside this emergency operation range. And the minimum magnetic flux density ΦB, in other words, it is necessary to determine the thickness of the flow path 1 that satisfies this ratio. In FIG. 7, the optimum design is achieved by setting the thickness of the flow path 1 so as to bring the curve indicated by the hatched range and the “s = 0.97 reverse flow phenomenon range” arrow.

前述した導電性流体の流量解析によれば、図7において「s=0.97の逆流現象範囲」の矢印で指したライン以下のスリップ値s、すなわちs>0.79とした場合に流路1内の導電性流体に逆流現象が起こることが分かった。従って、最大磁束密度ΦAと最小磁束密度ΦBの比ΦB/Φを55%以上としたときに、スリップ値s=0.97〜1の間の範囲で、図7に斜線を施したような非常運転範囲を決定することになる。   According to the above-described flow analysis of the conductive fluid, the flow path when the slip value s below the line indicated by the arrow “s = 0.97 reverse flow phenomenon range” in FIG. 7, that is, s> 0.79. It was found that a reverse flow phenomenon occurred in the conductive fluid in 1. Therefore, when the ratio ΦB / Φ between the maximum magnetic flux density ΦA and the minimum magnetic flux density ΦB is set to 55% or more, an emergency as shown by hatching in FIG. 7 in the range between the slip value s = 0.97-1 The operating range will be determined.

本発明は、Ω形の流路を有する磁場回転式電磁ポンプであって、特に水銀や溶融鉛ビスマス等の低融点の導電性流体を流すために使用される磁場回転式電磁ポンプにおいて、導電性流体の流量特性の安定化に資することが出来る技術として適用可能である。   The present invention relates to a magnetic field rotary electromagnetic pump having an Ω-shaped flow path, and particularly to a magnetic field rotary electromagnetic pump used for flowing a low melting point conductive fluid such as mercury or molten lead bismuth. The present invention can be applied as a technique that can contribute to the stabilization of fluid flow characteristics.

本発明によるΩ形の流路を有する磁場回転式電磁ポンプの一実施例を示す概念斜視図である。It is a conceptual perspective view which shows one Example of the magnetic field rotation type electromagnetic pump which has the omega-shaped channel | path by this invention. 前記磁場回転式電磁ポンプにおける部分円筒形の流路の径方向の磁束密度分布の例を示す概念図である。It is a conceptual diagram which shows the example of the magnetic flux density distribution of the radial direction of the partial cylindrical flow path in the said magnetic field rotation type electromagnetic pump. 前記部分円筒形の流路の径方向の電磁力分布と流速分布とをそれぞれ示す流路の部分概念図である。It is the partial conceptual diagram of the flow path which shows the electromagnetic force distribution and flow velocity distribution of the radial direction of the said partial cylindrical flow path, respectively. 前記部分円筒形の流路の導電性流体の流れが正常な状態と一部逆流状態が生じている状態の流量−吐出圧力の関係の例を示すグラフである。It is a graph which shows the example of the relationship of the flow volume-discharge pressure of the state in which the flow of the electroconductive fluid of the said partial cylindrical flow path is normal, and the state in which a partial backflow state has arisen. 前記部分円筒形の流路の径方向の電磁力分布を示す流路の部分概念図である。It is the partial conceptual diagram of the flow path which shows the electromagnetic force distribution of the radial direction of the said partial cylindrical flow path. 前記磁場回転式電磁ポンプにおける理論出力とこの理論出力から損失を差し引いた電磁ポンプとして利用出来る実効出力との関係の例を示すグラフである。It is a graph which shows the example of the relationship between the theoretical output in the said magnetic field rotation type electromagnetic pump, and the effective output which can be utilized as an electromagnetic pump which deducted loss from this theoretical output. 前記磁場回転式電磁ポンプにおいてスリップ値sを0.97としたときの逆流現象が起こる範囲と起こらない範囲の境界と過熱が起こりやすい非常運転範囲の例を示すグラフである。It is a graph which shows the example of the range of the range where a backflow phenomenon occurs when the slip value s is 0.97 in the magnetic field rotation type electromagnetic pump and the range where it does not occur, and the emergency operation range where overheating is likely to occur.

符号の説明Explanation of symbols

1 部分円筒形の流路
2 誘導子
5 流入側流路
6 流出側流路
1 Partially cylindrical flow path 2 Inductor 5 Inflow side flow path 6 Outflow side flow path

Claims (2)

部分円筒形の流路(1)の一端側に流入側流路(5)が連なり、その他端側に流出側流路(6)が連なり、前記部分円筒形の流路(1)の中に、同流路(1)の円周方向に流入側流路(5)から流出側流路(6)に向けて回転移動する磁界を形成する誘導子(2)、(2’)を配置した磁場回転式電磁ポンプにおいて、流路(1)の内周側から外周側に至る径方向の当該流路(1)の厚さをその内周側と外周側における磁束密度の比ΦB/ΦAが70%以上となるよう設定したことにより、ポンプ内での逆流を防止する機能を有することを特徴とする逆流を防止する機能を有する磁場回転式電磁ポンプ。 An inflow side flow channel (5) is connected to one end side of the partial cylindrical flow channel (1), and an outflow side flow channel (6) is connected to the other end side of the partial cylindrical flow channel (1). Inductors (2) and (2 ') that form a magnetic field that rotates and moves from the inflow side flow path (5) toward the outflow side flow path (6) in the circumferential direction of the flow path (1). In the magnetic field rotation type electromagnetic pump, the thickness of the flow path (1) in the radial direction from the inner circumference side to the outer circumference side of the flow path (1) is the ratio of magnetic flux density ΦB / ΦA between the inner circumference side and the outer circumference side. A magnetic field rotating electromagnetic pump having a function of preventing backflow, characterized by having a function of preventing backflow in the pump by being set to be 70% or more. 部分円筒形の流路(1)の一端側に流入側流路(5)が連なり、その他端側に流出側流路(6)が連なり、前記部分円筒形の流路(1)の中に、同流路(1)の円周方向に流入側流路(5)から流出側流路(6)に向けて回転移動する磁界を形成する誘導子(2)、(2’)を配置した導電性流体誘導型電磁ポンプにおいて、流路(1)の内周側から外周側に至る径方向の当該流路(1)の厚さをその内周側と外周側における磁束密度の比ΦB/ΦAが55%以上となるよう設定し、且つスリップ値sを0.97以下にして運転することによりポンプ内での逆流を防止する機能を有することを特徴とする逆流を防止する機能を有する磁場回転式電磁ポンプ。 An inflow side flow channel (5) is connected to one end side of the partial cylindrical flow channel (1), and an outflow side flow channel (6) is connected to the other end side of the partial cylindrical flow channel (1). Inductors (2) and (2 ') that form a magnetic field that rotates and moves from the inflow side flow path (5) toward the outflow side flow path (6) in the circumferential direction of the flow path (1). In the conductive fluid induction type electromagnetic pump, the thickness of the flow path (1) in the radial direction from the inner circumference side to the outer circumference side of the flow path (1) is set to the ratio of the magnetic flux density ΦB / A magnetic field having a function of preventing backflow, characterized by having a function of preventing backflow in the pump by setting ΦA to be 55% or more and operating at a slip value s of 0.97 or less. Rotary electromagnetic pump.
JP2007301417A 2007-11-21 2007-11-21 Magnetic field rotating electromagnetic pump with backflow prevention function Expired - Fee Related JP5105239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007301417A JP5105239B2 (en) 2007-11-21 2007-11-21 Magnetic field rotating electromagnetic pump with backflow prevention function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301417A JP5105239B2 (en) 2007-11-21 2007-11-21 Magnetic field rotating electromagnetic pump with backflow prevention function

Publications (2)

Publication Number Publication Date
JP2009130996A true JP2009130996A (en) 2009-06-11
JP5105239B2 JP5105239B2 (en) 2012-12-26

Family

ID=40821384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301417A Expired - Fee Related JP5105239B2 (en) 2007-11-21 2007-11-21 Magnetic field rotating electromagnetic pump with backflow prevention function

Country Status (1)

Country Link
JP (1) JP5105239B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101860898B1 (en) * 2017-02-03 2018-05-24 울산과학기술원 Apparatus for transferring conductive meterials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63253854A (en) * 1987-04-06 1988-10-20 Power Reactor & Nuclear Fuel Dev Corp Electromagnetic pump inserted into tank
JP2004254437A (en) * 2003-02-20 2004-09-09 Yamaha Motor Co Ltd Cooling device employing magnetic fluid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63253854A (en) * 1987-04-06 1988-10-20 Power Reactor & Nuclear Fuel Dev Corp Electromagnetic pump inserted into tank
JP2004254437A (en) * 2003-02-20 2004-09-09 Yamaha Motor Co Ltd Cooling device employing magnetic fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101860898B1 (en) * 2017-02-03 2018-05-24 울산과학기술원 Apparatus for transferring conductive meterials

Also Published As

Publication number Publication date
JP5105239B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
US4013384A (en) Magnetically driven centrifugal pump and means providing cooling fluid flow
US10951075B2 (en) Machine cooling systems
CN115280012A (en) Electric machine
CN110994939B (en) Self-stabilized cylindrical linear induction electromagnetic pump
JP2010101576A (en) Rotary magnetic temperature regulation device
PL208405B1 (en) Driving motor, especially for a pump
JP2015136265A (en) Rotary electric machine
KR20200093868A (en) Structure for cooling of a motor
JP5105239B2 (en) Magnetic field rotating electromagnetic pump with backflow prevention function
JP6506579B2 (en) Centrifugal pump device with rotary drive or rotary drive
JP2008079428A (en) Motor with pumping device
JP2008125235A (en) Electric motor
JP2010041742A (en) Axially levitated rotating motor, and turbo-type pump using axially levitated rotating motor
JP5245172B2 (en) Magnetic field rotating electromagnetic pump with leveling magnetic field formation mechanism
JP2015132242A (en) motor pump
JP6184215B2 (en) Magnetic field rotating electromagnetic pump with integral channel structure
JP2007016780A (en) Pump having polar anisotropic magnetic ring
JP2023537250A (en) Canned rotary power fluid machinery for molten salt reactors and active magnetic bearings for fluid machinery for molten salt reactors
JP2016520170A (en) Pump device
KR101649820B1 (en) Eddy current induction heating device
JP6372139B2 (en) Rotating electric machine
JP6120320B2 (en) Fluid drive device for cooling circulation of heat source using magnetic fluid
JP2008082301A (en) Magnet structure of water pump
RU164336U1 (en) MAGNETIC INDUCTION PUMP
RU165711U1 (en) MAGNETIC INDUCTION PUMP

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

R150 Certificate of patent or registration of utility model

Ref document number: 5105239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees