JP2009130966A - Motor rotor and motor - Google Patents

Motor rotor and motor Download PDF

Info

Publication number
JP2009130966A
JP2009130966A JP2007300608A JP2007300608A JP2009130966A JP 2009130966 A JP2009130966 A JP 2009130966A JP 2007300608 A JP2007300608 A JP 2007300608A JP 2007300608 A JP2007300608 A JP 2007300608A JP 2009130966 A JP2009130966 A JP 2009130966A
Authority
JP
Japan
Prior art keywords
core
peripheral surface
motor rotor
motor
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007300608A
Other languages
Japanese (ja)
Other versions
JP5231790B2 (en
Inventor
Akitoshi Maeno
彰利 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Shibaura Corp
Original Assignee
Nidec Shibaura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Shibaura Corp filed Critical Nidec Shibaura Corp
Priority to JP2007300608A priority Critical patent/JP5231790B2/en
Priority to CN200810177784XA priority patent/CN101442229B/en
Publication of JP2009130966A publication Critical patent/JP2009130966A/en
Application granted granted Critical
Publication of JP5231790B2 publication Critical patent/JP5231790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor rotor, which has vibration-proof structure where the concentricity is less apt to drop, and a motor. <P>SOLUTION: The motor rotor 3 is equipped with an annular outer core 35, where a permanent magnet 33M is provided at its peripheral face, an annular inner core 34, which is arranged inside this outer core 35 and in which a shaft 32 is fitted in its inner peripheral face; and an elastic body 38, which is interposed in a circular storage 36 that is formed by the inner peripheral face of the outer core 35 and the peripheral face of the inner core 34. The storage 36 has a plurality of minute clearances sections 36a; the radial width of each of which becomes minute; and for these minute clearance sections 36a, each of the clearance width changes continuously in its circumferential direction. The elastic body 38 acts as a shock-absorbing material which absorbs the vibration generated in a motor rotor 3. Slippage of concentricity between the outer core 35 and the inner core 34 can be minimized by the minute clearance section 36a. Since the clearance width of the minute clearance section 36a changes continuously in its circumferential direction, vibration is less apt to propagate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エアコンの室外機におけるファンモータ等の各種電気機器に搭載されるモータおよびモータ回転子に関する。   The present invention relates to a motor and a motor rotor mounted on various electric devices such as a fan motor in an outdoor unit of an air conditioner.

エアコンの室外機におけるファンモータ等に使用されるモータは、省エネ化の要請を受けて高効率化が進められ、ACモータからDCブラシレスモータへの置き換えが進んでいる。しかし、DCブラシレスモータは、コギングトルクによる振動や固定子の通電によるリップル振動が発生するため、実機搭載時に騒音が発生することがある。その騒音対策として、モータ回転子にゴムやエラストマのような弾性体を埋設する防振構造をとる方法が知られている(特許文献1乃至5参照)。   Motors used for fan motors and the like in outdoor units of air conditioners have been improved in efficiency in response to requests for energy saving, and replacement of AC motors with DC brushless motors is progressing. However, since the DC brushless motor generates vibration due to cogging torque and ripple vibration due to energization of the stator, noise may occur when mounted on an actual machine. As a countermeasure against the noise, there is known a method of adopting a vibration isolation structure in which an elastic body such as rubber or elastomer is embedded in the motor rotor (see Patent Documents 1 to 5).

例えば、特許文献1では、モータ回転子の鉄心コアを内側と外側に分割し、その間に形成される環状の間隙に弾性体をはめ込む構成である。特許文献2乃至4では、同時に鉄心コアを分割した内側と外側のコアの間に形成される環状の間隙に弾性体を射出成形によって一体成形する構成である。さらに、特許文献5では、鉄心コアの上下端のみを連結することで内側と外側を一部連結する構成である。   For example, Patent Document 1 has a configuration in which an iron core of a motor rotor is divided into an inner side and an outer side, and an elastic body is fitted into an annular gap formed therebetween. In Patent Documents 2 to 4, the elastic body is integrally formed by injection molding in an annular gap formed between the inner and outer cores obtained by dividing the iron core at the same time. Furthermore, in patent document 5, it is the structure which connects a part of inner side and an outer side only by connecting only the upper and lower ends of an iron core.

特許3689877号公報Japanese Patent No. 3689877 特開2004−297935号公報JP 2004-297935 A 特開昭59−86444号公報JP 59-86444 A 特許3364960号公報Japanese Patent No. 3364960 特開2005−348513号公報JP 2005-348513 A

特許文献1乃至4のように、モータ回転子の鉄心コアを内側と外側に分割する構成では、モータ回転子で発生した振動が弾性体にて吸収されるため、その振動がシャフトへ伝搬しにくい構成となる。しかしながら、このような鉄心コアは、振動を吸収する効果と、内側コアと外側コアとの同軸度の確保を同時に満足させることが難しい。両コアの同軸度が低下すると、モータ回転子の動バランスが低下し、回転が不安定となり振動や騒音を発生する。   As in Patent Documents 1 to 4, in the configuration in which the iron core of the motor rotor is divided into the inner side and the outer side, the vibration generated in the motor rotor is absorbed by the elastic body, so that the vibration is difficult to propagate to the shaft. It becomes composition. However, it is difficult for such an iron core to simultaneously satisfy the effects of absorbing vibration and ensuring the coaxiality between the inner core and the outer core. When the coaxiality of both cores is lowered, the dynamic balance of the motor rotor is lowered, the rotation becomes unstable, and vibration and noise are generated.

本発明は、上述した公知技術に鑑みなされたものであり、その目的とするところは、同軸度が低下しにくい防振構造をもつモータ回転子およびモータを提供することである。   The present invention has been made in view of the above-described known technology, and an object of the present invention is to provide a motor rotor and a motor having a vibration isolation structure in which the coaxiality is unlikely to decrease.

本発明の請求項1に係るモータ回転子は、モータの回転子であって、外周面に永久磁石が設けられる円環状の外側コアと、前記外側コアの内側に配置され、内周面にシャフトが嵌合される円環状の内側コアと、前記外側コアの内周面と前記内側コアの外周面とによって形成される円環状の収容部に介在する弾性体と、を備え、前記収容部には、半径方向の間隙幅が微小となる複数の微小間隙部を有し、該微小間隙部は該間隙幅が周方向に連続的に変化することを特徴とする。   A motor rotor according to a first aspect of the present invention is a rotor of a motor, and is an annular outer core provided with a permanent magnet on an outer peripheral surface, and is disposed inside the outer core and has a shaft on an inner peripheral surface. And an elastic body interposed in an annular housing portion formed by an inner circumferential surface of the outer core and an outer circumferential surface of the inner core. Has a plurality of minute gap portions in which the gap width in the radial direction is minute, and the minute gap portions are characterized in that the gap width continuously changes in the circumferential direction.

つまり、このモータ回転子では、その弾性体が、モータ回転子で発生する振動を吸収する緩衝材として作用する。外側コアと内側コアとの同軸度のずれは、その微小間隙部によって最小にすることができるが、その微小間隙部の間隙幅が周方向に連続的に変化して振動が伝搬する経路が僅少であるため、振動が伝搬しにくくなっている。   That is, in this motor rotor, the elastic body acts as a buffer material that absorbs vibration generated in the motor rotor. The deviation of the coaxiality between the outer core and inner core can be minimized by the minute gap, but the gap width of the minute gap changes continuously in the circumferential direction, and the path through which vibration propagates is small. Therefore, vibration is difficult to propagate.

本発明の請求項2によれば、請求項1に係るモータ回転子において、前記外側コアは、内周面の周方向の等間隔に半径方向内方に突出する複数の外側凸部を有し、前記内側コアは、外周面の周方向の等間隔でかつ隣接する前記外側凸部の間に半径方向外方に突出する複数の内側凸部を有することを特徴とする。   According to claim 2 of the present invention, in the motor rotor according to claim 1, the outer core has a plurality of outer protrusions protruding radially inward at equal intervals in the circumferential direction of the inner peripheral surface. The inner core has a plurality of inner protrusions protruding radially outward between the adjacent outer protrusions at equal intervals in the circumferential direction of the outer peripheral surface.

本発明の請求項3によれば、前記微小間隙部は、前記外側凸部の先端面とこれに対向する前記内側コアの外周面との間に形成されていることを特徴とする。   According to claim 3 of the present invention, the minute gap portion is formed between a tip surface of the outer convex portion and an outer peripheral surface of the inner core facing the outer convex portion.

本発明の請求項4によれば、請求項2または3に係るモータ回転子において、前記微小間隙部は、前記内側凸部の先端面とこれに対向する前記外側コアの内周面との間に形成されていることを特徴とする。   According to a fourth aspect of the present invention, in the motor rotor according to the second or third aspect, the minute gap portion is between a tip surface of the inner convex portion and an inner peripheral surface of the outer core facing the inner convex portion. It is characterized by being formed.

本発明の請求項5によれば、請求項1乃至4の何れかのモータ回転子において、前記微小間隙部は、前記外側コアの内周面と前記内側コアの外周面の少なくとも一方が平面視半円形状に突出する突起によって形成されていることを特徴とする。   According to a fifth aspect of the present invention, in the motor rotor according to any one of the first to fourth aspects, at least one of the inner peripheral surface of the outer core and the outer peripheral surface of the inner core is a plan view in the minute gap portion. It is formed by the protrusion which protrudes in a semicircle shape.

本発明の請求項6によれば、請求項1乃至5の何れかのモータ回転子において、前記微小間隙部の前記間隙幅の最狭部は、0.01乃至1.00mmであることを特徴とする。   According to Claim 6 of the present invention, in the motor rotor according to any one of Claims 1 to 5, the narrowest part of the gap width of the minute gap part is 0.01 to 1.00 mm. And

本発明の請求項7によれば、請求項2乃至6の何れかのモータ回転子において、前記外側凸部と前記内側凸部の個数は、5以上の素数であることを特徴とする。   According to a seventh aspect of the present invention, in the motor rotor according to any one of the second to sixth aspects, the number of the outer convex portions and the inner convex portions is a prime number of 5 or more.

本発明の請求項8によれば、請求項1乃至7の何れかのモータ回転子において、前記弾性体は、前記外側コアと前記内側コアとを配置した所定の金型に溶融したエラストマを流し込んで固化することによって、前記外側コアと前記内側コアに密着していることを特徴とする。   According to Claim 8 of the present invention, in the motor rotor according to any one of Claims 1 to 7, the elastic body flows molten elastomer into a predetermined mold in which the outer core and the inner core are arranged. By solidifying with, the outer core and the inner core are in close contact with each other.

本発明の請求項9によれば、モータであって、固定子と、前記固定子に対して回転自在に支持される請求項1乃至8の何れかに記載のモータ回転子と、を備えることを特徴とする。   According to a ninth aspect of the present invention, there is provided a motor, comprising: a stator; and the motor rotor according to any one of the first to eighth aspects, which is rotatably supported with respect to the stator. It is characterized by.

本発明の請求項10によれば、モータであって、固定子と、前記固定子に対して回転自在に支持される請求項1乃至5の何れかに記載のモータ回転子と、を備え、前記回転子の前記微小間隙部の最狭部の前記間隙幅g1は、前記回転子の外周面と前記固定子の内周面とによって形成される半径方向の間隙のうちの最狭部の間隙幅g2よりも、小さいことを特徴とする。   According to claim 10 of the present invention, there is provided a motor, comprising: a stator; and the motor rotor according to any one of claims 1 to 5 that is rotatably supported with respect to the stator, The gap width g1 of the narrowest portion of the minute gap portion of the rotor is the narrowest gap among the radial gaps formed by the outer peripheral surface of the rotor and the inner peripheral surface of the stator. It is characterized by being smaller than the width g2.

本発明のモータ回転子は、同軸度が低下しにくい防振構造をもつため、低振動および低騒音を実現することができる。また、本発明のモータは、同軸度が低下しにくい防振構造をもつモータ回転子を有するため、低振動および低騒音を実現することができる。   Since the motor rotor of the present invention has a vibration-proof structure in which the coaxiality is not easily lowered, low vibration and low noise can be realized. In addition, since the motor of the present invention has a motor rotor having a vibration isolation structure in which the coaxiality is unlikely to decrease, low vibration and low noise can be realized.

本発明に係るモータ回転子およびモータの一実施形態について、エアコンの室外機に搭載されるファンモータを用いて、図1乃至5を参照しながら説明する。   An embodiment of a motor rotor and a motor according to the present invention will be described with reference to FIGS. 1 to 5 using a fan motor mounted on an outdoor unit of an air conditioner.

図1に示すモータ1は、DCブラシレスモータであって、固定子2と、この固定子2の半径方向内方において回転自在に支持されたモータ回転子3(以下、回転子という)とを備えている。固定子2は、円環状の鉄心コア21に設けられた9個の磁極部22にコイル23が巻回され(極数Sが9極)、そのコイル23の端部が回路基板24に電気的に接続され、これら部材間の隙間を含む表面全体に合成樹脂が充填されると共にモータ1の外枠25もその合成樹脂によって形成されている。   A motor 1 shown in FIG. 1 is a DC brushless motor, and includes a stator 2 and a motor rotor 3 (hereinafter referred to as a rotor) that is rotatably supported inward in the radial direction of the stator 2. ing. In the stator 2, a coil 23 is wound around nine magnetic pole portions 22 provided on an annular iron core 21 (the number S of poles is 9), and an end portion of the coil 23 is electrically connected to a circuit board 24. The entire surface including the gap between these members is filled with synthetic resin, and the outer frame 25 of the motor 1 is also formed of the synthetic resin.

回転子3は、円環状の鉄心コア31の内周面に円柱状のシャフト32が圧入固定され、その外周面に8個の円弧状に湾曲した板状のマグネット33が接着剤によって固着されている。マグネット33の外周面の曲率は、内周面の曲率よりも大きい。8個のマグネット33によって、極数Pが8極のロータマグネット33Mを構成する。鉄心コア31は、半径方向の内側に位置する円環状の内側コア34と、外側に位置する円環状の外側コア35と、内側コア34と外側コア35との間の円環状の間隙によって形成される収容部36に介在する弾性体38とからなる(詳細は後述)。回転子3は、一対の軸受4によって固定子2に対して回転自在に支持されている。シャフト32の先端には、ファン(図示略)が取り付けられ、回転子3の回転によりファンも回転する構成となっている。   In the rotor 3, a cylindrical shaft 32 is press-fitted and fixed to the inner peripheral surface of an annular iron core 31, and eight arcuate plate-shaped magnets 33 are fixed to the outer peripheral surface by an adhesive. Yes. The curvature of the outer peripheral surface of the magnet 33 is larger than the curvature of the inner peripheral surface. The eight magnets 33 constitute a rotor magnet 33M having eight poles P. The iron core 31 is formed by an annular inner core 34 located radially inside, an annular outer core 35 located outside, and an annular gap between the inner core 34 and the outer core 35. And an elastic body 38 interposed in the accommodating portion 36 (details will be described later). The rotor 3 is rotatably supported with respect to the stator 2 by a pair of bearings 4. A fan (not shown) is attached to the tip of the shaft 32, and the fan is also rotated by the rotation of the rotor 3.

固定子2のコイル23に所定の方式で通電されると、各磁極部22から回転磁界が発生し、この回転磁界に回転子3のロータマグネット33Mの磁界が作用し磁気的に吸引及び反発を繰り返して回転子3が回転する。   When the coil 23 of the stator 2 is energized in a predetermined manner, a rotating magnetic field is generated from each magnetic pole portion 22, and the magnetic field of the rotor magnet 33M of the rotor 3 acts on this rotating magnetic field to magnetically attract and repel it. The rotor 3 rotates repeatedly.

次に回転子3の詳細な構成について説明する。図1、2に示すように、内側コア34は、複数枚の珪素鋼板を積層してなるもので、シャフト32が嵌合される嵌合孔が中心にある円環状部34aと、円環状部34aの外周面の周方向等間隔の五カ所から半径方向外方に突出する5個の内側凸部34bとからなる。内側凸部34bは、付け根から先端までほぼ同じ幅で突出し、先端で円弧状に突出することによって、平面視略T字状に形成されている。一方、外側コア35についても、複数枚の珪素鋼板を積層してなるもので、ロータマグネット33Mが固着される外周面を有する円環状部35aと、円環状部35aの内周面の周方向等間隔の五カ所から半径方向内方に突出する5個の外側凸部35bとからなる。外側凸部35bは、付け根から先端までほぼ同じ幅で突出することによって、平面視略I字状に形成されている。また、外側コア35にて、隣接する外側凸部35bの間の内周面の周方向中心部には、半径方向内方に膨らむ膨出部35cがそれぞれ形成されている。この膨出部35cは、両側の外側凸部35bに比べて突出長さが僅かで、先端は平面視半円形状でその内周面に滑らかにつながっている。   Next, a detailed configuration of the rotor 3 will be described. As shown in FIGS. 1 and 2, the inner core 34 is formed by laminating a plurality of silicon steel plates, and an annular portion 34 a centering on a fitting hole into which the shaft 32 is fitted, and an annular portion. It consists of five inner projections 34b projecting radially outward from five circumferentially equidistant locations on the outer circumferential surface of 34a. The inner convex part 34b protrudes with substantially the same width from the base to the tip, and is formed in a substantially T shape in plan view by protruding in an arc shape at the tip. On the other hand, the outer core 35 is also formed by laminating a plurality of silicon steel plates, and an annular portion 35a having an outer peripheral surface to which the rotor magnet 33M is fixed, a circumferential direction of an inner peripheral surface of the annular portion 35a, and the like. It consists of five outer convex portions 35b protruding radially inward from five intervals. The outer convex portion 35b is formed in a substantially I shape in plan view by projecting with substantially the same width from the base to the tip. Further, in the outer core 35, a bulging portion 35c bulging inward in the radial direction is formed at the center portion in the circumferential direction of the inner circumferential surface between the adjacent outer convex portions 35b. The bulging portion 35c has a slight protrusion length compared to the outer convex portions 35b on both sides, and the tip is semicircular in plan view and smoothly connected to the inner peripheral surface.

これら内側コア34と外側コア35とは、図2より明らかなように、内側凸部34bが、隣接する外側凸部35bの間に位置し、内側凸部34bの中心が膨出部35cの中心に微小間隙を介して対向し、一方、外側凸部35bが、隣接する内側凸部34bの間に位置し、外側凸部35bの中心がその内側凸部34bの間の外周面の周方向中央に対向する。   As is clear from FIG. 2, the inner core 34 and the outer core 35 are such that the inner protrusion 34b is located between the adjacent outer protrusions 35b, and the center of the inner protrusion 34b is the center of the bulged portion 35c. On the other hand, the outer convex portion 35b is located between the adjacent inner convex portions 34b, and the center of the outer convex portion 35b is the circumferential center of the outer peripheral surface between the inner convex portions 34b. Opposite to.

