JP2009127966A - Multi-pipe cooler and using method of multi-pipe cooler - Google Patents

Multi-pipe cooler and using method of multi-pipe cooler Download PDF

Info

Publication number
JP2009127966A
JP2009127966A JP2007305329A JP2007305329A JP2009127966A JP 2009127966 A JP2009127966 A JP 2009127966A JP 2007305329 A JP2007305329 A JP 2007305329A JP 2007305329 A JP2007305329 A JP 2007305329A JP 2009127966 A JP2009127966 A JP 2009127966A
Authority
JP
Japan
Prior art keywords
water chamber
seawater
steam
wall surface
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007305329A
Other languages
Japanese (ja)
Inventor
Hidetoshi Takao
秀利 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007305329A priority Critical patent/JP2009127966A/en
Publication of JP2009127966A publication Critical patent/JP2009127966A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-pipe cooler, capable of killing marine organisms adhered to a wall surface, even during operation of the cooler, without stopping the operation or deteriorating the cooling performance, and a using method thereof. <P>SOLUTION: The multi-pipe cooler 1 adapted to carry seawater as a low temperature-side fluid into a cooling pipe 2 includes a water chamber vapor supply pipe 30 which is mounted adjacently to or in contact with at least a water chamber insidewall surface 25 on an seawater inlet side, and directly blows vapor and/or drain that is a condensate of the vapor to the water chamber insidewall surface 25 through a plurality of blowout ports 38 to raise the surface temperature of the water chamber insidewall surface 25 to a temperature sufficient to kill maine organisms without largely raising the temperature of the seawater. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷却管内に低温側流体として海水を流す多管式冷却器に関し、多管式冷却器を運転中であっても水室内側の壁面に付着する海洋生物を死滅させることが可能であり、多管式冷却器を停止させることなく長期間にわたり連続運転を行うことができる多管式冷却器に関する。   The present invention relates to a multitubular cooler that allows seawater to flow as a low-temperature side fluid in a cooling pipe, and can kill marine organisms attached to the wall surface on the water chamber side even when the multitubular cooler is in operation. Further, the present invention relates to a multi-tube cooler that can perform continuous operation over a long period of time without stopping the multi-tube cooler.

火力発電所では、蒸気タービンから排出される蒸気を冷却凝縮させる復水器を含め、発電機を冷却し温度の上昇した水素ガスを冷却するタービン発電機用水素冷却器、タービン油を冷却するタービン油冷却器、ボイラ、タービン補機等軸受冷却水に使用される所内冷却水を冷却する軸受冷却水冷却器の冷却媒体に海水が使用されている。軸受冷却水冷却器は、隔壁式の熱交換器である多管式冷却器が多く使用され、冷却管内に海水を、冷却管外に所内冷却水を流すのが一般的である。所内冷却水を冷却する海水は、取水路から取水され所内冷却水を冷却することで自身は温度を上昇させ、放水路に放流される。一方、所内冷却水は淡水であり、軸受冷却水冷却器とタービン発電機用水素冷却器等との間を循環する。   In thermal power plants, including a condenser that cools and condenses the steam discharged from the steam turbine, a hydrogen cooler for turbine generator that cools the generator and cools the hydrogen gas whose temperature has risen, and a turbine that cools turbine oil Seawater is used as a cooling medium for a bearing cooling water cooler that cools in-house cooling water used for bearing cooling water such as oil coolers, boilers, and turbine auxiliary machines. As the bearing cooling water cooler, a multi-tubular cooler, which is a partition wall type heat exchanger, is often used, and it is general to flow seawater into the cooling pipe and flow the in-house cooling water outside the cooling pipe. Seawater that cools the in-house cooling water is taken from the intake channel, and by itself cooling the in-house cooling water, the temperature of the sea water rises and is discharged into the discharge channel. On the other hand, the in-house cooling water is fresh water and circulates between the bearing cooling water cooler and the hydrogen cooler for the turbine generator.

軸受冷却水冷却器は冷却媒体に海水を使用するため、長期間の運転を行うと海水に含まれる貝などの海洋生物が水室の壁面等に付着生長し、海水の流れを阻害する場合がある。このため冷却媒体に海水を使用する冷却器、熱交換器にあっては、海洋生物対策が課題の一つとなっており、塩素又は次亜塩素酸ソーダを注入する方法、運転を停止し冷却器内を清掃する方法、温度を上昇させて海洋生物の付着生長を防止する方法が提案されている。温度を上昇させて水室等の壁面に海洋生物が付着生長することを防止する方法は、例えば40℃の雰囲気では海洋生物は数10分で致死することを利用した方法である(例えば特許文献1、特許文献2、特許文献3参照)。
特開平7−190684号公報 特開2001−183492号公報 特開平10−253271号公報
Since the bearing cooling water cooler uses seawater as a cooling medium, when it is operated for a long time, marine organisms such as shellfish contained in the seawater may adhere to the wall surface of the water chamber, etc. is there. For this reason, in the coolers and heat exchangers that use seawater as the cooling medium, countermeasures against marine organisms are one of the issues. The method of injecting chlorine or sodium hypochlorite, the operation is stopped, and the cooler A method for cleaning the inside and a method for preventing the growth of marine organisms by increasing the temperature have been proposed. A method for preventing marine organisms from growing on the wall surface of a water chamber or the like by increasing the temperature is a method that utilizes the fact that marine organisms die in tens of minutes in an atmosphere of 40 ° C. (for example, Patent Documents) 1, Patent Document 2 and Patent Document 3).
JP-A-7-190684 JP 2001-183492 A Japanese Patent Laid-Open No. 10-253271

海洋生物の付着、生長防止に塩素又は次亜塩素酸ソーダを注入する方法は、環境上の観点からは好ましい方法とは言えない。運転を停止し冷却器内を清掃する方法は、確実な方法であるが、手間がかかり、さらに運転を停止しなけばならないため、予備器を備えていない場合は、発電自体を停止する必要がある。特許文献1から特許文献3に記載の温度を上昇させて海洋生物の付着生長を防止する方法は、冷却器に温水等を供給し海洋生物を死滅させる方法であるが、海水の供給を停止した状態で行う必要があるため、冷却器を運転しながら行うことはできない。よって予備機を準備し軸受冷却水冷却器を切替えながら運転を行い休止中に温水を供給するか、発電設備が停止中に温水を供給する必要がある。これらは軸受冷却水冷却器に限らず、海水を使用する他の冷却器、熱交換器でも同じである。   The method of injecting chlorine or sodium hypochlorite to prevent the adhesion and growth of marine organisms is not a preferable method from the viewpoint of the environment. The method of stopping the operation and cleaning the inside of the cooler is a reliable method, but it takes time and the operation must be stopped, so it is necessary to stop the power generation itself if a spare device is not provided. is there. The method of increasing the temperature described in Patent Document 1 to Patent Document 3 to prevent the growth of marine organisms is a method of killing marine organisms by supplying warm water or the like to the cooler, but the supply of seawater was stopped. Since it is necessary to carry out in the state, it cannot be carried out while operating the cooler. Therefore, it is necessary to prepare a spare machine and operate while switching the bearing cooling water cooler and supply hot water while the engine is stopped, or supply hot water while the power generation equipment is stopped. These are not limited to the bearing cooling water cooler, and the same applies to other coolers and heat exchangers that use seawater.

本発明の目的は、冷却器運転中であっても運転を停止することなく、かつ冷却性能を低下させることなく壁面に付着する海洋生物を死滅させることが可能な多管式冷却器及びその使用方法を提供することである。   An object of the present invention is to provide a multitubular cooler capable of killing marine organisms adhering to a wall surface without stopping operation and reducing cooling performance even during operation of the cooler and use thereof Is to provide a method.

請求項1に記載の多管式冷却器は、冷却管内に低温側流体として海水を流す多管式冷却器であり、少なくとも海水入口側の水室内側壁面に近接又は接触するように取付けられ、複数の噴出口から蒸気及び/又は蒸気が凝縮したドレンを前記水室内側壁面に直接吹付け、海水の温度を大きく上昇させることなく前記水室内側壁面の表面温度を海洋生物が死滅可能な温度まで上昇させる水室蒸気供給管を有することを特徴とする。   The multitubular cooler according to claim 1 is a multitubular cooler for flowing seawater as a low temperature side fluid in the cooling pipe, and is attached so as to be close to or in contact with the side wall surface of the water chamber on the seawater inlet side, The temperature at which marine organisms can be killed without spraying steam and / or condensate of steam from a plurality of jets directly onto the side wall surface of the water chamber, and greatly increasing the surface temperature of the side wall surface of the water chamber without significantly increasing the temperature of the sea water It is characterized by having a water chamber steam supply pipe which is raised up to.

請求項2に記載の多管式冷却器は、胴部一端に設けられ、仕切板で仕切られた海水入口部及び海水出口部を有する水室と、胴部他端に設けられ、海水入口部から送られた海水を海水出口部に送る水室とを有し、冷却管内に低温側流体として海水を流す多管式冷却器であり、海水入口部及び海水出口部を有する前記水室のうち海水入口部側の水室内側壁面、及び海水を海水出口部に返送する前記水室の水室内側壁面にそれぞれ近接又は接触するように取付けられ、複数の噴出口から蒸気及び/又は蒸気が凝縮したドレンを前記水室内側壁面に直接吹付け、海水の温度を大きく上昇させることなく前記水室内側壁面の表面温度を海洋生物が死滅可能な温度まで上昇させる水室蒸気供給管を有することを特徴とする。   The multi-tubular cooler according to claim 2 is provided at one end of the trunk part, a water chamber having a seawater inlet part and a seawater outlet part partitioned by a partition plate, and provided at the other end of the trunk part. A multi-tubular cooler that flows seawater as a low-temperature side fluid in a cooling pipe, and has a seawater inlet part and a seawater outlet part. Attached so as to be close to or in contact with the side wall surface of the water chamber on the seawater inlet side and the side wall surface of the water chamber returning the seawater to the seawater outlet portion, steam and / or steam is condensed from a plurality of jet outlets. Having a water chamber steam supply pipe that directly blows the drain on the side wall surface of the water chamber and raises the surface temperature of the side wall surface of the water chamber to a temperature at which marine life can be killed without greatly increasing the temperature of seawater. Features.

請求項3に記載の多管式冷却器は、前記構成に加え、前記水室蒸気供給管の噴出口は、該噴出口から噴出する蒸気及び/又は蒸気が凝縮したドレンが前記水室内側壁面に沿って移動するように蒸気及び/又は蒸気が凝縮したドレンを噴出させることを特徴とする。   The multitubular cooler according to claim 3, in addition to the above-described configuration, the water outlet of the water chamber steam supply pipe is configured such that the steam discharged from the outlet and / or the drain condensed with the steam is the side wall surface of the water chamber The steam and / or the drain condensed with the steam is ejected so as to move along the water.

請求項4に記載の多管式冷却器は、前記構成に加え、前記水室蒸気供給管は、管外径が小さいことを特徴する。   The multitubular cooler according to claim 4 is characterized in that, in addition to the configuration, the water chamber steam supply pipe has a small pipe outer diameter.

請求項5に記載の多管式冷却器の使用方法は、前記多管式冷却器の使用方法であって、多管式冷却器を運転中に該多管式冷却器の運転を停止することなく、前記水室蒸気供給管に間欠的に蒸気を供給し、海水の温度を大きく上昇させることなく前記水室内側壁面の表面温度を海洋生物が死滅可能な温度まで上昇させることを特徴とする。   The method for using a multi-tube cooler according to claim 5 is a method for using the multi-tube cooler, wherein the operation of the multi-tube cooler is stopped while the multi-tube cooler is in operation. The steam is intermittently supplied to the water chamber steam supply pipe, and the surface temperature of the side wall surface of the water chamber is increased to a temperature at which marine life can be killed without greatly increasing the temperature of seawater. .

本発明の多管式冷却器は、少なくとも海水入口側の水室内側壁面に近接又は接触するように取付けられた、複数の噴出口から当該水室内側壁面に蒸気及び/又は蒸気が凝縮したドレンを直接吹付ける水室蒸気供給管を有するので、水室蒸気供給管に蒸気を供給することで、海水温度を殆ど上昇させることなく、供給した蒸気、蒸気が凝縮したドレン又はこれら混合物で水室内側の壁面を加熱することができる。これにより多管式冷却器を運転しているときであっても、冷却性能を殆ど低下させることなく水室内側の壁面を加熱し、水室の壁面に付着する海洋生物を死滅させることが可能となり長期間の連続運転が可能となる。   The multitubular cooler of the present invention is a drain that is condensed from steam and / or steam from a plurality of jet outlets attached to at least close to or in contact with the side wall surface of the water chamber on the seawater inlet side. Since the water chamber steam supply pipe that directly blows water is supplied, steam is supplied to the water chamber steam supply pipe without substantially increasing the seawater temperature, and the water chamber is supplied with the supplied steam, the drain condensed steam, or a mixture thereof. The inner wall surface can be heated. This makes it possible to heat the wall surface on the water chamber side and to kill marine organisms adhering to the wall surface of the water chamber with almost no decrease in cooling performance even when the multi-tube cooler is operating. Therefore, long-term continuous operation is possible.

また本発明の多管式冷却器は、海水入口部及び海水出口部を有する水室のうち海水入口部側の水室内側壁面、及び海水を海水出口部に返送する水室の水室内側壁面にそれぞれ近接又は接触するように取付けられ、複数の噴出口から蒸気及び/又は蒸気が凝縮したドレンを水室内側壁面に直接吹付ける水室蒸気供給管を有するので、水室蒸気供給管に蒸気を供給することで、海水温度を殆ど上昇させることなく、供給した蒸気、蒸気が凝縮したドレン又はこれら混合物で水室内側の壁面を加熱することができる。これにより多管式冷却器を運転しているときであっても、冷却性能を殆ど低下させることなく水室内側の壁面を加熱し、水室の壁面に付着する海洋生物を死滅させることが可能となり長期間の連続運転が可能となる。   The multitubular cooler of the present invention includes a water chamber side wall surface on the sea water inlet portion side of a water chamber having a sea water inlet portion and a sea water outlet portion, and a water chamber side wall surface of a water chamber that returns sea water to the sea water outlet portion. Are provided so as to be close to or in contact with each other, and have a water chamber steam supply pipe that directly blows steam and / or condensate of steam from a plurality of jets onto the side wall surface of the water chamber. By supplying the water, the wall surface on the water chamber side can be heated with the supplied steam, the condensed drain of the steam, or a mixture thereof without substantially increasing the seawater temperature. This makes it possible to heat the wall surface on the water chamber side and to kill marine organisms adhering to the wall surface of the water chamber with almost no decrease in cooling performance even when the multi-tube cooler is operating. Therefore, long-term continuous operation is possible.

また本発明によれば、多管式冷却器が備える水室蒸気供給管の複数の噴出口は、噴出口から噴出する蒸気及び/又は蒸気が凝縮したドレンが水室内側壁面に沿って移動するように蒸気及び/又は蒸気が凝縮したドレンを噴出させるので、少ない蒸気量で効率的に水室内側壁面を加熱することが可能であり、多管式冷却器を運転しているときであっても、冷却性能を殆ど低下させることなく水室内側の壁面を加熱することができる。   Moreover, according to this invention, the several jet nozzles of the water chamber steam supply pipe with which a multitubular cooler is equipped are the vapor | steam discharged from a jet nozzle, and / or the drain which the vapor | steam condensed moves along a water chamber side wall surface. In this way, steam and / or drain condensed with steam is ejected, so that the side wall surface of the water chamber can be efficiently heated with a small amount of steam, and when the multi-tube cooler is operating. However, the wall surface on the water chamber side can be heated without substantially reducing the cooling performance.

また本発明によれば、多管式冷却器が備える水室蒸気供給管は、管外径が小さいので海水との伝熱面積が少なく、多管式冷却器の運転中であっても海水により冷却されにくく、少ない蒸気量で水室内側の壁面をより効率的に加熱することが可能となる。   Further, according to the present invention, the water chamber steam supply pipe provided in the multitubular cooler has a small heat transfer area with seawater because the outer diameter of the pipe is small, and even during operation of the multitubular cooler, It is difficult to cool, and the wall surface on the water chamber side can be more efficiently heated with a small amount of steam.

図1は、本発明の第1実施形態としての多管式冷却器1の概略的構成を示す断面図である。図2は、水室蒸気供給管30の配置を示す図であって、海水入口側水室6から冷却管2側方向に見た図である。図3は、図2の切断線III−IIIで切断した断面図である。   FIG. 1 is a cross-sectional view showing a schematic configuration of a multitubular cooler 1 as a first embodiment of the present invention. FIG. 2 is a diagram showing the arrangement of the water chamber steam supply pipe 30, as viewed from the seawater inlet side water chamber 6 toward the cooling pipe 2. 3 is a cross-sectional view taken along the cutting line III-III in FIG.

多管式冷却器1は、隔壁式熱交換器であり、冷却管2内を冷却媒体である海水が流れ、冷却管2外を被冷却水が流れる。被冷却水は淡水である。冷却管2は多数の冷却管からなり胴3の両端の固定管板4、5に固定されている。胴3の両端には海水入口側水室6、海水出口側水室7が設けられており、胴3と海水入口側水室6、海水出口側水室7とはフランジ8、9、10、11で接続されている。海水入口側水室6の上部に設けられた海水入口管13から供給された海水は、冷却管2内を流れ、海水出口側水室7の下部に設けられた海水出口管16から排出される。   The multitubular cooler 1 is a partition wall heat exchanger, and seawater as a cooling medium flows in the cooling pipe 2 and water to be cooled flows outside the cooling pipe 2. The water to be cooled is fresh water. The cooling pipe 2 is composed of a number of cooling pipes and is fixed to fixed tube plates 4 and 5 at both ends of the body 3. A seawater inlet side water chamber 6 and a seawater outlet side water chamber 7 are provided at both ends of the trunk 3, and the trunk 3, the seawater inlet side water chamber 6, and the seawater outlet side water chamber 7 have flanges 8, 9, 10, 11 is connected. Seawater supplied from a seawater inlet pipe 13 provided at the upper part of the seawater inlet side water chamber 6 flows through the cooling pipe 2 and is discharged from a seawater outlet pipe 16 provided at the lower part of the seawater outlet side water chamber 7. .

被冷却水は、海水入口側水室6に近い胴3の下部に設けられた被冷却水入口管17から胴3に導入され、冷却管2内を流れる海水と熱交換し温度を低下させ、海水出口側水室7に近い胴3の上部に設けられた被冷却水出口管18から排出される。胴3内部には胴3の長手方向に直交するように複数のじゃま板19が設置されており、胴3内部での被冷却水のショートパスを防止している。海水入口管13、海水出口管16、被冷却水入口管17、及び被冷却水出口管18には各々流体の温度を測定するための温度センサ20、21、22、23が設けられており、海水の入出温度、被冷却水の入出温度を測定することができる。   Cooled water is introduced into the trunk 3 from the cooled water inlet pipe 17 provided in the lower part of the trunk 3 close to the sea water inlet-side water chamber 6, and exchanges heat with seawater flowing in the cooling pipe 2 to lower the temperature. It is discharged from a cooled water outlet pipe 18 provided at the upper part of the trunk 3 near the seawater outlet side water chamber 7. A plurality of baffle plates 19 are installed in the body 3 so as to be orthogonal to the longitudinal direction of the body 3 to prevent a short path of water to be cooled in the body 3. The seawater inlet pipe 13, the seawater outlet pipe 16, the cooled water inlet pipe 17, and the cooled water outlet pipe 18 are each provided with temperature sensors 20, 21, 22, 23 for measuring the temperature of the fluid, Seawater inlet / outlet temperature and cooling water inlet / outlet temperature can be measured.

さらに多管式冷却器1は、海水入口側水室6の内壁面25を加熱するための水室蒸気供給管30が取付けられている。水室蒸気供給管30の一端は、海水入口側水室6を貫通し外部31の電動弁32と接続する。電動弁32は蒸気管33を介して図示を省略した蒸気
供給装置と接続する。水室蒸気供給管30は、蒸気を供給するヘッダ34、ヘッダ34に接続し内壁面25を加熱する複数の枝管36(36a、36b、36c、36d、36e、36f、36g)を有する。
Further, the multi-tube cooler 1 is provided with a water chamber steam supply pipe 30 for heating the inner wall surface 25 of the sea water inlet side water chamber 6. One end of the water chamber steam supply pipe 30 penetrates the sea water inlet side water chamber 6 and is connected to an electric valve 32 of the outside 31. The motor-operated valve 32 is connected to a steam supply device (not shown) via a steam pipe 33. The water chamber steam supply pipe 30 has a header 34 for supplying steam, and a plurality of branch pipes 36 (36a, 36b, 36c, 36d, 36e, 36f, 36g) connected to the header 34 and heating the inner wall surface 25.

各々の枝管36はリング形状を有し、各枝管36は、内壁面25に接触するように取付けられている。各枝管36には、内壁面25に接するように内壁面25の方向にのみ複数の貫通孔38が穿設され、この貫通孔38から蒸気及び/又は蒸気が凝縮した高温のドレンが噴出する。但し海水入口管13近傍には貫通孔38は設けられていない。このような水室蒸気供給管30に蒸気を供給すると、枝管36の貫通孔38から噴出される蒸気又は海水で冷却され凝縮した高温のドレン又はこれら混合物、さらにこれらと海水の混合物は、内壁面25に衝突後内壁面25に沿うように移動し、内壁面25を加熱する。   Each branch pipe 36 has a ring shape, and each branch pipe 36 is attached so as to contact the inner wall surface 25. Each branch pipe 36 is provided with a plurality of through holes 38 only in the direction of the inner wall surface 25 so as to be in contact with the inner wall surface 25, and steam and / or high-temperature drain condensed from the steam is ejected from the through holes 38. . However, the through hole 38 is not provided in the vicinity of the seawater inlet pipe 13. When steam is supplied to such a water chamber steam supply pipe 30, the steam or the high-temperature drain that is cooled and condensed by the seawater ejected from the through hole 38 of the branch pipe 36 or seawater, and the mixture of these and seawater, After colliding with the wall surface 25, it moves along the inner wall surface 25 to heat the inner wall surface 25.

水室蒸気供給管30を構成する枝管36及びそこに穿設する貫通孔38の数は特に限定されないけれども、各枝管及び貫通孔の数は多い方が好ましい。この多管式冷却器1は、後述の使用例で示すように多管式冷却器1を運転中に海水入口側水室6の内壁面25に蒸気及び/又は蒸気が凝縮した高温のドレンを吹付け加熱する。吹付けた蒸気及び/又は蒸気が凝縮したドレンは、内壁面25を加熱すると共に海水温度を上昇させるように作用するので、内壁面25の加熱に多量の蒸気を使用することは冷却性能の低下につながり好ましくない。少ない数の枝管36で広く内壁面25を加熱しようとすると、枝管1本当りから噴出させる蒸気及び/又は蒸気が凝縮したドレンの量を多くする必要がある。この場合、噴出させた蒸気及び/又は蒸気が凝縮した高温のドレンの一部は、内壁面25を加熱することなく拡散し、直接海水と混合するので好ましくない。水室蒸気供給管30を構成する各枝管36の数を多くし、一本の枝管から噴出させる蒸気及び/又は蒸気が凝縮した高温のドレンの量を少なくすることでこれらを内壁面25の加熱に効率的に使用することができる。貫通孔38の数も同様に考えることができる。   Although the number of branch pipes 36 constituting the water chamber steam supply pipe 30 and the number of through holes 38 drilled therein is not particularly limited, it is preferable that the number of branch pipes and through holes is large. As shown in a use example described later, this multitubular cooler 1 generates steam and / or high-temperature drain condensed steam on the inner wall surface 25 of the seawater inlet side water chamber 6 during operation of the multitubular cooler 1. Heat by spraying. Since the sprayed steam and / or the drain condensed with steam acts to heat the inner wall surface 25 and raise the seawater temperature, using a large amount of steam to heat the inner wall surface 25 lowers the cooling performance. This is not preferable. If the inner wall surface 25 is to be widely heated with a small number of branch pipes 36, it is necessary to increase the amount of steam and / or drain condensed with steam that is ejected from one branch pipe. In this case, the jetted steam and / or a part of the high-temperature drain condensed with the steam diffuses without heating the inner wall surface 25 and is directly mixed with seawater, which is not preferable. The number of branch pipes 36 constituting the water chamber steam supply pipe 30 is increased, and the amount of steam discharged from one branch pipe and / or the high-temperature drain condensed with the steam is reduced to reduce the inner wall surface 25. It can be used efficiently for heating. The number of through-holes 38 can be considered similarly.

さらに一の枝管36の外径も小さい方が、枝管36の管壁を通じての海水への放熱が少なくなり、供給する蒸気量が少なくて済むので好ましい。また枝管36に熱伝導度の小さい材料を使用することが枝管36の管壁を通じての海水への放熱が少なくなり、供給する蒸気量が少なくて済むので好ましい。但し、枝管36を含め海水入口側水室6内に位置する水室蒸気供給管30自身の外壁表面にも海洋生物が付着するので、水室蒸気供給管30自身の外壁表面の温度を海洋生物が死滅する温度にする必要がある。この点も含め水室蒸気供給管30の材料の熱伝導度を決定する必要がある。   Furthermore, it is preferable that the outer diameter of one branch pipe 36 is smaller because heat radiation to the seawater through the pipe wall of the branch pipe 36 is reduced and the amount of steam supplied is reduced. Further, it is preferable to use a material having low thermal conductivity for the branch pipe 36 because heat radiation to seawater through the pipe wall of the branch pipe 36 is reduced and the amount of steam to be supplied can be reduced. However, since marine organisms also adhere to the outer wall surface of the water chamber steam supply pipe 30 itself located in the sea water inlet side water chamber 6 including the branch pipe 36, the temperature of the outer wall surface of the water chamber steam supply pipe 30 itself is set to the ocean. It needs to be at a temperature that kills the organism. It is necessary to determine the thermal conductivity of the material of the water chamber steam supply pipe 30 including this point.

多管式冷却器1の使用方法の一例を示す。本発明の多管式冷却器1は、多管式冷却器1を運転中、つまり低温側流体である海水及び高温側流体である淡水を流した状態で水室蒸気供給管30に蒸気を供給し、海水入口側水室6の内壁面25を加熱し内壁面25に付着する海洋生物を死滅させる。蒸気の供給は多管式冷却器1を運転している間中常時行う必要はなく、定期的に又は海洋生物が生長しやすい時期に行えればよい。海洋生物を死滅させるに必要な壁面の加熱温度及び加熱時間は、従来と同様である。壁面に付着する海洋生物を加熱し死滅させるために蒸気又は温水で壁面を加熱する方法は従来から知られているけれども、従来の方法は冷却器の運転を停止した状態で行うものであり、本発明は運転中に海水入口側水室6の内壁面25に蒸気及び/又は蒸気が凝縮した高温のドレンを吹付け、内壁面25を加熱する点に特徴がある。   An example of how to use the multitubular cooler 1 will be shown. The multitubular cooler 1 of the present invention supplies steam to the water chamber steam supply pipe 30 while the multitubular cooler 1 is in operation, that is, in a state in which seawater that is a low-temperature side fluid and fresh water that is a high-temperature side fluid flow. Then, the inner wall surface 25 of the sea water inlet side water chamber 6 is heated to kill marine organisms attached to the inner wall surface 25. It is not necessary to supply the steam all the time during the operation of the multitubular cooler 1, and it may be performed periodically or at a time when marine life is likely to grow. The heating temperature and heating time of the wall surface necessary for killing marine organisms are the same as in the past. A method of heating a wall surface with steam or hot water to heat and kill marine organisms adhering to the wall surface is conventionally known. However, the conventional method is performed with the cooler stopped. The invention is characterized in that during operation, steam and / or high-temperature drain condensed steam is sprayed on the inner wall surface 25 of the sea water inlet side water chamber 6 to heat the inner wall surface 25.

海水入口側水室6の内壁面25に接触するように水室蒸気供給管30を設け、内壁面25に向かって非常に近接した位置から高速で蒸気を噴射させると、蒸気、蒸気が周りの海水に冷却され凝縮した高温のドレン又はこれら混合物、さらにこれらと海水の混合物が内壁面25に吹付けられる。海水入口側水室6の内壁面25の近傍は、海水の流速が遅く海水が入れ替わりにくいので、少ない蒸気量で内壁面25を効率的に加熱することができる。海水の流量に比較して使用する蒸気量は圧倒的に少なく、かつ海水入口側水室6の内壁面25の近傍は海水の流速が遅く海水が入れ替わりにくいので、海水入口側水室6内を流通する海水の温度を大きく上昇させることなく海水入口側水室6の内壁面25を加熱し、そこに付着する海洋生物を死滅させることができる。また貫通孔38から噴出する蒸気、蒸気が周りの海水に冷却され凝縮した高温のドレン又はこれら混合物、さらにこれらと海水との混合物が内壁面25に沿って移動するように貫通孔38を設けることで、より少ない蒸気量で海水入口側水室6の内壁面25を効率的に加熱することができる。以上のことから本発明を発電所で使用する軸受冷却水冷却器に好適に使用することができる。   When the water chamber steam supply pipe 30 is provided so as to be in contact with the inner wall surface 25 of the sea water inlet side water chamber 6 and the steam is injected at a high speed from a position very close toward the inner wall surface 25, the steam and the steam High-temperature drain cooled or condensed by seawater or a mixture thereof, and a mixture of these and seawater are sprayed onto the inner wall surface 25. In the vicinity of the inner wall surface 25 of the seawater inlet-side water chamber 6, the inner wall surface 25 can be efficiently heated with a small amount of steam because the flow rate of the seawater is slow and the seawater is not easily replaced. The amount of steam to be used is overwhelmingly small compared to the flow rate of seawater, and the vicinity of the inner wall surface 25 of the seawater inlet-side water chamber 6 has a slow flow rate of seawater and it is difficult for the seawater to be replaced. The inner wall surface 25 of the seawater inlet side water chamber 6 can be heated without greatly increasing the temperature of the circulating seawater, and marine organisms adhering thereto can be killed. Also, the through-hole 38 is provided so that the steam ejected from the through-hole 38, the high-temperature drain condensed by cooling the surrounding seawater or the mixture thereof, and the mixture of these and the seawater move along the inner wall surface 25. Thus, the inner wall surface 25 of the seawater inlet-side water chamber 6 can be efficiently heated with a smaller amount of steam. From the above, the present invention can be suitably used for a bearing cooling water cooler used in a power plant.

海洋生物は海水の流れの遅い場所である水室の壁面等に付着、生長しやすい一方、流速の早い冷却管には付着しにくい。このため水室内に蒸気供給管を設置し、蒸気及び/又は蒸気が凝縮した高温のドレンを直接、水室の壁面等に吹付け海洋生物を死滅させる方法は効率的と言える。海水入口側水室6の内壁面25に海洋生物が付着生長すると、海水の流れを阻害したり、生長した海洋生物が内壁面25から剥離し冷却管2を塞ぐこともあるので、海水入口側水室6に蒸気供給管30を設置する。本実施形態では、海水出口側水室7の内壁面を加熱する蒸気供給管を設けていないけれども、海水出口側水室7内に内壁を加熱する蒸気供給管を設けてもよいことはもちろんである。   Marine organisms tend to adhere to and grow on the walls of water chambers where the flow of seawater is slow, but are unlikely to adhere to cooling pipes with high flow rates. For this reason, it can be said that it is efficient to install a steam supply pipe in the water chamber and spray the steam and / or high-temperature drain condensed with the steam directly onto the wall surface of the water chamber to kill marine organisms. When marine organisms adhere and grow on the inner wall surface 25 of the seawater inlet side water chamber 6, the flow of seawater may be hindered or the grown marine organisms may peel from the inner wall surface 25 and block the cooling pipe 2. A steam supply pipe 30 is installed in the water chamber 6. In the present embodiment, a steam supply pipe for heating the inner wall surface of the seawater outlet side water chamber 7 is not provided, but it is needless to say that a steam supply pipe for heating the inner wall may be provided in the seawater outlet side water chamber 7. is there.

図4は、図3に示す水室蒸気供給管30の枝管36dの第一変形例である枝管40dを示す断面図である。図3に示す水室蒸気供給管30の枝管36dと同一の部材、同一場所には同一の符号を付して詳細な説明を省略する。図4に示す枝管40dは、水室蒸気供給管を構成する枝管であって、枝管40dに穿設された蒸気及び/又は蒸気が凝縮したドレンの噴出口である貫通孔42を除けば、枝管36dと同一である。図3に示す枝管36dでは、枝管の内径とほぼ同一の貫通孔38が内壁面25に対して正対するように穿設されているけれども、この枝管40dでは、内壁面25に対して正対する位置から10°〜50°の位置に左右に一個穿設されている。また図3に示す枝管36dに穿設された貫通孔38に比較して、枝管40dに穿設された貫通孔42の直径は小さい。このように貫通孔42を設けることで、貫通孔42から噴出する蒸気及び/又は蒸気が凝縮したドレンがより内壁面25に沿って移動しやすくなり、少ない蒸気量で効率的に内壁面25を加熱することができる。   4 is a cross-sectional view showing a branch pipe 40d which is a first modification of the branch pipe 36d of the water chamber steam supply pipe 30 shown in FIG. The same members and the same portions as the branch pipes 36d of the water chamber steam supply pipe 30 shown in FIG. The branch pipe 40d shown in FIG. 4 is a branch pipe constituting the water chamber steam supply pipe, and excludes the through-hole 42 that is a hole formed in the branch pipe 40d and / or a drain outlet for the condensed steam. For example, it is the same as the branch pipe 36d. In the branch pipe 36d shown in FIG. 3, a through hole 38 substantially the same as the inner diameter of the branch pipe is formed so as to face the inner wall surface 25. One is drilled on the left and right at a position of 10 ° to 50 ° from the directly facing position. Further, the diameter of the through hole 42 drilled in the branch pipe 40d is smaller than the through hole 38 drilled in the branch pipe 36d shown in FIG. By providing the through hole 42 in this manner, the steam ejected from the through hole 42 and / or the drain condensed with the steam becomes easier to move along the inner wall surface 25, and the inner wall surface 25 can be efficiently moved with a small amount of steam. Can be heated.

図5は、図3に示す水室蒸気供給管30の枝管36dの第二変形例である枝管44dを示す断面図である。図3に示す水室蒸気供給管30の枝管36dと同一の部材、同一場所には同一の符号を付して詳細な説明を省略する。図5に示す枝管44dは、水室蒸気供給管を構成する枝管であって、図3又は図4に示す枝管36、40と異なり枝管44dが内壁面25に対して僅かな隙間δを有した状態で取付けられている。さらに枝管44dに穿設された貫通孔46は、図3に示す枝管36dに穿設された貫通孔38に比較して小さい。この貫通孔46から噴出する蒸気及び/又は蒸気が凝縮したドレンは内壁面25に沿って移動するので、少ない蒸気量で効率的に内壁面25を加熱することができる。   FIG. 5 is a cross-sectional view showing a branch pipe 44d which is a second modification of the branch pipe 36d of the water chamber steam supply pipe 30 shown in FIG. The same members and the same portions as the branch pipes 36d of the water chamber steam supply pipe 30 shown in FIG. The branch pipe 44d shown in FIG. 5 is a branch pipe constituting the water chamber steam supply pipe, and unlike the branch pipes 36 and 40 shown in FIG. 3 or 4, the branch pipe 44d is slightly spaced from the inner wall surface 25. It is attached in a state having δ. Further, the through hole 46 drilled in the branch pipe 44d is smaller than the through hole 38 drilled in the branch pipe 36d shown in FIG. Since the steam ejected from the through hole 46 and / or the drain condensed with the steam moves along the inner wall surface 25, the inner wall surface 25 can be efficiently heated with a small amount of steam.

図6は本発明の第2実施形態としての多管式冷却器50の概略的構成を示す断面図である。図7は、海水入口側水室蒸気供給管70の配置を示す平面図である。図8は、図6のA部の拡大図であって、海水入口側水室蒸気供給管70のうち水室蓋58の下半分の内壁面59を加熱する水室蓋蒸気供給管75を水室蓋58から冷却管2側方向に見た図である。図9は、海水入口側水室蒸気供給管70のうち下方水室52の内壁面57を加熱する内壁蒸気供給管及び仕切板55の表面60を加熱する仕切板蒸気供給管の設置要領を示す部分断面図である。図1から図3に示す第1実施形態の多管式冷却器1と同一の部材、同一の場所には同一の符号を付して詳細な説明を省略する。   FIG. 6 is a cross-sectional view showing a schematic configuration of a multitubular cooler 50 as a second embodiment of the present invention. FIG. 7 is a plan view showing the arrangement of the seawater inlet side water chamber steam supply pipe 70. FIG. 8 is an enlarged view of part A of FIG. 6, and the water chamber lid steam supply pipe 75 that heats the inner wall surface 59 of the lower half of the water chamber lid 58 in the seawater inlet side water chamber steam supply pipe 70 is watered. It is the figure seen from the chamber lid 58 to the cooling pipe 2 side direction. FIG. 9 shows the installation procedure of the inner wall steam supply pipe for heating the inner wall surface 57 of the lower water chamber 52 and the partition plate steam supply pipe for heating the surface 60 of the partition plate 55 in the seawater inlet-side water chamber steam supply pipe 70. It is a fragmentary sectional view. The same members and the same places as those in the multitubular cooler 1 of the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.

多管式冷却器50は、隔壁式熱交換器であり、冷却管2内を冷却媒体である海水が流れ、冷却管2外を淡水の被冷却水が流れる点においては、第1実施形態の多管式冷却器1と同一であるが、海水の流れが異なる。胴3の一端に取付けられた水室は、仕切板55で上下に2分割され、下方水室52に海水入口管13が、上方水室54に海水出口管16が設けられている。海水入口管13を通じて下方水室52に供給された海水は、胴3に固定された下半分の冷却管2内を流れ、他端の水室で流れを反転させ、胴3に固定された上半分の冷却管2内を流れ、海水入口側の上方水室54に集められた後、海水出口管16から排出される。下方水室52及び上方水室54を有する水室を海水入口側水室51、下方水室52から送られた海水を上方水室54に返送する水室を海水戻り側水室53とする。   The multitubular cooler 50 is a partition wall heat exchanger, and the seawater as a cooling medium flows inside the cooling pipe 2 and fresh water to be cooled flows outside the cooling pipe 2 as in the first embodiment. Although it is the same as the multitubular cooler 1, the flow of seawater is different. The water chamber attached to one end of the trunk 3 is divided into two vertically by a partition plate 55, and the seawater inlet pipe 13 is provided in the lower water chamber 52 and the seawater outlet pipe 16 is provided in the upper water chamber 54. The seawater supplied to the lower water chamber 52 through the seawater inlet pipe 13 flows in the lower half of the cooling pipe 2 fixed to the trunk 3, and the flow is reversed in the water chamber at the other end to be fixed to the trunk 3. After flowing through the half cooling pipe 2 and collected in the upper water chamber 54 on the seawater inlet side, it is discharged from the seawater outlet pipe 16. A water chamber having a lower water chamber 52 and an upper water chamber 54 is a seawater inlet side water chamber 51, and a water chamber that returns seawater sent from the lower water chamber 52 to the upper water chamber 54 is a seawater return side water chamber 53.

多管式冷却器50は、海水入口側の下方水室52内に、下方水室52の内壁面57、水室蓋58の下半分の内壁面59及び仕切板55の表面60を加熱するための海水入口側水室蒸気供給管70が取付けられている。同様に海水戻り側水室53の内壁面を加熱するための海水戻り側水室蒸気供給管90が取付けられている。第1実施形態に示す多管式冷却器1においては、海水入口側水室6内にのみ蒸気供給管30が取付けられていたけれども、多管式冷却器50においては、海水入口側水室51の下方水室52から送られた海水が、海水戻り側水室53で反転し冷却管2内を流れるので、生長した海洋生物が壁面から剥離し冷却管を塞がないように海水戻り側水室53内にも蒸気供給管90を取付けている。第2実施形態に示す海水入口側水室蒸気供給管70及び海水戻り側水室蒸気供給管90の取付け要領等は、第1実施形態に示す多管式冷却器1の海水入口側水室6に設けた水室蒸気供給管30と基本的に同じである。   The multitubular cooler 50 heats the inner wall surface 57 of the lower water chamber 52, the inner wall surface 59 of the lower half of the water chamber lid 58, and the surface 60 of the partition plate 55 in the lower water chamber 52 on the seawater inlet side. The seawater inlet side water chamber steam supply pipe 70 is attached. Similarly, a seawater return side water chamber steam supply pipe 90 for heating the inner wall surface of the seawater return side water chamber 53 is attached. In the multitubular cooler 1 shown in the first embodiment, the steam supply pipe 30 is attached only in the seawater inlet-side water chamber 6, but in the multitubular cooler 50, the seawater inlet-side water chamber 51. Since the seawater sent from the lower water chamber 52 is reversed in the seawater return side water chamber 53 and flows in the cooling pipe 2, the seawater return side water is prevented so that the grown marine organisms are separated from the wall surface and do not block the cooling pipe. A steam supply pipe 90 is also installed in the chamber 53. The seawater inlet-side water chamber steam supply pipe 70 and seawater return-side water chamber steam supply pipe 90 shown in the second embodiment are attached in the same manner as the seawater inlet-side water chamber 6 of the multitubular cooler 1 shown in the first embodiment. This is basically the same as the water chamber steam supply pipe 30 provided in.

海水入口側水室蒸気供給管70の一端は、水室蓋58を貫通し下方水室52の外部31の電動弁72と接続する。電動弁72は蒸気管73を介して図示を省略した蒸気供給装置と接続する。海水入口側水室蒸気供給管70は、各部に蒸気を供給するヘッダ74、ヘッダ74に接続し水室蓋58の下半分の内壁面59を加熱する水室蓋蒸気供給管75、下方水室52の内壁面57を加熱する内壁蒸気供給管及び仕切板55の表面60を加熱する仕切板蒸気供給管を備える。   One end of the seawater inlet-side water chamber steam supply pipe 70 passes through the water chamber lid 58 and is connected to an electric valve 72 outside the lower water chamber 52. The motor-operated valve 72 is connected to a steam supply device (not shown) via a steam pipe 73. The seawater inlet-side water chamber steam supply pipe 70 is connected to the header 74 for supplying steam to each part, a water chamber lid steam supply pipe 75 for heating the inner wall surface 59 of the lower half of the water chamber lid 58, and a lower water chamber. The inner wall steam supply pipe for heating the inner wall surface 57 of 52 and the partition plate steam supply pipe for heating the surface 60 of the partition plate 55 are provided.

水室蓋58の下半分は、冷却管2側から見て半円状の形状を有し、この水室蓋58の内表面59を加熱する水室蓋蒸気供給管75も複数の半円状の枝管76(76a、76b、76c、76d)で構成されている。半円状の枝管76は同心円上に配置され、各枝管76は仕切板55の表面60を加熱する仕切板蒸気供給管の枝管86a、86iに接続し、この枝管86a、86iを通じて蒸気が供給される。各枝管76には、水室蓋58方向にのみ複数の貫通孔78が穿設され、この貫通孔78から蒸気及び/又は蒸気が凝縮した高温のドレンが噴出する。各枝管76は、水室蓋58に接触するように取付けられており、貫通孔78も図3に示す枝管36dに穿設された貫通孔38と同様、水室蓋58に接触している。このような水室蓋蒸気供給管75に蒸気を供給すると、枝管76の貫通孔78から噴出される蒸気又は海水で冷却され凝縮した高温のドレン又はこれら混合物、さらにこれらと海水の混合物は、水室蓋58に衝突後水室蓋58に沿うように移動し、水室蓋58の表面59を加熱する。   The lower half of the water chamber lid 58 has a semicircular shape when viewed from the cooling pipe 2 side, and the water chamber lid steam supply pipe 75 for heating the inner surface 59 of the water chamber lid 58 also has a plurality of semicircular shapes. Branch pipe 76 (76a, 76b, 76c, 76d). The semicircular branch pipes 76 are arranged concentrically, and each branch pipe 76 is connected to branch pipes 86a and 86i of partition plate steam supply pipes that heat the surface 60 of the partition plate 55, and through these branch pipes 86a and 86i. Steam is supplied. Each branch pipe 76 is provided with a plurality of through holes 78 only in the direction of the water chamber lid 58, and steam and / or high-temperature drain condensed steam is ejected from the through holes 78. Each branch pipe 76 is attached so as to be in contact with the water chamber lid 58, and the through hole 78 is also in contact with the water chamber lid 58 in the same manner as the through hole 38 formed in the branch pipe 36d shown in FIG. Yes. When steam is supplied to the water chamber lid steam supply pipe 75, the steam or the high-temperature drain condensed by cooling with the steam or seawater ejected from the through-hole 78 of the branch pipe 76, and the mixture of these and seawater, After colliding with the water chamber lid 58, it moves along the water chamber lid 58 to heat the surface 59 of the water chamber lid 58.

仕切板55の表面60を加熱する仕切板蒸気供給管は、冷却管2の方向に向かって多数設置された直管状の枝管86(86a、86b、86c、86d、86e、86f、86g、86h、86i、86j、86k、86l、86m、86n、86o、86p)からなり、各枝管86には仕切板55の方向にのみ蒸気及び/又は蒸気が凝縮した高温のドレンを噴出する多数の貫通孔88が穿設されている。枝管86は仕切板55の直ぐ下に設置されたヘッダ74に接続し、ヘッダ74を通じて供給される蒸気及び/又は蒸気が凝縮した高温のドレンを仕切板55に向けて噴出する。各枝管86は、水室蓋58を加熱する枝管76と同様に、仕切板55に接触するように取付けられており、貫通孔88も仕切板55の表面60に接触している。   The partition plate steam supply pipes for heating the surface 60 of the partition plate 55 are straight pipe branch pipes 86 (86a, 86b, 86c, 86d, 86e, 86f, 86g, 86h) installed in the direction of the cooling pipe 2. , 86i, 86j, 86k, 86l, 86m, 86n, 86o, 86p), and each branch pipe 86 has a large number of penetrations through which steam and / or hot condensate condensed with steam is ejected only in the direction of the partition plate 55. A hole 88 is formed. The branch pipe 86 is connected to a header 74 installed immediately below the partition plate 55, and jets steam supplied through the header 74 and / or high-temperature drain condensed with steam toward the partition plate 55. Each branch pipe 86 is attached so as to be in contact with the partition plate 55, similarly to the branch pipe 76 that heats the water chamber lid 58, and the through hole 88 is also in contact with the surface 60 of the partition plate 55.

下方水室52の内壁面57を加熱する内壁蒸気供給管も複数の枝管82(82a、82b、82c、82d、82e、82f、82g)からなり、各枝管82は仕切板55を加熱する各枝管86に接続し、この枝管86を通じて蒸気が供給される。複数の枝管82は、半円状の形状を有し、下方水室52の内壁面57に接するように取付けられ、多数の貫通孔84を通じて下方水室52の内壁面57に蒸気及び/又は蒸気が凝縮した高温のドレンを吹付ける。   The inner wall steam supply pipe for heating the inner wall surface 57 of the lower water chamber 52 also includes a plurality of branch pipes 82 (82a, 82b, 82c, 82d, 82e, 82f, 82g), and each branch pipe 82 heats the partition plate 55. Each branch pipe 86 is connected, and steam is supplied through the branch pipe 86. The plurality of branch pipes 82 have a semicircular shape, are attached so as to be in contact with the inner wall surface 57 of the lower water chamber 52, and steam and / or the inner wall surface 57 of the lower water chamber 52 through a plurality of through holes 84. Spray hot condensate with condensed steam.

海水戻り側水室蒸気供給管90の一端は、海水戻り側水室53を貫通し外部31の電動弁92と接続する。電動弁92は蒸気管93を介して図示を省略したスチーム供給装置と接続する。海水戻り側水室蒸気供給管90は、蒸気を供給するヘッダ94、ヘッダ94に接続し内壁面を加熱する複数の枝管96(96a、96b、96c、96d、96e、96f、96g)を有する。この海水戻り側水室蒸気供給管90は、第1実施形態に示す水室蒸気供給管30と構成を同じくするので説明を省略する。また、第2実施形態に示す多管式冷却器50の使用方法は第1実施形態に示す多管式冷却器1と同一であり、その作用効果も同一である。さらに海水の出口側水室である上方水室54にも蒸気供給管を取付けてもよいことは、第1実施形態に示す多管式冷却器1と同じである。   One end of the seawater return side water chamber steam supply pipe 90 penetrates the seawater return side water chamber 53 and is connected to the motor-operated valve 92 of the outside 31. The motor-operated valve 92 is connected to a steam supply device (not shown) via a steam pipe 93. The seawater return side water chamber steam supply pipe 90 has a header 94 for supplying steam and a plurality of branch pipes 96 (96a, 96b, 96c, 96d, 96e, 96f, 96g) connected to the header 94 and heating the inner wall surface. . Since the seawater return side water chamber steam supply pipe 90 has the same configuration as the water chamber steam supply pipe 30 shown in the first embodiment, the description thereof is omitted. Moreover, the usage method of the multitubular cooler 50 shown in 2nd Embodiment is the same as the multitubular cooler 1 shown in 1st Embodiment, and the effect is also the same. Furthermore, it is the same as the multitubular cooler 1 shown in the first embodiment that a steam supply pipe may be attached to the upper water chamber 54 which is the seawater outlet side water chamber.

第1実施形態に示す多管式冷却器1と第2実施形態に示す多管式冷却器50とでは、海水の流れ方に相違があり、これに伴い水室蒸気供給管の取付け位置が異なっているけれども、共に冷却管に海水を送り込む水室の内壁面を加熱する水室蒸気供給管を有する。さらに水室蒸気供給管を構成する枝管及び枝管に穿設された貫通孔を壁面に接するように又は壁面に近接するように取付けることで、少ない蒸気量で海水温度を大きく上昇させることなく内壁面を加熱し、内壁面に付着する海洋生物を死滅させることができる。多管式冷却器は、第1及び第2実施形態に示す型式のものに限定されるものではなく、さらに本発明を多管式の熱交換器に利用することもできる。   The multitubular cooler 1 shown in the first embodiment and the multitubular cooler 50 shown in the second embodiment are different in the flow of seawater, and the attachment position of the water chamber steam supply pipe is different accordingly. However, both have a water chamber steam supply pipe that heats the inner wall surface of the water chamber that feeds seawater into the cooling pipe. Furthermore, by attaching the branch pipe constituting the water chamber steam supply pipe and the through hole formed in the branch pipe so as to be in contact with the wall surface or close to the wall surface, the seawater temperature is not significantly increased with a small amount of steam. The inner wall surface can be heated, and marine organisms adhering to the inner wall surface can be killed. The multitubular cooler is not limited to the type shown in the first and second embodiments, and the present invention can also be used for a multitubular heat exchanger.

本発明の第1実施形態としての多管式冷却器1の概略的構成を示す断面図である。1 is a cross-sectional view showing a schematic configuration of a multitubular cooler 1 as a first embodiment of the present invention. 図1の水室蒸気供給管30の配置を示す図であって、海水入口側水室6から冷却管2側方向に見た図である。It is a figure which shows arrangement | positioning of the water chamber steam supply pipe | tube 30 of FIG. 1, Comprising: It is the figure seen from the seawater inlet side water chamber 6 to the cooling pipe 2 side direction. 図2の切断線III−IIIで切断した断面図である。It is sectional drawing cut | disconnected by the cutting line III-III of FIG. 図3に示す水室蒸気供給管30の枝管36dの第一変形例である枝管40dを示す断面図である。It is sectional drawing which shows the branch pipe 40d which is the 1st modification of the branch pipe 36d of the water chamber steam supply pipe 30 shown in FIG. 図3に示す水室蒸気供給管30の枝管36dの第二変形例である枝管44dを示す断面図である。It is sectional drawing which shows the branch pipe 44d which is the 2nd modification of the branch pipe 36d of the water chamber steam supply pipe 30 shown in FIG. 本発明の第2実施形態としての多管式冷却器50の概略的構成を示す断面図である。It is sectional drawing which shows schematic structure of the multitubular cooler 50 as 2nd Embodiment of this invention. 図6の海水入口側水室蒸気供給管70の配置を示す平面図である。It is a top view which shows arrangement | positioning of the seawater inlet side water chamber steam supply pipe 70 of FIG. 図6のA部の拡大図であって、海水入口側水室蒸気供給管70のうち水室蓋58の下半分の内壁面59を加熱する水室蓋蒸気供給管75を水室蓋58から冷却管2側方向に見た図である。FIG. 7 is an enlarged view of part A of FIG. 6, wherein a water chamber lid steam supply pipe 75 for heating an inner wall surface 59 of the lower half of the water chamber lid 58 in the seawater inlet side water chamber steam supply pipe 70 is connected to the water chamber lid 58. It is the figure seen in the cooling pipe 2 side direction. 図6の海水入口側水室蒸気供給管70のうち下方水室52の内壁面57を加熱する内壁蒸気供給管及び仕切板55の表面60を加熱する仕切板蒸気供給管の設置要領を示す部分断面図である。6 shows the installation procedure of the inner wall steam supply pipe for heating the inner wall surface 57 of the lower water chamber 52 and the partition plate steam supply pipe for heating the surface 60 of the partition plate 55 in the seawater inlet side water chamber steam supply pipe 70 of FIG. It is sectional drawing.

符号の説明Explanation of symbols

1 多管式冷却器
2 冷却管
6 海水入口側水室
25 海水入口側水室内壁面
30 水室蒸気供給管
34 ヘッダ
36 枝管
38 貫通孔
40 枝管
42 貫通孔
44 枝管
46 貫通孔
50 多管式冷却器
51 海水入口側水室
52 下方水室
53 海水戻り側水室
54 上方水室
55 仕切板
57 下方水室内壁面
58 水室蓋
59 水室蓋下半分内壁面
60 仕切板表面
70 海水入口側水室蒸気供給管
74 ヘッダ
75 水室蓋蒸気供給管
76 枝管
78 貫通孔
82 枝管
84 貫通孔
86 枝管
88 貫通孔
90 海水戻り側水室蒸気供給管
94 ヘッダ
96 枝管
DESCRIPTION OF SYMBOLS 1 Multi-tube type cooler 2 Cooling pipe 6 Sea water inlet side water chamber 25 Sea water inlet side water chamber wall surface 30 Water chamber steam supply pipe 34 Header 36 Branch pipe 38 Through hole 40 Branch pipe 42 Through hole 44 Branch pipe 46 Through hole 50 Pipe cooler 51 Sea water inlet side water chamber 52 Lower water chamber 53 Sea water return side water chamber 54 Upper water chamber 55 Partition plate 57 Lower water chamber wall surface 58 Water chamber lid 59 Water chamber lid lower half inner wall surface 60 Partition plate surface 70 Sea water Inlet side water chamber steam supply pipe 74 Header 75 Water chamber lid steam supply pipe 76 Branch pipe 78 Through hole 82 Branch pipe 84 Through hole 86 Branch pipe 88 Through hole 90 Seawater return side water chamber steam supply pipe 94 Header 96 Branch pipe

Claims (5)

冷却管内に低温側流体として海水を流す多管式冷却器であり、少なくとも海水入口側の水室内側壁面に近接又は接触するように取付けられ、複数の噴出口から蒸気及び/又は蒸気が凝縮したドレンを前記水室内側壁面に直接吹付け、海水の温度を大きく上昇させることなく前記水室内側壁面の表面温度を海洋生物が死滅可能な温度まで上昇させる水室蒸気供給管を有することを特徴とする多管式冷却器。   A multi-tube cooler that flows seawater as a low-temperature side fluid in a cooling pipe, and is attached so as to be close to or in contact with the side wall surface of the water chamber on the seawater inlet side, and steam and / or steam is condensed from a plurality of jet outlets. It has a water chamber steam supply pipe that sprays drain directly on the side wall surface of the water chamber and raises the surface temperature of the side wall surface of the water chamber to a temperature at which marine life can be killed without greatly increasing the temperature of seawater. Multi-tube cooler. 胴部一端に設けられ、仕切板で仕切られた海水入口部及び海水出口部を有する水室と、胴部他端に設けられ、海水入口部から送られた海水を海水出口部に送る水室とを有し、冷却管内に低温側流体として海水を流す多管式冷却器であり、海水入口部及び海水出口部を有する前記水室のうち海水入口部側の水室内側壁面、及び海水を海水出口部に返送する前記水室の水室内側壁面にそれぞれ近接又は接触するように取付けられ、複数の噴出口から蒸気及び/又は蒸気が凝縮したドレンを前記水室内側壁面に直接吹付け、海水の温度を大きく上昇させることなく前記水室内側壁面の表面温度を海洋生物が死滅可能な温度まで上昇させる水室蒸気供給管を有することを特徴とする多管式冷却器。   A water chamber provided at one end of the trunk and having a seawater inlet and a seawater outlet separated by a partition plate, and a water chamber provided at the other end of the trunk and sending seawater sent from the seawater inlet to the seawater outlet A multi-tube type cooler that flows seawater as a low-temperature side fluid in the cooling pipe, and the water chamber side wall surface on the seawater inlet side of the water chamber having the seawater inlet part and the seawater outlet part, and seawater Attached so as to be close to or in contact with the side wall surface of the water chamber of the water chamber to be returned to the seawater outlet part, steam and / or condensate of steam condensed from a plurality of outlets is directly blown onto the side wall surface of the water chamber, A multi-tubular cooler having a water chamber steam supply pipe for increasing the surface temperature of the side wall surface of the water chamber to a temperature at which marine organisms can be killed without greatly increasing the temperature of seawater. 前記水室蒸気供給管の噴出口は、該噴出口から噴出する蒸気及び/又は蒸気が凝縮したドレンが前記水室内側壁面に沿って移動するように蒸気及び/又は蒸気が凝縮したドレンを噴出させることを特徴とする請求項1又は請求項2に記載の多管式冷却器。   The steam outlet of the water chamber steam supply pipe ejects the steam and / or the steam condensed drain so that the steam and / or the drain condensed the steam moves along the side wall surface of the water chamber. The multitubular cooler according to claim 1 or 2, wherein the multitubular cooler is provided. 前記水室蒸気供給管は、管外径が小さいことを特徴する請求項1から請求項3のいずれか1項に記載の多管式冷却器。   The multitubular cooler according to any one of claims 1 to 3, wherein the water chamber steam supply pipe has a small pipe outer diameter. 多管式冷却器を運転中に該多管式冷却器の運転を停止することなく、前記水室蒸気供給管に間欠的に蒸気を供給し、海水の温度を大きく上昇させることなく前記水室内側壁面の表面温度を海洋生物が死滅可能な温度まで上昇させることを特徴とする請求項1から請求項4のいずれか1項に記載の多管式冷却器の使用方法。   Without stopping the operation of the multi-tube cooler during operation of the multi-tube cooler, steam is intermittently supplied to the water chamber steam supply pipe, and the water chamber without greatly increasing the temperature of seawater. The method of using a multitubular cooler according to any one of claims 1 to 4, wherein the surface temperature of the inner wall surface is increased to a temperature at which marine organisms can be killed.
JP2007305329A 2007-11-27 2007-11-27 Multi-pipe cooler and using method of multi-pipe cooler Pending JP2009127966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305329A JP2009127966A (en) 2007-11-27 2007-11-27 Multi-pipe cooler and using method of multi-pipe cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305329A JP2009127966A (en) 2007-11-27 2007-11-27 Multi-pipe cooler and using method of multi-pipe cooler

Publications (1)

Publication Number Publication Date
JP2009127966A true JP2009127966A (en) 2009-06-11

Family

ID=40819077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305329A Pending JP2009127966A (en) 2007-11-27 2007-11-27 Multi-pipe cooler and using method of multi-pipe cooler

Country Status (1)

Country Link
JP (1) JP2009127966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043285A1 (en) * 2015-09-09 2017-03-16 株式会社富士通ゼネラル Heat exchanger
CN116718044A (en) * 2023-05-23 2023-09-08 马鞍山市博浪热能科技有限公司 Shell-and-tube heat exchanger for heat pump unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043285A1 (en) * 2015-09-09 2017-03-16 株式会社富士通ゼネラル Heat exchanger
JP2017053542A (en) * 2015-09-09 2017-03-16 株式会社富士通ゼネラル Heat exchanger
CN108027283A (en) * 2015-09-09 2018-05-11 富士通将军股份有限公司 Heat exchanger
US10107576B2 (en) 2015-09-09 2018-10-23 Fujitsu General Limited Heat exchanger
AU2016320032B2 (en) * 2015-09-09 2018-11-29 Fujitsu General Limited Heat exchanger
CN108027283B (en) * 2015-09-09 2020-03-31 富士通将军股份有限公司 Heat exchanger
CN116718044A (en) * 2023-05-23 2023-09-08 马鞍山市博浪热能科技有限公司 Shell-and-tube heat exchanger for heat pump unit
CN116718044B (en) * 2023-05-23 2024-01-26 马鞍山市博浪热能科技有限公司 Shell-and-tube heat exchanger for heat pump unit

Similar Documents

Publication Publication Date Title
JP2007159410A (en) Hydroponic apparatus and hydroponic method
KR102002698B1 (en) Heat Stress Relief System Using Livestock House
KR101898639B1 (en) Water tank structure for cold water supplying device
US11561054B2 (en) Cleaning tubesheets of heat exchangers
CN202403573U (en) Special cooling heat exchanger capable of effectively suppressing contamination of converted mash and fermented mash
TWI454214B (en) Fog cultivation device
JP2009127966A (en) Multi-pipe cooler and using method of multi-pipe cooler
KR910002126B1 (en) Sludge lance wand
CN204757738U (en) Circulative cooling tower
JP2016161148A (en) Spray nozzle and deaerator
CN212585054U (en) Hot water heating system for factory life
CN210874668U (en) Atomizing equipment for calcium carbide furnace flue gas treatment
CN210580391U (en) Nutrient solution constant temperature control device for soilless culture
CN205079653U (en) A graphite heat exchanger for synthesizing first ring azole of phenylate
RU2007119765A (en) HEAT ELECTRIC STATION
RU2002105246A (en) The method of circulating water supply to a power plant with cooling towers and a device for its implementation
CN220720225U (en) Water outlet structure of vacuum box
CN210180250U (en) Environment-friendly cooling tower
KR101850517B1 (en) a center concentration type sea water supplyand cooling system
CN207963620U (en) A kind of closed cooling tower and its spray equipment
JP4970962B2 (en) Evaporative cooling device
SU1616575A2 (en) Fish cooling device
RU2006144928A (en) STEAM GENERATOR
JP2008196815A (en) Evaporative cooling device
JPH0252996A (en) Heat exchanger employing sea water for cooling water