JP2009124485A - Resin molded article disposed on beam path of radio wave radar device - Google Patents

Resin molded article disposed on beam path of radio wave radar device Download PDF

Info

Publication number
JP2009124485A
JP2009124485A JP2007296860A JP2007296860A JP2009124485A JP 2009124485 A JP2009124485 A JP 2009124485A JP 2007296860 A JP2007296860 A JP 2007296860A JP 2007296860 A JP2007296860 A JP 2007296860A JP 2009124485 A JP2009124485 A JP 2009124485A
Authority
JP
Japan
Prior art keywords
layer
convex portion
molded product
resin molded
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007296860A
Other languages
Japanese (ja)
Other versions
JP4872886B2 (en
Inventor
Hitoshi Horibe
人嗣 堀部
Chiharu Totani
千春 戸谷
Tetsuya Fujii
哲也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2007296860A priority Critical patent/JP4872886B2/en
Publication of JP2009124485A publication Critical patent/JP2009124485A/en
Application granted granted Critical
Publication of JP4872886B2 publication Critical patent/JP4872886B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/422Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To realize a three-dimensional design while suppressing increase in a transmission loss. <P>SOLUTION: A transparent resin layer includes a general part and a projecting part which is thicker than the general part and protrudes its surface from a top layer, and at least a portion of the projecting part is formed from a thermoplastic resin having such characteristics that a dielectric loss tangent at a frequency of beam is 0.0005 or less and a relative dielectric constant is 3 or less. The projecting part is formed from the thermoplastic resin, thereby extremely reducing a transmission loss of millimeter waves when transmitting through the projecting part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ミリ波レーダ装置やマイクロ波レーダ装置等の電波レーダ装置のビーム経路に配置される樹脂成形品に関する。   The present invention relates to a resin molded product disposed in a beam path of a radio wave radar device such as a millimeter wave radar device or a microwave radar device.

オートクルーズシステムは、車両前方に搭載されているセンサによって前方車両と自車との車間距離や相対速度を測定し、この情報を基にスロットルやブレーキを制御して自車を加減速し、車間距離をコントロールする技術である。このオートクルーズシステムは、近年、渋滞緩和や事故減少を目指す高度道路交通システム(ITS)の中核技術の一つとして注目されている。   The auto-cruise system measures the distance and relative speed between the vehicle in front and the vehicle using sensors mounted in front of the vehicle, and controls the throttle and brake based on this information to accelerate and decelerate the vehicle. This is a technology to control the distance. In recent years, this auto-cruise system has attracted attention as one of the core technologies of the Intelligent Transport System (ITS) aiming to reduce traffic congestion and reduce accidents.

オートクルーズシステムに使用されるセンサとしては、一般的にはレーザレーダやミリ波レーダが使用されている。このうちミリ波レーダは、30GHz 〜300GHzの周波数を持ち1〜10mmの波長を持つミリ波を用いて、このミリ波を送信し、かつ対象物にあたって反射したミリ波を受信することで、この送信波と受信波の差から前方車両と自車との車間距離や相対速度を測定するものである。   Generally, a laser radar or a millimeter wave radar is used as a sensor used in an auto cruise system. Among these, the millimeter wave radar transmits this millimeter wave using a millimeter wave having a frequency of 30 GHz to 300 GHz and a wavelength of 1 to 10 mm, and receives the millimeter wave reflected on the object, thereby transmitting this millimeter wave. The distance between the vehicle ahead and the vehicle and the relative speed are measured from the difference between the wave and the received wave.

ミリ波は波長が短いことから、このミリ波を用いたミリ波レーダを小型化することが可能である。また、ミリ波は金属のような良導体の反射係数が大きいため、車両の識別を良好に行うことができ、また、レーザと比較して、霧、雪、太陽光などの影響を受け難い特性を有することから、このミリ波を用いたミリ波レーダは、車載レーダとして好適に用いられる。   Since the millimeter wave has a short wavelength, it is possible to downsize the millimeter wave radar using the millimeter wave. In addition, because millimeter waves have a large reflection coefficient for good conductors such as metals, they can identify vehicles well and have characteristics that are less susceptible to fog, snow, sunlight, etc. compared to lasers. Therefore, the millimeter wave radar using the millimeter wave is suitably used as an in-vehicle radar.

ミリ波レーダは、一般的には車両のフロントグリルの裏面側に配置される。しかし、フロントグリルには金属めっきがなされている場合が多く、金属の反射係数が大きいミリ波を良好に透過させることは難しい。またフロントグリルは、空気を取り入れるための通気口が穿設された構造になっており、均一な肉厚を有さないため、このようなフロントグリルを通してミリ波を出入りさせると、フロントグリルの肉厚の薄い部分と厚い部分とでミリ波の透過速度に差が生じ、オートクルーズシステムの精度が低くなる。   The millimeter wave radar is generally arranged on the back side of the front grill of the vehicle. However, the front grill is often plated with metal, and it is difficult to satisfactorily transmit millimeter waves having a large metal reflection coefficient. Also, the front grille has a structure with a vent hole for taking in air and does not have a uniform wall thickness. A difference in millimeter wave transmission speed occurs between the thin and thick portions, and the accuracy of the auto-cruise system decreases.

このような事情から、ミリ波レーダが配置される部位に対応するフロントグリルの部位には、ミリ波が透過可能な窓部を設けることが一般的である。フロントグリルに窓部を設ける場合、この窓部を通してミリ波を出入りさせることが可能になる。しかし窓部が設けられることでフロントグリルの外観が連続性を失うこととなり、また、この窓部より車両の内側、例えばミリ波レーダ装置やエンジンルーム等が目視されるために、車両の外観が損なわれる恐れがある。   Under such circumstances, it is common to provide a window portion through which millimeter waves can be transmitted at a portion of the front grill corresponding to a portion where the millimeter wave radar is disposed. When providing a window part in a front grill, it becomes possible to let a millimeter wave go in and out through this window part. However, the appearance of the front grille is lost due to the provision of the window, and the inside of the vehicle, for example, the millimeter wave radar device or the engine room, is visually observed from this window, so that the appearance of the vehicle is There is a risk of damage.

したがって従来は、例えば特開2000−159039号公報に開示されるような被覆部品をフロントグリルの窓部に挿入し、窓部とフロントグリル本体とに一体感を持たせることが行われている。同公報に開示される被覆部品は、凹凸をもって形成された複数の樹脂層が積層されて形成されたもので、樹脂層間に凹凸をもって蒸着されている金属層によって、フロントグリルのフィン部材が被覆部品中にも連続して存在しているような印象を与えるものである。   Therefore, conventionally, for example, a covering component as disclosed in Japanese Patent Application Laid-Open No. 2000-159039 is inserted into the window portion of the front grill so that the window portion and the front grill body have a sense of unity. The covering component disclosed in the publication is formed by laminating a plurality of resin layers formed with unevenness, and the fin member of the front grille is covered with the metal layer deposited with unevenness between the resin layers. It gives the impression that it exists continuously inside.

しかしこのような被覆部品をミリ波レーダのビーム経路に配置すると、透過損失によってオートクルーズシステムの精度が低下するので、透過損失を極力小さくする必要がある。そこで特開2002−135030号公報には、内側表面に金属膜をもつ電波透過性の外面被覆板と、電波透過性の背面被覆板とが積層されてなり、外面被覆板と背面被覆板を構成する材料の比誘電率を略同一とした電波透過性外装部費が提案されている。このように比誘電率が略同一の材料から外面被覆板と背面被覆板を構成することで、電波の屈折・反射を効果的に抑制することができ、透過損失を小さくすることができる。   However, if such a covering component is arranged in the beam path of the millimeter wave radar, the accuracy of the auto cruise system is reduced due to the transmission loss. Therefore, it is necessary to reduce the transmission loss as much as possible. Therefore, Japanese Patent Laid-Open No. 2002-135030 discloses that a radio wave transmissive outer surface coating plate having a metal film on the inner surface and a radio wave transmissive rear surface coating plate are laminated to form an outer surface coating plate and a back surface coating plate. There has been proposed a radio wave transmissive exterior part cost in which the relative permittivity of the material to be made is substantially the same. In this way, by configuring the outer cover plate and the rear cover plate from materials having substantially the same relative dielectric constant, it is possible to effectively suppress the refraction and reflection of radio waves and to reduce transmission loss.

また特開2003−252137号公報には、平板状の基材の一表面に金属薄膜を形成し、金属薄膜の一部を物理的または化学的に除去して島状の光輝部を形成した後に、光輝部が形成された面の上層に透明樹脂層を形成する電波透過カバーの製造方法が提案されている。   Japanese Patent Laid-Open No. 2003-252137 discloses a method in which a metal thin film is formed on one surface of a plate-like base material, and a part of the metal thin film is physically or chemically removed to form an island-like bright part. There has been proposed a method for manufacturing a radio wave transmission cover in which a transparent resin layer is formed on the upper surface of the surface on which the bright part is formed.

さらに特開2004−251868号公報には、表出面を持つ透明樹脂層と、基材層と、透明樹脂層と基材層との間隙に積層され透明樹脂層を通して意匠を表示する加飾体層とを有し、加飾体層は、所定の意匠となるように蒸着方向に結晶が伸長する金属材料が蒸着された蒸着意匠面を持つ光輝片を含むことを特徴とする電波透過カバーが提案されている。   Further, JP-A-2004-251868 discloses a transparent resin layer having an exposed surface, a base material layer, and a decorative body layer that is laminated in a gap between the transparent resin layer and the base material layer and displays a design through the transparent resin layer. Proposed a radio wave transmission cover characterized in that the decorative body layer includes a luminous piece having a vapor deposition design surface on which a metal material whose crystal extends in the vapor deposition direction is deposited so as to become a predetermined design Has been.

そしてこれらの公報には、透明樹脂層としてポリカーボネート(PC)を用いた場合には、比誘電率がポリカーボネートと略同一のアクリロニトリル・エチレンプロピレン・スチレンポリマー(AES)から基材層を形成することが望ましいことが記載されている。しかしPCとAESからなる樹脂成形品であっても、電波減衰量は 1.3〜 1.8dBであってまだ大きく、電波減衰量をさらに小さくすること、すなわち透過損失をさらに小さくすることが求められている。
特開2000−159039号 特開2002−135030号 特開2003−252137号 特開2004−251868号
In these publications, when polycarbonate (PC) is used as the transparent resin layer, the base layer is formed from acrylonitrile / ethylene propylene / styrene polymer (AES) whose relative dielectric constant is substantially the same as polycarbonate. It is stated that it is desirable. However, even with resin molded products made of PC and AES, the radio wave attenuation is still 1.3 to 1.8 dB, which is still large, and it is required to further reduce the radio wave attenuation, that is, to further reduce the transmission loss. .
JP 2000-159039 JP 2002-135030 JP2003-252137 JP 2004-251868

ところで、上記したミリ波レーダ装置のビーム経路に配置される樹脂成形品にあっては、透過部位による透過損失のばらつきを防止するために、電波透過範囲における肉厚を均一とする必要がある。しかしそのような樹脂成形品は、意匠表面が平面的なのっぺりとしたものとなるため、意匠性が低いという不具合があった。   By the way, in the resin molded product arranged in the beam path of the above-described millimeter wave radar device, it is necessary to make the thickness in the radio wave transmission range uniform in order to prevent variation in transmission loss due to the transmission part. However, such a resin molded product has a problem that the design surface is low because the design surface is flat and flat.

そこで二層構造の樹脂成形品とし、界面に段差部を形成して、その段差部で立体的な意匠を発現させることが考えられる。しかし射出成形で製造する場合には、成形可能な最小肉厚が存在する。そのため二層の界面に段差部を形成しようとすると、段差部において二層の一方の層の肉厚が成形可能な最小肉厚以上となるようにするためには、二層の少なくとも一方の層の肉厚を厚くせざるを得ず、そうすると透過損失が大きくなるという問題があった。   Therefore, it is conceivable to form a two-layered resin molded product, form a stepped portion at the interface, and express a three-dimensional design at the stepped portion. However, when manufacturing by injection molding, there exists a minimum wall thickness that can be molded. Therefore, in order to form a stepped portion at the interface between the two layers, in order to make the thickness of one of the two layers at the stepped portion equal to or greater than the minimum moldable thickness, at least one of the two layers However, there was a problem that the transmission loss increased.

また透明樹脂層の表面に凸部を形成して、立体意匠を発現することが考えられる。透明樹脂層を透過する際の透過損失は、透明樹脂層の肉厚がビームの波長(λ)の1/2の整数(n)倍の時に小さくなることが知られている。したがって凸部の肉厚がこの規制を満たすようにすれば、透過損失の増大を抑制しつつ立体意匠が可能となる。   Further, it is conceivable to form a three-dimensional design by forming a convex portion on the surface of the transparent resin layer. It is known that the transmission loss when passing through the transparent resin layer is reduced when the thickness of the transparent resin layer is an integer (n) times 1/2 of the beam wavelength (λ). Therefore, if the thickness of the convex portion satisfies this restriction, a three-dimensional design can be achieved while suppressing an increase in transmission loss.

しかしこの場合、透明樹脂層における凸部以外の一般部の肉厚も上記規制を満たす必要があることから、従来の材料を用いた場合には透明樹脂層の凸部の厚さが厚くなりすぎ、それによって透過損失が増大するとともに要求される意匠の発現が困難となるという問題があった。   However, in this case, the thickness of the general part other than the convex part in the transparent resin layer must satisfy the above-mentioned regulations, so that the thickness of the convex part of the transparent resin layer becomes too thick when the conventional material is used. As a result, there is a problem that transmission loss increases and the required design is difficult to be expressed.

本発明はこのような事情に鑑みてなされたものであり、透過損失の増大を抑制しつつ、自由度の高い立体意匠を発現できるようにすることを解決すべき課題とする。   This invention is made | formed in view of such a situation, and makes it the subject which should be solved to enable it to express a solid design with a high degree of freedom, suppressing the increase in transmission loss.

上記課題を解決する本発明の電波レーダ装置のビーム経路に配置される樹脂成形品の特徴は、背面側の電波レーダー装置のビーム経路に配置される樹脂成形品であって、外表面に表出する表出面をもつ透明樹脂層と該透明樹脂層の該表出面と反対側表面に形成された基材層と、を有し、透明樹脂層は、一般部と一般部より肉厚が厚くその表面が表出面から突出する凸部と、を有し、凸部の少なくとも一部は、ビームの周波数における誘電正接が0.0005以下、比誘電率が3以下の特性を有する熱可塑性樹脂から形成されていることにある。   The resin molded product arranged in the beam path of the radio wave radar device of the present invention that solves the above problems is a resin molded product arranged in the beam path of the radio wave radar device on the back side, and is exposed on the outer surface. A transparent resin layer having an exposed surface and a base material layer formed on the surface opposite to the exposed surface of the transparent resin layer, and the transparent resin layer is thicker than the general part and the general part. A convex portion whose surface protrudes from the exposed surface, and at least a part of the convex portion is formed of a thermoplastic resin having characteristics of a dielectric loss tangent at a beam frequency of 0.0005 or less and a relative dielectric constant of 3 or less. There is to be.

凸部と一般部との厚さの差(Δh)は、凸部を透過するビームの波長(λ)の1/2の整数(n)倍(Δh=nλ/2)と実質的に等しいことが望ましい。   The thickness difference (Δh) between the convex portion and the general portion is substantially equal to an integer (n) times 1/2 (Δh = nλ / 2) of the wavelength (λ) of the beam transmitted through the convex portion. Is desirable.

凸部は、電波透過範囲内で電波透過範囲と電波非透過範囲との境界部に近接する大きさに形成することが望ましい。また透明樹脂層の全体をこの熱可塑性樹脂から形成してもよい。この熱可塑性樹脂は、シクロオレフィン系樹脂であることが望ましい。   The convex portion is desirably formed in a size close to the boundary between the radio wave transmission range and the radio wave non-transmission range within the radio wave transmission range. Moreover, you may form the whole transparent resin layer from this thermoplastic resin. The thermoplastic resin is preferably a cycloolefin resin.

またシクロオレフィン系樹脂から少なくとも凸部を形成した場合、凸部の表面には凸部の厚さより小さな厚さの微細凸部を形成することができる。凸部の表面にはポリカーボネート層が形成され、ポリカーボネート層の表面にはハードコート層が形成されていることが望ましい。   Moreover, when at least a convex part is formed from cycloolefin type resin, the fine convex part of thickness smaller than the thickness of a convex part can be formed in the surface of a convex part. Desirably, a polycarbonate layer is formed on the surface of the convex portion, and a hard coat layer is formed on the surface of the polycarbonate layer.

本発明の樹脂成形品によれば、透明樹脂層には凸部が形成されているので、立体意匠が可能となり意匠の自由度が飛躍的に高まる。そして凸部の少なくとも一部が、ビームの周波数における誘電正接が0.0005以下、比誘電率が3以下の特性を有する熱可塑性樹脂から形成されているので、ビームの電波が凸部を透過する際の透過損失をきわめて小さくすることができる。   According to the resin molded product of the present invention, since the convex portions are formed on the transparent resin layer, a three-dimensional design is possible, and the degree of freedom of design is dramatically increased. Since at least a part of the convex portion is formed of a thermoplastic resin having a characteristic that the dielectric loss tangent at the beam frequency is 0.0005 or less and the relative dielectric constant is 3 or less, the radio waves of the beam pass through the convex portion. Transmission loss can be made extremely small.

また、凸部と一般部との厚さの差(Δh)が凸部を透過する電波の波長(λ)の1/2の整数(n)倍(Δh=nλ/2)と実質的に等しければ、ビームの電波が凸部を透過する際の透過損失をさらに小さくすることができる。したがって凸部による立体意匠を発現しつつ、オートクルーズシステムの精度を高く維持することが可能となる。   Further, the difference in thickness (Δh) between the convex portion and the general portion is substantially equal to an integer (n) times 1/2 (Δh = nλ / 2) of the wavelength (λ) of the radio wave transmitted through the convex portion. For example, the transmission loss when the radio wave of the beam passes through the convex portion can be further reduced. Therefore, it is possible to maintain high accuracy of the auto cruise system while expressing the three-dimensional design by the convex portion.

本発明の樹脂成形品は、透明樹脂層と、基材層と、を有している。基材層と透明樹脂層とは、電波の透過損失が小さい樹脂から形成する必要があり、また成形性を考慮するとPC、AES、シクロポリオレフィン(COP)などを用いることができる。透明樹脂層は高い透明性を有することが必要であり、PCあるいはCOPを用いることが望ましい。基材層は透明である必要はないが、透明であってもよく、その場合はPCあるいはCOPを用いることができる。   The resin molded product of the present invention has a transparent resin layer and a base material layer. The base material layer and the transparent resin layer need to be formed from a resin having a small radio wave transmission loss. In consideration of moldability, PC, AES, cyclopolyolefin (COP), or the like can be used. The transparent resin layer needs to have high transparency, and it is desirable to use PC or COP. The base material layer does not need to be transparent, but may be transparent. In that case, PC or COP can be used.

なおポリプロピレン(PP)は、一般に用いられているミリ波レーダー装置のビーム周波数 76.5GHzにおける誘電正接が0.0003と小さく、比誘電率も 2.3と小さいので、透過損失は目標値を満足する。しかしながら成形収縮率が 1.6〜 1.9と大きいので、成形性を鑑みると好ましくない。誘電正接( tanδ)は誘電損失とも称される誘電性の指標である。一般に用いられているミリ波レーダー装置のビーム周波数 76.5GHzにおける誘電正接は、PCが 0.001、AESが 0.001、COPが 0.00025であり、いずれも好ましく用いることができる。   Polypropylene (PP) has a dielectric loss tangent at a beam frequency of 76.5 GHz of a commonly used millimeter wave radar device as small as 0.0003 and a relative dielectric constant as small as 2.3. Therefore, the transmission loss satisfies the target value. However, since the molding shrinkage ratio is as large as 1.6 to 1.9, it is not preferable in view of moldability. The dielectric loss tangent (tan δ) is a dielectric index also called dielectric loss. The dielectric loss tangent of a commonly used millimeter wave radar device at a beam frequency of 76.5 GHz is 0.001 for PC, 0.001 for AES, and 0.00025 for COP, and any of them can be preferably used.

シクロポリオレフィン(COP)とは、飽和の脂環構造を有する繰り返し単位をもつポリオレフィンである。一部に不飽和結合を含んでいてもよい。脂環構造の具体例としては、シクロアルカン構造、シクロアルケン構造などが挙げられるが、シクロアルカン構造のものが好ましい。脂環構造を構成する炭素原子の数は、通常4〜30、好ましくは5〜20、より好ましくは5〜15である。原料となる単量体としては、例えば、ノルボルネン、シクロヘキセン、ビニルシクロヘキサン、及びそれらのアルキル置換体やアルキリデン置換体などが例示される。   Cyclopolyolefin (COP) is a polyolefin having a repeating unit having a saturated alicyclic structure. Some of them may contain an unsaturated bond. Specific examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and a cycloalkane structure is preferable. The number of carbon atoms constituting the alicyclic structure is usually 4 to 30, preferably 5 to 20, and more preferably 5 to 15. Examples of the monomer used as a raw material include norbornene, cyclohexene, vinylcyclohexane, and alkyl-substituted and alkylidene-substituted products thereof.

例えばPCから一般部と凸部とからなる透明樹脂層を形成する場合には、凸部と一般部との厚さの差(Δh)が凸部を透過する電波の波長(λ)の1/2の整数(n)倍(Δh=nλ/2)となるようにするとともに、一般部の厚さ(H)も一般部を透過する電波の波長(λ)の1/2の整数(n)倍とする。具体的に、一般に用いられているミリ波レーダー装置のビーム周波数 76.5GHzの電波がPCを透過する場合には、Δh= 1.2nあるいはH= 1.2m(mは整数)とする。このように構成することで、透過損失を低くすることができる。   For example, when a transparent resin layer composed of a general part and a convex part is formed from PC, the thickness difference (Δh) between the convex part and the general part is 1 / (1) of the wavelength (λ) of the radio wave transmitted through the convex part. An integer (n) times 2 (Δh = nλ / 2), and the thickness (H) of the general part is also an integer (n) that is ½ of the wavelength (λ) of the radio wave transmitted through the general part. Double. Specifically, when a radio wave having a beam frequency of 76.5 GHz of a commonly used millimeter wave radar device passes through the PC, Δh = 1.2n or H = 1.2 m (m is an integer). With this configuration, transmission loss can be reduced.

しかしPCから凸部と一般部とを上記したΔhの規制を満足するように形成しても、例えばビームが斜めに透過した場合にはΔhの上記条件が満足されず、透過損失が大きくなってしまう。   However, even if the convex part and the general part are formed from the PC so as to satisfy the above-described regulation of Δh, for example, when the beam is transmitted obliquely, the above condition of Δh is not satisfied, and the transmission loss increases. End up.

そこで本発明の樹脂成形品では、凸部の少なくとも一部を、透過する電波の周波数における誘電正接が0.0005以下、比誘電率が3以下の特性を有する熱可塑性樹脂から形成している。したがって、この熱可塑性樹脂から形成された凸部の少なくとも一部は、透過損失がきわめて小さいので上記したΔhの規制が緩和され、比較的自由な厚さで凸部を形成することができる。誘電正接が0.0005より大きくなったり、比誘電率が3を超えると、電波の屈折・反射によって透過損失が目標より大きくなってしまう。このような特性を有する熱可塑性樹脂としては、上記したCOPが挙げられる。   Therefore, in the resin molded product of the present invention, at least a part of the convex portion is formed from a thermoplastic resin having the characteristics that the dielectric loss tangent at the frequency of the transmitted radio wave is 0.0005 or less and the relative dielectric constant is 3 or less. Accordingly, at least a part of the convex portion formed from this thermoplastic resin has a very small transmission loss, so that the above-described regulation of Δh is relaxed and the convex portion can be formed with a relatively free thickness. If the dielectric loss tangent is larger than 0.0005 or the relative dielectric constant exceeds 3, the transmission loss becomes larger than the target due to refraction and reflection of radio waves. Examples of the thermoplastic resin having such characteristics include the COP described above.

なお凸部をCOPから形成した場合においても、Δhを実質的にΔh=nλ/2とすれば透過損失をさらに低減することができる。電波が誘電体を透過する場合には、誘電体の材質によって波長が変化する。したがって凸部を透過する電波の波長(λ)はPCとCOPとで異なり、一般に用いられているミリ波レーダー装置の電波周波数 76.5GHzの電波が透過する際には、PCからなる凸部の場合はΔh= 1.2nとなり、COPからなる凸部の場合にはΔh= 1.3nとなる。しかしCOPは透過損失がきわめて小さいので、正確にΔh= 1.3nとしなくても、実用上は支障がない。   Even when the convex portion is formed of COP, the transmission loss can be further reduced if Δh is substantially Δh = nλ / 2. When radio waves pass through the dielectric, the wavelength changes depending on the material of the dielectric. Therefore, the wavelength (λ) of the radio wave that passes through the convex part differs between PC and COP. When radio waves with a frequency of 76.5 GHz of a commonly used millimeter-wave radar device are transmitted, the convex part made of PC Δh = 1.2n, and in the case of a convex portion made of COP, Δh = 1.3n. However, since the transmission loss of COP is extremely small, there is no practical problem even if Δh = 1.3n is not set accurately.

また凸部をCOPから形成する場合、凸部の下層にPC層を形成してもよいし、凸部の全肉厚をCOPから形成し、凸部の周辺の一般部をPCから形成してもよい。あるいは透明樹脂層全体をCOPから形成することもできる。COPから形成された凸部の下層にPC層を形成する場合、凸部の厚さは上記したように正確に 1.3の整数倍とする必要はないが、下層のPC層の厚さは 1.2の整数倍とする必要がある。また凸部の全肉厚をCOPから形成し、凸部の周辺の一般部をPCから形成した場合には、凸部の全肉厚は 1.3の整数倍に近いことが望ましく、一般部の肉厚は 1.2の整数倍とする必要がある。   When the convex portion is formed from COP, the PC layer may be formed in the lower layer of the convex portion, the entire thickness of the convex portion is formed from COP, and the general portion around the convex portion is formed from PC. Also good. Or the whole transparent resin layer can also be formed from COP. When the PC layer is formed in the lower layer of the convex portion formed of COP, the thickness of the convex portion does not need to be an exact multiple of 1.3 as described above, but the thickness of the lower PC layer is 1.2. Must be an integer multiple. When the total thickness of the convex portion is formed from COP and the general portion around the convex portion is formed from PC, the total thickness of the convex portion is preferably close to an integral multiple of 1.3. The thickness should be an integer multiple of 1.2.

ところで、電波が意匠表面に対して垂直ではなく傾斜して透過した場合には、凸部と一般部との段差部を電波が透過すると、実質的な肉厚がΔh=nλ/2を満足しない場合があり、透過損失が大きくなる場合がある。そこで、意匠表面の大きな面積を占めるような凸部あるいは意匠表面の左右又は上下方向などに長い凸部などの場合には、凸部は、電波透過範囲内で電波透過範囲と電波非透過範囲との境界部に近接する大きさに形成することが望ましい。このように凸部を形成することで、上記不具合が生じにくくなる。   By the way, when the radio wave is transmitted with an inclination rather than perpendicular to the design surface, the substantial thickness does not satisfy Δh = nλ / 2 when the radio wave is transmitted through the step portion between the convex portion and the general portion. In some cases, transmission loss may increase. Therefore, in the case of a convex part that occupies a large area on the design surface or a convex part that is long in the left-right or vertical direction of the design surface, the convex part has a radio wave transmission range and a radio wave non-transmission range within the radio wave transmission range. It is desirable to form it in a size close to the boundary portion. By forming the convex portion in this way, the above-described problems are less likely to occur.

電波レーダ装置のビーム経路に配置される樹脂成形品にあっては、傷付きを防止するために、表面硬度を高くすることが望まれている。したがって従来は表面にハードコート層を形成しているが、COPはハードコート層の付着性などが劣るために、凸部の表面にハードコート層を形成できないという問題がある。   In the resin molded product arranged in the beam path of the radio wave radar device, it is desired to increase the surface hardness in order to prevent scratches. Therefore, conventionally, a hard coat layer is formed on the surface, but COP has a problem that the hard coat layer cannot be formed on the surface of the convex portion because the adhesion of the hard coat layer is poor.

そこで少なくとも凸部の表面に薄いPC層を形成し、その表面にハードコート層を形成することが望ましい。なおPC層を形成するには、PCフィルムを接着する方法などがある。   Therefore, it is desirable to form a thin PC layer on at least the surface of the convex portion and to form a hard coat layer on the surface. In order to form the PC layer, there is a method of bonding a PC film.

基材層は、PC、COP、AESなどから形成することができる。因みに従来用いられているAESは、成形収縮率が 0.4%と小さいので成形性に優れ、比誘電率は 2.56であるので、電波の屈折・反射が抑制され透過損失も低減される。また周波数 76.5GHzの誘電正接は 0.001であり、PCと同等であるので、肉厚の規制はPCと同様となる。   The base material layer can be formed of PC, COP, AES or the like. Incidentally, AES used in the past has excellent moldability since the molding shrinkage ratio is as small as 0.4%, and the relative dielectric constant is 2.56. Therefore, refraction and reflection of radio waves are suppressed and transmission loss is also reduced. The dielectric loss tangent at the frequency of 76.5 GHz is 0.001, which is equivalent to that of PC, and the wall thickness regulation is the same as that of PC.

本発明の樹脂成形品は、加飾体層を有することが好ましい。この加飾体層は、基材層が透明であればその裏面、基材層と透明樹脂層との界面、透明樹脂層の内部などに形成することができる。この加飾体層は透明樹脂層を通して表出面に意匠を表示するものであり、フィルム状の加飾体層を積層してもよいし、透明樹脂層の表出面と反対側表面あるいは基材層の透明樹脂層に対向する表面に印刷、塗装などにより加飾体層を形成してもよい。   The resin molded product of the present invention preferably has a decorative layer. If the base material layer is transparent, the decorative body layer can be formed on the back surface, the interface between the base material layer and the transparent resin layer, the inside of the transparent resin layer, and the like. This decorative body layer displays a design on the exposed surface through the transparent resin layer, and a film-like decorative body layer may be laminated, or the surface opposite to the exposed surface of the transparent resin layer or the base material layer A decorative layer may be formed on the surface facing the transparent resin layer by printing, painting, or the like.

また加飾体層として、凸部の表面に凸部の厚さより小さな厚さの微細な凹凸模様を形成することもできる。特に凸部をCOPから形成した場合には、透過する電波の周波数における誘電正接が0.0005以下、比誘電率が3以下の特性を有するため、厚さの変動が透過損失に及ぼす影響が少ない。   Moreover, as a decorating body layer, the fine uneven | corrugated pattern of thickness smaller than the thickness of a convex part can also be formed in the surface of a convex part. In particular, when the convex portion is formed of COP, the dielectric loss tangent at the frequency of the transmitted radio wave has a characteristic of 0.0005 or less and the relative dielectric constant is 3 or less, so that the thickness variation has little influence on the transmission loss.

本発明の樹脂成形品を製造するには、例えば、先ず加飾体層をもつ透明樹脂層を形成する。透明樹脂層は、射出成形、プレス成形、ポッティング、など種々の成形方法で形成することができる。   In order to manufacture the resin molded product of the present invention, for example, first, a transparent resin layer having a decorative body layer is formed. The transparent resin layer can be formed by various molding methods such as injection molding, press molding, and potting.

加飾体層を形成するには、予め形成された透明樹脂層に塗装、印刷、蒸着などで直接的に形成することができる。また予め所定の意匠が形成されたフィルムを型内に配置し、その型内で透明樹脂層を成形後にフィルムを剥離することで、透明樹脂層の表面に意匠を転写して加飾体層とすることもできる。   In order to form a decorative body layer, it can be directly formed on a previously formed transparent resin layer by painting, printing, vapor deposition or the like. In addition, a film on which a predetermined design is formed in advance is placed in a mold, and after the transparent resin layer is molded in the mold, the film is peeled off to transfer the design onto the surface of the transparent resin layer, You can also

その後、加飾体層をもつ透明樹脂層を金型内に配置し、基材層を成形する。例えばAESはガラス転移温度がPCのガラス転移温度より低く、成形流動性及び成形収縮性に優れている。したがって射出成形時の成形温度が高すぎることが無いので、加飾体層が破壊されるような不具合がない。また成形時の歪みが小さいので、反りや割れも防止できる。したがって意匠性及び形状精度に優れ、かつ透過損失の小さな樹脂成形品を、容易かつ安価に製造することが可能となる。   Thereafter, a transparent resin layer having a decorative body layer is placed in the mold, and a base material layer is formed. For example, AES has a glass transition temperature lower than that of PC and is excellent in molding fluidity and molding shrinkage. Therefore, since the molding temperature at the time of injection molding is not too high, there is no problem that the decorative body layer is destroyed. Further, since distortion during molding is small, warping and cracking can be prevented. Therefore, it is possible to easily and inexpensively manufacture a resin molded product having excellent design properties and shape accuracy and low transmission loss.

以下、実施例及び比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(実施例1)
図2に本実施例の樹脂成形品を示す。この樹脂成形品は、図1に示すように自動車のフロントグリル 100に設けられたエンブレム1であり、フロントグリル 100に形成された窓部内に、図示しないブラケットやボルト等の固定手段により保持されている。このエンブレム1の背後には、その裏面から所定距離隔てた位置に、車載レーダ装置としての図示しないミリ波レーダ装置が配設されている。なおミリ波レーダ装置は、周波数 76.5GHzのミリ波ビームを送・受信し、そのビーム経路にエンブレム1が介在している。
Example 1
FIG. 2 shows a resin molded product of this example. This resin molded product is an emblem 1 provided on a front grill 100 of an automobile as shown in FIG. 1, and is held in a window formed in the front grill 100 by a fixing means such as a bracket or a bolt (not shown). Yes. Behind the emblem 1, a millimeter wave radar device (not shown) as an in-vehicle radar device is disposed at a position separated from the back surface by a predetermined distance. The millimeter wave radar device transmits and receives a millimeter wave beam having a frequency of 76.5 GHz, and an emblem 1 is interposed in the beam path.

エンブレム1は、車両の後方側(ミリ波レーダ装置に対向する表面側)から、基材層2と、インジウム層3と、インジウム層3の表面に部分的に形成された黒地層4と、透明樹脂層5と、から構成されている。基材層2は黒色不透明のAESから形成され、透明樹脂層5はCOPから形成されている。透明樹脂層5は、ほぼ均一肉厚の一般部50と、一般部50の表面から突出する凸部51とを備えている。車外からみたときに、透明樹脂層5の表面からは黒地層4とインジウム層3の一部が視認され、黒地に金属光輝部が浮かんだエンブレム意匠が視認される。またインジウム層3が表出する部位に対応して凸部51が形成されているので、凸部50の立体意匠の内層に光輝層が表出し、立体感のある意匠を呈している。   The emblem 1 includes a base material layer 2, an indium layer 3, a black background layer 4 partially formed on the surface of the indium layer 3, and a transparent side from the rear side of the vehicle (the surface side facing the millimeter wave radar device). And a resin layer 5. The base material layer 2 is made of black opaque AES, and the transparent resin layer 5 is made of COP. The transparent resin layer 5 includes a general portion 50 having a substantially uniform thickness and a convex portion 51 protruding from the surface of the general portion 50. When viewed from the outside of the vehicle, a part of the black background layer 4 and the indium layer 3 is visually recognized from the surface of the transparent resin layer 5, and an emblem design in which a metallic glitter portion is floated on the black background is visually recognized. Moreover, since the convex part 51 is formed corresponding to the site | part which the indium layer 3 exposes, a glittering layer appears on the inner layer of the solid design of the convex part 50, and the design with a three-dimensional effect is exhibited.

図3に、本実施例の樹脂成形品の模式的断面図を示す。透明樹脂層5は一般部50と凸部51とを備え、全体がCOPから形成されている。その肉厚は一般部50が 1.3×3= 3.9mm、凸部51が 1.3×2= 2.6mmとされている。   In FIG. 3, the typical sectional drawing of the resin molded product of a present Example is shown. The transparent resin layer 5 includes a general portion 50 and a convex portion 51, and is entirely made of COP. The thickness of the general portion 50 is 1.3 × 3 = 3.9 mm, and the convex portion 51 is 1.3 × 2 = 2.6 mm.

このエンブレム1は、以下のようにして製造した。   This emblem 1 was manufactured as follows.

先ずシクロポリオレフィンを射出し、一般部50と凸部51を形成して、透明樹脂層5を形成した。透明樹脂層5の裏面(基材層2に対向する表面)には、僅かな段差の凹凸形状が形成されている。図2及び図3では、この段差寸法が誇張されている。   First, cyclopolyolefin was injected to form the general portion 50 and the convex portion 51, and the transparent resin layer 5 was formed. On the back surface of the transparent resin layer 5 (surface facing the base material layer 2), an uneven shape with a slight step is formed. 2 and 3, this step size is exaggerated.

次に、スクリーン印刷によって裏面の凸表面のみに黒色塗料から膜厚数μmの黒地層4を形成した。次いでインジウムを用い、裏面全体にインジウム層3を膜厚 300Åとなるように蒸着した。これにより、透明樹脂層5の表面側からは、裏面の凹表面に形成されたインジウム層3からなる光輝部と、裏面の凸表面に形成された黒地層4と、表面の一般部50及び凸部51とが視認される。   Next, a black background layer 4 having a film thickness of several μm was formed from a black paint only on the convex surface on the back surface by screen printing. Next, using indium, an indium layer 3 was deposited on the entire back surface to a thickness of 300 mm. Thereby, from the surface side of the transparent resin layer 5, the bright portion composed of the indium layer 3 formed on the concave surface on the back surface, the black background layer 4 formed on the convex surface on the back surface, the general portion 50 and the convex portion on the surface. The part 51 is visually recognized.

上記のようにして得られた加飾層をもつ透明樹脂層5を金型内に配置し、黒色のアクリロニトリル・エチレンプロピレン・スチレンポリマー(AES)からほぼ均一な厚さ( 1.2mm)の基材層2を射出成形した。   A transparent resin layer 5 having a decorative layer obtained as described above is placed in a mold, and a substrate having a substantially uniform thickness (1.2 mm) from black acrylonitrile / ethylene propylene / styrene polymer (AES). Layer 2 was injection molded.

(実施例2)
本実施例の樹脂成形品は、図4に模式的断面を示すように、基材層2と、透明樹脂層5が共にCOPから一体的に形成されていること、加飾体層をもたないこと以外は、実施例1とほぼ同様の構成である。透明樹脂層5の一般部50の肉厚は 1.3×6= 7.8mmであり、凸部51の肉厚は 1.3×2=2.6mmである。
(Example 2)
The resin molded product of this example had a decorative body layer that the base material layer 2 and the transparent resin layer 5 were integrally formed from COP, as shown in a schematic cross section in FIG. The configuration is substantially the same as that of the first embodiment except that the configuration is not present. The thickness of the general portion 50 of the transparent resin layer 5 is 1.3 × 6 = 7.8 mm, and the thickness of the convex portion 51 is 1.3 × 2 = 2.6 mm.

(実施例3)
本実施例の樹脂成形品は、図5に模式的断面を示すように、透明樹脂層5の裏面側に僅かな段差の凸部51’が形成され、凸部52の表面を除く裏面に黒地層4が形成され、凸部51’の表面と黒地層4の表面にインジウム層3が形成されている。さらに、透明樹脂層5の表面にはPCフィルム層6が積層され、PCフィルム層6の表面にはハードコート層7が形成されている。他の構成は実施例1と同様である。
(Example 3)
In the resin molded product of this example, as shown in a schematic cross section in FIG. 5, a convex portion 51 ′ having a slight step is formed on the back surface side of the transparent resin layer 5, and the back surface except for the surface of the convex portion 52 is black. The ground layer 4 is formed, and the indium layer 3 is formed on the surface of the convex portion 51 ′ and the surface of the black ground layer 4. Further, a PC film layer 6 is laminated on the surface of the transparent resin layer 5, and a hard coat layer 7 is formed on the surface of the PC film layer 6. Other configurations are the same as those of the first embodiment.

本実施例の樹脂成形品によれば、ハードコート層7によって意匠表面の傷付きが防止され、かつPCフィルム層6によってハードコート層7の剥離などの不具合が防止されている。そして凸部51及び凸部51’は略凸レンズ形状をなしているため、インジウム層3の意匠が拡大されて視認され、高い意匠性を発現している。   According to the resin molded product of this example, the hard coat layer 7 prevents the design surface from being scratched, and the PC film layer 6 prevents problems such as peeling of the hard coat layer 7. And since the convex part 51 and convex part 51 'have comprised the substantially convex lens shape, the design of the indium layer 3 is expanded and visually recognized, and high designability is expressed.

(実施例4)
本実施例の樹脂成形品は、図6に模式的断面を示すように、透明樹脂層5における凸部51が透明樹脂層5の全肉厚で形成され、一般部50がPCから形成されていること、透明樹脂層5の表面にPCフィルム層6が積層され、PCフィルム層6の表面にハードコート層7が形成されていること以外は実施例1とほぼ同様の構成である。一般部50の肉厚は 3.9mmであり、凸部51の肉厚は 6.5mmである。
Example 4
In the resin molded product of this example, as shown in a schematic cross section in FIG. 6, the convex portion 51 in the transparent resin layer 5 is formed with the entire thickness of the transparent resin layer 5, and the general portion 50 is formed from PC. The configuration is substantially the same as in Example 1 except that the PC film layer 6 is laminated on the surface of the transparent resin layer 5 and the hard coat layer 7 is formed on the surface of the PC film layer 6. The thickness of the general part 50 is 3.9 mm, and the thickness of the convex part 51 is 6.5 mm.

(実施例5)
本実施例の樹脂成形品は、ビーム波長(λ)の1/2の整数(n)倍(Δh=nλ/2)でなくても成立する。図7にその例として模式的断面を示す。凸部51の表面に高さ 0.3mmの凹凸模様52を形成したこと、透明樹脂層5の表面にPCフィルム層6が積層され、PCフィルム層6の表面にハードコート層7が形成されていること以外は実施例2と同様である。
(Example 5)
The resin molded product of the present embodiment is established even if it is not an integer (n) times 1/2 (Δh = nλ / 2) of the beam wavelength (λ). FIG. 7 shows a schematic cross section as an example. An uneven pattern 52 having a height of 0.3 mm is formed on the surface of the convex portion 51, a PC film layer 6 is laminated on the surface of the transparent resin layer 5, and a hard coat layer 7 is formed on the surface of the PC film layer 6. Except for this, this is the same as Example 2.

凸部52はCOPから形成されているので、このように凹凸模様52を形成しても厚さの変動が透過損失に及ぼす影響が少ない。したがって従来は困難であった凹凸模様52を形成することができ、意匠の自由度が高い。   Since the convex portion 52 is formed of COP, even if the concave / convex pattern 52 is formed in this way, the thickness variation has little influence on the transmission loss. Therefore, it is possible to form the uneven pattern 52 that has been difficult in the past, and the degree of freedom in design is high.

(実施例6)
本実施例の樹脂成形品は、図8に模式的断面を示すように、COPからなる基材層2’と、COPからなる透明樹脂層5とからなり、基材層2’と透明樹脂層5との間にインジウム層3及び黒地層4が形成されている。基材層2’と透明樹脂層5は、同じCOPから二色成形により形成されている。
(Example 6)
As shown in a schematic cross section in FIG. 8, the resin molded product of this example is composed of a base material layer 2 ′ made of COP and a transparent resin layer 5 made of COP, and the base material layer 2 ′ and the transparent resin layer. An indium layer 3 and a black background layer 4 are formed therebetween. The base material layer 2 ′ and the transparent resin layer 5 are formed from the same COP by two-color molding.

本実施例の樹脂成形品によれば、基材層2’と透明樹脂層5とをCOPから形成したので、それぞれの厚さの規制が緩和される。したがってインジウム層3の形状に図8に示すような大きな段差を形成することが可能となり、光輝面の意匠の自由度が高い。   According to the resin molded product of this example, since the base material layer 2 ′ and the transparent resin layer 5 are formed from COP, the regulation of each thickness is relaxed. Accordingly, it is possible to form a large step as shown in FIG. 8 in the shape of the indium layer 3, and the degree of freedom in the design of the bright surface is high.

(比較例1)
実施例2と同形状の樹脂成形品をPCから形成した。なお一般部50の肉厚は 1.2×6=7.2とし、凸部51の肉厚を、1.2の整数倍ではない 2.0mmとした。
(Comparative Example 1)
A resin molded product having the same shape as in Example 2 was formed from PC. The thickness of the general portion 50 is 1.2 × 6 = 7.2, and the thickness of the convex portion 51 is 2.0 mm which is not an integral multiple of 1.2.

<評価>
実施例1〜6及び比較例1の樹脂成形品について、ミリ波レーダ装置から周波数 76.5GHzのビームを凸部51の表面に垂直に入射するように照射し、その時の透過損失を測定した。結果を比較例1の透過損失を 100とした相対値で表1に示す。
<Evaluation>
The resin molded products of Examples 1 to 6 and Comparative Example 1 were irradiated with a beam having a frequency of 76.5 GHz so as to be perpendicularly incident on the surface of the convex portion 51 from the millimeter wave radar device, and the transmission loss at that time was measured. The results are shown in Table 1 as relative values with the transmission loss of Comparative Example 1 as 100.

Figure 2009124485
Figure 2009124485

表1より、実施例1〜6の樹脂成形品は比較例1の樹脂成形品より電波減衰量が小さい。すなわち本発明の樹脂成形品は、凸部51を有しているにも関わらず高い電波透過性を備えている。   From Table 1, the resin molded products of Examples 1 to 6 have smaller radio wave attenuation than the resin molded product of Comparative Example 1. That is, the resin molded product of the present invention has high radio wave permeability despite having the convex portions 51.

本発明の樹脂成形品は、フロントグリル、バンパー、バックガーニッシュ、スポイラー、サイドモールの一部などとして利用することもできる。   The resin molded product of the present invention can also be used as a front grill, a bumper, a back garnish, a spoiler, a part of a side molding, and the like.

本発明の一実施例に係る樹脂成形品をもつ自動車の要部斜視図である。It is a principal part perspective view of the motor vehicle which has the resin molded product which concerns on one Example of this invention. 本発明の一実施例に係る樹脂成形品の断面図である。It is sectional drawing of the resin molded product which concerns on one Example of this invention. 本発明の一実施例に係る樹脂成形品の要部を示す模式的断面図である。It is typical sectional drawing which shows the principal part of the resin molded product which concerns on one Example of this invention. 本発明の第2の実施例に係る樹脂成形品の要部を示す模式的断面図である。It is typical sectional drawing which shows the principal part of the resin molded product which concerns on the 2nd Example of this invention. 本発明の第3の実施例に係る樹脂成形品の要部を示す模式的断面図である。It is typical sectional drawing which shows the principal part of the resin molded product which concerns on the 3rd Example of this invention. 本発明の第4の実施例に係る樹脂成形品の要部を示す模式的断面図である。It is typical sectional drawing which shows the principal part of the resin molded product which concerns on the 4th Example of this invention. 本発明の第5の実施例に係る樹脂成形品の要部を示す模式的断面図である。It is typical sectional drawing which shows the principal part of the resin molded product which concerns on the 5th Example of this invention. 本発明の第6の実施例に係る樹脂成形品の要部を示す模式的断面図である。It is typical sectional drawing which shows the principal part of the resin molded product which concerns on the 6th Example of this invention.

符号の説明Explanation of symbols

1:エンブレム(樹脂成形品) 2:基材層
3:インジウム層 4:黒地層
5:透明樹脂層 6:PCフィルム層
7:ハードコート層 50:一般部
51:凸部 52:凹凸模様
1: Emblem (resin molded product) 2: Base material layer 3: Indium layer 4: Black ground layer 5: Transparent resin layer 6: PC film layer 7: Hard coat layer 50: General part
51: Convex part 52: Concave and convex pattern

Claims (7)

背面側の電波レーダー装置のビーム経路に配置される樹脂成形品であって、
外表面に表出する表出面をもつ透明樹脂層と、該透明樹脂層の該表出面と反対側表面に形成された基材層と、を有し、
該透明樹脂層は、一般部と、該一般部より肉厚が厚くその表面が該表出面から突出する凸部と、を有し、
該凸部の少なくとも一部は、該ビームの周波数における誘電正接が0.0005以下、比誘電率が3以下の特性を有する熱可塑性樹脂から形成されていることを特徴とする樹脂成形品。
It is a resin molded product placed in the beam path of the radio wave radar device on the back side,
A transparent resin layer having an exposed surface exposed on the outer surface, and a base material layer formed on the surface of the transparent resin layer opposite to the exposed surface,
The transparent resin layer has a general part, and a convex part whose surface is thicker than the general part and whose surface projects from the exposed surface,
At least a part of the convex part is formed from a thermoplastic resin having a characteristic that a dielectric loss tangent at a frequency of the beam is 0.0005 or less and a relative dielectric constant is 3 or less.
前記凸部と前記一般部との厚さの差(Δh)は、前記凸部を透過する前記ビームの波長(λ)の1/2の整数(n)倍(Δh=nλ/2)と実質的に等しい請求項1に記載の樹脂成形品。   The difference in thickness (Δh) between the convex portion and the general portion is substantially equal to an integer (n) times 1/2 (Δh = nλ / 2) of the wavelength (λ) of the beam transmitted through the convex portion. The resin molded product according to claim 1 which is equal to each other. 前記凸部は、電波透過範囲内で電波透過範囲と電波非透過範囲との境界部に近接する大きさに形成されている請求項1又は請求項2に記載の樹脂成形品。   3. The resin molded product according to claim 1, wherein the convex portion is formed in a size close to a boundary portion between the radio wave transmission range and the radio wave non-transmission range within the radio wave transmission range. 前記透明樹脂層の全体が前記熱可塑性樹脂から形成されている請求項1〜3のいずれかに記載の樹脂成形品。   The resin molded product according to any one of claims 1 to 3, wherein the entire transparent resin layer is formed from the thermoplastic resin. 前記熱可塑性樹脂はシクロオレフィン系樹脂である請求項1〜4のいずれかに記載の樹脂成形品。   The resin molded product according to any one of claims 1 to 4, wherein the thermoplastic resin is a cycloolefin resin. 前記凸部の表面には前記凸部の厚さより小さな厚さの微細凸部をもつ請求項1〜5のいずれかに記載の樹脂成形品。   The resin molded product according to claim 1, wherein a surface of the convex portion has a fine convex portion having a thickness smaller than that of the convex portion. 前記凸部の表面にはポリカーボネート層が形成され、該ポリカーボネート層の表面にはハードコート層が形成されている請求項5又は請求項6に記載の樹脂成形品。   The resin molded product according to claim 5 or 6, wherein a polycarbonate layer is formed on a surface of the convex portion, and a hard coat layer is formed on the surface of the polycarbonate layer.
JP2007296860A 2007-11-15 2007-11-15 Resin molded product placed in the beam path of radio radar equipment Expired - Fee Related JP4872886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007296860A JP4872886B2 (en) 2007-11-15 2007-11-15 Resin molded product placed in the beam path of radio radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007296860A JP4872886B2 (en) 2007-11-15 2007-11-15 Resin molded product placed in the beam path of radio radar equipment

Publications (2)

Publication Number Publication Date
JP2009124485A true JP2009124485A (en) 2009-06-04
JP4872886B2 JP4872886B2 (en) 2012-02-08

Family

ID=40816149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007296860A Expired - Fee Related JP4872886B2 (en) 2007-11-15 2007-11-15 Resin molded product placed in the beam path of radio radar equipment

Country Status (1)

Country Link
JP (1) JP4872886B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107913A (en) * 2010-11-15 2012-06-07 Kanto Auto Works Ltd Coating member for radar device
JP2014070899A (en) * 2012-09-27 2014-04-21 Toyoda Gosei Co Ltd Millimeter wave radar apparatus for vehicle use
WO2015055371A1 (en) * 2013-10-17 2015-04-23 Robert Bosch Gmbh Cover for a radar sensor for motor vehicles
JP2015137877A (en) * 2014-01-20 2015-07-30 古河電気工業株式会社 Rader system arrangement structure
CN106257304A (en) * 2015-06-17 2016-12-28 沃尔沃汽车公司 Low reflection radar supports
JP2017074818A (en) * 2015-10-13 2017-04-20 サカエ理研工業株式会社 Light emission display device
EP3168056A1 (en) * 2015-11-16 2017-05-17 Toyoda Gosei Co., Ltd. Decorative member and manufacturing method thereof
WO2017104714A1 (en) * 2015-12-16 2017-06-22 テクノポリマー株式会社 Resin component disposed in route of beam emitted by radar device, radome, and radar device
JPWO2016027391A1 (en) * 2014-08-21 2017-07-27 ソニー株式会社 Casing parts, electronic equipment, and manufacturing method of casing parts
JP2017211199A (en) * 2016-05-23 2017-11-30 株式会社Soken Radar system
KR20180025338A (en) * 2016-08-29 2018-03-09 현대자동차주식회사 Cover for smart cruise control radar
JP2019007776A (en) * 2017-06-21 2019-01-17 豊田合成株式会社 Electromagnetic wave transmission cover
JP2019197048A (en) * 2018-05-02 2019-11-14 三菱エンジニアリングプラスチックス株式会社 Millimeter wave radar-purpose cover and millimeter wave radar module including the same
US11273619B2 (en) * 2019-03-29 2022-03-15 Honda Motor Co., Ltd. Molded resin product
EP4039548A1 (en) * 2021-02-09 2022-08-10 Motherson Innovations Company Limited External cladding component of a vehicle and vehicle comprising such an external cladding component
JP2023136217A (en) * 2022-03-16 2023-09-29 株式会社レゾナック Radio wave transmitting member, emblem and object detection structure
JP2023136216A (en) * 2022-03-16 2023-09-29 株式会社レゾナック Radio wave transmitting member, emblem and object detection structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052507A (en) * 1998-08-05 2000-02-22 Japan Polychem Corp Laminated molding
JP2001121633A (en) * 1999-10-29 2001-05-08 Toray Ind Inc Heat-resistant plastic molded object and method for manufacturing the same
JP2004023645A (en) * 2002-06-19 2004-01-22 Kobe Steel Ltd Antenna radome having good water-film antisticking characteristic
JP2004301592A (en) * 2003-03-31 2004-10-28 Toyota Motor Corp Cover for radar device of vehicle
JP2005342976A (en) * 2004-06-02 2005-12-15 Toppan Printing Co Ltd Barrier laminate, display member using it and display
JP2006051633A (en) * 2004-08-10 2006-02-23 Mitsubishi Engineering Plastics Corp Laminate made of synthetic resin and its manufacturing method
JP2006287500A (en) * 2005-03-31 2006-10-19 Toyoda Gosei Co Ltd Radio wave transmissive cover member
JP2007013722A (en) * 2005-06-30 2007-01-18 Toyoda Gosei Co Ltd Resin molded article arranged in beam route of electric wave radar unit and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052507A (en) * 1998-08-05 2000-02-22 Japan Polychem Corp Laminated molding
JP2001121633A (en) * 1999-10-29 2001-05-08 Toray Ind Inc Heat-resistant plastic molded object and method for manufacturing the same
JP2004023645A (en) * 2002-06-19 2004-01-22 Kobe Steel Ltd Antenna radome having good water-film antisticking characteristic
JP2004301592A (en) * 2003-03-31 2004-10-28 Toyota Motor Corp Cover for radar device of vehicle
JP2005342976A (en) * 2004-06-02 2005-12-15 Toppan Printing Co Ltd Barrier laminate, display member using it and display
JP2006051633A (en) * 2004-08-10 2006-02-23 Mitsubishi Engineering Plastics Corp Laminate made of synthetic resin and its manufacturing method
JP2006287500A (en) * 2005-03-31 2006-10-19 Toyoda Gosei Co Ltd Radio wave transmissive cover member
JP2007013722A (en) * 2005-06-30 2007-01-18 Toyoda Gosei Co Ltd Resin molded article arranged in beam route of electric wave radar unit and its manufacturing method

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107913A (en) * 2010-11-15 2012-06-07 Kanto Auto Works Ltd Coating member for radar device
JP2014070899A (en) * 2012-09-27 2014-04-21 Toyoda Gosei Co Ltd Millimeter wave radar apparatus for vehicle use
WO2015055371A1 (en) * 2013-10-17 2015-04-23 Robert Bosch Gmbh Cover for a radar sensor for motor vehicles
US10629984B2 (en) 2013-10-17 2020-04-21 Robert Bosch Gmbh Cover for a radar sensor for motor vehicles
US10381718B2 (en) 2013-10-17 2019-08-13 Robert Bosch Gmbh Cover for a radar sensor for motor vehicles
JP2015137877A (en) * 2014-01-20 2015-07-30 古河電気工業株式会社 Rader system arrangement structure
JPWO2016027391A1 (en) * 2014-08-21 2017-07-27 ソニー株式会社 Casing parts, electronic equipment, and manufacturing method of casing parts
CN106257304A (en) * 2015-06-17 2016-12-28 沃尔沃汽车公司 Low reflection radar supports
CN106257304B (en) * 2015-06-17 2022-12-27 沃尔沃汽车公司 Low reflection radar support
JP2017074818A (en) * 2015-10-13 2017-04-20 サカエ理研工業株式会社 Light emission display device
KR20170057152A (en) * 2015-11-16 2017-05-24 도요다 고세이 가부시키가이샤 Decorative member and manufacturing method thereof
KR101985578B1 (en) * 2015-11-16 2019-06-03 도요다 고세이 가부시키가이샤 Decorative member and manufacturing method thereof
EP3168056A1 (en) * 2015-11-16 2017-05-17 Toyoda Gosei Co., Ltd. Decorative member and manufacturing method thereof
US11298917B2 (en) 2015-11-16 2022-04-12 Toyoda Gosei Co., Ltd. Decorative member and manufacturing method thereof
JP2017090384A (en) * 2015-11-16 2017-05-25 豊田合成株式会社 Decorative object and method for manufacturing the same
JPWO2017104714A1 (en) * 2015-12-16 2018-11-01 テクノUmg株式会社 Resin parts, radomes and radar devices arranged in the path of beams emitted by radar devices
CN108603005B (en) * 2015-12-16 2020-11-03 大科能宇菱通株式会社 Resin member disposed on path of beam emitted from radar device, radome, and radar device
US11046800B2 (en) 2015-12-16 2021-06-29 Techno-Umg Co., Ltd. Resin component disposed in route of beam emitted by radar device, radome, and radar device
CN108603005A (en) * 2015-12-16 2018-09-28 大科能宇菱通株式会社 It is configured at resin component, radome and the radar installations in the path for the wave beam that radar installations is sent out
WO2017104714A1 (en) * 2015-12-16 2017-06-22 テクノポリマー株式会社 Resin component disposed in route of beam emitted by radar device, radome, and radar device
JP2017211199A (en) * 2016-05-23 2017-11-30 株式会社Soken Radar system
WO2017204059A1 (en) * 2016-05-23 2017-11-30 株式会社デンソー Radar device
KR101887753B1 (en) * 2016-08-29 2018-08-13 현대자동차주식회사 Cover for smart cruise control radar
KR20180025338A (en) * 2016-08-29 2018-03-09 현대자동차주식회사 Cover for smart cruise control radar
JP2019007776A (en) * 2017-06-21 2019-01-17 豊田合成株式会社 Electromagnetic wave transmission cover
JP2019197048A (en) * 2018-05-02 2019-11-14 三菱エンジニアリングプラスチックス株式会社 Millimeter wave radar-purpose cover and millimeter wave radar module including the same
JP7339479B2 (en) 2018-05-02 2023-09-06 三菱ケミカル株式会社 Millimeter-wave radar cover and millimeter-wave radar module including the same
US11273619B2 (en) * 2019-03-29 2022-03-15 Honda Motor Co., Ltd. Molded resin product
EP4039548A1 (en) * 2021-02-09 2022-08-10 Motherson Innovations Company Limited External cladding component of a vehicle and vehicle comprising such an external cladding component
JP2023136217A (en) * 2022-03-16 2023-09-29 株式会社レゾナック Radio wave transmitting member, emblem and object detection structure
JP2023136216A (en) * 2022-03-16 2023-09-29 株式会社レゾナック Radio wave transmitting member, emblem and object detection structure

Also Published As

Publication number Publication date
JP4872886B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4872886B2 (en) Resin molded product placed in the beam path of radio radar equipment
JP2007013722A (en) Resin molded article arranged in beam route of electric wave radar unit and its manufacturing method
WO2020003710A1 (en) Electromagnetic wave transmissive cover and method for manufacturing electromagnetic wave transmissive cover
US20150076851A1 (en) Vehicular exterior member
JP6901566B2 (en) Radome for vehicles
US6961023B2 (en) Wave-transmitting cover, and method for producing it
JP6331098B2 (en) Radio wave transmission cover for vehicles
JP4667923B2 (en) Brightening molded parts for radar device beam path
CN106476717B (en) Vehicle component
JP4881984B2 (en) Manufacturing method of radome
JP4771118B2 (en) Manufacturing method of resin laminated member
JP4224794B2 (en) Manufacturing method of radio wave transmission cover
US11247411B2 (en) Emblem for automobile and method of manufacturing the same
JP2016182866A (en) Vehicle attachment part
JP2014070899A (en) Millimeter wave radar apparatus for vehicle use
JP2005249773A (en) Molding for inside of beam path in radar system
JP5275856B2 (en) Decorative member, radar unit, and decorative member manufacturing method
JP2019007776A (en) Electromagnetic wave transmission cover
KR20170047070A (en) A Radome Using High Luminance Paint and A Vehicle Comprising The Same
JP2006287500A (en) Radio wave transmissive cover member
JP3951740B2 (en) Manufacturing method of radio wave transmission cover
JP2011027434A (en) Method of forming decorative coating on surface of resin base material and exterior decoration member having the decorative coating
US20230387582A1 (en) Electromagnetic interference protection for radomes
JP4613991B2 (en) Manufacturing method of radio wave transmission cover
JP2006287499A (en) Radio wave transmissive cover member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4872886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees