JP2009125693A - Catalyst body and its production method - Google Patents

Catalyst body and its production method Download PDF

Info

Publication number
JP2009125693A
JP2009125693A JP2007305109A JP2007305109A JP2009125693A JP 2009125693 A JP2009125693 A JP 2009125693A JP 2007305109 A JP2007305109 A JP 2007305109A JP 2007305109 A JP2007305109 A JP 2007305109A JP 2009125693 A JP2009125693 A JP 2009125693A
Authority
JP
Japan
Prior art keywords
boron
nitrogen
catalyst
catalyst body
containing carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007305109A
Other languages
Japanese (ja)
Other versions
JP5247129B2 (en
Inventor
Hideki Nukui
秀樹 温井
Hironori Aihara
浩範 粟飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2007305109A priority Critical patent/JP5247129B2/en
Publication of JP2009125693A publication Critical patent/JP2009125693A/en
Application granted granted Critical
Publication of JP5247129B2 publication Critical patent/JP5247129B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst body for a fuel cell which can greatly reduce a using amount of a noble metal material which is expensive and limited in terms of natural resources, has a high conductivity and a high catalytic activity, also hardly undergoes deterioration with time due to diffusion of a catalyst particle, etc. and is high in stability, and to provide its production method. <P>SOLUTION: The catalyst body has a carbon material containing boron as a base body, wherein a nitrogen atom is doped on the surface of the B containing carbon material and further a catalytic active metal particle is preferably supported on the surface. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体高分子型燃料電池用の触媒体及びその製造方法に関する。   The present invention relates to a catalyst body for a polymer electrolyte fuel cell and a method for producing the same.

白金等の貴金属系触媒は優れた触媒活性を有することから、様々な分野で利用されている。例えば、燃料電池や電気化学プロセス等においては、カーボン等の担体上に触媒活性成分である貴金属を分散担持させたものが広く用いられている。   Since noble metal catalysts such as platinum have excellent catalytic activity, they are used in various fields. For example, in fuel cells, electrochemical processes, and the like, those in which a noble metal that is a catalytically active component is dispersed and supported on a carrier such as carbon are widely used.

近年、環境負荷物質の排出抑制やエネルギーの効率的利用の意識が高まり、燃料電池を自動車や家庭用電源として利用する開発が盛んに進められている。なかでもPEFC(polymer electrolyte fuel cell)と略される固体高分子型燃料電池は比較的低温で作動できることから注目されている。このPEFCには電極用触媒として主に白金触媒が検討されているが、過酷な使用環境が想定される自動車への応用に関し、現状の白金担持触媒体は耐久性の面で不十分である。また、白金は高価な上、資源供給面でも不安があるとされ、より効率的な白金利用方法の開発や安価で供給不安のない触媒材料の開発が求められている。   In recent years, awareness of the suppression of the discharge of environmentally hazardous substances and the efficient use of energy has increased, and the development of using fuel cells as automobiles and household power sources has been actively promoted. Among them, a polymer electrolyte fuel cell, which is abbreviated as PEFC (Polymer Electrolyte Fuel Cell), is attracting attention because it can operate at a relatively low temperature. In this PEFC, a platinum catalyst is mainly studied as an electrode catalyst. However, the present platinum-supported catalyst body is insufficient in terms of durability in terms of application to an automobile in which a severe use environment is assumed. Further, platinum is expensive, and it is said that there is anxiety in terms of resource supply, and development of a more efficient method of using platinum and development of a catalyst material that is inexpensive and does not cause anxiety of supply are required.

高価な白金を効率的に利用する方法としては、例えば特許文献1に、粒子径の小さな白金粒子をカーボン担体表面に分散担持することで、反応表面積を増大させ、単位触媒重量あたりの触媒活性を高め、これにより白金の利用効率を高める技術が開示されている。
該文献の方法では、白金を高分散できる一方、担持された白金がカーボン担体より脱落しやすく、白金をより安定に担持することが課題となっている。
As a method of efficiently using expensive platinum, for example, Patent Document 1 discloses that platinum particles having a small particle diameter are dispersed and supported on the surface of a carbon support to increase the reaction surface area and increase the catalytic activity per unit catalyst weight. Techniques have been disclosed for enhancing and thereby increasing the utilization efficiency of platinum.
In the method of this document, while platinum can be highly dispersed, the supported platinum is easily removed from the carbon support, and the problem is that platinum is supported more stably.

また、白金担持触媒はセル稼働中に白金の溶解や再析出が繰り返され、次第に白金触媒粒子が結合して肥大化することにより電極活性が低下することが知られており、そのメカニズムの解明や劣化抑制方法が盛んに研究されている。白金触媒の溶解安定性を高める方法としては、例えば特許文献2に、白金粒子を導電性高分子で覆うことで溶解析出に対する耐性を高める方法が開示されている。
該文献によれば、白金粒子を導電性高分子で被覆しているため、燃料等の物質移動の障害があり高い活性は期待できないという問題を有している。
In addition, platinum-supported catalysts are known to undergo repeated dissolution and reprecipitation of platinum while the cell is in operation. Degradation suppression methods are actively studied. As a method for increasing the dissolution stability of a platinum catalyst, for example, Patent Document 2 discloses a method for increasing resistance to dissolution and precipitation by covering platinum particles with a conductive polymer.
According to this document, since platinum particles are coated with a conductive polymer, there is a problem that high activity cannot be expected due to obstacles in mass transfer of fuel and the like.

また、特許文献3にカーボン材料に窒素原子および/又はホウ素原子がドープされたカーボンアロイ微粒子を基材とした燃料電池用電極及びその製造方法が開示されている。この方法では、窒素とホウ素が同時にドーピングされているため高い導電性を有する触媒体が得られにくく、結果的に高い触媒活性を得ることが困難である。また該文献に記載されている方法では炭化するための加熱温度にも制限があり、高い導電性は期待できない。   Patent Document 3 discloses a fuel cell electrode based on carbon alloy fine particles in which a carbon material is doped with nitrogen atoms and / or boron atoms, and a method for producing the same. In this method, since nitrogen and boron are simultaneously doped, it is difficult to obtain a catalyst body having high conductivity, and as a result, it is difficult to obtain high catalytic activity. Further, the method described in this document has a limitation on the heating temperature for carbonization, and high conductivity cannot be expected.

特許文献4及び非特許文献1では、炭素原料であるポリマーに、遷移金属錯体を添加し、これを炭素化することにより得られる直径数十nmの中空球殻状のナノ炭素構造を有し、該炭素粒子の炭素網面のエッジ面に窒素やホウ素が含有されてなる燃料電池用触媒及びその製造方法が開示されている。
そのような特殊な構造を有する炭素材は、それ自身が酸素還元活性を有するため、非白金化や白金の使用量を大幅に低減できると記載されている。しかし、窒素とホウ素を同時にドーピングすることにより炭素材の導電性が低下することが非特許文献2から推定され、実用の触媒を得るには更なる導電性の改良が必要であると考えられる。
Patent Document 4 and Non-Patent Document 1 have a hollow carbon shell-like nanocarbon structure with a diameter of several tens of nanometers obtained by adding a transition metal complex to a polymer that is a carbon raw material and carbonizing it. A fuel cell catalyst in which nitrogen and boron are contained in the edge surface of the carbon network surface of the carbon particles and a method for producing the same are disclosed.
It is described that the carbon material having such a special structure itself has oxygen reduction activity, so that it can be non-platinized and the amount of platinum used can be significantly reduced. However, it is estimated from Non-Patent Document 2 that the conductivity of the carbon material is reduced by simultaneously doping nitrogen and boron, and it is considered that further improvement in conductivity is necessary to obtain a practical catalyst.

非特許文献3には炭素材に窒素をドープしてその表面に金属イオンが配位された触媒体が開示されているが、窒素のみのドープであると加熱などの環境変化で窒素成分が脱離しやすく触媒の耐久性に問題がある。一方、ホウ素だけをドープした場合だと表面に露出したホウ素成分は酸化しやすく、水などが接触することにより流出しやすく、活性点形成には至りにくい。   Non-Patent Document 3 discloses a catalyst body in which a carbon material is doped with nitrogen and metal ions are coordinated on its surface. However, when nitrogen is doped only, nitrogen components are removed due to environmental changes such as heating. There is a problem in the durability of the catalyst because it is easily separated. On the other hand, when only boron is doped, the boron component exposed on the surface is easily oxidized, and easily flows out by contact with water or the like, and it is difficult to form active sites.

以上のように、高触媒活性、高導電性及び高耐久性を併せ持つ触媒体は見出されていない。触媒活性を高める方法としては官能基で炭素担体表面を修飾し、白金などを析出させる際に白金が高分散しやすい構造を形成する方法が提案されている。しかし、高い活性を得るためには白金などの触媒が高分散しているだけでなく、高い導電性が維持されていなければならない。   As described above, a catalyst body having both high catalytic activity, high conductivity, and high durability has not been found. As a method for enhancing the catalytic activity, a method is proposed in which the surface of the carbon support is modified with a functional group to form a structure in which platinum is easily dispersed when platinum or the like is deposited. However, in order to obtain high activity, not only a catalyst such as platinum is highly dispersed, but also high conductivity must be maintained.

また、触媒活性を高める方法が提案される一方で、触媒活性の経時的な劣化も大きな問題となっている。燃料電池セルの発電試験において白金などの貴金属系触媒粒子が一時的に溶解し、再析出する現象を繰り返しながら触媒粒子が肥大化し、触媒性能が徐々に低下する現象が認められている。またこの現象により白金触媒が電解質膜中への拡散が進行することが報告され、如何に安定な触媒を形成するかが大きな課題となっている。このように、燃料電池技術を普及するためには高い触媒活性と高い安定性を両立する方法の確立が強く求められる。   Further, while a method for increasing the catalytic activity is proposed, deterioration of the catalytic activity with time is also a serious problem. In a power generation test of a fuel cell, a phenomenon in which catalyst particles are enlarged while noble metal catalyst particles such as platinum are temporarily dissolved and re-deposited is repeated, and the catalyst performance gradually decreases. Further, it has been reported that the diffusion of the platinum catalyst into the electrolyte membrane due to this phenomenon, and how to form a stable catalyst has become a major issue. Thus, in order to spread the fuel cell technology, establishment of a method that achieves both high catalytic activity and high stability is strongly demanded.

特許第2642888号公報Japanese Patent No. 2642888 特開2007−175558号公報JP 2007-175558 A 特開2004−362802号公報JP 2004-362802 A 特開2007−207662号公報JP 2007-207662 A 尾崎,「炭素系非白金カソード触媒」,工業材料,日刊工業新聞社,2006年10月,第54巻,第10号,p.42−47Ozaki, “Carbon-based non-platinum cathode catalyst”, Industrial Materials, Nikkan Kogyo Shimbun, October 2006, Vol. 54, No. 10, p. 42-47 川口雅之,「ホウ素および窒素を含む炭素材料の作製,ナノ構造と物性」,炭素,2007年,第227巻,号数,p.107−114Masayuki Kawaguchi, “Preparation of Carbon Materials Containing Boron and Nitrogen, Nanostructures and Physical Properties”, Carbon, 2007, Vol. 227, No., p. 107-114 Frederic Jaouen 等,「Oxygen Reduction Catalysts for Electrolyte Fuel Cells from the pyrolysis of Iron Acetate Adsorbed on Various Carbon Supports」,J.Phys.Chem.B,米国,2003年,第107巻,No.6,p.1376−1386Frederic Jouen et al., "Oxygen Reduction Catalysts for Electricity Fuel Cells from the polarity of Iron Accompanied on Various Corp.". Phys. Chem. B, USA, 2003, vol. 107, no. 6, p. 1376-1386

本発明はこのような状況に鑑みて為されたものであって、高価で資源的に限りがある貴金属材料の使用量を極力低減でき、しかも高い触媒活性を得られ、かつ触媒粒子の拡散などによる経時劣化が生じにくく、安定性の高い触媒体を提供することを目的とする。   The present invention has been made in view of such a situation, and can reduce the amount of expensive and resource-limited noble metal material used as much as possible, obtain high catalytic activity, and diffuse catalyst particles. It is an object of the present invention to provide a highly stable catalyst body that is less likely to deteriorate with time.

本発明はホウ素や窒素などのヘテロ元素のドーピングがカーボン材料にいかなる機能をもたらすかに注目し、導電性を必要とする母材部分にはホウ素のみを導入することで高い導電性を実現し、表面層に多くの活性点を有するべく窒素原子を導入することで、高い活性を有する触媒体を形成し、さらにこのような形態の触媒体は高い耐久性を有することを見出して、高い活性と高い耐久性を両立する触媒体を完成させた。さらに、該触媒体表面に触媒活性を有する金属または金属錯体または金属イオンなどを担持することでより高活性で、しかも高い耐久性を有する触媒体を構築するに至った。   The present invention pays attention to what function the doping of hetero elements such as boron and nitrogen brings to the carbon material, and realizes high conductivity by introducing only boron into the base material portion that requires conductivity, By introducing nitrogen atoms so as to have many active sites in the surface layer, a catalyst body having high activity is formed, and furthermore, it is found that such a catalyst body has high durability and has high activity. A catalyst body with high durability was completed. Furthermore, a catalyst body having higher activity and higher durability has been constructed by supporting a catalytically active metal, metal complex or metal ion on the surface of the catalyst body.

従って本発明は以下に示すものである。   Therefore, the present invention is as follows.

第1の発明は、炭素、ホウ素及び窒素を含有する触媒体において、
ホウ素を含有する炭素材料を基体とし、
該ホウ素含有炭素材料の表面に窒素原子がドーピングされてなることを特徴とする触媒体である。
The first invention is a catalyst body containing carbon, boron and nitrogen,
The base material is a carbon material containing boron,
The catalyst body is characterized in that the surface of the boron-containing carbon material is doped with nitrogen atoms.

第2の発明は、さらに触媒金属が担持されてなることを特徴とする第1の発明に記載の触媒体である。   A second invention is the catalyst body according to the first invention, further comprising a catalyst metal supported thereon.

第3の発明は、前記ホウ素含有炭素材料が、粉体抵抗測定値で1.0Ω・cm以下であることを特徴とする第1又は2の発明に記載の触媒体である。   A third invention is the catalyst body according to the first or second invention, wherein the boron-containing carbon material has a measured value of powder resistance of 1.0 Ω · cm or less.

第4の発明は、前記窒素原子のドーピング量がX線光電子分光分析による測定で、0.5〜30重量%であることを特徴とする第1〜3の発明のいずれかに記載の触媒体である。   A fourth aspect of the present invention is the catalyst body according to any one of the first to third aspects, wherein the doping amount of the nitrogen atom is 0.5 to 30% by weight as measured by X-ray photoelectron spectroscopy. It is.

第5の発明は、前記触媒金属が、白金、金、ロジウム、ルテニウム、コバルト、ニッケル、錫、鉄、銅、パラジウム、銀からなる群から選択される少なくとも1種の金属であることを特徴とする第2〜4の発明のいずれかに記載の触媒体である。   A fifth invention is characterized in that the catalyst metal is at least one metal selected from the group consisting of platinum, gold, rhodium, ruthenium, cobalt, nickel, tin, iron, copper, palladium, and silver. The catalyst body according to any one of the second to fourth inventions.

第6の発明は、第1〜5の発明のいずれかに記載の触媒体を含有してなる燃料電池用電極である。   A sixth invention is an electrode for a fuel cell comprising the catalyst body according to any one of the first to fifth inventions.

第7の発明は、第6の発明に記載の電極を用いて構成される燃料電池である。   7th invention is a fuel cell comprised using the electrode as described in 6th invention.

第8の発明は、炭化水素と含ホウ素化合物とを、不活性ガス雰囲気にて、500〜2000℃の温度で熱分解し、含ホウ素炭素粉末を調整する工程、
次いで、該含ホウ素炭素粉末とアンモニアガス、酸素、窒素、水蒸気及び/又は一酸化窒素とを500〜1000℃にて作用させ、含ホウ素炭素粉末表面に窒素原子をドーピングし、窒素ドープ含ホウ素炭素粉末を得る工程、
を少なくとも包含することを特徴とする触媒体の製造方法である。
The eighth invention is a step of pyrolyzing a hydrocarbon and a boron-containing compound at a temperature of 500 to 2000 ° C. in an inert gas atmosphere to prepare a boron-containing carbon powder,
Next, the boron-containing carbon powder and ammonia gas, oxygen, nitrogen, water vapor and / or nitrogen monoxide are allowed to act at 500 to 1000 ° C., and nitrogen atoms are doped on the surface of the boron-containing carbon powder. Obtaining a powder;
Is a method for producing a catalyst body characterized in that

第9の発明は、炭化水素と含ホウ素化合物とを、不活性ガス雰囲気にて、500〜2000℃の温度で熱分解し、含ホウ素炭素粉末を調整する工程、
次いで、該含ホウ素炭素粉末を窒素含有ポリマーで被覆した後、不活性ガス下にて500℃〜1300℃の温度で焼成することにより窒素ドープ含ホウ素炭素粉末を得る工程、
を少なくとも包含することを特徴とする触媒体の製造方法である。
The ninth invention comprises a step of thermally decomposing a hydrocarbon and a boron-containing compound at a temperature of 500 to 2000 ° C. in an inert gas atmosphere to prepare a boron-containing carbon powder,
Next, after coating the boron-containing carbon powder with a nitrogen-containing polymer, a step of obtaining a nitrogen-doped boron-containing carbon powder by firing at a temperature of 500 ° C. to 1300 ° C. under an inert gas,
Is a method for producing a catalyst body characterized in that

第10の発明は、さらに、前記窒素ドープ含ホウ素炭素粉末を液中に分散した後、含触媒金属化合物溶液を加え、該窒素ドープ含ホウ素炭素粉末表面に触媒金属イオンを吸着させる工程、
該触媒金属イオンを化学的に還元し該窒素ドープ含ホウ素炭素粉末表面に触媒金属を担持する工程、
を包含することを特徴とする第8又は9の発明に記載の触媒体の製造方法である。
The tenth invention further includes a step of adding the catalyst-containing metal compound solution after dispersing the nitrogen-doped boron-containing carbon powder in the liquid, and adsorbing the catalyst metal ions on the surface of the nitrogen-doped boron-containing carbon powder,
A step of chemically reducing the catalytic metal ion and supporting the catalytic metal on the surface of the nitrogen-doped boron-containing carbon powder,
The method for producing a catalyst body according to the eighth or ninth invention, characterized in that

本発明の触媒体は触媒活性が高く、耐久性に優れ、さらには白金などの高価な貴金属の使用量を低減できることから、低コストでしかも信頼性に優れた触媒体が得られる。   Since the catalyst body of the present invention has high catalytic activity, excellent durability, and can reduce the amount of expensive noble metal such as platinum used, a catalyst body having low cost and excellent reliability can be obtained.

以下、本発明を実施するための最良の形態を説明する。
本発明の触媒体の特徴は、気相中の加熱反応(熱分解を含む)で得られたホウ素含有カーボン基体を用い、その表面に原子状態の窒素をドープすることにより、高い導電性を有するホウ素含有カーボン基体表面に、安定性の高い窒素原子を含有させた構造にある。
Hereinafter, the best mode for carrying out the present invention will be described.
A feature of the catalyst body of the present invention is that it has high conductivity by using a boron-containing carbon substrate obtained by a heating reaction (including thermal decomposition) in a gas phase and doping the surface with nitrogen in an atomic state. The boron-containing carbon substrate has a structure in which nitrogen atoms having high stability are contained.

ここにカーボン基体にホウ素のみを含有させる一方で窒素を導入しない理由としては、ホウ素を含有した炭素材料は導電性が良くなることが知られ、しかもホウ素を含有した場合であれば高い温度に加熱してもホウ素成分が脱離しにくいことが実験的に見出されたためである。
一方、窒素のみを含有した場合では高い温度に加熱した場合窒素成分が脱離しやすい欠点を有する。また窒素およびホウ素を同時に含有させた場合では半導体的性質を示し、カーボン基体の導電性が低下するため高い触媒活性が得られなかった。
The reason why only the boron is contained in the carbon substrate and nitrogen is not introduced is known to be that the carbon material containing boron is improved in conductivity, and if it contains boron, it is heated to a high temperature. This is because it has been experimentally found that the boron component is not easily desorbed.
On the other hand, in the case of containing only nitrogen, there is a drawback that the nitrogen component is easily desorbed when heated to a high temperature. Further, when nitrogen and boron were contained at the same time, semiconductor properties were exhibited, and the conductivity of the carbon substrate was lowered, so that high catalytic activity could not be obtained.

本発明に用いるカーボン基体について以下に説明する。
ホウ素のみを含有するカーボン基体は、1)ホウ素源とカーボン源とを配合し2000℃以上の温度に加熱することで炭素構造中に熱拡散させることで目的物を得る方法、2)ホウ素を含有するポリマーを形成した後に不活性雰囲気にて600℃以上の温度で加熱炭化処理をして目的物を得る方法、3)気相中にて原料ガスを600℃以上の温度で加熱しながら熱分解および/または反応させることで得ることができる。
The carbon substrate used in the present invention will be described below.
A carbon substrate containing only boron is 1) a method of obtaining a target product by thermally diffusing into a carbon structure by mixing a boron source and a carbon source and heating to a temperature of 2000 ° C. or higher, and 2) containing boron 3) A method of obtaining a target product by heating and carbonizing at a temperature of 600 ° C. or higher in an inert atmosphere after forming a polymer to be polymerized, and 3) Pyrolysis while heating the raw material gas at a temperature of 600 ° C. or higher And / or by reaction.

ここで、1)の方法では高い加熱温度を必要とすることから特別な製造設備を必要とし、工業生産を考えた場合には効率的な方法とはいえない。2)の方法はポリマーとなる原料をまず重合させて前駆体を得た後に不活性雰囲気中にて加熱炭化処理する方法であり、複雑な合成プロセスが必要となる。3)の方法は原料ガスの熱分解/または高温反応による単純な方法で得られることから理想的な製造方法といえる。   Here, since the method 1) requires a high heating temperature, special manufacturing equipment is required, and it cannot be said that it is an efficient method when considering industrial production. The method 2) is a method in which a raw material to be a polymer is first polymerized to obtain a precursor, followed by heat carbonization treatment in an inert atmosphere, and a complicated synthesis process is required. The method 3) can be said to be an ideal production method because it can be obtained by a simple method by thermal decomposition of the raw material gas and / or high temperature reaction.

3)の熱分解法により該ホウ素含有炭素を合成する方法は川口雅之,「ホウ素および窒素を含む炭素材料の作製,ナノ構造と物性」,炭素,2007年,第227巻,号数,p.107−114に詳述されている。すなわち炭化水素の熱分解反応時及び/又は燃焼反応時にホウ素源を存在させる方法により得ることができる。ここで、炭化水素としてはガス状炭化水素であるメタン、エタン、プロパン、ブタン、アセチレン、天然ガスのほか、液状炭化水素である石油類、固体状炭化水素であるパラフィン類などを例示することができる。ホウ素源としては塩化ホウ素、ホウ酸、有機ホウ素などを例示することができる。好適には炭化水素としてはアセチレン、ホウ素源としては有機ホウ素化合物および塩化ホウ素が挙げられる。   3) The method of synthesizing the boron-containing carbon by the thermal decomposition method is described by Masayuki Kawaguchi, “Preparation of carbon materials containing boron and nitrogen, nanostructure and physical properties”, Carbon, 2007, Vol. 227, No., p. 107-114. That is, it can be obtained by a method in which a boron source is present at the time of hydrocarbon pyrolysis reaction and / or combustion reaction. Examples of hydrocarbons include gaseous hydrocarbons such as methane, ethane, propane, butane, acetylene, natural gas, petroleum hydrocarbons that are liquid hydrocarbons, and paraffins that are solid hydrocarbons. it can. Examples of the boron source include boron chloride, boric acid, and organic boron. Preferably, the hydrocarbon includes acetylene, and the boron source includes an organic boron compound and boron chloride.

本発明に用いるホウ素含有炭素を合成する方法として好ましくは、ガス状の炭化水素と加熱気化させたホウ素源とを不活性ガス気流により、予め所定温度に加熱した反応管に導入し、熱分解反応を行うことによる。この熱分解反応温度は好ましくは500〜2000℃にて行う。
炭化水素に対するホウ素源の含有量は好ましくは焼成後において0.3〜10.0重量%である。
As a method for synthesizing boron-containing carbon used in the present invention, it is preferable to introduce a gaseous hydrocarbon and a heated and vaporized boron source into a reaction tube heated to a predetermined temperature in advance by an inert gas stream, and perform a pyrolysis reaction. By doing. The thermal decomposition reaction temperature is preferably 500 to 2000 ° C.
The boron source content relative to the hydrocarbon is preferably 0.3 to 10.0% by weight after calcination.

このようにして得られるホウ素含有カーボン基体において、本発明では、該ホウ素含有カーボン粉末の粉体抵抗測定値で1.0Ω・cm以下、好ましくは0.001〜1.0Ω・cmであるものを用いる。   In the boron-containing carbon substrate thus obtained, in the present invention, the boron-containing carbon powder has a powder resistance measurement value of 1.0 Ω · cm or less, preferably 0.001 to 1.0 Ω · cm. Use.

次に、カーボン基体表面に窒素をドープさせる方法を説明する。
上記で得られたホウ素含有カーボン基体表面への窒素ドープの方法としては、4)窒素を含有するポリマーにて該ホウ素含有カーボンを被覆した後に不活性雰囲気中における熱処理により目的物を得る方法、5)気相中にて加熱下、窒素、酸素、アンモニア、水蒸気および/又は一酸化窒素などと反応させて表面に窒素をドーピングする方法などがある。
Next, a method for doping nitrogen on the surface of the carbon substrate will be described.
The method for doping nitrogen on the surface of the boron-containing carbon substrate obtained above is as follows: 4) A method of obtaining the target product by heat treatment in an inert atmosphere after coating the boron-containing carbon with a polymer containing nitrogen. There is a method of doping the surface with nitrogen by reacting with nitrogen, oxygen, ammonia, water vapor and / or nitrogen monoxide under heating in the gas phase.

4)の方法としては、前記ホウ素含有カーボン基体表面に窒素含有樹脂を吸着および/または重合させた後に不活性雰囲気中で炭化処理する方法や、前記ホウ素含有カーボン基体表面に窒素を含む樹脂および/またはモノマーをバインダーとなる他の非窒素含有樹脂成分とともに接着させた後に不活性雰囲気中で炭化処理する方法などが挙げられる。   As the method of 4), a method of carbonizing in an inert atmosphere after adsorbing and / or polymerizing a nitrogen-containing resin on the surface of the boron-containing carbon substrate, a resin containing nitrogen on the surface of the boron-containing carbon substrate, and / or Or the method of carbonizing in an inert atmosphere after making a monomer adhere | attach with the other non-nitrogen containing resin component used as a binder, etc. are mentioned.

ここで不活性雰囲気とは、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気下であり、炭素成分や窒素成分の脱離を防ぐ雰囲気とする。炭化処理はこれら不活性ガス雰囲気下500℃〜1300℃の温度、さらに好ましくは600℃〜1000℃の温度範囲による熱処理によって行う。ここで500℃未満の温度では炭素化が効率的に進みにくく、その結果高い導電性が得られないために触媒活性が低くなるおそれがある、1300℃を超える温度ではホウ素の存在により安定化させている窒素といえども脱離することが考えられるからである。さらに600℃以上の温度で加熱すると炭化が進行しやすく、また1000℃以下の加熱としたほうがエネルギー的に有利であると同時に加熱方法の制限を受けにくいからである。   Here, the inert atmosphere is an inert gas atmosphere such as nitrogen, argon, or helium, and is an atmosphere that prevents desorption of the carbon component and the nitrogen component. The carbonization treatment is performed by a heat treatment in a temperature range of 500 ° C. to 1300 ° C., more preferably in a temperature range of 600 ° C. to 1000 ° C. in an inert gas atmosphere. Here, carbonization is difficult to proceed efficiently at temperatures below 500 ° C., and as a result, high conductivity may not be obtained, and the catalytic activity may be lowered. At temperatures above 1300 ° C., stabilization is achieved by the presence of boron. This is because it is considered that even nitrogen that is present is desorbed. Further, when heating at a temperature of 600 ° C. or higher, carbonization tends to proceed, and heating at 1000 ° C. or lower is more advantageous in terms of energy and at the same time is less susceptible to heating method limitations.

前記窒素含有樹脂としては、窒素を含有している樹脂であれば良く、とくに制限は受けないが例えば、メラミン樹脂、アニリン樹脂、ピロール樹脂、ベンゾオキサジン樹脂、ビスマレイミド樹脂、ビニルピロリドン樹脂などが例示され、窒素含有モノマーとしてはメラミン誘導体、尿素、リグニン、アニリン誘導体、ピロール誘導体などでありこれらを単独あるいは2種以上を併用しても良い。非窒素含有樹脂としては、フェノール樹脂、ポリビニルアルコール、ブチラール樹脂、アクリル樹脂、セルロース類、塩化ビニル樹脂、フラン樹脂、ブタジエンゴム、エポキシ樹脂などが例示され、硬化剤が併用されて良い。例えば、フェノール系樹脂の場合、窒素含有イソシアネート、ヘキサメチレンテトラミン、アミン系硬化促進剤を用いても良い。エポキシ系樹脂を用いる場合、別途イミダゾール、酸無水物などを添加しても良い。ウレタン系樹脂を用いる場合、別途第3級アミン、水などを添加しても良い。   The nitrogen-containing resin is not particularly limited as long as it contains nitrogen, and examples thereof include melamine resin, aniline resin, pyrrole resin, benzoxazine resin, bismaleimide resin, and vinylpyrrolidone resin. As the nitrogen-containing monomer, melamine derivatives, urea, lignin, aniline derivatives, pyrrole derivatives, etc. may be used alone or in combination of two or more. Examples of the non-nitrogen-containing resin include phenol resin, polyvinyl alcohol, butyral resin, acrylic resin, celluloses, vinyl chloride resin, furan resin, butadiene rubber, and epoxy resin, and a curing agent may be used in combination. For example, in the case of a phenol-based resin, nitrogen-containing isocyanate, hexamethylenetetramine, or an amine-based curing accelerator may be used. When an epoxy resin is used, imidazole, acid anhydride, or the like may be added separately. When using a urethane-based resin, a tertiary amine, water, or the like may be added separately.

5)の方法としては、前記ホウ素含有カーボン基体を気相中にて、窒素、酸素、アンモニア、水蒸気および/又は一酸化窒素などのガスを流しながら500℃〜1000℃の加熱を行うことにより、該カーボン基体の表面に窒素を含有させる方法である。炭素材表面に窒素を導入する方法として対象となる炭素材料をアンモニアガスと酸素の流通下550℃〜800℃で加熱することにより窒素をドーピングする方法が非特許文献1、特許文献3により知られている。   As a method of 5), the boron-containing carbon substrate is heated at 500 ° C. to 1000 ° C. while flowing a gas such as nitrogen, oxygen, ammonia, water vapor and / or nitrogen monoxide in the gas phase, In this method, nitrogen is contained in the surface of the carbon substrate. Non-Patent Documents 1 and 3 disclose a method of doping nitrogen by heating a target carbon material at 550 ° C. to 800 ° C. under a flow of ammonia gas and oxygen as a method of introducing nitrogen into the surface of the carbon material. ing.

本発明は該既知の方法を応用し、アンモニアガス、酸素、窒素、水蒸気および/又は一酸化窒素を用いて、加熱温度を500℃〜1000℃にて窒素のドーピングを行うことを特徴とする。これらガスは連続的に流しても、間欠的に流してもよく、また交互に流しても良い。反応温度を500℃以上としたのは混合ガス中でこの温度からドーピングできたことと、1000℃以下としたのは、ガスを交互に流す方法により窒素をドーピングできたからである。   The present invention is characterized by applying the known method and doping nitrogen at a heating temperature of 500 ° C. to 1000 ° C. using ammonia gas, oxygen, nitrogen, water vapor and / or nitrogen monoxide. These gases may flow continuously, intermittently, or alternately. The reason why the reaction temperature was set to 500 ° C. or higher was that doping could be performed from this temperature in the mixed gas, and the reason why the reaction temperature was set to 1000 ° C. or lower was that nitrogen could be doped by a method of alternately flowing the gas.

このようにして得られる触媒体は粒子状、繊維状でも良く、粒子径または繊維の場合にはその断面径が10nm〜100μmのものを好適に用いることが出来る。該カーボン基体に窒素を含有する層を形成する場合、その層の厚さは高い導電性を維持することを必要とすることから、加熱による炭化処理をして導電性を高めているものの、理想的には薄いほど良く、最も理想的には表面に原子レベルの厚さでドーピングされているのが良い。しかし実際には粒子表面の凹凸やポリマーを介しての被覆を考慮すると50nm以下が良く、さらに理想的には20nm以下が良い。   The catalyst body thus obtained may be in the form of particles or fibers. In the case of particle diameter or fiber, those having a cross-sectional diameter of 10 nm to 100 μm can be suitably used. When a layer containing nitrogen is formed on the carbon substrate, the thickness of the layer needs to maintain high conductivity. It is better that the thickness is thinner, and most ideally, the surface is doped with an atomic level thickness. However, in actuality, considering the irregularities on the particle surface and coating via a polymer, the thickness is preferably 50 nm or less, and more ideally 20 nm or less.

該触媒体中に含まれるホウ素量は燃焼により残存するホウ素酸化物を塩酸水溶液中へ溶出してICP分析する方法により求めることができ、好ましいホウ素含有量は0.3重量%〜10重量%である。
該触媒体中に含まれる窒素は、分析方法としてX線光電子分光分析法(以下、XPSと記載)による測定、および熱伝導度法を応用した有機元素測定装置による測定などがあげられるが、XPSによる分析は粒子表面に含まれる窒素が検出でき、熱伝導度法を応用した有機元素測定装置による分析では全体に含まれる窒素量を検出することができる。そこで、XPSによる窒素量評価では0.5〜30重量%が好ましく、熱伝導度法を応用した有機元素測定装置による評価では10%以下の検出量であることが望ましい。
得られた粉体の導電性は、粉体抵抗測定装置(ダイヤインスツルメンツ社製MCP−PD51型)により粉体抵抗を測定することにより評価を行うことができる。
本発明の触媒体の好ましい粉体抵抗測定値は1.0Ω・cm以下、好ましくは0.001〜1.0Ω・cmであるものを用いる。
The amount of boron contained in the catalyst body can be determined by a method in which boron oxide remaining by combustion is eluted into an aqueous hydrochloric acid solution and analyzed by ICP, and the preferable boron content is 0.3 wt% to 10 wt%. is there.
Nitrogen contained in the catalyst body may be measured by X-ray photoelectron spectroscopy (hereinafter referred to as XPS) as an analytical method, or by an organic element measuring device applying a thermal conductivity method. The analysis by can detect nitrogen contained in the particle surface, and the analysis by the organic element measuring device applying the thermal conductivity method can detect the amount of nitrogen contained in the whole. Therefore, 0.5 to 30% by weight is preferable in the nitrogen amount evaluation by XPS, and it is desirable that the detected amount be 10% or less in the evaluation by the organic element measuring device applying the thermal conductivity method.
The conductivity of the obtained powder can be evaluated by measuring the powder resistance with a powder resistance measuring apparatus (MCP-PD51 type manufactured by Dia Instruments).
The preferable measured value of the powder resistance of the catalyst body of the present invention is 1.0 Ω · cm or less, preferably 0.001 to 1.0 Ω · cm.

本発明の触媒体は前記窒素ドープ含ホウ素炭素粉末表面にさらに触媒金属を担持させたものが好ましい。該触媒金属としては、白金、金、ロジウム、ルテニウム、コバルト、ニッケル、錫、鉄、銅、パラジウム及び銀からなる群から選ばれる少なくとも1つの金属元素であることが好ましい。
上記金属を担持させる方法としては、前記窒素ドープ含ホウ素炭素粉末を液中に分散した後、含触媒金属化合物溶液を加え、該窒素ドープ含ホウ素炭素粉末表面に触媒金属イオンを吸着させ、該触媒金属イオンを化学的に還元し該窒素ドープ含ホウ素炭素粉末表面に触媒金属を担持する方法がある。
The catalyst body of the present invention preferably has a catalyst metal supported on the surface of the nitrogen-doped boron-containing carbon powder. The catalyst metal is preferably at least one metal element selected from the group consisting of platinum, gold, rhodium, ruthenium, cobalt, nickel, tin, iron, copper, palladium and silver.
As the method for supporting the metal, the nitrogen-doped boron-containing carbon powder is dispersed in a liquid, a catalyst-containing metal compound solution is added, and catalytic metal ions are adsorbed on the surface of the nitrogen-doped boron-containing carbon powder. There is a method in which metal ions are chemically reduced and a catalyst metal is supported on the surface of the nitrogen-doped boron-containing carbon powder.

次いで本発明の触媒体を用いた評価用電極を作製する方法について説明する。
まず、得られた触媒体30mgに、5重量%パーフルオロスルホン酸(登録商標Nafion)溶液1mlを添加し、ペーストを作製した。このペーストを、グラッシーカーボン電極上に塗布および乾燥することにより評価用電極を得た。こうして作製した電極を作用電極として用い、対極に白金電極を用いて触媒特性の評価を行った。測定は北斗電工製電気化学測定システムHZ−3000により行った。上記作用電極および白金電極を0.5Mの硫酸水溶液中に浸漬し、酸素流通下+1.0V〜−0.2V(対Ag/AgCl電極)の走査範囲でLSV測定を行った。
Next, a method for producing an evaluation electrode using the catalyst body of the present invention will be described.
First, 1 ml of a 5 wt% perfluorosulfonic acid (registered trademark Nafion) solution was added to 30 mg of the obtained catalyst body to prepare a paste. This paste was applied onto a glassy carbon electrode and dried to obtain an evaluation electrode. The thus produced electrode was used as a working electrode, and a platinum electrode was used as a counter electrode to evaluate catalyst characteristics. The measurement was performed by Hokuto Denko's electrochemical measurement system HZ-3000. The working electrode and the platinum electrode were immersed in a 0.5 M aqueous sulfuric acid solution, and LSV measurement was performed in a scanning range of +1.0 V to −0.2 V (vs. Ag / AgCl electrode) under oxygen flow.

耐久性試験としては1.0V(対Ag/AgCl電極)の電位で数百時間維持したのちに上記LSV測定を行い、触媒性能の変化を調べる方法が想定される。しかし、ここでは測定を効率的に行うため、より高い電位を含む走査サイクルを繰り返すことでこれに代えた。すなわち、アルゴンガス雰囲気下−0.2〜+1.3Vの範囲で走査サイクルを10回繰り返した後、前記LSV測定を行い耐久性試験後の触媒性能とした。   As a durability test, a method of examining the change in catalyst performance by performing the above LSV measurement after maintaining at a potential of 1.0 V (vs. Ag / AgCl electrode) for several hundred hours is assumed. However, here, in order to perform the measurement efficiently, this was replaced by repeating a scanning cycle including a higher potential. That is, after repeating the scanning cycle 10 times in the range of −0.2 to +1.3 V in an argon gas atmosphere, the LSV measurement was performed to obtain the catalyst performance after the durability test.

固体高分子形燃料電池は、電池モジュール内に組み込まれたセルがシート状の固体高分子電解質を挟むようにして対面配置されるアノード(燃料極)およびカソード(空気極)とから構成されている。この固体高分子電解質としては、パーフルオロスルホン酸樹脂膜に代表されるフッ素系イオン交換樹脂膜などが主に用いられている。触媒粉末はこの固体高分子膜の表面に塗布され層状の電極反応層が形成される。さらに、アノードおよびカソードは、上記燃料電池用電極触媒を含む電極反応層支持とガス拡散層とを兼ねた集電体を備えて構成され、ホットプレスにより密着することにより、MEA(membrane electrode assembly)として一体化される。   A solid polymer fuel cell is composed of an anode (fuel electrode) and a cathode (air electrode), which are arranged facing each other so that cells incorporated in a battery module sandwich a sheet-like solid polymer electrolyte. As this solid polymer electrolyte, a fluorine ion exchange resin membrane represented by a perfluorosulfonic acid resin membrane is mainly used. The catalyst powder is applied to the surface of the solid polymer film to form a layered electrode reaction layer. Furthermore, the anode and the cathode are configured to include a current collector that serves both as an electrode reaction layer support including the fuel cell electrode catalyst and a gas diffusion layer, and are brought into close contact with each other by hot pressing, whereby a MEA (membrane electrode assembly). Integrated as

上記集電体には、触媒層を支持すると共に反応ガス(燃料ガスと空気)の供給排出を行い、集電体材料としてはカーボンペーパーなど多孔質で導電性の高いシートが用いられる。上記電極のそれぞれに反応ガスが供給されると、両電極に備えられた触媒層と固体高分子電解質膜との境界に気相(反応ガス)、液相(電解質)、固相(触媒)の三相界面が形成され、電気化学反応により直流電流が発生する。
上記電気化学反応において、
カソード側:O+4H+4e→2H
アノード側:H→2H+2e
の反応が起こり、アノード側で生成したHイオンは固体高分子電解質膜中をカソード側に向かって移動し、e(電子)は外部の負荷を通ってカソード側へ移動する。一方、カソード側では空気中に含まれる酸素と、アノード側から移動してきたHイオンおよびeとが反応して水が生成される。この結果、固体高分子形燃料電池は、水素と酸素とから直流電流を発生し、水を生成することになる。
The current collector supports the catalyst layer and supplies and discharges reaction gas (fuel gas and air). As the current collector material, a porous and highly conductive sheet such as carbon paper is used. When a reactive gas is supplied to each of the electrodes, a gas phase (reactive gas), a liquid phase (electrolyte), a solid phase (catalyst) are formed at the boundary between the catalyst layer and the solid polymer electrolyte membrane provided on both electrodes. A three-phase interface is formed, and a direct current is generated by an electrochemical reaction.
In the above electrochemical reaction,
Cathode side: O 2 + 4H + + 4e → 2H 2 O
Anode side: H 2 → 2H + + 2e
The H + ions generated on the anode side move toward the cathode side through the solid polymer electrolyte membrane, and e (electrons) move to the cathode side through an external load. On the other hand, on the cathode side, oxygen contained in the air reacts with H + ions and e that have moved from the anode side to produce water. As a result, the polymer electrolyte fuel cell generates direct current from hydrogen and oxygen to generate water.

本発明では、高い導電性を得ることを目的としてホウ素を含有させたカーボンを基体材料とし、触媒活性点を賦与することを目的として該カーボン基体表面に窒素原子を含有する層を形成することにより目的とする触媒体を得た。得られた触媒体は高い触媒活性を有するのみならず、高い安定性を示すことが見出された。ここで、表面に導入した窒素の安定性が高くなった理由については明確には分かっていないが、ホウ素との相互作用により脱離しにくい安定な窒素として存在していると考えられる。   In the present invention, carbon containing boron is used as a base material for the purpose of obtaining high conductivity, and a layer containing nitrogen atoms is formed on the surface of the carbon base for the purpose of imparting a catalytic active point. The target catalyst body was obtained. It was found that the obtained catalyst body not only has high catalytic activity, but also exhibits high stability. Here, although the reason why the stability of nitrogen introduced to the surface is high is not clearly understood, it is considered that the nitrogen exists as stable nitrogen that is difficult to desorb due to interaction with boron.

このカーボン材料はこの状態でも触媒活性を発現したが、この表面に金属、金属錯体、金属イオンなど(以下触媒成分と表記)を担持することでさらに活性が高く、しかも安定性に優れた触媒を得ることができた。これは表面に含有させた窒素により担持成分が高分散状態で担持されたと同時に、前述のようにホウ素により安定化された窒素上に、前記触媒成分が担持固定されたことによると考えられる。   This carbon material exhibited catalytic activity even in this state, but by supporting a metal, metal complex, metal ion, etc. (hereinafter referred to as catalyst component) on this surface, a catalyst with higher activity and excellent stability can be obtained. I was able to get it. This is presumably because the supported component was supported in a highly dispersed state by nitrogen contained on the surface, and at the same time, the catalyst component was supported and fixed on nitrogen stabilized by boron as described above.

以下、本発明で得られた触媒体の具体的な実施形態について詳述する。   Hereinafter, specific embodiments of the catalyst body obtained in the present invention will be described in detail.

実施例1
アセチレンガスと加熱気化させた塩化ホウ素を窒素気流により、反応管(全長2m、直径0.1m)のあらかじめ1200℃に加熱した領域に送り込み、アセチレンの熱分解反応によりホウ素含有カーボン粉体を得た。得られた粉体に含まれるホウ素量を測定したところ1.3重量%であった。またこの粉体の粉体抵抗を測定したところ0.083Ω・cmであった。この粉体を用いて、窒素、アンモニア、酸素、および水蒸気流通下、反応管の700℃に加熱した領域で反応を行った。ここで窒素はガスを安定的に流通させる媒体および窒素源の役割であり、アンモニアは窒素源、酸素は表面を活性化させるのに必要であるが流通量が多いと収率を極端に低下させるため必要最小限の量を間歇的に導入した。水蒸気は反応を制御するために必要最小限の量を間歇的に導入した。得られた粉体に含まれるホウ素量を測定したところ1.2重量%であった。この粉体に含まれる窒素量を熱伝導法(有機元素分析装置2400IICHNS/O、Perkin Elmer製)により測定したところ0.4重量%であった。さらにこの粉体に対しXPSにより含有窒素量を測定したところ3.4重量%であった。またこの粉体の粉体抵抗を測定したところ0.097Ω・cmであった。ここで得た粉体を用いて触媒活性を調べた結果を図1に示す。また耐久性試験結果を図2に示す。
Example 1
Acetylene gas and heated and vaporized boron chloride were fed into a reaction tube (total length: 2 m, diameter: 0.1 m) in a region heated to 1200 ° C. in advance by a nitrogen stream, and boron-containing carbon powder was obtained by pyrolysis reaction of acetylene. . When the amount of boron contained in the obtained powder was measured, it was 1.3% by weight. The powder resistance of this powder was measured and found to be 0.083 Ω · cm. Using this powder, the reaction was performed in a region heated to 700 ° C. in a reaction tube under the flow of nitrogen, ammonia, oxygen, and water vapor. Here, nitrogen is a role of a medium and a nitrogen source for stably flowing gas, ammonia is a nitrogen source, and oxygen is necessary for activating the surface, but if the flow rate is large, the yield is extremely reduced. Therefore, the necessary minimum amount was introduced intermittently. Water vapor was intermittently introduced in the minimum amount necessary to control the reaction. The amount of boron contained in the obtained powder was measured and found to be 1.2% by weight. The amount of nitrogen contained in the powder was measured by a heat conduction method (organic element analyzer 2400IICHNS / O, manufactured by Perkin Elmer) and found to be 0.4% by weight. Further, the nitrogen content of this powder was measured by XPS and found to be 3.4% by weight. The powder resistance of this powder was measured and found to be 0.097 Ω · cm. The results of examining the catalytic activity using the powder obtained here are shown in FIG. The results of the durability test are shown in FIG.

実施例2
実施例1と同様に得たホウ素含有カーボン粉体を蒸留水中に分散し、ここにメチロールメラミンおよびフタロシアニン化合物を添加し、1時間還流を行った。水分除去後、さらにアルゴン雰囲気下750℃で1時間焼成を行うことにより触媒粉体を得た。得られた粉末に対しXPSにより含有窒素量を測定したところ2.8%重量であった。またこの粉体の粉体抵抗を測定したところ0.127Ω・cmであった。この触媒体の耐久性試験結果を図6に示す。
Example 2
The boron-containing carbon powder obtained in the same manner as in Example 1 was dispersed in distilled water, methylolmelamine and a phthalocyanine compound were added thereto, and refluxed for 1 hour. After removing the water, a catalyst powder was obtained by further calcining at 750 ° C. for 1 hour in an argon atmosphere. When the amount of nitrogen contained in the obtained powder was measured by XPS, it was 2.8% by weight. The powder resistance of this powder was measured and found to be 0.127 Ω · cm. FIG. 6 shows the durability test result of this catalyst body.

実施例3
実施例2で得られた粉体を蒸留水中に分散し、Ptとして添加量が20重量%となるように塩化白金酸水溶液を加え、エタノールを前記分散液に対し2%程度加えた後に0.05%水素化ホウ素ナトリウム水溶液を滴下してPtを析出させることで触媒体を得た。
Example 3
The powder obtained in Example 2 was dispersed in distilled water, an aqueous chloroplatinic acid solution was added so that the addition amount was 20% by weight as Pt, and about 2% of ethanol was added to the dispersion. A catalyst body was obtained by dropping a 05% aqueous sodium borohydride solution to precipitate Pt.

実施例4
実施例1で得た粉体を、蒸留水中に分散し、Ptとしての添加量が20重量%となるように塩化白金酸水溶液を加え、水分を除去後、水素流通下300℃に加熱することにより白金を担持した触媒粉体を得た。得られた粉体の触媒活性を調べた結果を図1に示す。また耐久性試験結果を図4に示す。
Example 4
Disperse the powder obtained in Example 1 in distilled water, add an aqueous solution of chloroplatinic acid so that the addition amount as Pt is 20% by weight, remove water, and then heat to 300 ° C. under hydrogen flow. Thus, a catalyst powder carrying platinum was obtained. The result of examining the catalytic activity of the obtained powder is shown in FIG. The durability test results are shown in FIG.

実施例5
ここで得られた触媒粉末を用いて、以下の通り固体高分子方燃料電池用の単セル電極を作製した。各触媒粉末を有機溶媒に分散させ、この分散液をPTFE製シートへ塗布して触媒層を形成した。これら得られた触媒粉末から形成した触媒層を、高分子電解質膜の両面に設置し、ホットプレスにより貼り合わせ、その両側に拡散層を設置して単セル電極を形成した。この単セル電極に、70℃に加熱したバブラを通過させた加湿空気を1L/min、アノード側の電極へは85℃に加熱したバブラを通過させた加湿水素を0.5L/min供給し、電流電圧特性を測定した。
その結果、実施例4の触媒体(電流密度1.2A/cmのとき電池電圧0.67V)は比較例4(電流密度1.2A/cmのとき電池電圧0.59V)の触媒体に比べ、高電流密度域で高い電圧が得られることが分かった。
Example 5
Using the catalyst powder obtained here, a single cell electrode for a polymer electrolyte fuel cell was produced as follows. Each catalyst powder was dispersed in an organic solvent, and this dispersion was applied to a PTFE sheet to form a catalyst layer. The catalyst layers formed from these obtained catalyst powders were placed on both sides of the polymer electrolyte membrane, bonded by hot pressing, and diffusion layers were placed on both sides to form single cell electrodes. Humidified air that passed through a bubbler heated to 70 ° C. was supplied to this single cell electrode at 1 L / min, and humidified hydrogen that was passed through a bubbler heated to 85 ° C. was supplied to the electrode on the anode side at 0.5 L / min, Current-voltage characteristics were measured.
As a result, (the battery voltage 0.67V at a current density of 1.2A / cm 2) catalyst of Example 4 the catalyst of Comparative Example 4 (battery voltage 0.59V at a current density of 1.2A / cm 2) It was found that a higher voltage can be obtained in the high current density region than in FIG.

比較例1
市販のカーボン粉末(キャボット社製 バルカンXC−72)を用いて、実施例1と同様に窒素、アンモニア、酸素、水蒸気流通下、反応管の700℃に加熱した領域で反応を行った。ここで窒素はガスを安定的に流通させる媒体および窒素源の役割であり、アンモニアは窒素源、酸素は表面を活性化させるのに必要であるが流通量が多いと収率を極端に低下させるため必要最小限の量を間歇的に導入した。この粉体に対しXPSにより含有窒素量を測定したところ4.5%であった。またこの粉体の粉体抵抗を測定したところ0.160Ωcmであった。得られた粉体の触媒活性を調べた結果を図1に示す。また耐久性試験結果を図3に示す。
Comparative Example 1
Using a commercially available carbon powder (Vulcan XC-72 manufactured by Cabot Corporation), the reaction was carried out in a region heated to 700 ° C. in a reaction tube under the flow of nitrogen, ammonia, oxygen, and steam in the same manner as in Example 1. Here, nitrogen is a role of a medium and a nitrogen source for stably flowing gas, ammonia is a nitrogen source, and oxygen is necessary for activating the surface, but if the flow rate is large, the yield is extremely reduced. Therefore, the necessary minimum amount was introduced intermittently. The nitrogen content of this powder was measured by XPS and found to be 4.5%. The powder resistance of this powder was measured and found to be 0.160 Ωcm. The result of examining the catalytic activity of the obtained powder is shown in FIG. The results of the durability test are shown in FIG.

比較例2
市販のカーボン粉末(キャボット社製 バルカンXC−72)を用いて、窒素、アンモニア、酸素、水蒸気流通下、反応管の800℃に加熱した領域で反応を行った。ここで窒素はガスを安定的に流通させる媒体および窒素源の役割であり、アンモニアは窒素源、酸素は表面を活性化させるのに必要であるが流通量が多いと収率を極端に低下させるため必要最小限の量を間歇的に導入した。さらにこの操作の後に窒素ガスおよび加熱気化させた塩化ホウ素をキャリアとしてアルゴンを用い反応管内に導入した。このとき塩化ホウ素は酸素と反応して酸化しやすいので供給ガスの置換及び供給方法には十分注意した。得られた粉体のホウ素含有量は0.3%であった。この粉体に対しXPSにより含有窒素量を測定したところ4.3%であった。またこの粉体の粉体抵抗を測定したところ12Ω・cmであった。
Comparative Example 2
Using a commercially available carbon powder (Vulcan XC-72 manufactured by Cabot Corporation), the reaction was performed in a region heated to 800 ° C. in a reaction tube under nitrogen, ammonia, oxygen, and steam flow. Here, nitrogen is a role of a medium and a nitrogen source for stably flowing gas, ammonia is a nitrogen source, and oxygen is necessary for activating the surface, but if the flow rate is large, the yield is extremely reduced. Therefore, the necessary minimum amount was introduced intermittently. Further, after this operation, nitrogen gas and heated and vaporized boron chloride were introduced into the reaction tube using argon as a carrier. At this time, since boron chloride easily reacts with oxygen and oxidizes, careful attention was paid to the replacement of the supply gas and the supply method. The resulting powder had a boron content of 0.3%. The nitrogen content of this powder was measured by XPS and found to be 4.3%. The powder resistance of this powder was measured and found to be 12 Ω · cm.

比較例3
市販のカーボン粉末(キャボット社製 バルカンXC−72)を用いて、Ptとしての添加量が20重量%となるように塩化白金酸水溶液を加え、水分を除去後、水素流通下300℃に加熱することにより白金を担持した触媒粉体を得た。得られた粉体の触媒活性を調べた結果を図1に示す。
Comparative Example 3
Using commercially available carbon powder (Valkan XC-72 manufactured by Cabot Corporation), an aqueous solution of chloroplatinic acid is added so that the amount added as Pt is 20% by weight. After removing moisture, the mixture is heated to 300 ° C. under hydrogen flow. Thus, a catalyst powder carrying platinum was obtained. The result of examining the catalytic activity of the obtained powder is shown in FIG.

比較例4
比較例1で得た粉末を用いて、Ptとしての添加量が20重量%となるように塩化白金酸水溶液を加え、水分を除去後、水素流通下300℃に加熱することにより白金を担持した触媒粉体を得た。得られた粉体の触媒活性を調べた結果を図1に示す。また耐久性試験結果を図5に示す。
Comparative Example 4
Using the powder obtained in Comparative Example 1, an aqueous solution of chloroplatinic acid was added so that the addition amount as Pt was 20% by weight, and after removing moisture, the platinum was supported by heating to 300 ° C. under a hydrogen flow. A catalyst powder was obtained. The result of examining the catalytic activity of the obtained powder is shown in FIG. The durability test results are shown in FIG.

比較例5
アセチレンガスと加熱気化させた塩化ホウ素およびアクリロニトリルを窒素気流により、反応管(全長2m、直径0.1m)のあらかじめ1200℃に加熱した領域に送り込み、アセチレンの熱分解反応によりホウ素と窒素を含有したカーボン粉体を得た。得られた粉体に含まれるホウ素量を測定したところ2.1重量%であった。また、この粉体に含まれる窒素量を熱伝導法(有機元素分析装置2400IICHNS/O、Perkin Elmer製)により測定したところ1.3重量%であった。またこの粉体の粉体抵抗を測定したところ180Ω・cmであった。
Comparative Example 5
Acetylene gas, heated and vaporized boron chloride and acrylonitrile were fed into a reaction tube (total length 2 m, diameter 0.1 m) in a region heated to 1200 ° C. in advance by a nitrogen stream, and boron and nitrogen were contained by the thermal decomposition reaction of acetylene. Carbon powder was obtained. The amount of boron contained in the obtained powder was measured and found to be 2.1% by weight. The amount of nitrogen contained in the powder was 1.3% by weight as measured by a heat conduction method (organic element analyzer 2400IICHNS / O, manufactured by Perkin Elmer). The powder resistance of this powder was measured and found to be 180 Ω · cm.

図1から、実施例1により得られた触媒体を含有した電極は比較例1のそれと比して還元反応に起因する負電流が大きく、かつ還元反応の開始電位も高いため、優れた触媒活性を有していることが示唆された。また、同様に実施例4により得られた触媒体を含有した電極も比較例3および4の電極と比べた場合、同様に優れた触媒活性を有していることが明らかである。   As shown in FIG. 1, the electrode containing the catalyst body obtained in Example 1 has a large negative current due to the reduction reaction and a high starting potential of the reduction reaction as compared with that of Comparative Example 1, and thus has excellent catalytic activity. It was suggested to have Similarly, it is clear that the electrode containing the catalyst body obtained in Example 4 also has excellent catalytic activity when compared with the electrodes of Comparative Examples 3 and 4.

また、図2〜図6の結果から、本発明の触媒体を含有した電極は、耐久性試験前後で触媒活性が殆ど変化しないことから耐久性に著しく優れた触媒体であることが明らかとなった。   Moreover, from the results of FIGS. 2 to 6, it is clear that the electrode containing the catalyst body of the present invention is a catalyst body that is extremely excellent in durability since the catalytic activity hardly changes before and after the durability test. It was.

図1は、LSV測定により各触媒の酸素還元活性を調べたものである。FIG. 1 shows the oxygen reduction activity of each catalyst determined by LSV measurement. 図2は、実施例1で得た触媒について、耐久性試験前後の酸素還元活性を比較したものである。FIG. 2 compares the oxygen reduction activity before and after the durability test for the catalyst obtained in Example 1. 図3は、比較例1で得た触媒について、耐久性試験前後の酸素還元活性を比較したものである。FIG. 3 compares the oxygen reduction activity before and after the durability test for the catalyst obtained in Comparative Example 1. 図4は、実施例4で得た触媒について、耐久性試験前後の酸素還元活性を比較したものである。FIG. 4 compares the oxygen reduction activity before and after the durability test for the catalyst obtained in Example 4. 図5は、比較例4で得た触媒について、耐久性試験前後の酸素還元活性を比較したものである。FIG. 5 compares the oxygen reduction activity before and after the durability test for the catalyst obtained in Comparative Example 4. 図6は、実施例2で得た触媒について、耐久性試験前後の酸素還元活性を比較したものである。FIG. 6 compares the oxygen reduction activity before and after the durability test for the catalyst obtained in Example 2.

Claims (10)

炭素、ホウ素及び窒素を含有する触媒体において、
ホウ素を含有する炭素材料を基体とし、
該ホウ素含有炭素材料の表面に窒素原子がドーピングされてなることを特徴とする触媒体。
In a catalyst body containing carbon, boron and nitrogen,
The base material is a carbon material containing boron,
A catalyst body, wherein a nitrogen atom is doped on a surface of the boron-containing carbon material.
さらに触媒金属が担持されてなることを特徴とする請求項1に記載の触媒体。   The catalyst body according to claim 1, further comprising a catalyst metal supported thereon. 前記ホウ素含有炭素材料が、粉体抵抗測定値で1.0Ω・cm以下であることを特徴とする請求項1又は2に記載の触媒体。   The catalyst body according to claim 1, wherein the boron-containing carbon material has a measured value of powder resistance of 1.0 Ω · cm or less. 前記窒素原子のドーピング量がX線光電子分光分析法による測定で、0.5〜30重量%であることを特徴とする請求項1〜3のいずれかに記載の触媒体。   The catalyst body according to any one of claims 1 to 3, wherein the doping amount of the nitrogen atom is 0.5 to 30 wt% as measured by X-ray photoelectron spectroscopy. 前記触媒金属が、白金、金、ロジウム、ルテニウム、コバルト、ニッケル、錫、鉄、銅、パラジウム、銀からなる群から選択される少なくとも1種の金属であることを特徴とする請求項2〜4のいずれかに記載の触媒体。   The catalyst metal is at least one metal selected from the group consisting of platinum, gold, rhodium, ruthenium, cobalt, nickel, tin, iron, copper, palladium, and silver. The catalyst body according to any one of the above. 請求項1〜5のいずれかに記載の触媒体を含有してなる燃料電池用電極。   A fuel cell electrode comprising the catalyst body according to any one of claims 1 to 5. 請求項6に記載の電極を用いて構成される燃料電池。   A fuel cell configured using the electrode according to claim 6. 炭化水素と含ホウ素化合物とを、不活性ガス雰囲気にて、500〜2000℃の温度で熱分解し、含ホウ素炭素粉末を調整する工程、
次いで、該含ホウ素炭素粉末とアンモニアガス、酸素、窒素、水蒸気及び/又は一酸化窒素とを500〜1000℃にて作用させ、含ホウ素炭素粉末表面に窒素原子をドーピングし、窒素ドープ含ホウ素炭素粉末を得る工程、
を少なくとも包含することを特徴とする触媒体の製造方法。
A step of thermally decomposing a hydrocarbon and a boron-containing compound at a temperature of 500 to 2000 ° C. in an inert gas atmosphere to prepare a boron-containing carbon powder;
Next, the boron-containing carbon powder and ammonia gas, oxygen, nitrogen, water vapor and / or nitrogen monoxide are allowed to act at 500 to 1000 ° C., and nitrogen atoms are doped on the surface of the boron-containing carbon powder. Obtaining a powder;
A process for producing a catalyst body comprising at least
炭化水素と含ホウ素化合物とを、不活性ガス雰囲気にて、500〜2000℃の温度で熱分解し、含ホウ素炭素粉末を調整する工程、
次いで、該含ホウ素炭素粉末を窒素含有ポリマーで被覆した後、不活性ガス下にて500℃〜1300℃の温度で焼成することにより窒素ドープ含ホウ素炭素粉末を得る工程、
を少なくとも包含することを特徴とする触媒体の製造方法。
A step of thermally decomposing a hydrocarbon and a boron-containing compound at a temperature of 500 to 2000 ° C. in an inert gas atmosphere to prepare a boron-containing carbon powder;
Next, after coating the boron-containing carbon powder with a nitrogen-containing polymer, a step of obtaining a nitrogen-doped boron-containing carbon powder by firing at a temperature of 500 ° C. to 1300 ° C. under an inert gas,
A process for producing a catalyst body comprising at least
さらに、前記窒素ドープ含ホウ素炭素粉末を液中に分散した後、含触媒金属化合物溶液を加え、該窒素ドープ含ホウ素炭素粉末表面に触媒金属イオンを吸着させる工程、
該触媒金属イオンを化学的に還元し該窒素ドープ含ホウ素炭素粉末表面に触媒金属を担持する工程、
を包含することを特徴とする請求項8又は9に記載の触媒体の製造方法。
Furthermore, after the nitrogen-doped boron-containing carbon powder is dispersed in the liquid, a step of adding a catalyst-containing metal compound solution and adsorbing catalyst metal ions on the surface of the nitrogen-doped boron-containing carbon powder,
A step of chemically reducing the catalytic metal ion and supporting the catalytic metal on the surface of the nitrogen-doped boron-containing carbon powder,
The process for producing a catalyst body according to claim 8 or 9, wherein
JP2007305109A 2007-11-26 2007-11-26 Catalyst body and method for producing the same Expired - Fee Related JP5247129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305109A JP5247129B2 (en) 2007-11-26 2007-11-26 Catalyst body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305109A JP5247129B2 (en) 2007-11-26 2007-11-26 Catalyst body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009125693A true JP2009125693A (en) 2009-06-11
JP5247129B2 JP5247129B2 (en) 2013-07-24

