JP2009128127A - Hydrogen gas sensor - Google Patents

Hydrogen gas sensor Download PDF

Info

Publication number
JP2009128127A
JP2009128127A JP2007302109A JP2007302109A JP2009128127A JP 2009128127 A JP2009128127 A JP 2009128127A JP 2007302109 A JP2007302109 A JP 2007302109A JP 2007302109 A JP2007302109 A JP 2007302109A JP 2009128127 A JP2009128127 A JP 2009128127A
Authority
JP
Japan
Prior art keywords
thermoelectric material
catalyst
hydrogen gas
gas sensor
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007302109A
Other languages
Japanese (ja)
Inventor
Kensaku Asakura
健作 朝倉
Atsushi Hitomi
篤志 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2007302109A priority Critical patent/JP2009128127A/en
Publication of JP2009128127A publication Critical patent/JP2009128127A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen gas sensor having a sensitivity higher than those of the conventional types. <P>SOLUTION: The hydrogen sensor 100 includes a sensor section 10 having a thermoelectric material section 2 constituted of a thermoelectric material, and a catalyst section 6 located on a pair of electrodes 4a, 4b provided on the thermoelectric material section 2 and on one electrode side 4a of the pair of electrodes 4a, 4b and which are in contact with the thermoelectric material section 2, for catalyzing reaction by hydrogen; and a voltage measuring section 20 for measuring the voltage generated across the pair of electrodes 4a, 4b. At least a part of the catalyst section 6 is located in a concave section 8, formed on the thermoelectric material section 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水素ガスセンサ、より詳しくは、熱電式水素ガスセンサに関する。   The present invention relates to a hydrogen gas sensor, and more particularly to a thermoelectric hydrogen gas sensor.

雰囲気中の水素を検出する水素ガスセンサとして、熱電式水素ガスセンサは、消費電力が小さく、しかも安価であることから、例えば、燃料電池等の発電システム等に効率よく適用することができると期待されている。この熱電式水素ガスセンサは、熱電素子の一部分で水素による発熱反応を生じさせ、発熱反応が生じなかった部分との温度差に基づく起電力を発生させることによって水素の検出を行うものである。   As a hydrogen gas sensor for detecting hydrogen in the atmosphere, a thermoelectric hydrogen gas sensor is expected to be able to be efficiently applied to, for example, a power generation system such as a fuel cell because of its low power consumption and low cost. Yes. This thermoelectric hydrogen gas sensor detects hydrogen by causing an exothermic reaction due to hydrogen in a part of the thermoelectric element and generating an electromotive force based on a temperature difference from the part where the exothermic reaction did not occur.

このような熱電式水素ガスセンサとしては、例えば、非検出ガスと接触して触媒反応を起こす触媒(触媒成分)と、この反応による局部的な温度差を電圧信号に変換する熱電変換材料膜を含む構成を有するものが知られている(特許文献1、2参照)。   Such a thermoelectric hydrogen gas sensor includes, for example, a catalyst (catalyst component) that causes a catalytic reaction in contact with a non-detection gas, and a thermoelectric conversion material film that converts a local temperature difference due to this reaction into a voltage signal. What has a structure is known (refer patent document 1, 2).

特開2003−156461号公報JP 2003-156461 A 特開2006−201100号公報JP 2006-201100 A

上述した構成を有する従来の熱電式水素ガスセンサは、触媒部における反応による発熱を利用して熱電変換材料膜に温度差を発生させ、これにより起電力を生じさせることが動作原理となる。したがって、触媒における反応によって生じた反応熱を確実に熱電変換材料膜へ伝導させなければ、熱電変換材料膜両端の温度差を発生させ難く、結果として水素ガスセンサの感度も低くなる。   The conventional thermoelectric hydrogen gas sensor having the above-described configuration has an operation principle of generating a temperature difference in the thermoelectric conversion material film using heat generated by the reaction in the catalyst portion, thereby generating an electromotive force. Therefore, unless the reaction heat generated by the reaction in the catalyst is reliably conducted to the thermoelectric conversion material film, it is difficult to generate a temperature difference between both ends of the thermoelectric conversion material film, and as a result, the sensitivity of the hydrogen gas sensor is lowered.

ところが、上記特許文献1、2に記載された熱電式水素ガスセンサでは、期待されるほどの感度が得られないことが少なくなかった。これは、反応熱の一部が触媒部から外気へ逃れてしまい、反応熱が熱電変換材料膜へ十分に伝導しないことが一因であると考えられる。   However, the thermoelectric hydrogen gas sensors described in Patent Documents 1 and 2 often cannot achieve the expected sensitivity. This is considered to be partly because part of the reaction heat escapes from the catalyst part to the outside air and the reaction heat is not sufficiently conducted to the thermoelectric conversion material film.

そこで、本発明はこのような事情に鑑みてなされたものであり、従来よりも高い感度を有する水素ガスセンサを提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and an object thereof is to provide a hydrogen gas sensor having higher sensitivity than before.

上記目的を達成するため、本発明の水素ガスセンサは、熱電材料からなる熱電材料部、熱電材料部上に設けられた一対の電極、及び一対の電極のうちの一方の電極側に偏在し、且つ熱電材料部に接するように設けられ、水素による反応を触媒する触媒部を有するセンサ部と、一対の電極間に発生した電圧を測定する電圧測定部と、を備え、触媒部の少なくとも一部が、熱電材料部に形成された凹部内に配置されていることを特徴とする。すなわち、本発明の水素ガスセンサでは、触媒部の少なくとも一部が、熱電材料部に埋め込まれている。   In order to achieve the above object, the hydrogen gas sensor of the present invention is unevenly distributed on a thermoelectric material portion made of a thermoelectric material, a pair of electrodes provided on the thermoelectric material portion, and one of the pair of electrodes, and A sensor unit provided in contact with the thermoelectric material unit and having a catalyst unit for catalyzing a reaction by hydrogen; and a voltage measuring unit for measuring a voltage generated between the pair of electrodes, at least a part of the catalyst unit being It is arranged in a recess formed in the thermoelectric material part. That is, in the hydrogen gas sensor of the present invention, at least a part of the catalyst part is embedded in the thermoelectric material part.

上記本発明の水素ガスセンサは、触媒部において水素の触媒反応を生じさせて熱を発生させることで、熱電材料部において触媒部に接触している部分とこれ以外の部分との温度差に基づく起電力を発生させ、この起電力を電圧測定部で測定することによって水素ガスを検出する熱電式水素ガスセンサである。   The hydrogen gas sensor according to the present invention generates heat based on a catalytic reaction of hydrogen in the catalyst portion, thereby causing a temperature difference between the portion in contact with the catalyst portion and the other portion in the thermoelectric material portion. It is a thermoelectric hydrogen gas sensor that detects hydrogen gas by generating electric power and measuring the electromotive force with a voltage measurement unit.

この水素ガスセンサでは、触媒部の少なくとも一部が、熱電材料部に形成された凹部内に配置され、凹部の内壁によって囲まれている。そのため、上記本発明では、従来のように凹部の形成されていない平坦な熱電材料部の外表面上に触媒部が設置されている場合に比べて、反応熱が触媒部から外気へ逃げ難くなる。すなわち、上記本発明では、触媒部で発生した反応熱のうち、外気へ逃げることなく熱電材料部へ伝導する熱を従来に比べて大きくできるため、水素ガスセンサの感度を従来よりも向上させることが可能となる。   In this hydrogen gas sensor, at least a part of the catalyst part is disposed in a recess formed in the thermoelectric material part, and is surrounded by the inner wall of the recess. Therefore, in the present invention, the heat of reaction is less likely to escape from the catalyst portion to the outside air than in the case where the catalyst portion is installed on the outer surface of the flat thermoelectric material portion where no recess is formed as in the prior art. . That is, in the present invention, since the heat conducted to the thermoelectric material part of the reaction heat generated in the catalyst part without escaping to the outside air can be increased compared to the conventional case, the sensitivity of the hydrogen gas sensor can be improved compared to the conventional case. It becomes possible.

上記本発明では、触媒部が凹部の内壁と接触していることが好ましく、触媒部が凹部の内壁全面と接触していることが更に好ましい。これにより、従来のように凹部の形成されていない熱電材料部の平坦な表面上に触媒部が設置されている場合に比べて、触媒部と熱電材料部との接触面積が大きくなり、触媒部で発生した反応熱が、より確実に熱電材料部へ伝導するため、水素ガスセンサの感度を更に向上させることが可能となる。   In the present invention, the catalyst part is preferably in contact with the inner wall of the recess, and more preferably the catalyst part is in contact with the entire inner wall of the recess. Thereby, compared with the case where the catalyst part is installed on the flat surface of the thermoelectric material part in which no recess is formed as in the prior art, the contact area between the catalyst part and the thermoelectric material part is increased, and the catalyst part Since the reaction heat generated in step 1 is more reliably conducted to the thermoelectric material part, the sensitivity of the hydrogen gas sensor can be further improved.

上記本発明では、触媒部と熱電材料部との接触界面が凹凸状であることが好ましい。これにより、従来のように触媒部と熱電材料部との接触界面が平面状である場合に比べて、触媒部と熱電材料部との接触面積が大きくなり、触媒部で発生した反応熱が、より確実に熱電材料部へ伝導するため、水素ガスセンサの感度を更に向上させることが可能となる。   In the said invention, it is preferable that the contact interface of a catalyst part and a thermoelectric material part is uneven | corrugated. Thereby, compared with the case where the contact interface of a catalyst part and a thermoelectric material part is planar like before, the contact area of a catalyst part and a thermoelectric material part becomes large, and the reaction heat generated in the catalyst part, Since it more reliably conducts to the thermoelectric material part, it becomes possible to further improve the sensitivity of the hydrogen gas sensor.

上記本発明では、凹部の一部に、凹部とは反対側の表面まで熱電材料部を貫通する貫通部が形成されていてもよい。こうすれば、この貫通部を通じて熱電材料部の内部に侵入した水素ガスを、触媒部において反応させることができる。すなわち、凹部とは反対側から熱電材料部の内部に侵入した水素ガスも検出することが可能となる。また、貫通部に触媒部の一部が配置され、且つ貫通部の内壁と触媒部の一部とが接触する場合、触媒部と熱電材料部との接触面積を更に大きくすることができる。また、貫通部に触媒部の一部が充填されている場合、すなわち、貫通部に触媒部の一部が嵌合している場合、触媒部が熱電材料部から脱離し難くなる。   In the said invention, the penetration part which penetrates a thermoelectric material part to the surface on the opposite side to a recessed part may be formed in a part of recessed part. If it carries out like this, the hydrogen gas which penetrate | invaded into the inside of the thermoelectric material part through this penetration part can be made to react in a catalyst part. That is, it is possible to detect hydrogen gas that has entered the thermoelectric material portion from the side opposite to the concave portion. Moreover, when a part of catalyst part is arrange | positioned in a penetration part and the inner wall of a penetration part and a part of catalyst part contact, the contact area of a catalyst part and a thermoelectric material part can be enlarged further. Moreover, when a part of the catalyst part is filled in the penetration part, that is, when a part of the catalyst part is fitted in the penetration part, the catalyst part is hardly detached from the thermoelectric material part.

本発明によれば、従来よりも高い感度を有する水素ガスセンサを提供することが可能となる。   According to the present invention, it is possible to provide a hydrogen gas sensor having higher sensitivity than before.

以下、図面を参照して本発明の好適な実施の形態について説明する。なお、図面の説明において、同一の要素には同一の符号を付し、重複する説明については省略することとする。また、図面中に示す寸法及び位置関係は図示されたものに限定されない。   Preferred embodiments of the present invention will be described below with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted. Further, the dimensions and positional relationships shown in the drawings are not limited to those illustrated.

(第1実施形態)
図1は、本発明の第1実施形態に係る水素ガスセンサの構成を示す概略図である。図1に示すように、第1実施形態の水素ガスセンサ100は、センサ部10と、電圧測定部20とから構成される。
(First embodiment)
FIG. 1 is a schematic view showing the configuration of the hydrogen gas sensor according to the first embodiment of the present invention. As shown in FIG. 1, the hydrogen gas sensor 100 according to the first embodiment includes a sensor unit 10 and a voltage measurement unit 20.

図1は、センサ部10の断面構成を模式的に示している。また、図2は、センサ部10を上方からみた平面図である。図1、2に示すように、センサ部10は、熱電材料部2と、熱電材料部2上に設けられた一対の電極4a、4bと、一対の電極4a、4bのうちの一方の電極4a側に偏在し、且つ熱電材料部2に接するように設けられ、水素による反応を触媒する触媒部6と、を有する。このようなセンサ部10は、例えば、長さ10mm程度、幅7mm程度、厚さ0.2mm程度の大きさを有する。   FIG. 1 schematically shows a cross-sectional configuration of the sensor unit 10. FIG. 2 is a plan view of the sensor unit 10 as viewed from above. 1 and 2, the sensor unit 10 includes a thermoelectric material unit 2, a pair of electrodes 4a and 4b provided on the thermoelectric material unit 2, and one electrode 4a of the pair of electrodes 4a and 4b. And a catalyst part 6 that is provided so as to be in contact with the thermoelectric material part 2 and catalyze a reaction by hydrogen. For example, the sensor unit 10 has a length of about 10 mm, a width of about 7 mm, and a thickness of about 0.2 mm.

本実施形態では、触媒部6の全体が、熱電材料部2に形成された凹部8内に配置されており、触媒部6が凹部8の内壁全面と接触している。すなわち、触媒部6の全体が、熱電材料部2に形成された凹部8内に嵌合しており、熱電材料部2に埋め込まれている。また、触媒部6において熱電材料部2と接することなく外部に露出している面が、熱電材料部2において一対の電極4a、4bが設けられた面(以下、「熱電材料部2の電極設置面」と記す。)と一致するようになっている。   In the present embodiment, the entire catalyst portion 6 is disposed in the recess 8 formed in the thermoelectric material portion 2, and the catalyst portion 6 is in contact with the entire inner wall of the recess 8. That is, the entire catalyst portion 6 is fitted in the recess 8 formed in the thermoelectric material portion 2 and is embedded in the thermoelectric material portion 2. In addition, the surface of the catalyst unit 6 that is exposed to the outside without being in contact with the thermoelectric material unit 2 is the surface of the thermoelectric material unit 2 on which the pair of electrodes 4a and 4b are provided (hereinafter referred to as “electrode installation of the thermoelectric material unit 2”). It is written as “face”.)

触媒部6は、熱電材料部2の電極4a、4bが形成されているのと同じ面側に、一対の電極4a、4bのうちの一方の電極4a側に偏在して設けられている。この触媒部6は、水素ガスと空気中の酸素との反応を生じさせる触媒能を有する。触媒部6としては、例えば、触媒担持体に上記触媒能を有する触媒成分を担持させた構成を有するものが挙げられる。具体的には、触媒担持体がた孔質のアルミナからなり、これに触媒成分として白金を担持させたものが好適である。白金は、水素ガスによる反応を選択的に生じさせることができ、これが表面積の大きい多孔質の触媒担持体に担持されることで、触媒部6の表面上で効率よく反応が生じるようになる。   The catalyst portion 6 is provided on the same surface side where the electrodes 4a and 4b of the thermoelectric material portion 2 are formed, and is unevenly distributed on one electrode 4a side of the pair of electrodes 4a and 4b. The catalyst unit 6 has a catalytic ability to cause a reaction between hydrogen gas and oxygen in the air. As the catalyst part 6, what has the structure which made the catalyst support body carry | support the catalyst component which has the said catalyst ability is mentioned, for example. Specifically, it is preferable that the catalyst support is made of porous alumina and platinum is supported on the catalyst support. Platinum can selectively cause a reaction by hydrogen gas, and this is efficiently supported on the surface of the catalyst part 6 by being supported on a porous catalyst support having a large surface area.

触媒部6は、上述のように一方の電極4a側に偏在して設けられているが、触媒部6が形成されていない側の電極4bからはできるだけ離れていることが好ましい。触媒部6が、電極4bから離れているほど、後述するような熱電材料部2における温度勾配を大きくすることができ、より大きな起電力が得られる。ただし、触媒部6の発熱量との兼ね合いの観点から、触媒部6における反応を効率よく生じさせ、熱電材料部6に十分な温度差を与えることを可能とするために必要となる触媒部6の面積を確保した上で、触媒部6をできるだけ電極4a側に偏在させることが好ましい。   As described above, the catalyst portion 6 is provided unevenly on the one electrode 4a side, but it is preferable that the catalyst portion 6 be as far as possible from the electrode 4b on the side where the catalyst portion 6 is not formed. As the catalyst unit 6 is further away from the electrode 4b, the temperature gradient in the thermoelectric material unit 2 as described later can be increased, and a larger electromotive force can be obtained. However, from the viewpoint of balance with the calorific value of the catalyst unit 6, the catalyst unit 6 necessary for efficiently causing a reaction in the catalyst unit 6 and giving a sufficient temperature difference to the thermoelectric material unit 6. It is preferable that the catalyst part 6 is unevenly distributed on the electrode 4a side as much as possible.

触媒部6は、これが設けられている側の電極4aと接していてもよく、また接していなくてもよい。例えば、触媒部6を電極4aと接するように設けることで、触媒部6と電極4aとが接しない場合に比べて、触媒部6と電極4bとの距離を大きくとることができ、熱電材料部2に生じる温度勾配をより大きくし、電極4a、4b間で大きな起電力を得ることが可能となる。なお、触媒部6を電極4aと接触させるか否かは、所望とする水素ガスセンサの特性に応じて適宜選択すればよい。   The catalyst unit 6 may or may not be in contact with the electrode 4a on the side where it is provided. For example, by providing the catalyst portion 6 so as to be in contact with the electrode 4a, the distance between the catalyst portion 6 and the electrode 4b can be increased as compared with the case where the catalyst portion 6 and the electrode 4a are not in contact with each other. The temperature gradient generated in 2 can be further increased, and a large electromotive force can be obtained between the electrodes 4a and 4b. Whether or not the catalyst unit 6 is brought into contact with the electrode 4a may be appropriately selected according to the desired characteristics of the hydrogen gas sensor.

触媒部6は、電極4aを被覆しないように形成されていてもよく、電極4aを被覆するように形成されていてもよい。特に、触媒部6が電極4aを被覆しないように形成されていると、触媒部6での発熱が電極4aを介しないで熱電材料部2に直接伝わるため、後述するような熱電材料部2における温度勾配をより大きく生じさせることができる。   The catalyst unit 6 may be formed so as not to cover the electrode 4a, or may be formed so as to cover the electrode 4a. In particular, if the catalyst portion 6 is formed so as not to cover the electrode 4a, the heat generated in the catalyst portion 6 is directly transmitted to the thermoelectric material portion 2 without passing through the electrode 4a. A larger temperature gradient can be generated.

熱電材料部2は、10〜500μm程度の厚みを有し、平面形状が長方形状である板状の部材である。この熱電材料部2は、局所的な温度差が生じるとゼーベック効果によって起電力が発生する性質(熱電変換能)を有する熱電材料から構成される。熱電材料としては、このような性質を十分に有しており、しかも、ガス等による抵抗や起電力の変化が少ないものが好ましい。例えば、BiTe系、PbTe系、FeSi系、SiGe系、スカッタルダイド系、ハーフホイスラー型金属間化合物系、コバルト層状化合物、金属酸化物系等の熱電材料が挙げられる。また、アルカリ金属をドープしたNiO系等も適用可能である。   The thermoelectric material part 2 is a plate-like member having a thickness of about 10 to 500 μm and a rectangular planar shape. This thermoelectric material part 2 is comprised from the thermoelectric material which has the property (thermoelectric conversion capability) which an electromotive force generate | occur | produces by Seebeck effect, when a local temperature difference arises. As the thermoelectric material, a material that has such properties sufficiently and has little change in resistance and electromotive force due to gas or the like is preferable. Examples thereof include thermoelectric materials such as BiTe, PbTe, FeSi, SiGe, scuttaldide, half-Heusler intermetallic compound, cobalt layered compound, and metal oxide. Moreover, NiO system doped with an alkali metal or the like is also applicable.

一対の電極4a、4bは、熱電材料部2の一面上に、互いに離間するように設けられており、具体的には、熱電材料部2の両端の辺に沿ってそれぞれ形成されている。これらの電極4a、4bは、熱電材料部2と外部回路等との接続を行う端子としての機能を有しており、金属等の導電性を有する材料によって構成される。   The pair of electrodes 4 a and 4 b are provided on one surface of the thermoelectric material portion 2 so as to be separated from each other, and specifically, are formed along the sides of both ends of the thermoelectric material portion 2. These electrodes 4a and 4b have a function as terminals for connecting the thermoelectric material portion 2 to an external circuit or the like, and are made of a conductive material such as metal.

電圧測定部20は、センサ部10が有している一対の電極4a、4bに接続されており、電極4a、4b間の電圧を測定することができる。この電圧測定部20としては、検出される電圧に応じた公知の電圧計を適用することができる。   The voltage measuring unit 20 is connected to the pair of electrodes 4a and 4b included in the sensor unit 10, and can measure the voltage between the electrodes 4a and 4b. As the voltage measuring unit 20, a known voltmeter corresponding to the detected voltage can be applied.

上記構成を有する水素ガスセンサ100による水素ガスの検出は、以下のような動作原理によって行なわれる。すなわち、まず、センサ部10において、触媒部6に水素ガスが接触すると、触媒部6上で水素ガスと空気中の酸素との反応が触媒される。この反応では、水素と酸素との反応によって水が生成するとともに熱が発生する。この熱により、熱電材料部2のうち触媒部6と接している部分が加熱される。一方、触媒部6が設けられていない部分は、上記反応が生じても加熱され難いため、反応前の温度を維持したままとなり易い。その結果、触媒部6で水素ガスの反応が生じると、熱電材料部2に温度勾配が生じることになる。熱電材料部2は、熱電変換能を有していることから、このような温度勾配によって熱電材料部2に起電力が生じる。   Detection of hydrogen gas by the hydrogen gas sensor 100 having the above configuration is performed according to the following operation principle. That is, first, in the sensor unit 10, when hydrogen gas comes into contact with the catalyst unit 6, the reaction between the hydrogen gas and oxygen in the air is catalyzed on the catalyst unit 6. In this reaction, water is generated and heat is generated by the reaction between hydrogen and oxygen. With this heat, the portion of the thermoelectric material portion 2 that is in contact with the catalyst portion 6 is heated. On the other hand, since the part where the catalyst part 6 is not provided is not easily heated even if the above reaction occurs, the temperature before the reaction is easily maintained. As a result, when a reaction of hydrogen gas occurs in the catalyst unit 6, a temperature gradient is generated in the thermoelectric material unit 2. Since the thermoelectric material part 2 has thermoelectric conversion ability, an electromotive force is generated in the thermoelectric material part 2 due to such a temperature gradient.

熱電材料部2に生じた起電力は、熱電材料部2の両端に設けられた一対の電極4a、4b間に電圧を発生させる。電極4a、4bには、電圧測定部20が接続されているため、電圧測定部20によって電極4a、4b間の電圧が測定される。得られた電圧の値に基づいて、雰囲気中の水素ガスを検出し、更には雰囲気中の水素ガスの濃度等を定量することができる。   The electromotive force generated in the thermoelectric material part 2 generates a voltage between the pair of electrodes 4 a and 4 b provided at both ends of the thermoelectric material part 2. Since the voltage measuring unit 20 is connected to the electrodes 4a and 4b, the voltage measuring unit 20 measures the voltage between the electrodes 4a and 4b. Based on the voltage value obtained, the hydrogen gas in the atmosphere can be detected, and the concentration of the hydrogen gas in the atmosphere can be quantified.

上記第1実施形態では、触媒部6が、熱電材料部2に形成された凹部8内に配置され、凹部8の内壁によって囲まれているため、従来のように凹部の形成されていない平坦な熱電材料部の外表面上に触媒部が設置されている場合に比べて、反応熱が触媒部6から外気へ逃げ難くなる。すなわち、触媒部6で発生した反応熱全量が、外気へ逃げることなく熱電材料部2へ伝導し易くなるため、水素ガスセンサ100の感度を従来よりも向上させることが可能となる。   In the first embodiment, since the catalyst portion 6 is disposed in the recess 8 formed in the thermoelectric material portion 2 and is surrounded by the inner wall of the recess 8, it is flat without a recess as in the prior art. Compared with the case where the catalyst part is installed on the outer surface of the thermoelectric material part, the reaction heat is less likely to escape from the catalyst part 6 to the outside air. That is, since the total amount of reaction heat generated in the catalyst unit 6 is easily conducted to the thermoelectric material unit 2 without escaping to the outside air, the sensitivity of the hydrogen gas sensor 100 can be improved as compared with the conventional case.

また、上記第1実施形態では、触媒部6が凹部8の内壁全面と接触しているため、従来のように凹部の形成されていない熱電材料部の平坦な表面上に触媒部が設置されている場合に比べて、触媒部6と熱電材料部2との接触面積が大きくなり、触媒部6で発生した反応熱が、より確実に熱電材料部2へ伝導する。その結果、熱電材料部2に生じる温度勾配が大きくなり易く、電極4a、4b間に発生する起電力も大きくなり易いため、水素ガスセンサ100の感度を更に向上させることが可能となる。   Further, in the first embodiment, since the catalyst portion 6 is in contact with the entire inner wall of the recess 8, the catalyst portion is installed on the flat surface of the thermoelectric material portion where no recess is formed as in the prior art. Compared with the case where it exists, the contact area of the catalyst part 6 and the thermoelectric material part 2 becomes large, and the reaction heat generated in the catalyst part 6 is more reliably conducted to the thermoelectric material part 2. As a result, the temperature gradient generated in the thermoelectric material portion 2 is likely to be large, and the electromotive force generated between the electrodes 4a and 4b is likely to be large, so that the sensitivity of the hydrogen gas sensor 100 can be further improved.

(第2実施形態)
次に、図3を参照しつつ、本発明の第2実施形態に係る水素ガスセンサについて説明する。なお、以下では、上述した第1実施形態と第2実施形態とで共通する事項については説明を適宜省略する。
(Second Embodiment)
Next, a hydrogen gas sensor according to a second embodiment of the present invention will be described with reference to FIG. In addition, below, description is abbreviate | omitted suitably about the matter which is common in 1st Embodiment and 2nd Embodiment mentioned above.

図3に示すように、第2実施形態の水素ガスセンサは、第1実施形態と同様、センサ部10と、電圧測定部20とから構成され、センサ部10は、熱電材料部2と、熱電材料部2上に設けられた一対の電極4a、4bと、一対の電極4a、4bのうちの一方の電極4a側に偏在し、且つ熱電材料部2に接するように設けられ、水素による反応を触媒する触媒部6と、を有する。   As shown in FIG. 3, the hydrogen gas sensor of the second embodiment is composed of a sensor unit 10 and a voltage measurement unit 20 as in the first embodiment. The sensor unit 10 includes a thermoelectric material unit 2 and a thermoelectric material. A pair of electrodes 4a and 4b provided on the part 2, and one electrode 4a of the pair of electrodes 4a and 4b, which is unevenly distributed on the side of the thermoelectric material part 2 and catalyzes the reaction by hydrogen And a catalyst part 6 to be used.

この第2実施形態では、第1実施形態と同様に、触媒部6の全体が、熱電材料部2に形成された凹部8内に埋め込まれているが、図3に示すように、触媒部6の熱電材料部2側の表面と、熱電材料部2の凹部8の底面との接触界面12が凹凸状となっている点で、この界面が平面状であった第1実施形態とは相違している。   In the second embodiment, as in the first embodiment, the entire catalyst portion 6 is embedded in the recess 8 formed in the thermoelectric material portion 2, but as shown in FIG. The contact surface 12 between the surface of the thermoelectric material portion 2 side and the bottom surface of the recess 8 of the thermoelectric material portion 2 is uneven, which is different from the first embodiment in which the interface is planar. ing.

このように、第2実施形態では、触媒部6の熱電材料部2に対する接触面と、熱電材料部2の触媒部6に対する接触面とがそれぞれ凹凸状となっており、しかも、これらの両接触面の凹凸が噛み合った状態となっている。この接触界面の凹凸形状は特に制限されず、溝状の凹凸が並列した形状、凹凸が縦横方向に交互に繰り返された形状や、不規則に粗面化された形状等のいずれであってもよい。第2実施形態においては、例えば、この接触界面の凹凸の間隔(凸部の頂部間の距離等)が、0.01〜1mmであると好ましく、0.05〜0.5mmであるとより好ましい。こうすれば、接触界面での熱伝導性を特に良好に高めることが可能となる。   Thus, in 2nd Embodiment, the contact surface with respect to the thermoelectric material part 2 of the catalyst part 6 and the contact surface with respect to the catalyst part 6 of the thermoelectric material part 2 are uneven | corrugated, respectively, Moreover, both these contact The surface irregularities are in mesh. The uneven shape of the contact interface is not particularly limited, and may be any of a shape in which groove-like unevenness is arranged in parallel, a shape in which the unevenness is alternately repeated in the vertical and horizontal directions, a shape that is irregularly roughened, and the like. Good. In 2nd Embodiment, the space | interval of the unevenness | corrugation (distance between the top parts of a convex part etc.) of this contact interface is preferable in it being 0.01-1 mm, for example, and it is more preferable in it being 0.05-0.5 mm. . In this way, it is possible to improve the thermal conductivity at the contact interface particularly well.

このような構成を有する第2実施形態では、第1実施形態と同様に、触媒部6が熱電材料部2に形成された凹部8内に配置されているため、触媒部6で発生した反応熱を熱電材料部2へ伝導させ易くすることが可能となる。そして特に、第2実施形態では、触媒部6と熱電材料部2に形成された凹部8の底との接触界面12が凹凸状であることにより、第1実施形態のように触媒部6と熱電材料部2に形成された凹部8の底との接触界面が平面状である場合に比べて、触媒部6と熱電材料部2との接触面積が大きくなり、触媒部6で発生した反応熱が、より一層熱電材料部2に伝導し易くなり、その結果、水素ガスセンサ100の感度を更に向上させることが可能となる。   In 2nd Embodiment which has such a structure, since the catalyst part 6 is arrange | positioned in the recessed part 8 formed in the thermoelectric material part 2 similarly to 1st Embodiment, the reaction heat which generate | occur | produced in the catalyst part 6 is shown. Can be easily conducted to the thermoelectric material portion 2. In particular, in the second embodiment, the contact interface 12 between the catalyst portion 6 and the bottom of the recess portion 8 formed in the thermoelectric material portion 2 is uneven, so that the catalyst portion 6 and the thermoelectric device as in the first embodiment. Compared with the case where the contact interface with the bottom of the recess 8 formed in the material portion 2 is planar, the contact area between the catalyst portion 6 and the thermoelectric material portion 2 is increased, and the reaction heat generated in the catalyst portion 6 is reduced. Further, it becomes easier to conduct to the thermoelectric material portion 2, and as a result, the sensitivity of the hydrogen gas sensor 100 can be further improved.

(第3実施形態)
次に、図4を参照しつつ、本発明の第3実施形態に係る水素ガスセンサについて説明する。なお、以下では、上述した第1実施形態と第3実施形態とで共通する事項については説明を適宜省略する。
(Third embodiment)
Next, a hydrogen gas sensor according to a third embodiment of the present invention will be described with reference to FIG. In addition, below, description is abbreviate | omitted suitably about the matter which is common in 1st Embodiment and 3rd Embodiment mentioned above.

第3実施形態の水素ガスセンサ100は、図4に示すように、凹部8の一部に、凹部8とは反対側へ熱電材料部を貫通する貫通部14が形成されている点において、第1実施形態の水素ガスセンサ100と相違している。すなわち、第3実施形態では、凹部8の底に、この凹部8の深さ方向に熱電材料部2を貫通する貫通部14が形成されている。   As shown in FIG. 4, the hydrogen gas sensor 100 of the third embodiment is the first in that a penetrating part 14 that penetrates the thermoelectric material part to the opposite side of the concave part 8 is formed in a part of the concave part 8. This is different from the hydrogen gas sensor 100 of the embodiment. That is, in the third embodiment, a through portion 14 that penetrates the thermoelectric material portion 2 in the depth direction of the concave portion 8 is formed at the bottom of the concave portion 8.

この第3実施形態では、第1実施形態と同様に、触媒部6の全体が、熱電材料部2に形成された凹部8内に配置されており、熱電材料部2に形成された凹部8内に嵌合して熱電材料部2の内部に埋め込まれた状態となっている。また、触媒部において熱電材料部2と接することなく外部に露出している面が、熱電材料部2の電極設置面と一致するようになっている。さらに、第3実施形態では、貫通部14内にも触媒成分が充填されて触媒部6が形成されている。   In the third embodiment, as in the first embodiment, the entire catalyst portion 6 is disposed in the recess 8 formed in the thermoelectric material portion 2, and inside the recess 8 formed in the thermoelectric material portion 2. And is embedded in the thermoelectric material portion 2. Further, the surface exposed to the outside without being in contact with the thermoelectric material portion 2 in the catalyst portion is made to coincide with the electrode installation surface of the thermoelectric material portion 2. Furthermore, in the third embodiment, the catalyst portion 6 is formed by filling the through portion 14 with the catalyst component.

このような構成を有する第3実施形態では、第1実施形態と同様に、触媒部6が熱電材料部2に形成された凹部8内に配置されているため、触媒部6で発生した反応熱を確実に熱電材料部2へ伝導することができる。そして特に、第3実施形態では、貫通部14にも触媒部6が配置されることで、貫通部14の内壁と触媒部6の一部とが接触し、これにより触媒部6と熱電材料部2との接触面積を大きくすることもできる。また、貫通部14内にも触媒部6が形成されている、すなわち、貫通部14に触媒部6の一部が嵌合しているため、触媒部6が熱電材料部2から脱離し難くなる。   In 3rd Embodiment which has such a structure, since the catalyst part 6 is arrange | positioned in the recessed part 8 formed in the thermoelectric material part 2 similarly to 1st Embodiment, the reaction heat which generate | occur | produced in the catalyst part 6 is shown. Can be reliably conducted to the thermoelectric material portion 2. And especially in 3rd Embodiment, the catalyst part 6 is arrange | positioned also at the penetration part 14, and the inner wall of the penetration part 14 and a part of catalyst part 6 contact, Thereby, the catalyst part 6 and the thermoelectric material part The contact area with 2 can also be increased. Further, the catalyst part 6 is also formed in the through part 14, that is, a part of the catalyst part 6 is fitted to the through part 14, so that the catalyst part 6 is hardly detached from the thermoelectric material part 2. .

なお、貫通部14の内径は、所望とする水素ガスセンサ100の特性に合わせて適宜設定することができ、例えば、貫通部14の内径及び形状が、凹部8と同じであってもよい。この場合は、凹部8が反対側面まで貫通したような形状を有するようになる。   The inner diameter of the penetrating portion 14 can be appropriately set according to the desired characteristics of the hydrogen gas sensor 100. For example, the inner diameter and shape of the penetrating portion 14 may be the same as that of the concave portion 8. In this case, the concave portion 8 has a shape that penetrates to the opposite side surface.

以上、第1、第2及び第3実施形態の各水素ガスセンサについて説明したが、本発明は必ずしも上述した実施形態に限定されず、その趣旨を逸脱しない範囲で適宜変更が可能である。   The hydrogen gas sensors of the first, second, and third embodiments have been described above. However, the present invention is not necessarily limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention.

例えば、第1、第2及び第3実施形態では、触媒部6において熱電材料部2と接することなく外部に露出している面が、熱電材料部2の電極設置面と一致するようになっているが、触媒部6が熱電材料部2の電極設置面よりも突出してもよい。すなわち、凹部8の深さ方向における触媒部6の高さが、凹部8の底から熱電材料部2の電極設置面までの距離よりも大きくても良い。逆に、凹部8の深さ方向における触媒部6の高さが、凹部8の底から熱電材料部2の電極設置面までの距離よりも小さくてもよい。また、触媒部6が、凹部8の底においてのみ熱電材料部2と接触していてもよい。   For example, in the first, second, and third embodiments, the surface exposed to the outside without contacting the thermoelectric material unit 2 in the catalyst unit 6 coincides with the electrode installation surface of the thermoelectric material unit 2. However, the catalyst unit 6 may protrude from the electrode installation surface of the thermoelectric material unit 2. That is, the height of the catalyst part 6 in the depth direction of the recess 8 may be larger than the distance from the bottom of the recess 8 to the electrode installation surface of the thermoelectric material part 2. Conversely, the height of the catalyst part 6 in the depth direction of the recess 8 may be smaller than the distance from the bottom of the recess 8 to the electrode installation surface of the thermoelectric material part 2. Further, the catalyst unit 6 may be in contact with the thermoelectric material unit 2 only at the bottom of the recess 8.

さらに、第2実施形態では、凹部8の底面での接触界面のみ凹凸状としたが、これに限られず、接触部分の側面(凹部8の側面での接触界面)が凹凸状であってもよい。また、凹部8の内壁は平面ではなく、曲面状であってもよい。   Furthermore, in the second embodiment, only the contact interface at the bottom surface of the recess 8 is uneven, but this is not a limitation, and the side surface of the contact portion (contact interface at the side surface of the recess 8) may be uneven. . Further, the inner wall of the recess 8 may be a curved surface instead of a flat surface.

さらにまた、第3実施形態では、凹部8の底面に形成された貫通部14内にまで触媒部6が形成されていたが、この貫通部14には必ずしも触媒部6が形成されていなくてもよい。この場合であっても、熱電材料部2における凹部8の形成面とは反対側の面からの水素の通気は可能となるため、水素ガスの検出が有利となる。すなわち、貫通部14を通じて、凹部8の反対側の面から熱電材料部2の内部に侵入した水素ガスを検出することが可能となる。   Furthermore, in the third embodiment, the catalyst portion 6 is formed even in the through portion 14 formed on the bottom surface of the recess 8, but the catalyst portion 6 may not necessarily be formed in the through portion 14. Good. Even in this case, hydrogen can be ventilated from the surface of the thermoelectric material portion 2 opposite to the surface on which the concave portion 8 is formed, so that detection of hydrogen gas is advantageous. That is, it is possible to detect the hydrogen gas that has entered the inside of the thermoelectric material portion 2 from the opposite surface of the recess 8 through the through portion 14.

また、水素ガスセンサ100における熱電材料部2は板状の形状を有するものとしたが、一対の電極4a、4b及び触媒部6を表面に配置できるものであれば、板状以外の形状を有していてもよい。また、電極4a、4bや触媒部6は、全てが熱電材料部2における同一面上に設けられていたが、例えば電極4a、4bのうち一方の電極のみが他の面に設けられていてもよい。   Moreover, although the thermoelectric material part 2 in the hydrogen gas sensor 100 has a plate shape, the thermoelectric material part 2 has a shape other than the plate shape as long as the pair of electrodes 4a, 4b and the catalyst part 6 can be arranged on the surface. It may be. The electrodes 4a and 4b and the catalyst part 6 are all provided on the same surface of the thermoelectric material part 2, but for example, only one of the electrodes 4a and 4b may be provided on the other surface. Good.

第1実施形態に係る水素ガスセンサの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the hydrogen gas sensor which concerns on 1st Embodiment. 図1に示すセンサ部10を上方からみた平面図である。It is the top view which looked at the sensor part 10 shown in FIG. 1 from upper direction. 第2実施形態に係る水素ガスセンサの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the hydrogen gas sensor which concerns on 2nd Embodiment. 第3実施形態に係る水素ガスセンサの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the hydrogen gas sensor which concerns on 3rd Embodiment.

符号の説明Explanation of symbols

2・・・熱電材料部、4a、4b・・・電極、6・・・触媒部、8・・・凹部、10・・・センサ部、20・・・電圧測定部、100・・・水素ガスセンサ。
2 ... Thermoelectric material part, 4a, 4b ... Electrode, 6 ... Catalyst part, 8 ... Recessed part, 10 ... Sensor part, 20 ... Voltage measuring part, 100 ... Hydrogen gas sensor .

Claims (4)

熱電材料からなる熱電材料部、前記熱電材料部上に設けられた一対の電極、及び前記一対の電極のうちの一方の電極側に偏在し、且つ前記熱電材料部に接するように設けられ、水素による反応を触媒する触媒部を有するセンサ部と、
前記一対の電極間に発生した電圧を測定する電圧測定部と、
を備え、
前記触媒部の少なくとも一部が、前記熱電材料部に形成された凹部内に配置されている、
ことを特徴とする水素ガスセンサ。
A thermoelectric material portion made of a thermoelectric material, a pair of electrodes provided on the thermoelectric material portion, and unevenly distributed on one electrode side of the pair of electrodes and in contact with the thermoelectric material portion; A sensor part having a catalyst part for catalyzing the reaction by
A voltage measuring unit for measuring a voltage generated between the pair of electrodes;
With
At least a part of the catalyst part is disposed in a recess formed in the thermoelectric material part,
A hydrogen gas sensor characterized by that.
前記触媒部が前記凹部の内壁の全面と接触している、ことを特徴とする請求項1に記載の水素センサ。   The hydrogen sensor according to claim 1, wherein the catalyst portion is in contact with the entire inner wall of the recess. 前記触媒部と前記熱電材料部との接触界面が凹凸状である、ことを特徴とする請求項1又は2に記載の水素センサ。   The hydrogen sensor according to claim 1, wherein a contact interface between the catalyst portion and the thermoelectric material portion is uneven. 前記凹部の一部に、前記凹部とは反対側の表面まで前記熱電材料部を貫通する貫通部が形成されている、ことを特徴とする請求項1〜3のいずれか一項に記載の水素センサ。
The hydrogen according to any one of claims 1 to 3, wherein a penetration part that penetrates the thermoelectric material part to a surface opposite to the depression is formed in a part of the depression. Sensor.
JP2007302109A 2007-11-21 2007-11-21 Hydrogen gas sensor Pending JP2009128127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007302109A JP2009128127A (en) 2007-11-21 2007-11-21 Hydrogen gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302109A JP2009128127A (en) 2007-11-21 2007-11-21 Hydrogen gas sensor

Publications (1)

Publication Number Publication Date
JP2009128127A true JP2009128127A (en) 2009-06-11

Family

ID=40819217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302109A Pending JP2009128127A (en) 2007-11-21 2007-11-21 Hydrogen gas sensor

Country Status (1)

Country Link
JP (1) JP2009128127A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337342B2 (en) * 1974-09-20 1988-07-25 Matsushita Electric Ind Co Ltd
JPH116810A (en) * 1997-06-18 1999-01-12 Yazaki Corp Gas sensor and contact combustion gas sensor as well as manufacture
JP2002188966A (en) * 2000-12-22 2002-07-05 Ngk Spark Plug Co Ltd Temperature sensor and its manufacturing method and manufacture control method
JP2003156461A (en) * 2001-09-07 2003-05-30 National Institute Of Advanced Industrial & Technology Combustible gas sensor
JP2005098846A (en) * 2003-09-25 2005-04-14 Tdk Corp Gas sensor
JP2005098844A (en) * 2003-09-25 2005-04-14 Tdk Corp Gas sensor and its manufacturing method
JP2006201100A (en) * 2005-01-24 2006-08-03 Matsushita Electric Ind Co Ltd Hydrogen gas detection sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337342B2 (en) * 1974-09-20 1988-07-25 Matsushita Electric Ind Co Ltd
JPH116810A (en) * 1997-06-18 1999-01-12 Yazaki Corp Gas sensor and contact combustion gas sensor as well as manufacture
JP2002188966A (en) * 2000-12-22 2002-07-05 Ngk Spark Plug Co Ltd Temperature sensor and its manufacturing method and manufacture control method
JP2003156461A (en) * 2001-09-07 2003-05-30 National Institute Of Advanced Industrial & Technology Combustible gas sensor
JP2005098846A (en) * 2003-09-25 2005-04-14 Tdk Corp Gas sensor
JP2005098844A (en) * 2003-09-25 2005-04-14 Tdk Corp Gas sensor and its manufacturing method
JP2006201100A (en) * 2005-01-24 2006-08-03 Matsushita Electric Ind Co Ltd Hydrogen gas detection sensor

Similar Documents

Publication Publication Date Title
US8156789B2 (en) Gas sensor chip and gas sensor provided therewith
EP3382380B1 (en) Sensor and sensing method for measuring a target gas concentration in ambient air
CN215493291U (en) Gas sensor
JP2010122106A (en) Thermoelectric type gas sensor
US20040234835A1 (en) Fuel cell with integrated sensor
US9939397B2 (en) Sensor for detecting oxidizable gases
JP2009128127A (en) Hydrogen gas sensor
JP2007322355A (en) Gas sensor and gas detection system
JP5091078B2 (en) Combustible gas detector
JP7137283B2 (en) Combustible gas sensor, detector and method of detecting combustible gas
JP2006047275A (en) Gas detector
JP2007071642A (en) Hydrogen gas detection element and hydrogen gas detector
JP2013130540A (en) Gas detector
JP2009276188A (en) Hydrogen gas sensor
JP2009133636A (en) Hydrogen gas sensor
JP2000065783A (en) Explosion-proof type gas sensor
JP4428046B2 (en) Fuel cell
JP4585767B2 (en) Fuel cell monitoring device
JP5076995B2 (en) Hydrogen gas sensor
KR101928478B1 (en) Electrochemical gas sensor having flexible curved electrode
JP2006071362A (en) Combustible gas sensor
JP4817239B2 (en) Combustible gas detector
JP5040515B2 (en) Hydrogen gas sensor
JP6396757B2 (en) Combustible gas detector
JP5144046B2 (en) Contact combustion type gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402