JP2009126278A - Internal state detection device of on-board secondary battery - Google Patents

Internal state detection device of on-board secondary battery Download PDF

Info

Publication number
JP2009126278A
JP2009126278A JP2007301708A JP2007301708A JP2009126278A JP 2009126278 A JP2009126278 A JP 2009126278A JP 2007301708 A JP2007301708 A JP 2007301708A JP 2007301708 A JP2007301708 A JP 2007301708A JP 2009126278 A JP2009126278 A JP 2009126278A
Authority
JP
Japan
Prior art keywords
charging current
function
charging
value
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007301708A
Other languages
Japanese (ja)
Other versions
JP4564999B2 (en
Inventor
Satoru Mizuno
覚 水野
Hiroaki Ono
博明 小野
Masayuki Tonomura
征幸 外村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2007301708A priority Critical patent/JP4564999B2/en
Priority to DE102008058292.1A priority patent/DE102008058292B4/en
Priority to US12/275,653 priority patent/US7990111B2/en
Priority to CN2008101911603A priority patent/CN101447688B/en
Publication of JP2009126278A publication Critical patent/JP2009126278A/en
Application granted granted Critical
Publication of JP4564999B2 publication Critical patent/JP4564999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate a charge current characteristic which appropriately includes relaxation phenomena of a charge current dropping characteristic at the end stage of constant voltage charging. <P>SOLUTION: The constant voltage charging is performed to a battery so as to obtain multiple pieces of current data at predetermined intervals. These pieces of the current data are used to obtain a charge current function being its approximate expression. The charge current function is compensated with, for example, a correction coefficient obtained by a map. Thus, a correction charge current function with few errors is obtained (S7). The correction charge current function is used to favorably estimate the internal state of the battery 101 (S8, S9). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、車載二次電池の蓄電状態などの内部状態の推定における充電効率の影響を低減可能な車載二次電池の内部状態検出技術に関する。   The present invention relates to an in-vehicle secondary battery internal state detection technique capable of reducing the influence of charging efficiency in estimating an internal state such as a storage state of the in-vehicle secondary battery.

車載二次電池の大容量化と車載電気負荷の大型化が進行しており、それに伴い過充電や過放電の防止のため車載二次電池の容量などの内部状態の検出精度の向上がますます重要となっている。   Increasing the capacity of in-vehicle secondary batteries and increasing the size of in-vehicle electric loads will improve the detection accuracy of internal conditions such as the capacity of in-vehicle secondary batteries to prevent overcharge and overdischarge. It is important.

特許文献1は、定電圧充電時における直前の充電電流の変化波形から類推した充電電流変化特性(以下、充電電流近似関数とも呼ぶ)に基づいて、充電電流が所定の最終値となる時点(以下、推定時点とも呼ぶ)を推定し、この最終値に達するまでの充電容量(Ah)や充電必要時間を算出する技術を開示している。
特許第3249788号
Patent Document 1 discloses a point in time when a charging current reaches a predetermined final value (hereinafter referred to as a charging current approximation function) based on a charging current variation characteristic (hereinafter also referred to as a charging current approximation function) estimated from a charging current variation waveform immediately before constant voltage charging. , Which is also referred to as an estimation time point), and a technology for calculating a charge capacity (Ah) and a required charge time until the final value is reached is disclosed.
Japanese Patent No. 3249788

しかしながら、上記した特許文献1に記載される定電圧充電時の電流データに基づいて充電電流特性を推定する技術では、電池の充電効率の影響を加味しておらず、充電電流近似関数の精度が特に充電末期において低下するという問題点があることがわかった。このため、上記推定時点すなわち定電圧充電終了時点から上記最終値に達するまでの充電容量(Ah)や充電必要時間の推定精度が低下するという不具合が大きかった。   However, in the technique for estimating the charging current characteristic based on the current data at the time of constant voltage charging described in Patent Document 1 described above, the effect of the charging efficiency of the battery is not taken into account, and the accuracy of the charging current approximation function is In particular, it was found that there was a problem that it decreased at the end of charging. For this reason, there has been a serious problem that the estimation accuracy of the charging capacity (Ah) and the required charging time from the estimation time point, that is, the constant voltage charging end time point to the final value is lowered.

本発明は上記問題点に鑑みなされたものであり、定電圧充電時の充電電流が所定の最終値に到達する時点を高精度に推定可能な車載二次電池の内部状態検出装置を提供することをその目的としている。   The present invention has been made in view of the above-described problems, and provides an internal state detection device for an in-vehicle secondary battery capable of accurately estimating when the charging current during constant voltage charging reaches a predetermined final value. Is the purpose.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を達成するためになされたこの発明は、車載交流発電機により所定の調整電圧に収束制御される車載二次電池の端子電圧及び電流を検出する検出回路部と、算出した電流に基づいて前記車載二次電池の内部状態を推定する内部状態検出回路部とを備える。   This invention made | formed in order to achieve the said subject is based on the detection circuit part which detects the terminal voltage and electric current of the vehicle-mounted secondary battery by which convergence control is carried out to the predetermined | prescribed adjustment voltage by the vehicle-mounted AC generator, and the calculated electric current. An internal state detection circuit unit that estimates an internal state of the in-vehicle secondary battery.

内部状態検出回路部は、車両始動直後又は車両走行中に前記車載二次電池の所定電圧値での定電圧充電を所定時間継続し、前記定電圧充電開始後に得た前記充電電流の複数のデータに基づいて前記充電電流の時間変化を表す関数である充電電流関数を求め、前記車載二次電池の劣化に相関を有する数値又は関数である所定の補正値又は補正関数を、定期的に求めるかあるいは出荷時に書き込むことにより予め記憶し、前記充電電流関数よりも前記定電圧充電時の充電電流の実際の変化に近似する関数である補正充電電流関数を前記補正値又は補正関数と前記充電電流関数とに基づいて求め、求めた前記補正充電電流関数に基づいて前記充電電流値が所定の最終値に達するまでの充電電流積算値を求め、求めた前記充電電流積算値に基づいて前記車載二次電池の内部状態を決定することをその特徴としている。   The internal state detection circuit unit continues constant voltage charging at a predetermined voltage value of the in-vehicle secondary battery for a predetermined time immediately after starting the vehicle or during vehicle traveling, and a plurality of data of the charging current obtained after starting the constant voltage charging A charging current function that is a function that represents a change in the charging current over time is obtained, and a predetermined correction value or a correction function that is a numerical value or function that correlates with deterioration of the in-vehicle secondary battery is periodically obtained. Alternatively, a correction charging current function that is stored in advance by writing at the time of shipment and approximates an actual change in charging current at the time of constant voltage charging rather than the charging current function is the correction value or the correction function and the charging current function. The charging current integrated value until the charging current value reaches a predetermined final value is obtained based on the obtained corrected charging current function, and the previous charging current value is obtained based on the obtained charging current integrated value. It is set to its features to determine the internal state of the vehicle battery.

すなわち、本発明は、所定時間の定電圧充電を実施して複数の充電電流値をサンプリングし、得た各データから定電圧充電における充電電流の今後の変化特性を示す充電電流関数を求め、この充電電流関数を予め記憶する補正値又は補正巻数に基づいて補正して得た補正充電電流関数を求め、この補正充電電流関数により車載二次電池の内部状態を算出する。なお、この補正値又は補正関数は、上記定電圧充電終了後の充電末期の充電電流実測値に充電電流関数をより近づける値又は関数とする。なお、これら補正値又は補正関数の具体的な導出方法については下記の実施形態にて説明するものとする。ただし、この補正値又は補正関数は、車載二次電池の経年劣化によるその変動を反映することが好ましい。   That is, the present invention performs constant voltage charging for a predetermined time, samples a plurality of charging current values, obtains a charging current function indicating a future change characteristic of the charging current in constant voltage charging from each obtained data, A correction charging current function obtained by correcting the charging current function based on a correction value or a correction winding number stored in advance is obtained, and the internal state of the in-vehicle secondary battery is calculated from the correction charging current function. This correction value or correction function is a value or function that brings the charging current function closer to the actual charging current value at the end of charging after the end of the constant voltage charging. A specific method for deriving these correction values or correction functions will be described in the following embodiment. However, it is preferable that the correction value or the correction function reflects the variation due to the aging deterioration of the in-vehicle secondary battery.

これにより、この充電電流関数の補正を行わない場合に比べて、充電電流積算値算出精度を向上することができることがわかった。また、単に長期の定電圧充電を充電末期までいちいち継続する必要もないため、車載二次電池の使い勝手が良く、かつ、この長期の定電圧充電を頻繁に行うことによる車載二次電池の劣化も抑止することができる。   As a result, it has been found that the charging current integrated value calculation accuracy can be improved as compared with the case where the charging current function is not corrected. In addition, since it is not necessary to continue long-term constant voltage charging until the end of charging, the in-vehicle secondary battery is easy to use, and the in-vehicle secondary battery deteriorates due to frequent long-term constant voltage charging. Can be deterred.

結局、この発明では、充電末期における充電電流の増大に見合った補正値又は補正関数にて充電電流関数を補正して補正充電電流関数を取得し、この補正充電電流関数を用いて種々の電池状態を推定する。これにより、このような補正値又は補正関数を用いずに求めた従来の充電電流関数に比べて誤差が少ない充電電流推定を行うことができる。従来、このような充電電流関数の補正乃至決定については、その必要性が未だまったく認識されていなかった。   After all, in the present invention, the correction current function is corrected with a correction value or a correction function commensurate with an increase in the charging current at the end of charging to obtain a corrected charging current function, and various battery states are obtained using this corrected charging current function. Is estimated. Thereby, it is possible to estimate the charging current with less error compared to the conventional charging current function obtained without using such a correction value or correction function. Conventionally, the need for such correction or determination of the charging current function has not yet been recognized.

本発明の車載二次電池の内部状態検出装置の好適な実施形態を以下に説明する。ただし、本発明は下記の実施形態に限定解釈されるべきものでなく、その他の公知技術やそれと同等機能を有する技術を組み合わせて本発明の技術思想を実施しても良いことは言うまでもない。   A preferred embodiment of the internal state detection device for an in-vehicle secondary battery of the present invention will be described below. However, the present invention should not be construed as being limited to the following embodiments, and it goes without saying that the technical idea of the present invention may be implemented by combining other known techniques and techniques having the same functions.

(装置構成)
実施形態1の車載二次電池のSOC演算装置を図1に示すブロック図を参照して説明する。
(Device configuration)
An SOC computing device for an in-vehicle secondary battery according to Embodiment 1 will be described with reference to a block diagram shown in FIG.

101は車載蓄電装置(以下、バッテリとも呼ぶ)、102は車載エンジン(図示せず)にて駆動されてバッテリ101を充電する車載発電機(本発明で言う車載交流発電機)、103はバッテリ101から給電される車載電気負荷をなす電気装置、104はバッテリ101の充放電電流を検出し、ディジタル信号形式で出力する電流センサ(本発明で言う検出回路部)、105はバッテリ101のSOCなどを演算するための電子回路装置である蓄電池状態検知装置(本発明で言う車載二次電池の内部状態検出装置)である。蓄電池状態検知装置105は、本発明で言う分極算出回路部に相当する演算処理を含んでいる。106は蓄電池状態検知装置105の入力用のバッファ部、107は蓄電池状態検知装置105の演算処理部、108は演算処理部107からSOC並びに外部から入力されたエンジン状態、車速、発電機回転数などの車両情報110に基づいて車載発電機102の発電量を演算するECUである。109は界磁コイル型の車載発電機の出力を制御する発電機制御装置であり、発電機制御装置109は、通常は従来同様、バッテリ101の電圧と所定の調整電圧との差を0とするために界磁電流をフィードバック制御を行い、バッテリ101の電圧をこの調整電圧にたもつ。また、発電機制御装置109は、必要に応じてECU108が決定した発電量に対応する発電を車載発電機102に行わせる。   101 is an in-vehicle power storage device (hereinafter also referred to as a battery), 102 is an in-vehicle generator (in-vehicle AC generator in the present invention) that is driven by an in-vehicle engine (not shown) and charges the battery 101, and 103 is a battery 101. 104 is a current sensor (detection circuit unit in the present invention) that detects the charging / discharging current of the battery 101 and outputs it in the form of a digital signal, 105 is the SOC of the battery 101, etc. It is a storage battery state detection device (an internal state detection device for an in-vehicle secondary battery referred to in the present invention) that is an electronic circuit device for calculation. The storage battery state detection device 105 includes a calculation process corresponding to the polarization calculation circuit unit referred to in the present invention. 106 is a buffer unit for input of the storage battery state detection device 105, 107 is an arithmetic processing unit of the storage battery state detection device 105, 108 is SOC from the arithmetic processing unit 107, engine state input from the outside, vehicle speed, generator speed, etc. This ECU calculates the power generation amount of the in-vehicle generator 102 based on the vehicle information 110 of the vehicle. Reference numeral 109 denotes a generator control device that controls the output of the field coil type on-vehicle generator. The generator control device 109 normally sets the difference between the voltage of the battery 101 and a predetermined adjustment voltage to 0 as in the conventional case. For this purpose, feedback control is performed on the field current, and the voltage of the battery 101 is set to this adjusted voltage. Further, the generator control device 109 causes the in-vehicle generator 102 to generate power corresponding to the power generation amount determined by the ECU 108 as necessary.

蓄電池状態検知装置105のバッファ部106及び演算処理部107はマイコン装置によるソフトウエア演算により実現されるが、専用のハードウエア回路により構成されてよいことはもちろんである。バッファ部106は、バッテリ101の電圧Vと電流センサ104からの電流Iとのペア(データペア)を所定タイミングにてサンプリングして保持する。演算処理部107は、バッファ部106から入力される入力パラメータに基づいて後述の方法によりSOCを演算する。バッテリ101は、鉛蓄電池、ニッケル−水素電池、リチウム電池などの二次電池が採用されるが、種類は限定されない。この実施例では通常の車両用鉛蓄電池を採用した。   The buffer unit 106 and the arithmetic processing unit 107 of the storage battery state detection device 105 are realized by software calculation by a microcomputer device, but of course may be configured by a dedicated hardware circuit. The buffer unit 106 samples and holds a pair (data pair) of the voltage V of the battery 101 and the current I from the current sensor 104 at a predetermined timing. The arithmetic processing unit 107 calculates the SOC by a method described later based on the input parameter input from the buffer unit 106. The battery 101 may be a secondary battery such as a lead storage battery, a nickel-hydrogen battery, or a lithium battery, but the type is not limited. In this embodiment, an ordinary vehicle lead-acid battery is employed.

(定電圧充電動作)
次に、実施形態1の定電圧充電制御を図2、図3に示すフローチャートを参照して以下に具体的に説明する。なお、図2、図3において蓄電池状態検知装置105は、所定の短いインタバルで順次実行される多数の処理動作の一つをなす定電圧充電制御を示すサブルーチンである。この定電圧充電制御ルーチンは、エンジン始動時又は車両走行中に所定タイミングにて開始される。
(Constant voltage charging operation)
Next, the constant voltage charge control of the first embodiment will be specifically described below with reference to the flowcharts shown in FIGS. 2 and 3, the storage battery state detection device 105 is a subroutine showing constant voltage charging control that performs one of a number of processing operations that are sequentially executed at a predetermined short interval. This constant voltage charging control routine is started at a predetermined timing when the engine is started or while the vehicle is running.

まず、現在、定電圧充電制御動作の実行中かどうかを調べ(S1)、実行中であればステップS2に進み、そうでなければバッテリ101に定電圧を印加する定電圧充電制御を開始する(S3)。なお、この定電圧充電制御は、車載発電機102の発電を制御することによりバッテリ101の電圧を一定値に保つことによりなされる。   First, it is checked whether or not the constant voltage charge control operation is currently being executed (S1). If it is being executed, the process proceeds to step S2, otherwise constant voltage charge control for applying a constant voltage to the battery 101 is started ( S3). The constant voltage charging control is performed by maintaining the voltage of the battery 101 at a constant value by controlling the power generation of the in-vehicle generator 102.

ただし、ステップS1では、突然の負荷断続、又は、エンジン回転数の急変による発電機102の発電電圧の急変によるバッテリ101の端子電圧の急変があったかどうかを調べ、あった場合には、たとえ今まで定電圧充電制御を実行中であっても定電圧充電制御動作を実行中とは見なさないものとし、ステップS3に進むものとする。これは発電機102の界磁電流制御の時定数遅れを考慮したものである。なお、上記したような発電状況や負荷状況の急変が生じた場合には、図2に示す定電圧充電制御を中止し、一定時間経過した後、再度それを開始することが好適である。   However, in step S1, it is checked whether there is a sudden change in the terminal voltage of the battery 101 due to a sudden load interruption or a sudden change in the power generation voltage due to a sudden change in the engine speed. Even if the constant voltage charge control is being executed, the constant voltage charge control operation is not regarded as being executed, and the process proceeds to step S3. This is because the time constant delay of the field current control of the generator 102 is taken into consideration. In addition, when the above-mentioned sudden change of the power generation situation or the load situation occurs, it is preferable to stop the constant voltage charging control shown in FIG. 2 and start it again after a certain period of time.

ステップS2では、バッテリ101の充電電流Icvを読み込み、読み込んだ充電電流Icvから分極関連量Pとその微分値ΔPとを算出する(S3)。この実施例では、分極関連量Pは、次の式から求める。   In step S2, the charging current Icv of the battery 101 is read, and the polarization related quantity P and its differential value ΔP are calculated from the read charging current Icv (S3). In this embodiment, the polarization related amount P is obtained from the following equation.

Pn = Pn-1 + In*dt - 1/τ*Pn-1*dt (τ:時定数) なお、上式において、nは今回値を示し、n−1は前回値を示す。したがって、Pnは分極関連量Pの今回値、 Pn-1は分極関連量Pの前回値、Inは充電電流Icvの今回値である。今回値と前回値との間の時間差は所定の一定値dtに設定されている。        Pn = Pn-1 + In * dt-1 / .tau. * Pn-1 * dt (.tau .: time constant) In the above equation, n represents the current value and n-1 represents the previous value. Therefore, Pn is the current value of the polarization related quantity P, Pn-1 is the previous value of the polarization related quantity P, and In is the current value of the charging current Icv. The time difference between the current value and the previous value is set to a predetermined constant value dt.

ただし、この式の初回の演算においては、分極関連量Pの前回値Pn-1は0とすることが好適である。また、この実施例では、簡単のために、dtはルーチン周期及び電流サンプリング周期(S2)に等しく設定している。τはバッテリ電解液の電荷拡散時定数であり、予め実験で求めた所定値とした。 分極状態量の今回値Pnは、前回のサンプリング時点から今回のサンプリング時点までに生じた分極状態量の増加量In・dtと、前回のサンプリング時点から今回のサンプリング時点までに減衰した分極状態量の減衰量Pn-1 ・dt/τとを、前回のサンプリング時点での分極状態量の前回値Pnー1から加減算して算出される。分極関連量Pの微分値ΔPは、次式により表される。   However, in the first calculation of this equation, it is preferable that the previous value Pn−1 of the polarization related amount P be 0. In this embodiment, for simplicity, dt is set equal to the routine period and the current sampling period (S2). τ is a charge diffusion time constant of the battery electrolyte, and is a predetermined value obtained in advance by experiments. The current value Pn of the polarization state quantity is an increase amount In · dt of the polarization state quantity generated from the previous sampling time to the current sampling time, and a polarization state quantity attenuated from the previous sampling time to the current sampling time. The attenuation amount Pn−1 · dt / τ is calculated by adding or subtracting from the previous value Pn−1 of the polarization state quantity at the previous sampling time. The differential value ΔP of the polarization related amount P is expressed by the following equation.

ΔP=(Pn− Pn-1) /dt= In - 1/τ*Pn-1
次に、分極関連量Pの微分値ΔPが所定の閾値未満にまで減少したかどうかを調べ(S4)、減少していなければメインルーチンに戻り、減少していれば、十分に分極は解消されたと判断してステップS5に進んで、ΔPが上記閾値以下になった時点から所定時間T(たとえば30秒)の間にサンプリングして記憶している各充電電流値Icv1〜Icv31を読み込み、各充電電流値Icv1〜Icv31から公知の方式(たとえば最小二乗法など)を用いて近似式(I =K+a*exp(b*t))を求め、充電電流の時間変化特性すなわち本発明で言う充電電流関数として採用する(S6)。
ΔP = (Pn−Pn−1) / dt = In−1 / τ * Pn−1
Next, it is checked whether or not the differential value ΔP of the polarization related amount P has decreased to less than a predetermined threshold (S4). If not, the process returns to the main routine, and if it has decreased, the polarization is sufficiently eliminated. The process proceeds to step S5, and the charging current values Icv1 to Icv31 sampled and stored for a predetermined time T (for example, 30 seconds) from the time when ΔP becomes equal to or lower than the above threshold value are read. An approximate expression (I = K + a * exp (b * t)) is obtained from the current values Icv1 to Icv31 using a known method (for example, the least square method), and the time variation characteristic of the charging current, that is, the charging current function referred to in the present invention. (S6).

なお、この近似式において、Iは充電電流、K、a、bは、定数、tは定電圧充電開始からの経過時間である。これらの定数は実験により決定される。Kは0としてもよい。ただし、本発明で言う充電電流関数は、上記近似式に限定されるものではなく定電圧充電期間中に得た各電流データに近似する種々公知の近似式作成手法を採用することは当然可能であることは言うまでもない。   In this approximate expression, I is a charging current, K, a, and b are constants, and t is an elapsed time from the start of constant voltage charging. These constants are determined by experiment. K may be 0. However, the charging current function referred to in the present invention is not limited to the above approximate expression, and it is naturally possible to adopt various known approximate expression creation methods that approximate each current data obtained during the constant voltage charging period. Needless to say.

次に、ステップS6で求めた近似式(充電電流関数)を、予め記憶するその補正係数に基づいて補正して補正充電電流関数とする処理を行う(S7)。なお、この補正充電関数は数式ではなくマップ形式で記載されてもよいことはもちろんである。ただし、この補正係数については後で説明するものとする。   Next, the approximate expression (charging current function) obtained in step S6 is corrected based on the correction coefficient stored in advance to obtain a corrected charging current function (S7). Of course, this correction charging function may be described in a map format instead of a mathematical expression. However, this correction coefficient will be described later.

次に、求めた補正充電関数に予め定めた最終充電電流値Icv(final)を代入して、その時の定電圧充電制御終了時点Tfを求め、現時点からもし定電圧充電を継続した場合にそれを終了するべき時点Tfに達するまでの期間の充電電流Icvの総和を積算して、充電電流積算値(α=∫I・dt)とする(S8)。なお、この実施形態では、最終充電電流値Icv(final)は、上記条件で定電圧充電制御を行った場合におけるこのバッテリのSOC90%に相当する充電電流値とし、予め実験などにより求めた電流値とした。   Next, a predetermined final charging current value Icv (final) is substituted into the obtained correction charging function to obtain a constant voltage charging control end time Tf at that time, and if constant voltage charging is continued from the present time, The sum of the charging current Icv during the period until reaching the time point Tf to be completed is integrated to obtain a charging current integrated value (α = ∫I · dt) (S8). In this embodiment, the final charge current value Icv (final) is a charge current value corresponding to 90% of the battery's SOC when the constant voltage charge control is performed under the above conditions, and the current value obtained in advance through experiments or the like. It was.

これにより、SOC90%から上記充電電流積算値(α=∫I・dt)を減算することにより現在のSOCを精度良く算出することができる他、現時点以降においてどれくらいの容量Ahを充電したらSOC90%に達するかを推定することができる(S9)。その後、定電圧充電を終了する(S10)。なお、上記定電圧充電は、電流データサンプリングのためのステップS5の後で終了してかまわない。   As a result, the current SOC can be accurately calculated by subtracting the charging current integrated value (α = ∫I · dt) from SOC 90%, and how much capacity Ah is charged after the current time becomes SOC 90%. It can be estimated whether it will be reached (S9). Then, constant voltage charge is complete | finished (S10). The constant voltage charging may be terminated after step S5 for current data sampling.

(補正係数の算出について)
次に、上記説明した充電電流関数(近似式)を補正するための補正係数について説明する。この補正係数は、既述したように、たとえば車載二次電池の劣化などによる定電圧末期における充電電流垂下の緩慢化を補正するためのものであり、下記に説明するように多数の手法を採用することができる。
(Calculation of correction coefficient)
Next, correction coefficients for correcting the above-described charging current function (approximate expression) will be described. As described above, this correction coefficient is for correcting the slowdown of the charging current droop at the end of the constant voltage due to, for example, deterioration of the in-vehicle secondary battery, and employs a number of methods as described below. can do.

(第1案)
定電圧充電での各時点における充電電流関数から求めた充電電流値を基準とする充電電流の増大比率は、既述した理由により車載二次電池の充放電累計時間に正相関をもち、充放電サイクル寿命が長くなるほど大きくなる。
(1st plan)
The charging current increase ratio based on the charging current value obtained from the charging current function at each time in constant voltage charging has a positive correlation with the cumulative charging / discharging time of the in-vehicle secondary battery for the reason described above, and charging / discharging. The larger the cycle life, the larger.

充電電流関数(I =K+a*exp(b*t))に対して、補正充電電流関数Iγを、(Iγ=K’+a’*exp(b’*t))とする。なお、係数K’、a’、b’は、それぞれ、K’は元の係数Kを変数とする係数又は関数、a’は元の係数aの係数又は関数、b’は元の係数bの係数又は関数とする。演算の簡単化のために関数は一次式とすることが好ましく、あるいはマップを採用しても良い。   For the charging current function (I = K + a * exp (b * t)), the corrected charging current function Iγ is (Iγ = K ′ + a ′ * exp (b ′ * t)). The coefficients K ′, a ′, and b ′ are respectively a coefficient or a function in which the original coefficient K is a variable, a ′ is a coefficient or function of the original coefficient a, and b ′ is an original coefficient b. It is a coefficient or function. In order to simplify the calculation, the function is preferably a linear expression, or a map may be adopted.

定数値ではなく、関数又はマップを採用する場合、次の方法によりこの関数又はマップを作成することができる。   When a function or map is employed instead of a constant value, this function or map can be created by the following method.

たとえば、これらの係数K’、a’、b’を車載二次電池の充放電累計時間Tを変数とする一次関数又はマップを予め記憶しておき、これに充放電累計時間Tを代入して係数K’、a’、b’を求めればよい。   For example, these coefficients K ′, a ′, and b ′ are stored in advance as a linear function or map in which the charge / discharge cumulative time T of the in-vehicle secondary battery is a variable, and the charge / discharge cumulative time T is substituted for this. The coefficients K ′, a ′, and b ′ may be obtained.

なお、充放電累計時間Tは、種々の方法にて推定することができる。たとえば、イグニッションキーのオン時間、車載二次電池(バッテリ)の所定の充放電電流値以上の累計時間などをカウンタにてカウントすれば、このカウント値をほぼ充放電累計時間と見なすことができる。   The charge / discharge cumulative time T can be estimated by various methods. For example, when the on-time of the ignition key, the accumulated time equal to or greater than a predetermined charge / discharge current value of the in-vehicle secondary battery (battery), and the like are counted by a counter, this count value can be regarded as substantially the charge / discharge accumulated time.

その他、係数K’、a’、b’のどれか一つ又は2つを補正するだけでもよい。たとえば、補正係数kは、a’=γ・aとすることができる。   In addition, any one or two of the coefficients K ′, a ′, and b ′ may be corrected. For example, the correction coefficient k can be a ′ = γ · a.

上記した補正係数は、工場出荷時に書き込んでも良く、あるいは車載二次電池の運転中に車載二次電池から検出した状態信号(たとえば電圧や電流や温度や運転時間など)から予め記憶する算出式により算出してもよい。更には、車載二次電池の充電末期(たとえばSOC90%まで)の長時間の定電圧充電制御を時々行い、それにより得た充電電流値を用いて上記係数を予め記憶する式又はマップにより導出してもよい。   The above correction coefficient may be written at the time of shipment from the factory, or by a calculation formula stored in advance from a state signal (for example, voltage, current, temperature, operation time, etc.) detected from the in-vehicle secondary battery during operation of the in-vehicle secondary battery. It may be calculated. Furthermore, long-term constant voltage charging control at the end of charging of the in-vehicle secondary battery (for example, up to SOC 90%) is sometimes performed, and the above coefficient is derived from an equation or map stored in advance using the charging current value obtained thereby. May be.

(第2案)
定電圧充電での充電電流関数から求めた充電電流値を基準とする充電電流の増大量及び増大比率は、既述した理由により定電圧充電の経過時間の増大に正相関をもち、定電圧充電経過時間が長くなるほど大きくなる。
(2nd plan)
The charging current increase amount and rate based on the charging current value obtained from the charging current function in constant voltage charging have a positive correlation with the increase in the elapsed time of constant voltage charging for the reasons described above, and constant voltage charging. The longer the elapsed time, the larger.

そこで、充電電流関数(I =K+a*exp(b*t))に対して、補正充電電流関数Iγを、(Iγ=K’+a’*exp(b’*t))とする。なお、係数K’、a’、b’は、それぞれ、K’は元の係数Kを変数とする係数又は関数、a’は元の係数aの係数又は関数、b’は元の係数bの係数又は関数とする。演算の簡単化のために関数は一次式とすることが好ましく、あるいはマップを採用しても良い。   Therefore, the correction charging current function Iγ is (Iγ = K ′ + a ′ * exp (b ′ * t)) with respect to the charging current function (I = K + a * exp (b * t)). The coefficients K ′, a ′, and b ′ are respectively a coefficient or a function in which the original coefficient K is a variable, a ′ is a coefficient or function of the original coefficient a, and b ′ is an original coefficient b. It is a coefficient or function. In order to simplify the calculation, the function is preferably a linear expression, or a map may be adopted.

定数値ではなく、関数又はマップを採用する場合、次の方法によりこの関数又はマップを作成することができる。   When a function or map is employed instead of a constant value, this function or map can be created by the following method.

たとえば、これらの係数K’、a’、b’を車載二次電池の充放電累計時間Tを変数とする一次関数又はマップを予め記憶しておき、これに充放電累計時間Tを代入して係数K’、a’、b’を求めればよい。   For example, these coefficients K ′, a ′, and b ′ are stored in advance as a linear function or map in which the charge / discharge cumulative time T of the in-vehicle secondary battery is a variable, and the charge / discharge cumulative time T is substituted for this. The coefficients K ′, a ′, and b ′ may be obtained.

なお、充放電累計時間Tは、種々の方法にて推定することができる。たとえば、イグニッションキーのオン時間、車載二次電池(バッテリ)の所定の充放電電流値以上の累計時間などをカウンタにてカウントすれば、このカウント値をほぼ充放電累計時間と見なすことができる。   The charge / discharge cumulative time T can be estimated by various methods. For example, when the on-time of the ignition key, the accumulated time equal to or greater than a predetermined charge / discharge current value of the in-vehicle secondary battery (battery), and the like are counted by a counter, this count value can be regarded as substantially the charge / discharge accumulated time.

その他、係数K’、a’、b’のどれか一つ又は2つを補正するだけでもよい。たとえば、補正係数kは、a’=γ・aとすることができる。   In addition, any one or two of the coefficients K ′, a ′, and b ′ may be corrected. For example, the correction coefficient k can be a ′ = γ · a.

上記した補正係数は、工場出荷時に書き込んでも良く、あるいは車載二次電池の運転中に車載二次電池から検出した状態信号(たとえば電圧や電流や温度や運転時間など)から予め記憶する算出式により算出してもよい。更には、車載二次電池の充電末期(たとえばSOC90%まで)の長時間の定電圧充電制御を時々行い、それにより得た充電電流値を用いて上記係数を予め記憶する式又はマップにより導出してもよい。   The above correction coefficient may be written at the time of shipment from the factory, or by a calculation formula stored in advance from a state signal (for example, voltage, current, temperature, operation time, etc.) detected from the in-vehicle secondary battery during operation of the in-vehicle secondary battery. It may be calculated. Furthermore, long-term constant voltage charging control at the end of charging of the in-vehicle secondary battery (for example, up to SOC 90%) is sometimes performed, and the above coefficient is derived from an equation or map stored in advance using the charging current value obtained thereby. May be.

(試験結果)
次に、通常の車両用鉛蓄電池を用いてその定電圧充電時の充電容量を調べた結果、並びに、推定した結果を図4に示す。
(Test results)
Next, FIG. 4 shows the result of examining the charge capacity at the time of constant voltage charging using an ordinary vehicle lead-acid battery and the estimated result.

図4では、480秒の定電圧充電を行い、一定インタバルで多数の充電電流値と定電圧充電開始からの経過時間をサンプリングし、充電電流値及び経過時間の各ペアから充電電流関数(I(t)=A*exp(B*t))を求めた。次に、補正係数γに応じた補正を加えて補正充電電流関数(Iγ(t)=γ*A*exp(B*t))を求めた。したがって、補正充電電流関数(Iγ(t)=γ*A*exp(B*t))の微分係数(dIγ(t))は次式で示される。なお、Iγ(t)は補正充電電流の今回値、 Iγ(t-1)は補正充電電流関数の前回値であり、補正充電電流関数のサンプリング期間はdtとなる。   In FIG. 4, constant voltage charging is performed for 480 seconds, a large number of charging current values and elapsed time from the start of constant voltage charging are sampled at a constant interval, and a charging current function (I ( t) = A * exp (B * t)). Next, the correction charging current function (Iγ (t) = γ * A * exp (B * t)) was obtained by applying correction according to the correction coefficient γ. Therefore, the differential coefficient (dIγ (t)) of the corrected charging current function (Iγ (t) = γ * A * exp (B * t)) is expressed by the following equation. Note that Iγ (t) is the current value of the corrected charging current, Iγ (t−1) is the previous value of the corrected charging current function, and the sampling period of the corrected charging current function is dt.

dIγ(t)=γ*A*B*exp(B*t))は、
=Iγ(t)− Iγ(t-1)
この補正充電電流関数を用いて、充電電流が予め設定したSOC90%相当の充電電流値である最終充電電流値Icv(final)になるまでの充電電流累計値(積算容量)を求めたところ、5.8Ahであった。これに対して、定電圧充電を実際に継続して測定した最終充電電流値Icv(final)の実測値6.2Ahであり、その誤差は0.4Ahに過ぎず、高精度に推定できることがわかった。
dIγ (t) = γ * A * B * exp (B * t))
= Iγ (t) -Iγ (t-1)
Using this corrected charging current function, a charging current accumulated value (integrated capacity) until the charging current reaches a final charging current value Icv (final) that is a charging current value equivalent to SOC 90% set in advance is obtained as 5.8. Ah. On the other hand, it was found that the final charging current value Icv (final) actually measured by constant voltage charging was 6.2 Ah, and the error was only 0.4 Ah, which can be estimated with high accuracy.

次に、上記補正を行わず、上記充電電流関数を用いて積算した積算容量は4.9Ahであり、実測値との間の誤差は1.3Ahと大きかった。   Next, without performing the above correction, the integrated capacity integrated using the charging current function was 4.9 Ah, and the error from the actual measurement value was as large as 1.3 Ah.

補正係数γと定電圧充電における充電電流実測値との関係を図5に示す。補正係数γは、予め、車両搭載される電池で定電圧充電を実施し、同一経過時間の各測定時点ごとに得た充電電流実測値と補正充電電流関数から求めた算出値との間の自乗誤差が最小となるように図5では決定した。   FIG. 5 shows the relationship between the correction coefficient γ and the measured charging current value in constant voltage charging. The correction coefficient γ is a square between the measured charge current value obtained at each measurement time point of the same elapsed time and the calculated value obtained from the corrected charge current function after performing constant voltage charging with a battery mounted on the vehicle in advance. The determination is made in FIG. 5 so that the error is minimized.

なお、車両用蓄電池は、既述したようにその使用方法や運用時間などにより特性(充電効率や内部抵抗など)が劣化して定電圧充電時の充電電流垂下特性(たとえば図4)が変化する。このため、上記補正係数γは、たとえば運用時間など依存する電池の現在状態に応じて更に補正することが好適である。この補正の一例について図6を参照して説明する。   In addition, as described above, characteristics (charging efficiency, internal resistance, etc.) of the storage battery for a vehicle are deteriorated due to the usage method or operation time, and the charging current drooping characteristic (for example, FIG. 4) during constant voltage charging changes. . For this reason, it is preferable to further correct the correction coefficient γ according to the current state of the battery depending on, for example, the operation time. An example of this correction will be described with reference to FIG.

図6では、複数の充電電流 vs 補正係数γのマップを予め準備しておき、定電圧充電実施直後に、得られた各電流実測値と、上記各電流実測値から求めた充電電流関数を、図6に示す各補正係数マップm1〜m4を用いて補正して得た各補正充電電流関数を算出して上記各電流実測値と同一時点にて得た各電流計算値との間の自乗誤差が最小となるマップを今回の補正係数γとして選択して採用すればよい。これにより、電池状態が変化した場合にも、充電容量を精度良く推定できる。   In FIG. 6, a map of a plurality of charging currents vs. correction coefficients γ is prepared in advance, and immediately after the constant voltage charging is performed, the obtained current measured values and the charging current functions obtained from the current measured values are expressed as follows: A square error between each measured current value and each current calculation value obtained at the same time by calculating each correction charging current function obtained by correction using each correction coefficient map m1 to m4 shown in FIG. A map having the smallest value may be selected and adopted as the current correction coefficient γ. Thereby, even when the battery state changes, the charge capacity can be accurately estimated.

上記した実施例では、バッテリの容量が低下しており所定容量(Ah)の充電によるバッテリ充電が必要なエンジン始動直後、又は、車両走行中特に好適には大電気負荷を投入し、バッテリのSOCが低下しそれを補うべく発電機102の発電が増強されてバッテリの充電が強化されているタイミングなどにおいて、バッテリの充電状態を精度良く推定するのに好適である。   In the embodiment described above, the battery capacity is reduced and the battery SOC is required immediately after starting the engine, which needs to be charged with a predetermined capacity (Ah), or while the vehicle is running. This is suitable for accurately estimating the state of charge of the battery, for example, at a timing when the power generation of the generator 102 is enhanced to compensate for this and the charging of the battery is enhanced.

(変形態様)
上記実施形態では、この定電圧充電において生じる分極(充電分極)の影響の排除について言及しなかったが、定電圧充電開始から所定時間ΔT後で電流サンプリングを行ったり、この所定時間ΔTを充電電流が定電圧充電開始時点から所定割合低下した時点で電流サンプリングを行ったりして上記分極の影響を軽減してもよい。
(Modification)
In the above embodiment, the exclusion of the influence of polarization (charging polarization) that occurs in constant voltage charging was not mentioned, but current sampling was performed after a predetermined time ΔT from the start of constant voltage charging, or the predetermined time ΔT was determined as the charging current. However, the influence of the polarization may be reduced by performing current sampling at a time when a predetermined rate is decreased from the time when constant voltage charging is started.

実施形態の車載二次電池の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the vehicle-mounted secondary battery of embodiment. 実施形態における定電圧充電制御を示すフローチャートである。It is a flowchart which shows the constant voltage charge control in embodiment. 実施形態における定電圧充電制御を示すフローチャートである。It is a flowchart which shows the constant voltage charge control in embodiment. 定電圧充電時の充電電流の実測特性線A、補正充電電流関数で算出した特性線B、充電電流関数で算出した特性線Cを示す特性図である。FIG. 7 is a characteristic diagram showing an actual measurement characteristic line A of charging current during constant voltage charging, a characteristic line B calculated with a corrected charging current function, and a characteristic line C calculated with a charging current function. 充電電流と補正係数との関係を示す図である。It is a figure which shows the relationship between a charging current and a correction coefficient. 充電電流関数と補正係数との互いに異なる関係示す4つのマップを示す図である。It is a figure which shows four maps which show a mutually different relationship between a charging current function and a correction coefficient.

符号の説明Explanation of symbols

101 バッテリ
102 車載発電機(発電機)
104 電流センサ
105 蓄電池状態検知装置
106 バッファ部
107 演算処理部
109 発電機制御装置
110 車両情報
101 Battery 102 On-vehicle generator (generator)
104 Current sensor 105 Storage battery state detection device 106 Buffer unit 107 Arithmetic processing unit 109 Generator control device 110 Vehicle information

Claims (1)

車載交流発電機により所定の調整電圧に収束制御される車載二次電池の端子電圧及び電流を検出する検出回路部と、算出した電流に基づいて前記車載二次電池の内部状態を推定する内部状態検出回路部とを備える車載二次電池の内部状態検出装置において、
前記内部状態検出回路部は、
車両始動直後又は車両走行中に前記車載二次電池の所定電圧値での定電圧充電を所定時間継続し、
前記定電圧充電開始後に得た前記充電電流の複数のデータに基づいて前記充電電流の時間変化を表す関数である充電電流関数を求め、
前記車載二次電池の劣化に相関を有する数値又は関数である所定の補正値又は補正関数を、定期的に求めるかあるいは出荷時に書き込むことにより予め記憶し、
前記充電電流関数よりも前記定電圧充電時の充電電流の実際の変化に近似する関数である補正充電電流関数を前記補正値又は補正関数と前記充電電流関数とに基づいて求め、
求めた前記補正充電電流関数に基づいて前記充電電流値が所定の最終値に達するまでの充電電流積算値を求め、
求めた前記充電電流積算値に基づいて前記車載二次電池の内部状態を決定することを特徴とする車載二次電池の内部状態検出装置。
A detection circuit unit that detects the terminal voltage and current of the in-vehicle secondary battery that is converged and controlled to a predetermined adjustment voltage by the in-vehicle AC generator, and an internal state that estimates the internal state of the in-vehicle secondary battery based on the calculated current In the in-vehicle secondary battery internal state detection device comprising a detection circuit unit,
The internal state detection circuit unit is
Continue constant voltage charging at a predetermined voltage value of the in-vehicle secondary battery for a predetermined time immediately after starting the vehicle or during vehicle traveling,
Obtaining a charging current function that is a function representing a time change of the charging current based on a plurality of data of the charging current obtained after the start of the constant voltage charging,
A predetermined correction value or correction function that is a numerical value or a function having a correlation with deterioration of the in-vehicle secondary battery is stored in advance by periodically obtaining or writing at the time of shipment,
A correction charging current function that is a function that approximates an actual change in charging current during the constant voltage charging rather than the charging current function is obtained based on the correction value or the correction function and the charging current function,
Based on the corrected charging current function that has been obtained, to determine a charging current integrated value until the charging current value reaches a predetermined final value,
An internal state detection device for an in-vehicle secondary battery, wherein the internal state of the in-vehicle secondary battery is determined based on the obtained charging current integrated value.
JP2007301708A 2007-11-21 2007-11-21 In-vehicle secondary battery internal state detection device Active JP4564999B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007301708A JP4564999B2 (en) 2007-11-21 2007-11-21 In-vehicle secondary battery internal state detection device
DE102008058292.1A DE102008058292B4 (en) 2007-11-21 2008-11-20 Method and device for detecting the internal electrical condition of a vehicle secondary battery
US12/275,653 US7990111B2 (en) 2007-11-21 2008-11-21 Method and apparatus for detecting internal electric state of in-vehicle secondary battery
CN2008101911603A CN101447688B (en) 2007-11-21 2008-11-21 Method and apparatus for detecting internal electric state of in-vehicle secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301708A JP4564999B2 (en) 2007-11-21 2007-11-21 In-vehicle secondary battery internal state detection device

Publications (2)

Publication Number Publication Date
JP2009126278A true JP2009126278A (en) 2009-06-11
JP4564999B2 JP4564999B2 (en) 2010-10-20

Family

ID=40817634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301708A Active JP4564999B2 (en) 2007-11-21 2007-11-21 In-vehicle secondary battery internal state detection device

Country Status (1)

Country Link
JP (1) JP4564999B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280175A (en) * 2008-05-26 2009-12-03 Nippon Soken Inc Charge control device for secondary battery
JP2016539320A (en) * 2013-10-01 2016-12-15 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Method and apparatus for evaluating deterioration state of lithium battery
JP2019158531A (en) * 2018-03-12 2019-09-19 古河電気工業株式会社 Data processing device and diagnosis method
JP2021048746A (en) * 2019-09-20 2021-03-25 株式会社デンソー Remaining capacity setting device
CN117129883A (en) * 2023-10-25 2023-11-28 广东亿昇达科技有限公司 Loop control-based battery detection method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3249788B2 (en) * 1999-05-07 2002-01-21 エヌイーシーモバイルエナジー株式会社 Battery pack power supply
JP2003059544A (en) * 2001-05-29 2003-02-28 Canon Inc Inside information detecting method of secondary cell, inside information detecting device, inside information detecting program and medium storing same program
JP2007121030A (en) * 2005-10-26 2007-05-17 Denso Corp Internal status detection system for vehicular electric storage device
JP2007271424A (en) * 2006-03-31 2007-10-18 Auto Network Gijutsu Kenkyusho:Kk System for managing battery state

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3249788B2 (en) * 1999-05-07 2002-01-21 エヌイーシーモバイルエナジー株式会社 Battery pack power supply
JP2003059544A (en) * 2001-05-29 2003-02-28 Canon Inc Inside information detecting method of secondary cell, inside information detecting device, inside information detecting program and medium storing same program
JP2007121030A (en) * 2005-10-26 2007-05-17 Denso Corp Internal status detection system for vehicular electric storage device
JP2007271424A (en) * 2006-03-31 2007-10-18 Auto Network Gijutsu Kenkyusho:Kk System for managing battery state

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280175A (en) * 2008-05-26 2009-12-03 Nippon Soken Inc Charge control device for secondary battery
JP2016539320A (en) * 2013-10-01 2016-12-15 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Method and apparatus for evaluating deterioration state of lithium battery
JP2019158531A (en) * 2018-03-12 2019-09-19 古河電気工業株式会社 Data processing device and diagnosis method
JP2021048746A (en) * 2019-09-20 2021-03-25 株式会社デンソー Remaining capacity setting device
JP7347063B2 (en) 2019-09-20 2023-09-20 株式会社デンソー Remaining capacity setting device
CN117129883A (en) * 2023-10-25 2023-11-28 广东亿昇达科技有限公司 Loop control-based battery detection method and device
CN117129883B (en) * 2023-10-25 2024-02-09 广东亿昇达科技有限公司 Loop control-based battery detection method and device

Also Published As

Publication number Publication date
JP4564999B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
KR101486470B1 (en) Apparatus and method for estimating battery state
US9037426B2 (en) Systems and methods for determining cell capacity values in a multi-cell battery
JP5393837B2 (en) Battery charge rate estimation device
US20180001782A1 (en) Method and device for detecting soc of battery
US8000915B2 (en) Method for estimating state of charge of a rechargeable battery
US11022653B2 (en) Deterioration degree estimation device and deterioration degree estimation method
US20100036627A1 (en) Apparatus and method for determination of the state-of-charge of a battery when the battery is not in equilibrium
JP2020060581A (en) Power storage element managing device, method for resetting soc, power storage element module, power storage element management program, and moving body
US7990111B2 (en) Method and apparatus for detecting internal electric state of in-vehicle secondary battery
JP2007121030A (en) Internal status detection system for vehicular electric storage device
JP3006298B2 (en) Battery remaining capacity meter
JP5704108B2 (en) Battery system and estimation method
JP4494454B2 (en) In-vehicle secondary battery internal state detection device
WO2015141580A1 (en) Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
KR20120031611A (en) Estimating apparatus and method of state of health(soh) of battery in vehicle
WO2014147899A1 (en) Method for estimating fully-charged power capacity, and device
US20140125348A1 (en) System and method for estimating the end-of-charge time of a battery
US20140184233A1 (en) Method for checking deterioration of battery
JP4564999B2 (en) In-vehicle secondary battery internal state detection device
JP6421986B2 (en) Secondary battery charging rate estimation method, charging rate estimation device, and soundness estimation device
JP7321963B2 (en) Method for estimating deterioration of secondary battery, method for estimating lifetime, and control device
JP2010203935A (en) Device of estimating inputtable/outputtable power of secondary battery
JP2014176196A (en) Battery controller and battery control method
JP2016024148A (en) Method of estimating state of secondary battery
JP2021131344A (en) Method for measuring side-reaction current value of secondary battery, life estimation method, and inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4564999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250