JP2009127572A - Suction tube for hydraulic machine - Google Patents

Suction tube for hydraulic machine Download PDF

Info

Publication number
JP2009127572A
JP2009127572A JP2007305186A JP2007305186A JP2009127572A JP 2009127572 A JP2009127572 A JP 2009127572A JP 2007305186 A JP2007305186 A JP 2007305186A JP 2007305186 A JP2007305186 A JP 2007305186A JP 2009127572 A JP2009127572 A JP 2009127572A
Authority
JP
Japan
Prior art keywords
suction pipe
section
cross
hydraulic machine
peer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007305186A
Other languages
Japanese (ja)
Inventor
Kenji Shintani
賢司 新谷
Satoru Nomoto
悟 野本
Kiyoto Tani
清人 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007305186A priority Critical patent/JP2009127572A/en
Publication of JP2009127572A publication Critical patent/JP2009127572A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a suction tube of a hydraulic machine capable of reducing loss generated in the suction tube by inhibiting formation of horseshoe swirl which may be formed at a pier leading edge. <P>SOLUTION: The suction tube is constructed in such a manner that an expansion rate of the suction tube at a wake flow side of an upstream side end part 4 of the pier 3 is greater than an expansion rate of the suction tube at an upstream side of the upstream side end part 4 of the pier 3. In other words, when a section at the upstream side end part 4 of the pier 3 is represented by S0, channel section area of a section S2 at an upstream side of the section S0 is represented by AS2, channel section area of a section S1 at a position of which distance from the section S2 is R is represented by AS1, channel section area of a section S3 at a downstream side of the section S0 is represented by AS3, and channel section area of a section S4 at a position of which distance from the section S3 is R is represented by AS4, the suction tube is constructed to satisfy an inequality: (AS2-AS1)/R<(AS4-AS3)/R. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はピア(あるいは仕切り板)を有する水力機械の吸出し管に関する。   The present invention relates to a suction pipe for a hydraulic machine having a peer (or partition plate).

水力機械の吸出し管は、水力機械のランナの後流側に設置されており、ランナから流出する旋回を伴う流れを排水口(放水口)へ導いている。この際、吸出し管内部の断面積は、下流に向かうにつれて徐々に増大しており、吸出し管内部の流れを減速し、圧力を上昇させることで、排出する運動エネルギーを低減する役割を担っている。   The suction pipe of the hydraulic machine is installed on the downstream side of the runner of the hydraulic machine, and guides a flow accompanied by swirling out of the runner to a drain outlet. At this time, the cross-sectional area inside the suction pipe gradually increases toward the downstream, and plays a role of reducing the kinetic energy to be discharged by decelerating the flow inside the suction pipe and increasing the pressure. .

水力機械の吸出し管は、使用状況によって地中に埋められる、あるいは水中に設置される場合がある。よって内部と外部の圧力の差により、変形、あるいは破損する可能性がある。このような問題を回避するため、水力機械の吸出し管内部には、ピアと呼ばれる強度部材が設置される。   The suction pipe of the hydraulic machine may be buried in the ground or installed in the water depending on the use situation. Therefore, there is a possibility of deformation or damage due to the difference between the internal pressure and the external pressure. In order to avoid such a problem, a strength member called a peer is installed inside the suction pipe of the hydraulic machine.

ピアは、外部からの力に耐え得るだけの厚みと長さを有しているため、衝突,摩擦,二次流れなどにより損失が生じ、水力機械全体の性能を低下させる。よってピアを設置することによる性能低下を抑制するため、種々の方法が提案されている。例としては特許文献1,特許文献2などがある。しかし、そのほとんどはピアによって仕切られた流路内の流れの不均一性を緩和しようとするものである。   Since the pier has a thickness and a length that can withstand the force from the outside, a loss occurs due to collision, friction, secondary flow, and the like, and the performance of the entire hydraulic machine is degraded. Therefore, various methods have been proposed in order to suppress performance degradation due to the installation of a peer. Examples include Patent Document 1 and Patent Document 2. However, most of them attempt to mitigate the non-uniformity of the flow in the channel partitioned by the peers.

特開平7−54754号公報Japanese Patent Application Laid-Open No. 7-54754 特開平7−158550号公報JP-A-7-158550

吸出し管の内壁近傍の流れのように、徐々に減速しながら壁面に沿って流れる流れは、境界層剥離を起こしやすいことが知られている。また、境界層中に、ピアのように鈍い物体が存在する場合、その物体と壁面の接合部付近においては馬蹄型渦と呼ばれる特徴的な渦が生じる。   It is known that the flow flowing along the wall surface while gradually decelerating like the flow near the inner wall of the suction pipe is likely to cause boundary layer separation. Further, when a dull object such as a peer exists in the boundary layer, a characteristic vortex called a horseshoe vortex is generated in the vicinity of the junction between the object and the wall surface.

ピアを有する吸出し管内部においては、ピア前縁と吸出し管との接合部において馬蹄型渦が形成される。この馬蹄型渦の形成により、ピア前縁部周辺に大規模な境界層剥離が誘発され、著しい損失を引き起こす。よって、ピア前縁における馬蹄型渦の形成と境界層剥離を抑制することは、損失低減のために極めて重要である。   Inside the suction pipe having the pier, a horseshoe vortex is formed at the junction between the leading edge of the peer and the suction pipe. This formation of a horseshoe vortex induces massive boundary layer separation around the front edge of the pier, causing significant loss. Therefore, suppressing the formation of horseshoe-shaped vortices and boundary layer separation at the leading edge of the peer is extremely important for loss reduction.

本発明はこのような事情に鑑みてなされたものであり、ピア前縁において発生し得る、馬蹄型渦の形成を抑制し、吸出し管内部で生じる損失の低減が可能な水力機械の吸出し管を提供することを目的とする。   The present invention has been made in view of such circumstances. A suction pipe for a hydraulic machine capable of suppressing the formation of a horseshoe vortex that can occur at the leading edge of the peer and reducing loss generated inside the suction pipe is provided. The purpose is to provide.

上記目的を達成するため、本発明は、ピアの上流側端部より後流側における吸出し管の拡大割合が、ピアの上流側端部より上流側における拡大割合よりも急になるように吸出し管を構成することを特徴とするものである。   In order to achieve the above object, the present invention provides a suction pipe in which the expansion ratio of the suction pipe on the downstream side from the upstream end of the peer is steeper than the expansion ratio on the upstream side of the upstream end of the peer. It is characterized by comprising.

より具体的には、本発明は、回転自由に支持されたランナの後流側に、かつ放水口の上流側に設置され、かつ内壁の少なくとも一箇所で支持されたピアを有する水力機械の吸出し管において、ピアの上流側端部に接し、吸出し管の中心軸に対して垂直な断面をS0とし、かつ断面S0よりも上流側にある、吸出し管の中心軸に対して垂直な断面S2によって切り取られる流路部分の面積をAS2とし、かつ断面S2とランナ後端部の間に存在し、吸出し管の中心軸に沿って測った断面S2との距離がRである位置において、吸出し管の中心軸に対して垂直な断面S1によって切り取られる流路部分の面積をAS1とし、かつ断面S0よりも下流側にある、吸出し管の中心軸に対して垂直な断面S3によって切り取られる流路部分の面積をAS3とし、かつピアの上流側端部から吸出し管の中心軸に沿って測った距離がピアの下流側端部までの距離のほぼ半分の位置を通り、吸出し管の中心軸に対して垂直な断面をS5とし、かつ断面S3と断面S5の間に存在し、吸出し管の中心軸に沿って測った断面S3との距離がRである位置において、吸出し管の中心軸に対して垂直な断面S4によって切り取られる流路部分の面積をAS4とすると、(AS2−AS1)/R<(AS4−AS3)/Rが成り立つように吸出し管を構成することを特徴とする。   More specifically, the present invention relates to a suction of a hydraulic machine having a pier installed on the downstream side of a runner rotatably supported and on the upstream side of a water outlet and supported at at least one place on the inner wall. In the pipe, the section perpendicular to the central axis of the suction pipe, which is in contact with the upstream end of the pier and perpendicular to the central axis of the suction pipe, is S0 and is upstream of the cross section S0. The area of the flow path portion to be cut out is AS2, and exists between the cross section S2 and the rear end of the runner, and the distance of the cross section S2 measured along the central axis of the suction pipe is R. The area of the flow path part cut by the cross section S1 perpendicular to the central axis is AS1, and the flow path part cut by the cross section S3 perpendicular to the central axis of the suction pipe is downstream of the cross section S0. AS as area And a cross-section perpendicular to the central axis of the suction pipe through the position measured along the central axis of the suction pipe from the upstream end of the peer and approximately half the distance from the downstream end of the peer Is a section S4 that exists between the sections S3 and S5 and is perpendicular to the center axis of the suction pipe at a position where the distance from the section S3 measured along the center axis of the suction pipe is R. Assuming that the area of the flow path part cut out by AS4 is AS4, the suction pipe is configured so that (AS2-AS1) / R <(AS4-AS3) / R is satisfied.

また、本発明は、ピアの上流側端部よりも上流側に位置する、吸出し管の中心軸に対して垂直な断面によって切り取られる流路部分の面積が、どの位置においてもほぼ一定となるようにし、ピアの上流側端部付近から下流に向かうにつれて徐々に流路断面積が増大するように吸出し管を構成することを特徴とする。   Further, according to the present invention, the area of the flow channel portion, which is located upstream of the upstream end portion of the pier and is cut by a cross section perpendicular to the central axis of the suction pipe, is substantially constant at any position. And the suction pipe is configured such that the cross-sectional area of the flow path gradually increases from the vicinity of the upstream end of the pier toward the downstream.

本発明によれば、ピアの上流側端部よりも上流側においては、吸出し管内部流れの減速が抑制されるため、吸出し管内壁における境界層の剥離が起こりにくくなる。その結果、ピアの上流側端部よりも上流側における境界層の厚さが薄くなり、ピアと吸出し管との接合部における馬蹄型渦の形成が抑制され、水力機械の吸出し管内における損失を低減でき、水車効率やポンプ効率等の水力性能を向上させることができる。   According to the present invention, on the upstream side of the upstream end portion of the pier, the deceleration of the internal flow of the suction pipe is suppressed, so that the boundary layer on the inner wall of the suction pipe is unlikely to peel off. As a result, the thickness of the boundary layer on the upstream side of the upstream end of the pier becomes thinner, the formation of horseshoe vortices at the joint between the pier and the suction pipe is suppressed, and the loss in the suction pipe of the hydraulic machine is reduced. It is possible to improve hydraulic performance such as turbine efficiency and pump efficiency.

以下、本発明に係る水力機械の吸出し管の実施例について、図面を参照して説明する。   Hereinafter, embodiments of a suction pipe of a hydraulic machine according to the present invention will be described with reference to the drawings.

[第1の実施の形態(実施例1)]
図1及び図2は本発明が適用される水力プラント(水力機械のランナ及び吸出し管など)を示す(ランナ以外の水力機械の構成要素(発電機等)の図示は省略)。図1及び図2では、水力機械の一例として横軸カプラン水車(バルブ水車又はチューブラ水車)に適用した例を示しているがこれに限定されるものではない。図1は、本発明に係る水力機械のランナ,吸出し管,ピア、および排水口を流れに垂直な方向から見た上面図であり、図2は、本発明に係る水力機械のランナ,吸出し管,ピア、および排水口を流れに垂直な方向から見た側面図である。
[First Embodiment (Example 1)]
1 and 2 show a hydraulic plant (such as a runner and a suction pipe of a hydraulic machine) to which the present invention is applied (illustration of components (such as a generator) of a hydraulic machine other than the runner is omitted). Although FIG.1 and FIG.2 has shown the example applied to the horizontal axis Kaplan turbine (valve turbine or tubular turbine) as an example of a hydraulic machine, it is not limited to this. FIG. 1 is a top view of a runner, a suction pipe, a peer, and a drain outlet of a hydraulic machine according to the present invention as seen from a direction perpendicular to the flow, and FIG. 2 is a runner, a suction pipe of the hydraulic machine according to the present invention. , Pier, and drain outlet viewed from a direction perpendicular to the flow.

水力機械の吸出し管2は、図1及び図2に示すように、回転自由に支持されたランナ1の後流側に設置されており、ランナ1から流出する旋回を伴う流れ20を排水口5へ導いている。この際、吸出し管内部の断面積は、下流に向かうにつれて徐々に増大しており、吸出し管内部の流れを減速し、圧力を上昇させることで、排出する運動エネルギーを低減する役割を担っている。また、図3及び図5で詳述するように、吸出し管2は、ピア3の上流側端部4の位置から後流において、流路断面積の拡大割合が大きくなるように構成されている。水力機械の吸出し管2の内部には、強度部材であるピアが設置される。ピア3は、吸出し管の内壁の少なくとも一箇所で支持されている(本実施例では上下2箇所で支持されている。)。   As shown in FIG. 1 and FIG. 2, the suction pipe 2 of the hydraulic machine is installed on the downstream side of the runner 1 supported so as to be freely rotatable, and a flow 20 accompanied by swirling out of the runner 1 is discharged to the drain port 5. Leading to. At this time, the cross-sectional area inside the suction pipe gradually increases toward the downstream, and plays a role of reducing the kinetic energy to be discharged by decelerating the flow inside the suction pipe and increasing the pressure. . Further, as will be described in detail with reference to FIGS. 3 and 5, the suction pipe 2 is configured such that the enlargement ratio of the flow path cross-sectional area increases in the wake from the position of the upstream end 4 of the pier 3. . Inside the suction pipe 2 of the hydraulic machine, a pier that is a strength member is installed. The pier 3 is supported at at least one location on the inner wall of the suction pipe (in this embodiment, it is supported at two locations at the top and bottom).

次に、図3から図6を参照して本実施例を詳細に説明する。本実施例では、ピアの上流側端部4に接する断面S0より上流側と下流側で流路断面積の増大する割合が異なっており、下流側の方が急拡大となっている。   Next, this embodiment will be described in detail with reference to FIGS. In the present embodiment, the rate of increase of the channel cross-sectional area is different between the upstream side and the downstream side from the cross-section S0 in contact with the upstream end 4 of the peer, and the downstream side is rapidly expanding.

断面S0よりも上流側において、互いに距離Rだけ離れている吸出し管の中心軸に対して垂直な流路断面積AS1,AS2(図4に断面形状を示す。但し、断面S1と断面S2の大きさは反映されておらず、両者は相似の関係にある。以下の流路断面を示す図においても同じように断面形状のみを示す。)、および断面S0よりも下流側において、互いに距離Rだけ離れている吸出し管の中心軸に対して垂直な流路断面積AS3,AS4(図6に断面S3と断面S4の断面形状を示す。)を用いて、本実施例の吸出し管の構成を表すと、(AS2−AS1)/R<(AS4−AS3)/Rとなっている。このとき、断面S3,断面S4は、ピアの上流側端部4から吸出し管2の中心軸に沿って測った距離が下流側端部までの距離のほぼ半分の位置を通り吸出し管の中心軸に対して垂直な断面S5よりも上流側に存在する。   On the upstream side of the cross-section S0, the flow-path cross-sectional areas AS1 and AS2 (the cross-sectional shapes are shown in FIG. In the drawings showing the channel cross sections, only the cross-sectional shape is shown in the same manner.), And the distance R from each other on the downstream side of the cross-section S0. The configuration of the suction pipe of the present embodiment is represented by using flow path cross-sectional areas AS3 and AS4 (the cross-sectional shapes of the cross section S3 and the cross section S4 are shown in FIG. 6) perpendicular to the central axis of the suction pipes that are separated from each other. (AS2-AS1) / R <(AS4-AS3) / R. At this time, the cross-section S3 and the cross-section S4 pass through the position measured along the central axis of the suction pipe 2 from the upstream end 4 of the pier, and the central axis of the suction pipe passes through approximately half the distance from the downstream end. Exists on the upstream side of the cross section S5 perpendicular to.

図7は本実施例と、従来の形態とで、吸出し管内部の断面積を比較したものである。ここで横軸は吸出し管中心軸に沿う位置である。これより、ピアの上流側端部の位置において流路断面積の拡大割合が異なっている、即ち、ピアの上流側端部の後流側における拡大割合が、ピアの上流側端部の上流側における拡大割合よりも大きくなっていることが確認できる。ただし、多くの場合、ピア3はコンクリートにより製作され、よって、ピアの上流側端部は加工上の制約から鋭く尖った形状にすることができない。そのため、本実施例では、ピアの上流側端部の近傍(加工状の制約との関連において理解される範囲)を除いた部分を対象として評価している。   FIG. 7 is a comparison of the cross-sectional area inside the suction pipe between this embodiment and the conventional configuration. Here, the horizontal axis is the position along the central axis of the suction pipe. Thus, the enlargement ratio of the channel cross-sectional area is different at the position of the upstream end of the peer, that is, the enlargement ratio on the downstream side of the upstream end of the peer is upstream of the upstream end of the peer. It can be confirmed that the ratio is larger than the enlargement ratio. However, in many cases, the pier 3 is made of concrete, and therefore the upstream end of the pier cannot be sharply pointed due to processing restrictions. For this reason, in this embodiment, the evaluation is made with respect to the portion excluding the vicinity of the upstream end portion of the peer (the range understood in relation to the processing constraints).

図8は図3に示す実施例を側方からの視点で見たときのピアの上流側端部4と吸出し管2の接合部付近の拡大図である。ピアの上流側端部4と吸出し管2の接合部付近においては、馬蹄型渦10と呼ばれる渦構造が発生する。この馬蹄型渦10は境界層の剥離を促進し、境界層内に強い逆流11を伴う二次流れを引き起こす。図3に示す実施例の場合、ピアの上流側端部4よりも上流側においては、吸出し管内部流れの減速が抑制されるため、吸出し管内壁における境界層の剥離が起こりにくくなる。その結果、ピアの上流側端部4よりも上流側における境界層の厚さが薄くなり、ピア3と吸出し管2との接合部における馬蹄型渦10の形成が抑制される。また、従来の形態では、形成された馬蹄型渦10の影響によりさらに境界層の剥離が促進されるが、本発明の実施例では、これを抑制する効果もある。以上のことより、ピアの上流側端部4付近における二次流れ損失が低減される。   FIG. 8 is an enlarged view of the vicinity of the joint between the upstream end 4 of the peer and the suction pipe 2 when the embodiment shown in FIG. 3 is viewed from the side. In the vicinity of the junction between the upstream end 4 of the pier and the suction pipe 2, a vortex structure called a horseshoe vortex 10 is generated. The horseshoe vortex 10 promotes separation of the boundary layer and causes a secondary flow with a strong backflow 11 in the boundary layer. In the case of the embodiment shown in FIG. 3, on the upstream side of the upstream end portion 4 of the pier, the deceleration of the internal flow of the suction pipe is suppressed, so that the boundary layer is hardly separated on the inner wall of the suction pipe. As a result, the thickness of the boundary layer on the upstream side of the upstream end portion 4 of the pier becomes thinner, and the formation of the horseshoe vortex 10 at the junction between the pier 3 and the suction pipe 2 is suppressed. Moreover, in the conventional form, peeling of the boundary layer is further promoted by the influence of the formed horseshoe vortex 10, but the embodiment of the present invention also has an effect of suppressing this. From the above, the secondary flow loss in the vicinity of the upstream end 4 of the peer is reduced.

図9は汎用粘性乱流解析コードを用いて、従来の形態と、本発明の実施例とで吸出し管内部の全圧損失を算出し、比較したものである。横軸は流れ方向の座標を示し、縦軸が全圧損失を表している。これより、本発明の実施例のように吸出し管を構成することにより、ピアの上流側端部4付近における損失の増大を抑制することができることが分かる。   FIG. 9 shows a comparison of the total pressure loss inside the suction pipe using the general-purpose viscous turbulent flow analysis code in the conventional configuration and the embodiment of the present invention. The horizontal axis indicates the coordinate in the flow direction, and the vertical axis indicates the total pressure loss. From this, it can be seen that the increase in the loss in the vicinity of the upstream end 4 of the peer can be suppressed by configuring the suction pipe as in the embodiment of the present invention.

図10は、横軸にピアの上流側端部より上流側の流路断面積拡大量と下流側の流路断面積拡大量の比(AS2−AS1)/(AS4−AS3)(流路断面積の拡大割合(AS2−AS1)/Rと(AS4−AS3)/Rの比)を、縦軸に吸出し管における全圧損失をとった図である。これより、(AS2−AS1)/(AS4−AS3)が小さいほど損失が小さくなっており、(AS2−AS1)/(AS4−AS3)を1より小さくすることにより、損失を大幅に小さくできる。また、評価した3種類の条件の中では(AS2−AS1)/(AS4−AS3)〜0.7の時に、最も損失が小さくなることが確認できる。   FIG. 10 shows the ratio (AS2-AS1) / (AS4-AS3) of the channel cross-sectional area expansion amount upstream of the upstream end of the pier and the downstream channel cross-sectional area expansion amount on the horizontal axis. The area expansion ratio (AS2-AS1) / R and the ratio of (AS4-AS3) / R) is a graph in which the vertical axis represents the total pressure loss in the suction pipe. Thus, the smaller the (AS2-AS1) / (AS4-AS3), the smaller the loss. By making (AS2-AS1) / (AS4-AS3) smaller than 1, the loss can be greatly reduced. In addition, it can be confirmed that the loss is the smallest among (AS2-AS1) / (AS4-AS3) to 0.7 among the three kinds of conditions evaluated.

[第2の実施の形態(実施例2)]
本発明に係る他の実施例を図11に示す。上述の本発明の実施例1では、ピアの上流側端部4から排水口5までの間、吸出し管は単調に拡大を続けている。しかし、吸出し管内部の流れは拡大されるに従って徐々に流速が小さくなり、境界層剥離や二次流れを起こしやすくなる。
[Second Embodiment (Example 2)]
Another embodiment according to the present invention is shown in FIG. In the first embodiment of the present invention described above, the suction pipe continues to expand monotonically from the upstream end 4 of the pier to the drain 5. However, as the flow inside the suction pipe is enlarged, the flow velocity gradually decreases, and boundary layer separation and secondary flow are likely to occur.

そこで本実施例では、図11に示すように、ピアの上流側端部4付近においていったん急拡大した後、さらに下流側の位置S10において、拡大の割合を抑制する。このように構成することにより、ピアの上流側端部4より下流側における境界層剥離や逆流を抑制することができる。この場合、ランナの後流側の端部からS10断面までの範囲において、実施例1に記載の形態となっていなくてはならない。あるいは、S10断面をS5断面とみなした場合の、(AS2−AS1)/R<(AS4−AS3)/Rの条件を満たしていなければならない。このとき、拡大の割合をピアの上流側端部からS10断面までの範囲において急拡大とすることができるので、(AS2−AS1)/(AS4−AS3)の比を小さくすることができ、損失を小さくできる。   Therefore, in the present embodiment, as shown in FIG. 11, after suddenly expanding in the vicinity of the upstream end portion 4 of the peer, the expansion ratio is further suppressed at the downstream position S10. By comprising in this way, boundary layer peeling and backflow in the downstream from the upstream edge part 4 of a peer can be suppressed. In this case, the form described in the first embodiment must be provided in the range from the end portion on the downstream side of the runner to the S10 cross section. Alternatively, the condition of (AS2-AS1) / R <(AS4-AS3) / R when the S10 cross section is regarded as the S5 cross section must be satisfied. At this time, since the expansion ratio can be abruptly expanded in the range from the upstream end of the peer to the S10 cross section, the ratio of (AS2-AS1) / (AS4-AS3) can be reduced, and the loss Can be reduced.

あるいは、図12のように、ピア上流側端部4よりも下流側に複数の断面S11,S12,S13を取り、断面S0から断面S11の区間において、断面積の拡大が最も急になるように構成しても良い。この場合、ランナ後端からS11断面までの範囲において、実施例1に記載の形態となっていなくてはならない。あるいは、S11断面をS5断面とみなした場合の、(AS2−AS1)/R<(AS4−AS3)/Rの条件を満たしていなければならない。このとき、拡大の割合をピアの上流側端部からS11断面までの範囲において急拡大とすることができるので、(AS2−AS1)/(AS4−AS3)の比を小さくすることができ、損失を小さくできる。   Alternatively, as shown in FIG. 12, a plurality of cross sections S11, S12, and S13 are taken downstream from the upstream end portion 4 of the peer, and the cross-sectional area is expanded most rapidly in the section from the cross section S0 to the cross section S11. It may be configured. In this case, in the range from the rear end of the runner to the S11 cross section, the form described in Example 1 must be used. Alternatively, the condition of (AS2-AS1) / R <(AS4-AS3) / R when the S11 cross section is regarded as the S5 cross section must be satisfied. At this time, since the expansion ratio can be abruptly expanded in the range from the upstream end of the peer to the S11 cross section, the ratio of (AS2-AS1) / (AS4-AS3) can be reduced, and the loss Can be reduced.

あるいは、図13のように、吸出し管を滑らかな自由曲面で形成しても良い。この場合、実施例1に記載の条件を満たしていなくてはならない。あるいは(AS2−AS1)/R<(AS4−AS3)/Rの条件を満たす、吸出し管の中心軸に垂直な断面S1,S2,S3,S4の組み合わせが、少なくとも1つ存在しなくてはならない。   Alternatively, as shown in FIG. 13, the suction pipe may be formed with a smooth free-form surface. In this case, the conditions described in Example 1 must be satisfied. Alternatively, there must be at least one combination of the sections S1, S2, S3, S4 perpendicular to the central axis of the suction pipe that satisfies the condition (AS2-AS1) / R <(AS4-AS3) / R. .

[第3の実施の形態(実施例3)]
本発明に係る他の実施例を図14に示す。本実施例では、ピアの上流側端部4と接する位置より上流側での断面積が、ほぼ一定となるように形成されている。また、ピアの上流側端部付近から下流に向かうにつれて徐々に流路断面積が増大するように吸出し管が構成されている。このようにピアの上流側端部4よりも上流側において、吸出し管の断面積がほぼ一定である場合、ピアの上流側端部4よりも上流側では流速がほとんど低下しない。このため、ピアの上流側端部4と吸出し管2の接合部付近に形成される馬蹄型渦が効果的に抑制され、この位置における二次流れ損失の低減に効果がある。なお、流路断面積が0≦(AS2−AS1)/R≦0.2の条件を満たせば、馬蹄型渦の形成の抑制に効果がある。
[Third Embodiment (Example 3)]
Another embodiment according to the present invention is shown in FIG. In this embodiment, the cross-sectional area on the upstream side from the position in contact with the upstream end 4 of the peer is formed to be substantially constant. Further, the suction pipe is configured so that the cross-sectional area of the flow path gradually increases from the vicinity of the upstream end of the pier toward the downstream. As described above, when the cross-sectional area of the suction pipe is substantially constant on the upstream side of the upstream end portion 4 of the peer, the flow velocity hardly decreases on the upstream side of the upstream end portion 4 of the peer. For this reason, the horseshoe vortex formed in the vicinity of the junction between the upstream end 4 of the pier and the suction pipe 2 is effectively suppressed, and the secondary flow loss at this position is effectively reduced. In addition, if the flow path cross-sectional area satisfies the condition of 0 ≦ (AS2−AS1) /R≦0.2, it is effective in suppressing the formation of horseshoe vortex.

また、ピアの上流側端部付近から下流に向かうにつれて徐々に流路断面積が増大するように構成する場合、上述の実施例2のように、拡大の割合を変えるようにしても良い。   Further, when the flow passage cross-sectional area is configured to gradually increase from the vicinity of the upstream end portion of the pier toward the downstream, the enlargement ratio may be changed as in the second embodiment.

[第4の実施の形態(実施例4)]
本発明は流路断面積の分布を規定するものであり、その形状については特に制約を設けていない。よって、断面積の分布が実施例1〜3の何れかの形態と同様になっていれば、各断面の形状が縦長、あるいは横長に形成されていても良い。本実施例では、図15の図面上の上下方向を縦方向とした場合、各断面S0,S1,S2,S3,S4は、図17〜図19のように縦長に形成されている。また、図15と図16から分かるように、本実施例では、ピア3の上流側端部4の上流側では、図15の上面図から見た方向のみ拡大し、ピア3の上流側端部4の後流側では、図15の上面図から見た方向及び図16の側面図から見た方向の両方向で拡大することによって、流路断面積の拡大割合を、ピア3の上流側端部4の後流側で大きくするように吸出し管を構成している。
[Fourth Embodiment (Example 4)]
The present invention regulates the distribution of the channel cross-sectional area, and there is no particular restriction on the shape thereof. Therefore, as long as the distribution of the cross-sectional area is the same as that in any one of the first to third embodiments, the shape of each cross-section may be formed vertically or horizontally. In the present embodiment, when the vertical direction on the drawing of FIG. 15 is the vertical direction, the cross sections S0, S1, S2, S3, and S4 are formed in a vertically long shape as shown in FIGS. As can be seen from FIGS. 15 and 16, in this embodiment, on the upstream side of the upstream end portion 4 of the peer 3, only the direction seen from the top view of FIG. 4 on the upstream side of the pier 3 by increasing the expansion ratio of the channel cross-sectional area by expanding in both the direction seen from the top view of FIG. 15 and the direction seen from the side view of FIG. The suction pipe is configured to be large on the wake side of 4.

本発明に係る水力機械のランナ,吸出し管,ピア、および排水口を流れに垂直な方向から見た上面図。The top view which looked at the runner, the suction pipe, the peer, and the drain outlet of the hydraulic machine which concerns on this invention from the direction perpendicular | vertical to a flow. 本発明に係る水力機械のランナ,吸出し管,ピア、および排水口を流れに垂直な方向から見た側面図。The side view which looked at the runner, the suction pipe, the peer, and the drain outlet of the hydraulic machine which concerns on this invention from the direction perpendicular | vertical to a flow. 本発明に係る水力機械の第1の実施の形態について、吸出し管,ピア、および排水口を流れに垂直な方向から見た上面図。The top view which looked at the suction pipe, the peer, and the drain outlet from the direction perpendicular | vertical to a flow about 1st Embodiment of the hydraulic machine which concerns on this invention. 図3に示す吸出し管のS1,S2における断面図。Sectional drawing in S1, S2 of the suction pipe shown in FIG. 図3に示す吸出し管のS0における断面図。Sectional drawing in S0 of the suction pipe shown in FIG. 図3に示す吸出し管のS3,S4における断面図。Sectional drawing in S3 and S4 of the suction pipe shown in FIG. 従来の形態と、本発明の第1の実施の形態について、吸出し管内部の断面積と流れ方向座標の関係を比較した図。The figure which compared the relationship between the cross-sectional area inside a suction pipe, and a flow direction coordinate about the conventional form and 1st Embodiment of this invention. 本発明に係る水力機械の第1の実施の形態について、ピアの上流側端部付近を拡大した側面図。The side view which expanded the upstream end part vicinity of the peer about 1st Embodiment of the hydraulic machine which concerns on this invention. 従来の形態と、本発明の第1の実施の形態について、粘性乱流解析コードを用いて吸出し管内の全圧損失を算出し、比較した図。The figure which calculated and compared the total pressure loss in a suction pipe using the viscous turbulent flow analysis code | cord | chord about the conventional form and the 1st Embodiment of this invention. ピアの上流側の端部よりも上流側での流路断面積増大量と下流側での流路断面積増大量の比に対する吸出し管における損失を表す図。The figure showing the loss in a suction pipe with respect to the ratio of the flow-path cross-sectional area increase amount in an upstream from the edge part of the upstream of a pier, and the flow-path cross-sectional area increase in a downstream. 本発明に係る水力機械の第2の実施の形態について、急拡大を緩和する断面を1箇所とした場合の一例を表す図。The figure showing an example at the time of making the cross section which relieves rapid expansion into one place about 2nd Embodiment of the hydraulic machine which concerns on this invention. 本発明に係る水力機械の第2の実施の形態について、急拡大を緩和する断面を2つ以上とした場合の一例を表す図。The figure showing an example at the time of making 2 or more the cross section which relieves rapid expansion about 2nd Embodiment of the hydraulic machine which concerns on this invention. 本発明に係る水力機械の第2の実施の形態を、自由曲面を用いて形成した場合の一例を表す図。The figure showing an example at the time of forming 2nd Embodiment of the hydraulic machine which concerns on this invention using a free-form surface. 本発明に係る水力機械の第3の実施の形態について、吸出し管,ピア、および排水口を流れに垂直な方向から見た上面図。The top view which looked at the suction pipe, the peer, and the drain outlet from the direction perpendicular | vertical to a flow about 3rd Embodiment of the hydraulic machine which concerns on this invention. 本発明に係る水力機械の第4の実施の形態について、吸出し管,ピア、および排水口を流れに垂直な方向から見た上面図。The top view which looked at the suction pipe, the peer, and the drain outlet from the direction perpendicular | vertical to a flow about 4th Embodiment of the hydraulic machine which concerns on this invention. 本発明に係る水力機械の第4の実施の形態について、吸出し管,ピア、および排水口を流れに垂直な方向から見た側面図。The side view which looked at the suction pipe, the peer, and the drain outlet from the direction perpendicular | vertical to a flow about 4th Embodiment of the hydraulic machine which concerns on this invention. 図15に示す吸出し管のS1,S2における断面図。Sectional drawing in S1, S2 of the suction pipe shown in FIG. 図15に示す吸出し管のS0における断面図。Sectional drawing in S0 of the suction pipe | tube shown in FIG. 図15に示す吸出し管のS3,S4における断面図。Sectional drawing in S3 and S4 of the suction pipe shown in FIG.

符号の説明Explanation of symbols

1 ランナ
2 吸出し管
3 ピア
4 ピアの上流側端部
5 排水口
10 馬蹄型渦
11 逆流
20 流れ
1 runner 2 suction pipe 3 pier 4 upstream end 5 of pier 5 drain port 10 horseshoe vortex 11 backflow 20 flow

Claims (6)

水力機械のランナの後流側で、かつ排水口の上流側に設置された水力機械の吸出し管において、
前記吸出し管の内壁の少なくとも一箇所で支持されたピアを有し、
前記ピアの上流側端部より後流側における吸出し管の拡大割合が、前記ピアの上流側端部より上流側における吸出し管の拡大割合よりも急であることを特徴とする水力機械の吸出し管。
In the suction pipe of the hydraulic machine installed on the downstream side of the runner of the hydraulic machine and upstream of the drain,
Having a peer supported at at least one location on the inner wall of the suction pipe;
The suction pipe of a hydraulic machine, characterized in that the expansion ratio of the suction pipe on the downstream side from the upstream end of the peer is steeper than the expansion ratio of the suction pipe on the upstream side of the upstream end of the peer. .
回転自由に支持されたランナの後流側で、かつ排水口の上流側に設置され、かつ内壁の少なくとも一箇所で支持されたピアを有する水力機械の吸出し管において、
前記ピアの上流側端部の位置で、前記吸出し管の中心軸に対して垂直な断面をS0とし、
前記断面S0の位置よりも上流側の位置で、前記吸出し管の中心軸に対して垂直な断面S2によって切り取られる流路部分の面積をAS2とし、
前記断面S2の位置と前記ランナの後端部の間の、前記吸出し管の中心軸に沿って測った前記断面S2から距離がRである位置で、前記吸出し管の中心軸に対して垂直な断面S1によって切り取られる流路部分の面積をAS1とし、
前記断面S0の位置よりも下流側の位置で、前記吸出し管の中心軸に対して垂直な断面S3によって切り取られる流路部分の面積をAS3とし、
前記ピアの上流側端部から前記吸出し管の中心軸に沿って測った距離が前記ピアの下流側端部までの距離のほぼ半分の位置を通り、前記吸出し管の中心軸に対して垂直な断面をS5とし、
かつ前記断面S3と前記断面S5の間の、前記吸出し管の中心軸に沿って測った前記断面S3からの距離がRである位置で、前記吸出し管の中心軸に対して垂直な断面S4によって切り取られる流路部分の面積をAS4とすると、
(AS2−AS1)/R<(AS4−AS3)/Rが成り立つことを特徴とする水力機械の吸出し管。
In a suction pipe of a hydraulic machine having a pier installed on the downstream side of a runner supported for rotation and upstream of a drain outlet and supported by at least one place on the inner wall,
S0 is a cross section perpendicular to the central axis of the suction pipe at the position of the upstream end of the peer,
AS2 is an area of a flow path portion cut by a cross section S2 perpendicular to the central axis of the suction pipe at a position upstream of the position of the cross section S0.
The position between the position of the cross section S2 and the rear end of the runner is a distance R from the cross section S2 measured along the central axis of the suction pipe, and is perpendicular to the central axis of the suction pipe. Let AS1 be the area of the channel portion cut by the cross section S1,
AS3 is an area of a flow path portion cut by a cross section S3 perpendicular to the central axis of the suction pipe at a position downstream of the position of the cross section S0,
The distance measured along the central axis of the suction pipe from the upstream end of the peer passes through a position approximately half the distance from the downstream end of the peer and is perpendicular to the central axis of the suction pipe. The cross section is S5,
And, at a position where the distance from the cross section S3 measured along the central axis of the suction pipe between the cross section S3 and the cross section S5 is R, the cross section S4 is perpendicular to the central axis of the suction pipe. If the area of the channel part to be cut is AS4,
A suction pipe for a hydraulic machine, wherein (AS2-AS1) / R <(AS4-AS3) / R is established.
水力機械のランナの後流側で、かつ排水口の上流側に設置された水力機械の吸出し管において、
前記吸出し管の内壁の少なくとも一箇所で支持されたピアを有し、
前記吸出し管の中心軸に対して垂直な断面によって切り取られる流路部分の面積が、前記ピアの上流側端部よりも上流側のどの位置においてもほぼ一定となるように前記吸出し管を構成し、
前記ピアの上流側端部付近から後流に向かうにつれて流路断面積が増大するように前記吸出し管を構成したことを特徴とする水力機械の吸出し管。
In the suction pipe of the hydraulic machine installed on the downstream side of the runner of the hydraulic machine and upstream of the drain,
Having a peer supported at at least one location on the inner wall of the suction pipe;
The suction pipe is configured such that the area of the flow path portion cut by a cross section perpendicular to the central axis of the suction pipe is substantially constant at any position upstream from the upstream end of the peer. ,
A suction pipe for a hydraulic machine, wherein the suction pipe is configured such that a cross-sectional area of a flow path increases from the vicinity of an upstream end portion of the pier toward a wake.
水力機械のランナの後流側で、かつ排水口の上流側に設置された水力機械の吸出し管において、
前記吸出し管の内壁の少なくとも一箇所で支持されたピアを有し、
前記ピアの上流側端部の位置で、前記吸出し管の中心軸に対して垂直な断面をS0とし、
前記断面S0の位置よりも上流側の位置で、前記吸出し管の中心軸に対して垂直な断面S2によって切り取られる流路部分の面積をAS2とし、
かつ前記断面S2の位置と前記ランナの後端部の間の、前記吸出し管の中心軸に沿って測った前記断面S2から距離がRである位置で、前記吸出し管の中心軸に対して垂直な断面S1によって切り取られる流路部分の面積をAS1としたとき、
0≦(AS2−AS1)/R≦0.2
が成り立つように前記吸出し管を構成し、
前記ピアの上流側端部付近から後流に向かうにつれて流路断面積が増大するように前記吸出し管を構成したことを特徴とする水力機械の吸出し管。
In the suction pipe of the hydraulic machine installed on the downstream side of the runner of the hydraulic machine and upstream of the drain,
Having a peer supported at at least one location on the inner wall of the suction pipe;
S0 is a cross section perpendicular to the central axis of the suction pipe at the position of the upstream end of the peer,
AS2 is an area of a flow path portion cut by a cross section S2 perpendicular to the central axis of the suction pipe at a position upstream of the position of the cross section S0.
In addition, the distance between the position of the cross section S2 and the rear end portion of the runner is R from the cross section S2 measured along the central axis of the suction pipe, and is perpendicular to the central axis of the suction pipe. When the area of the flow path portion cut out by a simple cross section S1 is AS1,
0 ≦ (AS2-AS1) /R≦0.2
The suction pipe is configured so that
A suction pipe for a hydraulic machine, wherein the suction pipe is configured such that a cross-sectional area of a flow path increases from the vicinity of an upstream end portion of the pier toward a wake.
請求項1から4の何れかにおいて、前記ピアの上流側端部より後流の吸出し管の拡大割合が、下流側に行くに従って、拡大の割合が小さくなるように、複数段階に拡大の割合を変えたことを特徴とする水力機械の吸出し管。   5. The expansion ratio according to claim 1, wherein the expansion ratio of the suction pipe downstream from the upstream end of the peer is increased in a plurality of stages so that the expansion ratio decreases toward the downstream side. A hydraulic machine suction pipe characterized by a change. 回転自由に支持されたランナを有する水力機械と、請求項1から4の何れかに記載の吸出し管と、前記吸出し管に接続される排水口とを有する水力プラント。   A hydraulic power plant having a hydraulic machine having a runner supported so as to freely rotate, a suction pipe according to any one of claims 1 to 4, and a drain port connected to the suction pipe.
JP2007305186A 2007-11-27 2007-11-27 Suction tube for hydraulic machine Pending JP2009127572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305186A JP2009127572A (en) 2007-11-27 2007-11-27 Suction tube for hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305186A JP2009127572A (en) 2007-11-27 2007-11-27 Suction tube for hydraulic machine

Publications (1)

Publication Number Publication Date
JP2009127572A true JP2009127572A (en) 2009-06-11

Family

ID=40818742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305186A Pending JP2009127572A (en) 2007-11-27 2007-11-27 Suction tube for hydraulic machine

Country Status (1)

Country Link
JP (1) JP2009127572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105927458A (en) * 2016-05-31 2016-09-07 河海大学 Ultralow-water head backflow type bell-shaped water turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105927458A (en) * 2016-05-31 2016-09-07 河海大学 Ultralow-water head backflow type bell-shaped water turbine

Similar Documents

Publication Publication Date Title
JP5495700B2 (en) Centrifugal compressor impeller
JP2009085185A (en) Axial flow turbine and axial flow turbine stage structure
JP2003506629A (en) Partial splitter blades for reaction turbines
JP2009127572A (en) Suction tube for hydraulic machine
JP4565008B2 (en) Hydraulic machine suction pipe
JP2005140078A (en) Hydraulic machine
JP2008088905A (en) Vertical shaft pump
JP6605041B2 (en) Bend pipe and fluid machine including the same
JP3899829B2 (en) pump
JP2007113554A (en) Guide vane of hydraulic machine, and hydraulic machine having the guide vane
JP2007051551A (en) Double suction volute pump
US6629819B1 (en) Steam turbine low pressure inlet flow conditioner and related method
JP4886095B1 (en) Water cone body with built-in rectifier
JP2005315216A (en) Axial flow water turbine
US7399155B2 (en) Fluid flow guide element and fluid flow apparatus equipped therewith
JP2021099087A (en) Draft tube of water turbine
JP2006291865A (en) Hydraulic machine runner and hydraulic machine
JP2005320931A (en) Suction cover structure of horizontal shaft pump
JP4764244B2 (en) Bending suction pipe of hydraulic machine
JP6364177B2 (en) Vertical shaft pump
WO2004048708A1 (en) Drain socket and flush toilet
JP5198614B2 (en) Bending suction pipe of hydraulic machine
JP3569616B2 (en) Vertical pump suction channel
JP2010025001A (en) Multistage diagonal flow pump
JP2004044409A (en) Water turbine and runner therefor