つまり、内側凸部34bが、隣接する一対の外側凸部35bと円環状部35aとで形成される内向きの凹部35dに収容され、外側凸部35bが、隣接する一対の内側凸部34bと円環状部35aとで形成される外向きの凹部34dに収容されるようにして、内側コア34と外側コア35とは、互いに非接触で、かつそれぞれの凹凸部分が周方向に交互に噛み合うように構成されている。   That is, the inner convex portion 34b is accommodated in an inward concave portion 35d formed by a pair of adjacent outer convex portions 35b and an annular portion 35a, and the outer convex portion 35b is adjacent to a pair of adjacent inner convex portions 34b. The inner core 34 and the outer core 35 are not in contact with each other so that the concave and convex portions are alternately meshed with each other in the circumferential direction so as to be accommodated in the outward concave portion 34d formed by the annular portion 35a. It is configured.

収容部36は、それら内側凸部34bと外側凸部35bとからなる平面視凹凸形状に対応した空隙が円環状に連続した構成となっている。そして、収容部36には、内側凸部34bと膨出部35cとで形成される第一微小間隙部36aと、外側凸部35bと内側コア34の外周面とで形成される第二微小間隙部36bとを有している。第一微小間隙部36aは、図3に示すように平面視の外周面の曲率が小さい内側凸部34bと、平面視の内周面の曲率が大きい膨出部35cとが半径方向に対向するため、この第一微小間隙部36aの半径方向の間隙幅は、内側凸部34bと膨出部35cの中心部を通る中心線L1上に形成される間隙35c1が最狭で、中心線L1から周方向に離れるにつれて連続的に大きくなるように形成されている。その間隙35c1の間隙幅をg1、第二微小間隙部36bの間隙幅をg3、回転子3の外周面と固定子2の内周面とによって形成される半径方向の間隙のうち最挟部(磁極部22の内周面と、マグネット33の外周面の周方向中央とで形成される間隙)の間隙幅をg2、弾性体38の圧縮係数をtとすると、第一及び第二微小間隙部36a、36bの圧縮量は、t・g1で及びt・g2と表すことができ、これら各間隙の関係は、g1≒g3<(g2/t)となる。例えば、回転子3の直径が40mm程度の大きさのとき、弾性体38等の寸法のバラツキを考慮して、g1は0.01〜1mm程度に、g3は0.01〜1mm程度に、g2は0.3〜1.5mm程度である。   The accommodating portion 36 has a configuration in which gaps corresponding to the concave-convex shape in plan view composed of the inner convex portions 34b and the outer convex portions 35b are continuous in an annular shape. The accommodating portion 36 has a first minute gap 36a formed by the inner protrusion 34b and the bulging portion 35c, and a second minute gap formed by the outer protrusion 35b and the outer peripheral surface of the inner core 34. Part 36b. As shown in FIG. 3, in the first minute gap 36a, an inner convex portion 34b having a small curvature of the outer peripheral surface in plan view and a bulging portion 35c having a large curvature of the inner peripheral surface in plan view are opposed to each other in the radial direction. For this reason, the gap width in the radial direction of the first minute gap portion 36a is such that the gap 35c1 formed on the center line L1 passing through the center of the inner convex portion 34b and the bulging portion 35c is the narrowest, and from the center line L1 It forms so that it may become large continuously as it leaves | separates in the circumferential direction. The gap width of the gap 35c1 is g1, the gap width of the second minute gap portion 36b is g3, and the most sandwiched portion (of the radial gaps formed by the outer peripheral surface of the rotor 3 and the inner peripheral surface of the stator 2 ( (Gap formed between the inner circumferential surface of the magnetic pole portion 22 and the center in the circumferential direction of the outer circumferential surface of the magnet 33) g2 and the compression coefficient of the elastic body 38 as t, the first and second minute gap portions The compression amounts of 36a and 36b can be expressed by t · g1 and t · g2, and the relationship between these gaps is g1≈g3 <(g2 / t). For example, when the diameter of the rotor 3 is about 40 mm, g1 is about 0.01 to 1 mm, g3 is about 0.01 to 1 mm, and g2 Is about 0.3 to 1.5 mm.

弾性体38は、その凹凸状の収容部36に設けられる円環状弾性部38aと、内側凸部34b及び外側凸部35aの上端面にまたがって円環状に設けられる上側弾性部38bと、内側凸部34b及び外側凸部35aの下端面にまたがって設けられる下側弾性部38cとからなる。この弾性体38は、内側コア34と外側コア35とを配置した金型に、溶融したエラストマを流し込み、固化させて形成されている。このエラストマとは、熱可塑性エラストマやゴムである。熱可塑性エラストマは、弾性特性、強度、成形性、耐久性、コストなどにおいて有利である。このようにして弾性体38が形成されることにより、この弾性体38を介して互いに非接触の内側コア34と外側コア35が一体化される(これを中間組立体という)。そして、この中間組立体にシャフト32及びロータマグネット33Mを固定することにより、回転子3が完成する。   The elastic body 38 includes an annular elastic portion 38a provided in the concave and convex accommodating portion 36, an upper elastic portion 38b provided in an annular shape across the upper end surfaces of the inner convex portion 34b and the outer convex portion 35a, and an inner convex portion. It consists of the lower elastic part 38c provided ranging over the lower end surface of the part 34b and the outer side convex part 35a. The elastic body 38 is formed by pouring molten elastomer into a mold in which the inner core 34 and the outer core 35 are arranged, and solidifying the molten elastomer. This elastomer is a thermoplastic elastomer or rubber. Thermoplastic elastomers are advantageous in terms of elastic properties, strength, moldability, durability, cost, and the like. By forming the elastic body 38 in this way, the inner core 34 and the outer core 35 that are not in contact with each other are integrated via the elastic body 38 (this is referred to as an intermediate assembly). Then, the rotor 3 is completed by fixing the shaft 32 and the rotor magnet 33M to the intermediate assembly.

このような回転子3は、弾性体38によって、この回転子3で発生した振動が吸収されるため、シャフト32およびこれに取り付けられるファンが安定して回転する。それによって、回転子3の振動が軸受4を介して固定子2へ伝わることも防止でき、このモータ1は低振動化及び低騒音化する。   In such a rotor 3, vibration generated in the rotor 3 is absorbed by the elastic body 38, so that the shaft 32 and the fan attached thereto rotate stably. Thereby, it is possible to prevent the vibration of the rotor 3 from being transmitted to the stator 2 via the bearing 4, and the motor 1 is reduced in vibration and noise.

ところで、回転子3は、上述のように内側コア34と外側コア35とは非接触であって、両コアよりも軟らかい弾性体38によって連結する構成であるため、回転子3に特定の方向に過負荷がかかったり、特定の部位の弾性体38の硬度が低下したりすると、内側コア34と外側コア35との同軸度が低下する恐れがある。それによって、回転子3の動バランスが低下し不安定な回転となったり、回転子3が固定子2に接触したりする等の不具合が発生する。   By the way, the rotor 3 has a configuration in which the inner core 34 and the outer core 35 are not in contact with each other as described above and are connected by the elastic body 38 that is softer than both cores. When the overload is applied or the hardness of the elastic body 38 at a specific portion is lowered, the coaxiality between the inner core 34 and the outer core 35 may be lowered. As a result, the dynamic balance of the rotor 3 is lowered and unstable rotation occurs, or the rotor 3 comes into contact with the stator 2.

しかしながら、この回転子3では、内側コア34と外側コア35とが相対的に半径方向に移動しようとしても、周方向に等配して配置された複数の第一及び第二微小間隙部36a、36bの何れかで移動規制されるため、その同軸度が大幅に低下することはない。即ち、その同軸度のずれは、第一及び第二微小間隙部36a、36bに介在する弾性体38の圧縮量に依存し、t・g1又はt・g3以下となる。これら圧縮量t・g1又はt・g3は、上述のように間隙幅g3よりも小さいため、回転子3が固定子2に接触することはない。また、その同軸度のずれがt・g1又はt・g3以下であれば、回転子3の動バランスが低下しても回転特性に実質的に影響する程ではない。   However, in this rotor 3, even if the inner core 34 and the outer core 35 try to move relatively in the radial direction, a plurality of first and second minute gap portions 36a arranged at equal intervals in the circumferential direction, Since the movement is restricted by any one of 36b, the coaxiality does not drop significantly. That is, the deviation of the coaxiality depends on the amount of compression of the elastic body 38 interposed in the first and second minute gaps 36a and 36b, and becomes t · g1 or t · g3 or less. Since the compression amount t · g1 or t · g3 is smaller than the gap width g3 as described above, the rotor 3 does not contact the stator 2. Further, if the deviation of the coaxiality is equal to or less than t · g1 or t · g3, even if the dynamic balance of the rotor 3 is lowered, the rotation characteristics are not substantially affected.

第一微小間隙部36aは、前述のように内側コア34と外側コア35との相対的な移動を最小にするだけでなく、内側コア34および外側コア35の何れか一方で発生した振動を他方へ伝搬しにくい構成となっている。第一微小間隙部36aは、収容部36において弾性体38が肉薄のため振動を吸収する効果は低いが、第一微小間隙36aは、上述のようにその間隙幅が周方向に連続的に変化するため、その一方で発生した振動が他方へ伝搬する経路が僅少となり、よって振動伝搬しにくい。   As described above, the first minute gap 36 a not only minimizes the relative movement between the inner core 34 and the outer core 35, but also generates vibration generated in one of the inner core 34 and the outer core 35. It is difficult to propagate to. The first minute gap 36a has a low effect of absorbing vibration because the elastic body 38 is thin in the accommodating part 36, but the gap width of the first minute gap 36a continuously changes in the circumferential direction as described above. Therefore, the path through which the vibration generated on one side propagates to the other side is small, and thus the vibration is difficult to propagate.

弾性体38は、上述のように内側凸部34bと外側凸部35bとからなる凹凸形状に対応した空隙が円環状に連続してなる収容部36に設けられるため、内側コア34および外側コア35との密着面積が大きい。両者間の摩擦抵抗が大きいと、弾性体38と内側コア34または外側コア35との密着が強固となる。また、内側凸部34bは凹部35dに収容され、外側凸部35bは凹部34dに収容されるようにして周方向に交互に噛み合う構成であるため、弾性体38が内側コア34と外側コア35とによって半径方向だけでなく周方向にも挟持され、弾性体38が破断されにくくなっている。加えて、仮に回転時に弾性体38が破断したり、弾性体38と両コア34、35との密着が崩れたりしても、内側凸部34bと外側凸部35bとの一方が他方に向けて回動したところで、それ以上の回動が規制される。そのため、回転状態は不安定になるものの回転はすることができるため、モータ1の損傷を最小にすることができる。   Since the elastic body 38 is provided in the accommodating portion 36 in which the gap corresponding to the concavo-convex shape composed of the inner convex portion 34b and the outer convex portion 35b is continuously formed in an annular shape as described above, the inner core 34 and the outer core 35 are provided. The contact area is large. When the frictional resistance between the two is large, the adhesion between the elastic body 38 and the inner core 34 or the outer core 35 becomes strong. Further, since the inner convex portion 34b is accommodated in the concave portion 35d and the outer convex portion 35b is alternately engaged in the circumferential direction so as to be accommodated in the concave portion 34d, the elastic body 38 includes the inner core 34 and the outer core 35. Therefore, the elastic body 38 is not easily broken by being sandwiched not only in the radial direction but also in the circumferential direction. In addition, even if the elastic body 38 breaks during rotation or the close contact between the elastic body 38 and the cores 34 and 35 collapses, one of the inner convex portion 34b and the outer convex portion 35b faces the other. When it rotates, further rotation is restricted. Therefore, although the rotation state becomes unstable, it can be rotated, so that damage to the motor 1 can be minimized.

回転子3の内側凸部34bおよび外側凸部35bの個数R(5個)は、5以上の素数であるため、回転子3のコギングトルクと固有振動数とに共振しにくくなっている。   Since the number R (5) of the inner convex portions 34b and the outer convex portions 35b of the rotor 3 is a prime number of 5 or more, it is difficult for the rotor 3 to resonate with the cogging torque and the natural frequency.

以上、本発明のモータ回転子およびモータの一実施形態について説明したが、本発明の範囲はこれに限定されるものではなく、種々の変更が可能である。   As mentioned above, although one embodiment of the motor rotor and motor of the present invention was described, the scope of the present invention is not limited to this, and various modifications are possible.

例えば、上記実施形態の回転子3では、第一微小間隙部36aだけが半径方向の間隙幅が周方向に連続的に変化する構成としていたが、このような間隙形状を第二微小間隙部36bに設けても良い(図示略)。また、図4に示すように、第一および第二微小間隙部36a、36bの両方にそのような間隙形状を設けても良い。また、弾性体38に対する内側コア34および外側コア35との摩擦抵抗が大きいか、回転子3が低速で回転方向に過度の力が作用しないような場合には、内側凸部34bおよび外側凸部35bの両方を(図5参照)、または何れか一方を(図示略)を省略しても良い。また、弾性体38は、両コア34、35に対して射出成形により密着しているが、収容部36に対応した形状の成型品をはめ込んで固定するようにしてもよい。   For example, in the rotor 3 of the above-described embodiment, only the first minute gap portion 36a is configured such that the radial gap width continuously changes in the circumferential direction, but such a gap shape is changed to the second minute gap portion 36b. (Not shown). Further, as shown in FIG. 4, such a gap shape may be provided in both the first and second minute gap portions 36a and 36b. Further, when the frictional resistance between the inner core 34 and the outer core 35 with respect to the elastic body 38 is large, or when the rotor 3 is low speed and excessive force does not act in the rotation direction, the inner protrusion 34b and the outer protrusion Both 35b (see FIG. 5) or either one (not shown) may be omitted. The elastic body 38 is in close contact with both the cores 34 and 35 by injection molding, but a molded product having a shape corresponding to the accommodating portion 36 may be fitted and fixed.

本発明に係るモータ回転子及びモータの一実施形態を示す断面図。Sectional drawing which shows one Embodiment of the motor rotor and motor which concern on this invention. 図1のモータ回転子を中心に上方から見た平面図。The top view seen from the upper part centering on the motor rotor of FIG. 図2のモータ回転子の要部を拡大した平面図。The top view which expanded the principal part of the motor rotor of FIG. 図1におけるモータ回転子の一実施形態の変形例を示す平面図。The top view which shows the modification of one Embodiment of the motor rotor in FIG. 図1におけるモータ回転子の一実施形態の他の変形例を示す平面図。The top view which shows the other modification of one Embodiment of the motor rotor in FIG.

符号の説明Explanation of symbols

1 モータ
2 固定子
21 鉄心コア(固定子側)
22 磁極部
23 コイル
24 回路基板
25 外枠
3 回転子
31 鉄心コア(回転子側)
32 シャフト
33 マグネット
33M ロータマグネット
34 内側コア
34a 円環状部
34b 内側凸部
35 外側コア
35a 円環状部
35b 外側凸部
35c 膨出部
35c1 間隙
36 収容部
36a 第一微小間隙部
36b 第二微小間隙部
38 弾性体
38a 円環状弾性部
38b 上側弾性部
38c 下側弾性部
4 軸受
1 Motor 2 Stator 21 Iron core (stator side)
22 Magnetic pole part 23 Coil 24 Circuit board 25 Outer frame 3 Rotor 31 Iron core (rotor side)
32 shaft 33 magnet 33M rotor magnet 34 inner core 34a annular portion 34b inner convex portion 35 outer core 35a annular portion 35b outer convex portion 35c bulging portion 35c1 gap 36 accommodating portion 36a first minute gap portion 36b second minute gap portion 38 elastic body 38a annular elastic portion 38b upper elastic portion 38c lower elastic portion 4 bearing

Claims (10)

モータ回転子であって、
外周面に永久磁石が設けられる円環状の外側コアと、
前記外側コアの内側に配置され、内周面にシャフトが嵌合される円環状の内側コアと、
前記外側コアの内周面と前記内側コアの外周面とによって形成される円環状の収容部に介在する弾性体と、
を備え、
前記収容部には、半径方向の間隙幅が微小となる複数の微小間隙部を有し、該微小間隙部は該間隙幅が周方向に連続的に変化することを特徴とするモータ回転子。
A motor rotor,
An annular outer core provided with a permanent magnet on the outer peripheral surface;
An annular inner core disposed inside the outer core and fitted with a shaft on the inner circumferential surface;
An elastic body interposed in an annular housing portion formed by the inner peripheral surface of the outer core and the outer peripheral surface of the inner core;
With
The motor rotor according to claim 1, wherein the housing portion includes a plurality of minute gap portions having a minute gap width in the radial direction, and the gap width continuously changes in the circumferential direction.
前記外側コアは、内周面の周方向の等間隔に半径方向内方に突出する複数の外側凸部を有し、
前記内側コアは、外周面の周方向の等間隔でかつ隣接する前記外側凸部の間に半径方向外方に突出する複数の内側凸部を有することを特徴とする請求項1に記載のモータ回転子。
The outer core has a plurality of outer protrusions protruding radially inward at equal intervals in the circumferential direction of the inner peripheral surface,
2. The motor according to claim 1, wherein the inner core has a plurality of inner protrusions protruding outward in a radial direction between the adjacent outer protrusions at equal intervals in the circumferential direction of the outer peripheral surface. Rotor.
前記微小間隙部は、前記外側凸部の先端面とこれに対向する前記内側コアの外周面との間に形成されていることを特徴とする請求項2に記載のモータ回転子。   3. The motor rotor according to claim 2, wherein the minute gap is formed between a front end surface of the outer convex portion and an outer peripheral surface of the inner core facing the outer convex portion. 前記微小間隙部は、前記内側凸部の先端面とこれに対向する前記外側コアの内周面との間に形成されていることを特徴とする請求項2または3に記載のモータ回転子。   4. The motor rotor according to claim 2, wherein the minute gap portion is formed between a front end surface of the inner convex portion and an inner peripheral surface of the outer core facing the inner convex portion. 前記微小間隙部は、前記外側コアの内周面と前記内側コアの外周面の少なくとも一方が平面視半円形状に突出する突起によって形成されていることを特徴とする請求項1乃至4の何れかに記載のモータ回転子。   5. The micro gap is formed by a protrusion in which at least one of an inner peripheral surface of the outer core and an outer peripheral surface of the inner core protrudes in a semicircular shape in plan view. A motor rotor according to claim 1. 前記微小間隙部の前記間隙幅の最狭部は、0.01乃至1.00mmであることを特徴とする請求項1乃至5の何れかに記載のモータ回転子。   The motor rotor according to any one of claims 1 to 5, wherein a narrowest part of the gap width of the minute gap part is 0.01 to 1.00 mm. 前記外側凸部と前記内側凸部の個数は、5以上の素数であることを特徴とする請求項2乃至6の何れかに記載のモータ回転子。   The motor rotor according to any one of claims 2 to 6, wherein the number of the outer convex portions and the inner convex portions is a prime number of 5 or more. 前記弾性体は、前記外側コアと前記内側コアとを配置した所定の金型に溶融したエラストマを流し込んで固化することによって、前記外側コアと前記内側コアに密着していることを特徴とする請求項1乃至7の何れかに記載のモータ回転子。   The elastic body is in close contact with the outer core and the inner core by pouring and solidifying molten elastomer into a predetermined mold in which the outer core and the inner core are arranged. Item 8. The motor rotor according to any one of Items 1 to 7. 固定子と、
前記固定子に対して回転自在に支持される請求項1乃至8の何れかに記載のモータの回転子と、を備えることを特徴とするモータ。
A stator,
A motor comprising: the motor rotor according to claim 1, which is rotatably supported with respect to the stator.
固定子と、
前記固定子に対して回転自在に支持される請求項1乃至5の何れかに記載のモータ回転子と、を備え、
前記回転子の前記微小間隙部の最狭部の前記間隙幅g1は、前記回転子の外周面と前記固定子の内周面とによって形成される半径方向の間隙のうちの最狭部の間隙幅g2よりも、小さいことを特徴とするモータ。
A stator,
The motor rotor according to any one of claims 1 to 5, which is rotatably supported with respect to the stator,
The gap width g1 of the narrowest portion of the minute gap portion of the rotor is the gap of the narrowest portion of the radial gap formed by the outer peripheral surface of the rotor and the inner peripheral surface of the stator. A motor characterized by being smaller than the width g2.
JP2007300608A 2007-11-20 2007-11-20 Motor rotor and motor Active JP5231790B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007300608A JP5231790B2 (en) 2007-11-20 2007-11-20 Motor rotor and motor
CN200810177784XA CN101442229B (en) 2007-11-20 2008-11-20 Motor rotor and motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007300608A JP5231790B2 (en) 2007-11-20 2007-11-20 Motor rotor and motor

Publications (2)

Publication Number Publication Date
JP2009130966A true JP2009130966A (en) 2009-06-11
JP5231790B2 JP5231790B2 (en) 2013-07-10

Family

ID=40726530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007300608A Active JP5231790B2 (en) 2007-11-20 2007-11-20 Motor rotor and motor

Country Status (2)

Country Link
JP (1) JP5231790B2 (en)
CN (1) CN101442229B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015453A (en) * 2009-06-30 2011-01-20 Nidec Shibaura Corp Rotor for brushless motor
CN102324812A (en) * 2011-06-30 2012-01-18 青岛科技大学 Preparation method with plastic bonding magnet p-m rotor of resilient coating
CN103986291A (en) * 2014-05-06 2014-08-13 邯郸美的制冷设备有限公司 Single-phase capacitor asynchronous motor
WO2016134884A1 (en) * 2015-02-24 2016-09-01 Robert Bosch Gmbh Rotor for an electric machine with advantageous torque transfer and corresponding electric machine
WO2016158131A1 (en) * 2015-03-31 2016-10-06 日立工機株式会社 Electric tool
WO2017022107A1 (en) * 2015-08-05 2017-02-09 三菱電機株式会社 Rotating electric machine rotor, rotating electric machine, fan, and refrigerated air conditioner
JP2017077111A (en) * 2015-10-15 2017-04-20 シャープ株式会社 Motor and air conditioner
CN106685112A (en) * 2016-11-30 2017-05-17 广东威灵电机制造有限公司 Motor rotor and motor
JP2017085804A (en) * 2015-10-29 2017-05-18 株式会社富士通ゼネラル Permanent magnet electric motor
WO2017098907A1 (en) * 2015-12-09 2017-06-15 日本電産テクノモータ株式会社 Motor
US10298091B2 (en) 2014-10-22 2019-05-21 Mitsubishi Electric Corporation Rotor of rotating motor, rotating motor, and air-conditioning apparatus
JP2020018110A (en) * 2018-07-26 2020-01-30 パナソニックIpマネジメント株式会社 Brushless motor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126414B2 (en) * 2009-10-09 2013-01-23 トヨタ自動車株式会社 Rotor and method for manufacturing the same
CN102751840B (en) * 2012-07-03 2015-06-10 石狮市通达电机有限公司 Energy-saving anti-shock permanent magnetic brushless direct current motor and production method thereof
CN203278576U (en) * 2013-05-31 2013-11-06 中山大洋电机股份有限公司 Motor rotor structure
JP2017005854A (en) * 2015-06-10 2017-01-05 日本電産テクノモータ株式会社 Rotor, motor, and manufacturing method of rotor
CN105576866B (en) * 2016-01-21 2018-09-07 珠海格力节能环保制冷技术研究中心有限公司 The installation method of motor, rotor and rotor
CN109309428B (en) * 2017-07-28 2023-05-02 Weg电子设备有限公司 Rotary generator
DE102017214555B4 (en) * 2017-08-21 2019-10-24 Continental Automotive Gmbh Rotor and electric machine
CN111555487A (en) * 2019-02-12 2020-08-18 广东威灵电机制造有限公司 Motor rotor and motor with same
DE102022119704A1 (en) * 2022-08-05 2024-02-08 Vibracoustic Se Electric motor rotor assembly

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925930U (en) * 1982-08-09 1984-02-17 三菱電機株式会社 Rotor of salient pole rotating electric machine
JPS5967859A (en) * 1982-09-15 1984-04-17 ザイア・アクチエンゲゼルシャフト Rotor for synchronous motor
JPS5986444A (en) * 1982-11-10 1984-05-18 Matsushita Seiko Co Ltd Rotor for induction motor
JPH0686485A (en) * 1992-09-04 1994-03-25 Matsushita Electric Ind Co Ltd Rotor of permanent magnet motor
JPH06105517A (en) * 1992-09-18 1994-04-15 Sanyo Electric Co Ltd Inner rotor-type dc brushless motor
JPH0956092A (en) * 1995-08-10 1997-02-25 Daido Steel Co Ltd Permanent-magnet rotor
JPH09149571A (en) * 1995-11-22 1997-06-06 Kusatsu Denki Kk Rotor of permanent magnet motor
JP2001008388A (en) * 1999-06-18 2001-01-12 Yaskawa Electric Corp Core structure for smooth core armature ac servo motor
JP2001037120A (en) * 1999-07-19 2001-02-09 Fujitsu General Ltd Rotor for motor
JP2001112203A (en) * 1999-10-05 2001-04-20 Hitachi Ltd Rotary electric machine
JP2001268831A (en) * 2000-03-21 2001-09-28 Matsushita Electric Ind Co Ltd Permanent magnet rotor
JP2003061279A (en) * 2001-08-08 2003-02-28 Matsushita Electric Ind Co Ltd Rotor for motor
JP2004297935A (en) * 2003-03-27 2004-10-21 Matsushita Electric Ind Co Ltd Rotor of brushless motor
JP2005348513A (en) * 2004-06-02 2005-12-15 Shinano Kenshi Co Ltd Rotor for permanent magnet motor
JP2007209163A (en) * 2006-02-03 2007-08-16 Nok Corp Vibration-proof structure of permanent magnet rotor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941552B (en) * 2005-09-27 2011-02-23 信浓绢糸株式会社 Rotor of permanent magnetic motor

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925930U (en) * 1982-08-09 1984-02-17 三菱電機株式会社 Rotor of salient pole rotating electric machine
JPS5967859A (en) * 1982-09-15 1984-04-17 ザイア・アクチエンゲゼルシャフト Rotor for synchronous motor
JPS5986444A (en) * 1982-11-10 1984-05-18 Matsushita Seiko Co Ltd Rotor for induction motor
JPH0686485A (en) * 1992-09-04 1994-03-25 Matsushita Electric Ind Co Ltd Rotor of permanent magnet motor
JPH06105517A (en) * 1992-09-18 1994-04-15 Sanyo Electric Co Ltd Inner rotor-type dc brushless motor
JPH0956092A (en) * 1995-08-10 1997-02-25 Daido Steel Co Ltd Permanent-magnet rotor
JP3689877B2 (en) * 1995-11-22 2005-08-31 草津電機株式会社 Permanent magnet motor rotor
JPH09149571A (en) * 1995-11-22 1997-06-06 Kusatsu Denki Kk Rotor of permanent magnet motor
JP2001008388A (en) * 1999-06-18 2001-01-12 Yaskawa Electric Corp Core structure for smooth core armature ac servo motor
JP2001037120A (en) * 1999-07-19 2001-02-09 Fujitsu General Ltd Rotor for motor
JP2001112203A (en) * 1999-10-05 2001-04-20 Hitachi Ltd Rotary electric machine
JP2001268831A (en) * 2000-03-21 2001-09-28 Matsushita Electric Ind Co Ltd Permanent magnet rotor
JP2003061279A (en) * 2001-08-08 2003-02-28 Matsushita Electric Ind Co Ltd Rotor for motor
JP2004297935A (en) * 2003-03-27 2004-10-21 Matsushita Electric Ind Co Ltd Rotor of brushless motor
JP2005348513A (en) * 2004-06-02 2005-12-15 Shinano Kenshi Co Ltd Rotor for permanent magnet motor
JP2007209163A (en) * 2006-02-03 2007-08-16 Nok Corp Vibration-proof structure of permanent magnet rotor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015453A (en) * 2009-06-30 2011-01-20 Nidec Shibaura Corp Rotor for brushless motor
CN102324812A (en) * 2011-06-30 2012-01-18 青岛科技大学 Preparation method with plastic bonding magnet p-m rotor of resilient coating
CN103986291A (en) * 2014-05-06 2014-08-13 邯郸美的制冷设备有限公司 Single-phase capacitor asynchronous motor
US10298091B2 (en) 2014-10-22 2019-05-21 Mitsubishi Electric Corporation Rotor of rotating motor, rotating motor, and air-conditioning apparatus
WO2016134884A1 (en) * 2015-02-24 2016-09-01 Robert Bosch Gmbh Rotor for an electric machine with advantageous torque transfer and corresponding electric machine
WO2016158131A1 (en) * 2015-03-31 2016-10-06 日立工機株式会社 Electric tool
US10702932B2 (en) 2015-03-31 2020-07-07 Koki Holdings Co., Ltd. Power tool having first elastic member and second elastic member accommodated in first gear
JPWO2016158131A1 (en) * 2015-03-31 2018-02-08 日立工機株式会社 Electric tool
WO2017022107A1 (en) * 2015-08-05 2017-02-09 三菱電機株式会社 Rotating electric machine rotor, rotating electric machine, fan, and refrigerated air conditioner
US10749392B2 (en) 2015-08-05 2020-08-18 Mitsubishi Electric Corporation Motor rotor, motor, blower, and refrigeration air conditioner
JPWO2017022107A1 (en) * 2015-08-05 2018-03-08 三菱電機株式会社 Electric motor rotor, electric motor, blower and refrigeration air conditioner
JP2017077111A (en) * 2015-10-15 2017-04-20 シャープ株式会社 Motor and air conditioner
JP2017085804A (en) * 2015-10-29 2017-05-18 株式会社富士通ゼネラル Permanent magnet electric motor
JPWO2017098907A1 (en) * 2015-12-09 2018-12-06 日本電産テクノモータ株式会社 motor
WO2017098907A1 (en) * 2015-12-09 2017-06-15 日本電産テクノモータ株式会社 Motor
CN106685112A (en) * 2016-11-30 2017-05-17 广东威灵电机制造有限公司 Motor rotor and motor
JP2020018110A (en) * 2018-07-26 2020-01-30 パナソニックIpマネジメント株式会社 Brushless motor
JP7178547B2 (en) 2018-07-26 2022-11-28 パナソニックIpマネジメント株式会社 brushless motor

Also Published As

Publication number Publication date
CN101442229A (en) 2009-05-27
CN101442229B (en) 2012-08-29
JP5231790B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5231790B2 (en) Motor rotor and motor
AU2017225017B2 (en) A Motor
JP2007523588A (en) Armature for DC motor
JP2001268831A (en) Permanent magnet rotor
JP4705065B2 (en) Motor rotor, motor and air conditioner
JP4904251B2 (en) DC motor for pump
JP2006304539A (en) Rotor structure of axial gap rotating electric machine
TWI407663B (en) A motor for injection molding machine, and a rotor for mounting a magnet type motor
JP2007318924A (en) Stator fixing structure of electric motor
JP2013031242A (en) Rotor of axial gap motor, and manufacturing method of the same
JP2007318924A5 (en)
JP2009232658A (en) Rotating electric machine
JP2016135061A (en) Permanent magnet motor
JP2018133948A (en) motor
JP2010233374A (en) Inner rotor type motor
JP2013115836A (en) Brushless motor and electric pump
JP6685166B2 (en) Axial gap type rotating electric machine
JP7178547B2 (en) brushless motor
CN113424397B (en) Rotor with embedded magnet
WO2020208988A1 (en) Motor and electric device
JP2015104267A (en) Rotor and permanent magnet motor
KR20190062983A (en) Rotor and motor having the same
JP2006271066A (en) Motor
JP5559600B2 (en) Magnet for DC motor and DC motor
JP2005094819A (en) Electric motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5231790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250