Family

ID=40817150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305109A Expired - Fee Related JP5247129B2 (en) 2007-11-26 2007-11-26 Catalyst body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5247129B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277360A (en) * 2008-05-12 2009-11-26 Japan Carlit Co Ltd:The Catalyst carrier, catalyst body, and manufacturing method for them
JP2010221126A (en) * 2009-03-24 2010-10-07 Japan Carlit Co Ltd:The Catalyst carrier, catalyst body, and manufacturing method therefor
JP2011195351A (en) * 2010-03-17 2011-10-06 Fujifilm Corp Nitrogen-containing carbon alloy, and carbon catalyst using the same
WO2012029840A1 (en) * 2010-09-02 2012-03-08 住友化学株式会社 Modified material, and nitrogen-containing electrically conductive carbon
JP2014188496A (en) * 2013-03-28 2014-10-06 Panasonic Corp Catalyst
JP2015065016A (en) * 2013-09-25 2015-04-09 トヨタ自動車株式会社 Method for manufacturing electrode catalyst for fuel batteries
WO2015079956A1 (en) * 2013-11-29 2015-06-04 日清紡ホールディングス株式会社 Carbon catalyst for alkaline fuel cell and method for producing carbon catalyst, as well as electrode for alkaline fuel cell, and alkaline fuel cell
JP2015104708A (en) * 2013-11-29 2015-06-08 日清紡ホールディングス株式会社 Solid base catalyst, and method and reactor regarding the same
CN109888314A (en) * 2019-03-13 2019-06-14 深圳市中金岭南科技有限公司 A kind of preparation method of zinc-air battery boron cobalt nitrogen-doped carbon nano material
CN113813926A (en) * 2021-10-19 2021-12-21 中国科学院江西稀土研究院 Porous carbon material with B-N Lewis acid-base pair structure and preparation method and application thereof
CN114497595A (en) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 Nitrogen-boron doped carbon material, platinum-carbon catalyst, and preparation methods and applications thereof
CN114497594A (en) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 Doped carbon material, platinum-carbon catalyst, and preparation method and application thereof
CN114768856A (en) * 2022-05-18 2022-07-22 中国科学技术大学 Heterogeneous catalyst and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281690A (en) * 2004-03-03 2005-10-13 Showa Denko Kk Conductive resin composition and its molded article
JP2006252938A (en) * 2005-03-10 2006-09-21 Gs Yuasa Corporation:Kk Electrode for solid polymer electrolyte fuel cell and its manufacturing method
JP2007138338A (en) * 2005-11-18 2007-06-07 Bussan Nanotech Research Institute Inc Composite material
JP2007207662A (en) * 2006-02-03 2007-08-16 Gunma Univ Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281690A (en) * 2004-03-03 2005-10-13 Showa Denko Kk Conductive resin composition and its molded article
JP2006252938A (en) * 2005-03-10 2006-09-21 Gs Yuasa Corporation:Kk Electrode for solid polymer electrolyte fuel cell and its manufacturing method
JP2007138338A (en) * 2005-11-18 2007-06-07 Bussan Nanotech Research Institute Inc Composite material
JP2007207662A (en) * 2006-02-03 2007-08-16 Gunma Univ Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the catalyst

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277360A (en) * 2008-05-12 2009-11-26 Japan Carlit Co Ltd:The Catalyst carrier, catalyst body, and manufacturing method for them
JP2010221126A (en) * 2009-03-24 2010-10-07 Japan Carlit Co Ltd:The Catalyst carrier, catalyst body, and manufacturing method therefor
JP2011195351A (en) * 2010-03-17 2011-10-06 Fujifilm Corp Nitrogen-containing carbon alloy, and carbon catalyst using the same
WO2012029840A1 (en) * 2010-09-02 2012-03-08 住友化学株式会社 Modified material, and nitrogen-containing electrically conductive carbon
JP2012072052A (en) * 2010-09-02 2012-04-12 Sumitomo Chemical Co Ltd Denatured object and nitrogen containing conductive carbon
JP2014188496A (en) * 2013-03-28 2014-10-06 Panasonic Corp Catalyst
JP2015065016A (en) * 2013-09-25 2015-04-09 トヨタ自動車株式会社 Method for manufacturing electrode catalyst for fuel batteries
JP2015106512A (en) * 2013-11-29 2015-06-08 日清紡ホールディングス株式会社 Carbon catalyst for alkaline fuel cell and method for producing the same, electrode for alkaline fuel cell, and alkaline fuel cell
WO2015079956A1 (en) * 2013-11-29 2015-06-04 日清紡ホールディングス株式会社 Carbon catalyst for alkaline fuel cell and method for producing carbon catalyst, as well as electrode for alkaline fuel cell, and alkaline fuel cell
JP2015104708A (en) * 2013-11-29 2015-06-08 日清紡ホールディングス株式会社 Solid base catalyst, and method and reactor regarding the same
CN109888314A (en) * 2019-03-13 2019-06-14 深圳市中金岭南科技有限公司 A kind of preparation method of zinc-air battery boron cobalt nitrogen-doped carbon nano material
CN114497595A (en) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 Nitrogen-boron doped carbon material, platinum-carbon catalyst, and preparation methods and applications thereof
CN114497594A (en) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 Doped carbon material, platinum-carbon catalyst, and preparation method and application thereof
CN113813926A (en) * 2021-10-19 2021-12-21 中国科学院江西稀土研究院 Porous carbon material with B-N Lewis acid-base pair structure and preparation method and application thereof
CN113813926B (en) * 2021-10-19 2024-02-20 中国科学院江西稀土研究院 Porous carbon material with B-N Lewis acid-base pair structure and preparation method and application thereof
CN114768856A (en) * 2022-05-18 2022-07-22 中国科学技术大学 Heterogeneous catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP5247129B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5247129B2 (en) Catalyst body and method for producing the same
Senthilkumar et al. 3D hierarchical core–shell nanostructured arrays on carbon fibers as catalysts for direct urea fuel cells
Wang et al. Methanol electrocatalytic oxidation on highly dispersed Pt/sulfonated-carbon nanotubes catalysts
Neto et al. Electro-oxidation of methanol and ethanol on Pt–Ru/C and Pt–Ru–Mo/C electrocatalysts prepared by Bönnemann's method
Meng et al. Tungsten carbide nanocrystal promoted Pt/C electrocatalysts for oxygen reduction
Bhavani et al. Fabrication and characterization of gold nanoparticles and fullerene-C60 nanocomposite film at glassy carbon electrode as potential electro-catalyst towards the methanol oxidation
Zhou et al. Electrocatalysis of template-electrosynthesized cobalt− porphyrin/polyaniline nanocomposite for oxygen reduction
Wang et al. Pd nanoparticles deposited on vertically aligned carbon nanotubes grown on carbon paper for formic acid oxidation
US8236724B2 (en) Catalyst-supporting particle, composite electrolyte, catalyst electrode for fuel cell, and fuel cell using the same, and methods for fabricating these
Marinoiu et al. One-step synthesis of graphene supported platinum nanoparticles as electrocatalyst for PEM fuel cells
Prehn et al. Towards nitrogen-containing CNTs for fuel cell electrodes
Hu et al. Inhibiting surface diffusion to synthesize 3D bicontinuous nanoporous N‐doped carbon for boosting oxygen reduction reaction in flexible all‐solid‐state Al‐air batteries
Rahsepar et al. Tungsten carbide on directly grown multiwalled carbon nanotube as a co-catalyst for methanol oxidation
Kayarkatte et al. Freestanding catalyst layers: A novel electrode fabrication technique for PEM fuel cells via electrospinning
Ray et al. Fabrication of Nitrogen‐Doped Mesoporous‐Carbon‐Coated Palladium Nanoparticles: An Intriguing Electrocatalyst for Methanol and Formic Acid Oxidation
Li et al. Dopamine-derived nitrogen-doped carboxyl multiwalled carbon nanotube-modified graphite felt with improved electrochemical activity for vanadium redox flow batteries
Hu et al. Synthesis of anti-poisoning spinel Mn–Co–C as cathode catalysts for low-temperature anion exchange membrane direct ammonia fuel cells
JP2007099551A (en) Carbon-based composite material and its manufacturing method, electrode for solid polymer type fuel cell and solid polymer type fuel cell
TWI478428B (en) Catalyst composition, method for fabricating the same and fuel cell including the same
JP4759507B2 (en) Fuel cell electrode catalyst and fuel cell using the same
JP2004207228A (en) Catalyst material, electrode, and fuel cell using this
Li et al. Insights on the Roles of Nitrogen Configuration in Enhancing the Performance of Electrocatalytic Methanol Oxidation over Pt Nanoparticles
Zhang et al. Conductive Porous Network of Metal–Organic Frameworks Derived Cobalt‐Nitrogen‐doped Carbon with the Assistance of Carbon Nanohorns as Electrocatalysts for Zinc–Air Batteries
JP2010221126A (en) Catalyst carrier, catalyst body, and manufacturing method therefor
Panjiara et al. Study on the effect of calcium hypochlorite and air as mixed oxidant and a synthesized low cost Pd‐Ni/C anode electrocatalyst for electrooxidation of glycerol in an air breathing microfluidic fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Ref document number: 5247129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees