JP2009123389A - All-solid secondary battery - Google Patents

All-solid secondary battery Download PDF

Info

Publication number
JP2009123389A
JP2009123389A JP2007293459A JP2007293459A JP2009123389A JP 2009123389 A JP2009123389 A JP 2009123389A JP 2007293459 A JP2007293459 A JP 2007293459A JP 2007293459 A JP2007293459 A JP 2007293459A JP 2009123389 A JP2009123389 A JP 2009123389A
Authority
JP
Japan
Prior art keywords
active material
layer
solid
secondary battery
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007293459A
Other languages
Japanese (ja)
Other versions
JP5164256B2 (en
Inventor
Shigeto Okada
重人 岡田
Eiji Kobayashi
栄次 小林
Kazuhiro Yamamoto
一博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Kyushu University NUC
Original Assignee
NGK Insulators Ltd
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Kyushu University NUC filed Critical NGK Insulators Ltd
Priority to JP2007293459A priority Critical patent/JP5164256B2/en
Publication of JP2009123389A publication Critical patent/JP2009123389A/en
Application granted granted Critical
Publication of JP5164256B2 publication Critical patent/JP5164256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an all-solid secondary battery that is easy to manufacture and of a simple structure. <P>SOLUTION: The all-solid secondary battery 10 capable of multiple valence changes includes a single-layer active material layer 12 including an active material 32 that has different redox potentials for respective valence changes, a positive electrode collector electrode 14 arranged on one surface of the single-layer active material layer 12, and a negative electrode collector electrode 16 arranged on the other surface of the single-layer active material layer 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、全固体二次電池用に関する。更に詳しくは、製造が簡便な、より簡素な構成の全固体二次電池に関する。   The present invention relates to an all solid state secondary battery. More specifically, the present invention relates to an all-solid-state secondary battery that is simple to manufacture and has a simpler configuration.

近年、パーソナルコンピュータ、携帯電話等のポータブル機器の開発に伴い、その電源としての電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させる媒体として、希釈溶媒に可燃性の有機溶媒等の液体の電解質(電解液)が従来使用されている。このような電解液を用いた電池においては、電解液の漏液等により発火、爆発等の問題を生ずる可能性がある。   In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as power sources has been greatly expanded. In a battery used for such an application, a liquid electrolyte (electrolytic solution) such as a flammable organic solvent is conventionally used as a diluent solvent as a medium for moving ions. In a battery using such an electrolytic solution, problems such as ignition and explosion may occur due to leakage of the electrolytic solution.

このような問題を解消すべく、本質的な安全性確保のために液体の電解質に代えて固体電解質を使用するとともに、その他の要素の全てを固体で構成した全固体電池の開発が進められている。このような全固体電池は、電解質が固体である焼結したセラミックスにより形成されるために、発火や漏液の心配がなく、また、腐食による電池性能の劣化等の問題も生じ難いものである。なかでも、全固体リチウム二次電池は、容易に高エネルギー密度とすることが可能な二次電池として各方面で盛んに研究が行われている(例えば、特許文献1参照)。   In order to solve these problems, in order to ensure intrinsic safety, solid electrolytes are used in place of liquid electrolytes, and development of all-solid-state batteries in which all other elements are composed of solids has been promoted. Yes. Since such an all-solid battery is formed of sintered ceramics whose electrolyte is a solid, there is no concern of ignition or leakage, and problems such as deterioration of battery performance due to corrosion are unlikely to occur. . In particular, all-solid lithium secondary batteries have been actively studied in various fields as secondary batteries that can easily have a high energy density (see, for example, Patent Document 1).

従来の電池は、正極活物質からなる正極活物質層及び負極活物質からなる負極活物質層と、これら電極を電気的に絶縁し、イオン伝導性のみを有する電解質層との3層によって構成されている。そしてこの積層体が、全固体電池の内部電極体となっている。製造方法についても、これら3層を様々な方法により積層することによって全固体電池が製造されている。例えば、液系電解液を用いた円筒形のセルの場合には、上記3層構造のシートを筒状に捲回して捲回型内部電極体を製造することができる。   A conventional battery is composed of three layers: a positive electrode active material layer made of a positive electrode active material and a negative electrode active material layer made of a negative electrode active material, and an electrolyte layer that electrically insulates these electrodes and has only ionic conductivity. ing. And this laminated body is an internal electrode body of an all-solid-state battery. Regarding the manufacturing method, an all solid state battery is manufactured by laminating these three layers by various methods. For example, in the case of a cylindrical cell using a liquid electrolyte, the wound internal electrode body can be manufactured by winding the sheet having the three-layer structure into a cylindrical shape.

なお、このような従来の電池は、正極活物質層と負極活物質層とが異なる材料で構成されているため、3種類の材料を用いて、上記した複雑な3層構造を形成しなければならず、製造工程が煩雑であるという問題があった。   In such a conventional battery, since the positive electrode active material layer and the negative electrode active material layer are made of different materials, the above-described complicated three-layer structure must be formed using three types of materials. In other words, there is a problem that the manufacturing process is complicated.

このようなことから、正極にも負極にも用いることが可能な電極活物質を用いた全固体電池が提案されている(例えば、特許文献2参照)。   For this reason, an all-solid battery using an electrode active material that can be used for both a positive electrode and a negative electrode has been proposed (see, for example, Patent Document 2).

特開平5−205741号公報JP-A-5-205741 特開2007−258165号公報JP 2007-258165 A

この特許文献2の全固体電池に用いられる電極活物質は、上記したように正極にも負極にも用いることが可能なものであるため、固体電解質からなる層の両方の面に、同一種類の活物質からなる活物質層をそれぞれ形成することにより、高出力及び長寿命の全固体電池とすることができる。このように、特許文献2の全固体電池は、電極活物質が一種類で済むことから、材料的な構成が簡素なものとなっている。   Since the electrode active material used in the all solid state battery of Patent Document 2 can be used for both the positive electrode and the negative electrode as described above, the same kind of electrode active material is used on both sides of the layer made of the solid electrolyte. By forming each active material layer made of an active material, an all-solid battery having a high output and a long life can be obtained. Thus, the all-solid-state battery of Patent Document 2 has a simple material configuration because only one type of electrode active material is required.

しかしながら、全固体電池の構造的な構成については、正極活物質層、電解質層、及び負極活物質層という3層構造であることには変わりはなく、複雑な3層構造を形成しなければならないという問題については解決されていなかった。   However, the structural configuration of the all-solid battery remains the same as the three-layer structure of the positive electrode active material layer, the electrolyte layer, and the negative electrode active material layer, and a complicated three-layer structure must be formed. The problem was not solved.

即ち、正極にも負極にも用いることが可能な活物質を用いたとしても、電池の構造が、上記3層構造である限り、液系電解質を用いた場合であっても、また、固体電解質を用いた場合であっても、製造上における工程数の削減に繋がるものではない。このため、製造が簡便な、より簡素な構成の電池の開発が求められている。   That is, even if an active material that can be used for both the positive electrode and the negative electrode is used, as long as the structure of the battery is the above three-layer structure, even if a liquid electrolyte is used, Even if it is a case where it uses, it does not lead to reduction of the number of processes on manufacture. For this reason, development of a battery with a simpler configuration that is simple to manufacture is required.

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、製造が簡便な、より簡素な構成の全固体二次電池を提供するものである。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide an all-solid-state secondary battery that is simple to manufacture and has a simpler configuration. .

本発明者らは上記課題を達成すべく鋭意検討した結果、従来の電池のような、正極活物質層、電解質層、及び負極活物質層という3層構造の内部電極体に変えて、正極と負極とのそれぞれの電極となり得る活物質を含む単一層からなる単層活物質層を用いることによって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have changed to a positive electrode active material layer, an electrolyte layer, and a negative electrode active material layer having a three-layer structure, such as a conventional battery, The present inventors have found that the above-described problems can be achieved by using a single-layer active material layer including a single layer containing an active material that can be an electrode for each of the negative electrodes, and have completed the present invention.

即ち、本発明によれば、以下に示す全固体二次電池が提供される。   That is, according to the present invention, the following all-solid secondary battery is provided.

[1] 複数の価数変化が可能で、それぞれの価数変化に対応した異なるレドックス電位を有する活物質材料を含む単一層からなる単層活物質層と、前記単層活物質層の一方の表面に配置された正極集電極と、前記単層活物質層の他方の表面に配置された負極集電極と、を備えた全固体二次電池。 [1] A single-layer active material layer composed of a single layer including active material materials capable of changing a plurality of valences and having different redox potentials corresponding to the valence changes, and one of the single-layer active material layers An all solid state secondary battery comprising: a positive electrode collector electrode disposed on a surface; and a negative electrode collector electrode disposed on the other surface of the single-layer active material layer.

[2] 前記単層活物質層が、固体電解質を更に含むものである前記[1]に記載の全固体二次電池。 [2] The all-solid-state secondary battery according to [1], wherein the single-layer active material layer further includes a solid electrolyte.

[3] 前記活物質材料、及び前記固体電解質が、それぞれナシコン構造又はオリビン構造を有するリン酸化合物である前記[2]に記載の全固体二次電池。 [3] The all-solid-state secondary battery according to [2], wherein the active material and the solid electrolyte are phosphoric acid compounds each having a NASICON structure or an olivine structure.

[4] 前記単層活物質層が、非晶質のリン酸化合物からなる固体電解質材料を含む単層活物質層の前駆体を加熱焼成してなるものである前記[3]に記載の全固体二次電池。 [4] All of the above [3], wherein the single layer active material layer is obtained by heating and firing a precursor of a single layer active material layer containing a solid electrolyte material made of an amorphous phosphate compound. Solid secondary battery.

[5] 前記固体電解質が、下記一般式(1)で表されるリン酸化合物である前記[2]〜[4]のいずれかに記載の全固体二次電池。
Li1+yAlGe2−y(PO (1)
(上記一般式(1)中、yは、0≦y≦1である)
[5] The all solid state secondary battery according to any one of [2] to [4], wherein the solid electrolyte is a phosphoric acid compound represented by the following general formula (1).
Li 1 + y Al y Ge 2 -y (PO 4) 3 (1)
(In the general formula (1), y is 0 ≦ y ≦ 1)

[6] 前記活物質材料が、下記一般式(2)で表されるリン酸化合物である前記[1]〜[5]のいずれかに記載の全固体二次電池。
Li(PO (2)
(上記一般式(2)中、xは、1≦x≦5である)
[6] The all solid state secondary battery according to any one of [1] to [5], wherein the active material is a phosphate compound represented by the following general formula (2).
Li x V 2 (PO 4 ) 3 (2)
(In the above general formula (2), x is 1 ≦ x ≦ 5)

本発明の全固体二次電池は、内部電極体として、複雑な積層構造によって構成された電極体を必要としないため、製造が簡便で、簡素な構成のものである。本発明の全固体二次電池は、内部電極体として単一の層からなる活物質層を備えたものであるため、全固体二次電池の内部抵抗を小さくすることができる。また、内部電極体に電解質層を必要としないため、電池の小型・薄型化が可能となる。   Since the all-solid-state secondary battery of the present invention does not require an electrode body constituted by a complicated laminated structure as an internal electrode body, it is easy to manufacture and has a simple structure. Since the all-solid-state secondary battery of the present invention includes an active material layer composed of a single layer as the internal electrode body, the internal resistance of the all-solid-state secondary battery can be reduced. Further, since no electrolyte layer is required for the internal electrode body, the battery can be made smaller and thinner.

更に、本発明の全固体二次電池においては、単層活物質層に固体電解質を含有させることによって、例えば、使用する活物質自身のイオン伝導性が乏しい(即ち、レート特性が悪い)場合であっても、単層活物質層のイオン伝導性を補助して、レート特性の高い全固体二次電池とすることができる。   Furthermore, in the all-solid-state secondary battery of the present invention, by including a solid electrolyte in the single-layer active material layer, for example, when the ionic conductivity of the active material itself used is poor (that is, the rate characteristics are poor). Even if it exists, it can be set as the all-solid-state secondary battery with a high rate characteristic by assisting the ionic conductivity of a single layer active material layer.

以下、本発明を実施するための最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below, but the present invention is not limited to the following embodiments, and the ordinary knowledge of those skilled in the art is within the scope of the present invention. Based on the above, it should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.

[1]全固体二次電池:
まず、本発明の全固体二次電池の一の実施形態について説明する。本実施形態の全固体二次電池は、図1に示すように、複数の価数変化が可能で、それぞれの価数変化に対応した異なるレドックス電位を有する活物質材料32を含む単一層からなる単層活物質層12と、この単層活物質層12の一方の表面に配置された正極集電極14と、単層活物質層12の他方の表面に配置された負極集電極16と、を備えた全固体二次電池10である。
[1] All-solid secondary battery:
First, an embodiment of the all solid state secondary battery of the present invention will be described. As shown in FIG. 1, the all-solid-state secondary battery of this embodiment includes a single layer including an active material 32 that can change a plurality of valences and has different redox potentials corresponding to each valence change. A single-layer active material layer 12, a positive electrode collector electrode 14 disposed on one surface of the single-layer active material layer 12, and a negative electrode collector electrode 16 disposed on the other surface of the single-layer active material layer 12. This is an all-solid secondary battery 10 provided.

上記した、複数の価数変化が可能で、それぞれの価数変化に対応した異なるレドックス電位を有する活物質材料は、例えば、従来の二次電池において、正極と負極とのそれぞれの電極となり得る活物質材料である。   The active material having a different redox potential corresponding to each of the valence changes described above can be used as, for example, an active material that can serve as a positive electrode and a negative electrode in a conventional secondary battery. It is a material.

ここで、図1は、本発明の全固体二次電池の一の実施形態の構成を説明する模式図である。なお、図1は、全固体二次電池を、単層活物質層の表面に垂直な平面で切断した状態を示すものである。   Here, FIG. 1 is a schematic diagram illustrating the configuration of an embodiment of the all solid state secondary battery of the present invention. 1 shows a state in which the all-solid-state secondary battery is cut along a plane perpendicular to the surface of the single-layer active material layer.

本実施形態の全固体二次電池は、内部電極体として、複雑な積層構造によって構成された電極体を必要とせず、単一層からなる単層活物質層を内部電極体として備えた、従来にはない新規な全固体電池である。本実施形態の全固体二次電池は、製造が簡便で、簡素な構成のものである。また、正極活物質層と負極活物質層との仕切りとなる電解質層を必要としないため、電池の小型・薄型化が可能となる。   The all-solid-state secondary battery according to the present embodiment does not require an electrode body configured by a complicated laminated structure as an internal electrode body, and includes a single-layer active material layer composed of a single layer as an internal electrode body. There is no new all-solid-state battery. The all solid state secondary battery of the present embodiment is simple to manufacture and has a simple configuration. In addition, since an electrolyte layer serving as a partition between the positive electrode active material layer and the negative electrode active material layer is not required, the battery can be reduced in size and thickness.

加えて、従来の全固体電池のように、正極活物質層、電解質層、及び負極活物質層という3層構造の電池の場合には、3層それぞれの界面を良好に接合する技術が必要となる。具体的には、界面の接合に関しては、構造的に良好なつながりができていることが重要である。つまり、電池においては、構造的につながった部分で電子やイオンがやり取りされるが、全固体電池の場合、粒子間の接合が、例えば点接触のような状態であると、その部分が非常に高抵抗となるため内部抵抗の高い性能の悪い電池となってしまう。そのため粒子間の接合に関しては、その接合面積がより広い面積で行われていることが求められる。   In addition, in the case of a battery having a three-layer structure of a positive electrode active material layer, an electrolyte layer, and a negative electrode active material layer as in a conventional all solid state battery, a technique for satisfactorily joining the interfaces of the three layers is required. Become. Specifically, it is important that the interface is well connected in terms of structure. In other words, in a battery, electrons and ions are exchanged in structurally connected parts. However, in the case of an all-solid battery, if the joint between particles is in a state such as point contact, the part is very Since the resistance is high, the battery has high internal resistance and poor performance. For this reason, the bonding between the particles is required to be performed in a wider area.

また、従来の全固体電池は、上記したように3層の界面における接合が重要となる一方で、活物質と固体電解質という異なる材料が接するため、材料間の反応性が問われることにもなる。具体的には材料が焼結する温度において、例えば活物質と固体電解質の界面において異相が形成され、それが高抵抗層となったり、活物質材料の組成が変化して理論容量の充放電ができなくなったりして、電池の性能を悪くする要因となることがある。   In addition, in the conventional all-solid battery, as described above, bonding at the interface between the three layers is important, but since different materials such as the active material and the solid electrolyte are in contact with each other, the reactivity between the materials is also questioned. . Specifically, at the temperature at which the material sinters, for example, a heterogeneous phase is formed at the interface between the active material and the solid electrolyte, which becomes a high resistance layer, or the composition of the active material changes to charge / discharge the theoretical capacity. It may become impossible to cause deterioration of battery performance.

従って、このような材料間の反応を回避する活物質と固体電解質の組合せを、正極側及び負極側と複数の組合せで両立しなければならない従来の3層からなる全固体電池の構造では、その組合せに適する材料の選択肢が少なく、実用化を難しくしていた。   Therefore, in the structure of a conventional three-layer all-solid battery in which a combination of an active material and a solid electrolyte that avoids a reaction between such materials must be compatible with a plurality of combinations on the positive electrode side and the negative electrode side, There were few choices of materials suitable for combination, making it difficult to put it into practical use.

本発明の一の実施形態による全固体二次電池は、上記した特定の活物質材料、即ち、正極と負極とのそれぞれの電極となり得る活物質材料を含む単一層からなる単層活物質層を備えているため、上記3層構造のように、それぞれの界面における接合不良等による問題を生じることがなく、内部抵抗の低い電池とすることができる。また、固体電解質界面のような電池性能を低下させるおそれのある層の形成を抑制することもできる。   An all-solid-state secondary battery according to an embodiment of the present invention includes a single-layer active material layer that includes the above-described specific active material, that is, a single layer including an active material that can be a positive electrode and a negative electrode. Therefore, unlike the above three-layer structure, there is no problem due to poor bonding at each interface, and a battery with low internal resistance can be obtained. It is also possible to suppress formation of a layer such as a solid electrolyte interface that may deteriorate battery performance.

なお、このような本実施形態の全固体二次電池は、単一の層である単層活物質層が、従来の電池における内部電極体を構成しているため、製造した直後の段階(充電する前)では、全固体二次電池の電位はゼロである。このため、より長期間の保存が可能となる。市販されている液系の二次電池には、安全性を確保すべく、所定の電圧枠を外れる電位となった場合に以後の充放電を強制的に禁止するプログラムが保護回路に組まれているのが一般的である。このような状況下、二次電池を満充電の状態で出荷及び保存すると、電解液の劣化が早く進行し易くなるとともに、自己放電もし易くなるという不都合があった。一方、二次電池を放電状態で出荷及び保存すると、自己放電によって電圧が低下し、前述の保護回路が作動してしまうという不都合があった。このため、上記の不都合を解消すべく、所定の電圧枠内の中間電位近傍となるよう、二次電池を半充電した状態で出荷及び保存するのが一般的である。   In the all-solid-state secondary battery of this embodiment, the single-layer active material layer, which is a single layer, constitutes the internal electrode body in the conventional battery. Before), the potential of the all-solid-state secondary battery is zero. For this reason, storage for a longer period of time becomes possible. In order to ensure safety, a liquid secondary battery on the market has a protection circuit with a program that forcibly prohibits subsequent charging / discharging when the voltage falls outside the specified voltage range. It is common. Under such circumstances, when the secondary battery is shipped and stored in a fully charged state, there is a disadvantage that the deterioration of the electrolytic solution is likely to proceed quickly and self-discharge is also facilitated. On the other hand, when the secondary battery is shipped and stored in a discharged state, the voltage drops due to self-discharge, and the above-described protection circuit is activated. For this reason, in order to eliminate the above inconvenience, the secondary battery is generally shipped and stored in a half-charged state so that it is in the vicinity of an intermediate potential within a predetermined voltage frame.

本実施形態の全固体二次電池は、シンメトリな構造であるため製造直後の状態が放電状態(電圧=0V)で、その状態のまま出荷及び保存することができる。このため、リチウム電池のウィークポイントであった過放電による電極の溶出といった問題が発生せず、長期間の保存が可能となる。   Since the all-solid-state secondary battery of this embodiment has a symmetric structure, the state immediately after manufacture is in a discharged state (voltage = 0 V), and can be shipped and stored in that state. For this reason, the problem of electrode elution due to overdischarge, which was a weak point of a lithium battery, does not occur, and long-term storage is possible.

また、本実施形態の全固体二次電池は、その全ての構成要素が固体であるために、漏液や腐食による電池性能の劣化等の問題も生じ難く、安全性の高い電池である。   In addition, the all-solid-state secondary battery of this embodiment is a highly safe battery because all the constituent elements thereof are solid, so that problems such as battery performance deterioration due to leakage or corrosion hardly occur.

また、本発明の他の実施形態による全固体二次電池は、図2に示すように、単層活物質層22が、固体電解質34を更に含むものであってもよい。即ち、複数の価数変化が可能で、それぞれの価数変化に対応した異なるレドックス電位を有する活物質材料32、及び固体電解質34を含む単一層からなる単層活物質層22と、この単層活物質層22の一方の表面に配置された正極集電極14と、単層活物質層22の他方の表面に配置された負極集電極16と、を備えた全固体二次電池20である。ここで、図2は、本実施形態の全固体二次電池の他の実施形態の構成を説明する模式図である。   In the all-solid-state secondary battery according to another embodiment of the present invention, the single-layer active material layer 22 may further include a solid electrolyte 34 as shown in FIG. That is, a single-layer active material layer 22 including a single layer including an active material 32 having a different redox potential corresponding to each valence change, and a solid electrolyte 34, and the single layer This is an all-solid-state secondary battery 20 including a positive electrode collector electrode 14 disposed on one surface of the active material layer 22 and a negative electrode collector electrode 16 disposed on the other surface of the single layer active material layer 22. Here, FIG. 2 is a schematic diagram illustrating the configuration of another embodiment of the all solid state secondary battery of the present embodiment.

このように固体電解質を更に含有させることによって、例えば、使用する活物質材料自身のイオン伝導性が乏しい(即ち、レート特性が悪い)場合であっても、この固体電解質によって単層活物質層のイオン伝導性を補助して、レート特性の高い全固体二次電池とすることができる。但し、選択される固体電解質は、焼結させる温度において、材料間の反応を回避できる材料の組合せであることは言うまでもなく、例えば焼結温度を下げ反応を回避する目的から非晶質化された固体電解質等を用いることが好適である。   By further containing the solid electrolyte in this way, for example, even when the ionic conductivity of the active material material itself used is poor (that is, the rate characteristics are poor), the solid electrolyte allows the single-layer active material layer to By assisting ionic conductivity, an all-solid secondary battery with high rate characteristics can be obtained. However, it goes without saying that the solid electrolyte selected is a combination of materials that can avoid the reaction between the materials at the sintering temperature. For example, the solid electrolyte is made amorphous for the purpose of lowering the sintering temperature and avoiding the reaction. It is preferable to use a solid electrolyte or the like.

[1−1]単層活物質層:
図1に示すような本実施形態の全固体二次電池10に用いられる単層活物質層12は、上記した特定の活物質材料32を少なくとも含む単一層からなるものである。この単層活物質層12が、例えば、従来の全固体電池における正極活物質層、電解質層、及び負極活物質層とが積層された内部電極体のような、充放電可能な二次電池の内部電極体として機能する。
[1-1] Single layer active material layer:
The single-layer active material layer 12 used in the all-solid-state secondary battery 10 of this embodiment as shown in FIG. 1 is a single layer including at least the specific active material 32 described above. This single-layer active material layer 12 is, for example, a chargeable / dischargeable secondary battery such as an internal electrode body in which a positive electrode active material layer, an electrolyte layer, and a negative electrode active material layer in a conventional all-solid battery are stacked. Functions as an internal electrode body.

このような単層活物質層は、高いイオン伝導性を有する一方で、前記イオン伝導性に比して電子伝導性が低いものであるため、この単層活物質層内においては、一方の表面側から他方の表面側へのイオンの移動は比較的自由に行われる。   Such a single-layer active material layer has high ionic conductivity, but has a lower electronic conductivity than the ionic conductivity. The movement of ions from one side to the other surface side is relatively free.

逆に、電子の移動はそれぞれの表面側の比較的狭い範囲でのみしか行われないため、単層活物質層における一方の表面側と他方の表面側とが、それぞれ上記従来の内部電極体における正極活物質層と負極活物質層と同様の機能を果たし、且つ、電子の移動が行われない部分(具体的には、単層活物質層の厚さ方向における中間部分)が、従来の内部電極体における固体電解質層、即ち、電子を通過させず、イオンのみを通過させる層、としての機能を果たす。   On the contrary, since the movement of electrons is performed only in a relatively narrow range on each surface side, one surface side and the other surface side in the single layer active material layer are respectively in the conventional internal electrode body. A portion that performs the same function as the positive electrode active material layer and the negative electrode active material layer and does not move electrons (specifically, an intermediate portion in the thickness direction of the single layer active material layer) It functions as a solid electrolyte layer in the electrode body, that is, a layer that allows only ions to pass without passing electrons.

そして、正極と負極との両方の特性を併せ持つ活物質材料を用いて活物質層が形成されているため、内部電極体が単層の活物質層のみであっても、本実施形態の全固体二次電池は、電池としての動作を実現することが可能となる。   Since the active material layer is formed using an active material having both the characteristics of the positive electrode and the negative electrode, even if the internal electrode body is only a single active material layer, The secondary battery can realize the operation as a battery.

このため、本実施形態の全固体二次電池の単層活物質層は、正極と負極とのそれぞれの電極となり得る特性を有するとともに、イオン伝導性が高く、且つイオン伝導性に比して電子伝導性がより低いものであることが好ましい。   For this reason, the single-layer active material layer of the all-solid-state secondary battery of the present embodiment has characteristics that can be used as the positive electrode and the negative electrode, has high ionic conductivity, and has electrons compared to ionic conductivity. It is preferable that the conductivity is lower.

このような活物質材料としては、例えば、ナシコン(NASICON:Na Super Ionic Conductor)構造を有するリン酸化合物を好適例として挙げることができる。   As such an active material, for example, a phosphoric acid compound having a NASICON (Na Super Ionic Conductor) structure can be cited as a preferred example.

より具体的には、上記活物質材料が、下記一般式(2)で表されるリン酸化合物であることが好ましい。
Li(PO (2)
(上記一般式(2)中、xは、1≦x≦5である)
More specifically, the active material is preferably a phosphoric acid compound represented by the following general formula (2).
Li x V 2 (PO 4 ) 3 (2)
(In the above general formula (2), x is 1 ≦ x ≦ 5)

このようなリン酸化合物は、複数の価数変化が可能で、それぞれの価数変化に対応した異なるレドックス電位を有するため、この異なるレドックス電位差を利用した電圧の電池として用いることができる(例えば、S.Okada DENKI KAGAKU vol.65 P802 (1997)を参照)。   Such a phosphoric acid compound can change a plurality of valences and has different redox potentials corresponding to each valence change, and thus can be used as a battery having a voltage utilizing the different redox potential differences (for example, S. Okada DENKI KAGAKU vol. 65 P802 (1997)).

Li(POでは、Vの3価状態を中心にV3+/2+,V2+/1+、更にはV3+/4+,V4+/5+の価数変化が可能であり、それぞれに異なるレドックス電位を有するという特徴を有する材料である。加えて、一般的な酸化物系の活物質に比べ、電子伝導性が低いという本来であれば不利点であるが、本発明においてはこの点が特徴となる利点を有する。 Li 3 V 2 (PO 4 ) 3 can change the valence of V 3 + / 2 + , V 2 + / 1 + , V 3 + / 4 + , V 4 + / 5 + around the trivalent state of V, respectively. It is a material having the characteristic of having different redox potentials. In addition, it is disadvantageous if it is inherently low in electronic conductivity compared to a general oxide-based active material, but the present invention has an advantage characterized by this point.

また、その他の好適な活物質としては、例えば、LiVPOFやNaVPOF(前記一般式中、aは、0≦a≦1)、更には、Na(PO(前記一般式中、bは、1≦b≦5)等を挙げることができる。 Examples of other suitable active materials include Li a VPO 4 F and Na a VPO 4 F (wherein a is 0 ≦ a ≦ 1), and Na b V 2 (PO 4 3 (in the general formula, b is 1 ≦ b ≦ 5) and the like.

また、本発明の全固体二次電池においては、図2に示すように、単層活物質層22が、固体電解質34を更に含むものであってもよい。このような固体電解質34は、単層活物質層22に含まれる活物質材料32のイオン伝導性の値に応じて、適宜含有量を調整することができる。このように構成することによって、使用する活物質材料32自身のイオン伝導性が乏しい(即ち、レート特性が悪い)場合であっても、単層活物質層22のイオン伝導性を補助して、レート特性の高い全固体二次電池20とすることができる。   In the all solid state secondary battery of the present invention, as shown in FIG. 2, the single-layer active material layer 22 may further include a solid electrolyte 34. The content of such a solid electrolyte 34 can be appropriately adjusted according to the value of ion conductivity of the active material 32 contained in the single-layer active material layer 22. By comprising in this way, even if it is a case where the ionic conductivity of the active material material 32 itself to be used is poor (namely, rate characteristics are bad), the ionic conductivity of the single layer active material layer 22 is assisted, It can be set as the all-solid-state secondary battery 20 with a high rate characteristic.

このような全固体二次電池において、活物質材料、及び固体電解質材料の種類については特に制限はないが、それぞれナシコン構造を有するリン酸化合物であることが好ましい。このように構成することによって、両材料が共通のポリアニオン骨格構造を有し、各々の頂点を共有する頂点共有骨格構造を有することができるため、双方の接合界面におけるイオンの移動をよりスムーズに行うことが可能となる。   In such an all-solid secondary battery, there are no particular restrictions on the types of active material and solid electrolyte material, but a phosphoric acid compound having a NASICON structure is preferred. By configuring in this way, both materials have a common polyanion skeleton structure, and can have a vertex shared skeleton structure that shares the vertices of each, so that ions move more smoothly at the junction interface between the two materials. It becomes possible.

なお、単層活物質層は、非晶質化されたリン酸化合物からなる固体電解質材料を含む単層活物質層の前駆体を加熱焼成してなるものであることが好ましい。なお、単層活物質層の前駆体とは、上記活物質材料及び固体電解質材料を含む原材料を単層活物質層の形状に成形した未焼成の成形体のことである。このように構成することによって、加熱焼成時に固体電解質の焼結が進み、活物質材料との接合界面面積をより多く形成することが可能となる。   In addition, it is preferable that a single layer active material layer is a thing formed by heat-firing the precursor of the single layer active material layer containing the solid electrolyte material which consists of an amorphous phosphoric acid compound. In addition, the precursor of a single layer active material layer is the unbaking molded object which shape | molded the raw material containing the said active material material and solid electrolyte material in the shape of the single layer active material layer. By comprising in this way, sintering of solid electrolyte advances at the time of heat-firing, and it becomes possible to form more joint interface areas with an active material material.

より具体的には、固体電解質が、下記一般式(1)で表されるリン酸化合物であることが好ましい。
Li1+yAlGe2−y(PO (1)
(上記一般式(1)中、yは、0≦y≦1であり、より好ましくは0.3≦y≦0.7である)
More specifically, the solid electrolyte is preferably a phosphoric acid compound represented by the following general formula (1).
Li 1 + y Al y Ge 2 -y (PO 4) 3 (1)
(In the general formula (1), y is 0 ≦ y ≦ 1, more preferably 0.3 ≦ y ≦ 0.7)

単層活物質層は、層状(薄膜状)に形成されており、例えば、一方の表面側が正極(又は負極)となり、他方の表面側が負極(又は正極)となる。単層活物質層の厚みは、特に制限はないが、必要とする電池容量にもよるが、取り出す電流レートを高く設定する場合にはできる限り薄い方が良く、例えば、5μm〜1mmであることが好ましく、5μm〜50μm程度であることが更に好ましい。このように構成することによって、電池の内部抵抗を低減することができ、電池性能を高めることができる。   The single-layer active material layer is formed in a layered form (thin film form). For example, one surface side becomes a positive electrode (or negative electrode) and the other surface side becomes a negative electrode (or positive electrode). The thickness of the single-layer active material layer is not particularly limited, but it depends on the required battery capacity. However, when the current rate to be taken out is set to be high, it should be as thin as possible, for example, 5 μm to 1 mm. Is preferably about 5 to 50 μm. By comprising in this way, the internal resistance of a battery can be reduced and battery performance can be improved.

なお、単層活物質層を構成する活物質材料と固体電解質材料の混合割合については特に制限はなく、必要とされる電池容量と取り出したい電流レートとによって適宜決定することができる。   In addition, there is no restriction | limiting in particular about the mixing ratio of the active material material which comprises a single layer active material layer, and a solid electrolyte material, It can determine suitably with the battery capacity required and the electric current rate to extract.

[1−2]正極集電極、及び負極集電極:
正極集電極は、単層活物質層の一方の表面に配置された集電極であり、単層活物質層の一方の表面に電気的に接続されている。また、負極集電極は、単層活物質層の他方の表面(一方の表面とは反対側の表面)に配置された集電極であり、単層活物質層の他方の表面に電気的に接続されている。
[1-2] Positive electrode collector and negative electrode collector:
The positive electrode collector electrode is a collector electrode disposed on one surface of the single-layer active material layer, and is electrically connected to one surface of the single-layer active material layer. The negative electrode collector electrode is a collector electrode disposed on the other surface of the single layer active material layer (the surface opposite to the one surface) and is electrically connected to the other surface of the single layer active material layer Has been.

本実施形態の全固体二次電池においては、この正極集電極及び負極集電極によって、単層活物質層への充放電を行うことができる。このような正極集電極及び負極集電極は、例えば、従来公知の全固体電池における集電極と同様に構成されたものを用いることができる。   In the all solid state secondary battery of this embodiment, charging and discharging of the single layer active material layer can be performed by the positive electrode collector electrode and the negative electrode collector electrode. As such a positive electrode collector electrode and a negative electrode collector electrode, what was comprised similarly to the collector electrode in a conventionally well-known all-solid-state battery can be used, for example.

なお、本実施形態の全固体二次電池に用いられる正極集電極及び負極集電極を構成する材料としては、例えば、白金(Pt)、白金(Pt)/パラジウム(Pd)、金(Au)、銀(Ag)、アルミニウム(Al)、銅(Cu)、ITO(インジウム−錫酸化膜)、SUS板等の一般的な電子伝導性金属材料を挙げることができる。   In addition, as a material which comprises the positive electrode collector electrode and negative electrode collector electrode which are used for the all-solid-state secondary battery of this embodiment, for example, platinum (Pt), platinum (Pt) / palladium (Pd), gold (Au), Common electron conductive metal materials such as silver (Ag), aluminum (Al), copper (Cu), ITO (indium-tin oxide film), and SUS plate can be given.

本実施形態の全固体二次電池においては、正極集電極及び負極集電極が配置された表面から一定の厚さの単層活物質層が、従来の全固体電池における正極活物質層と負極活物質層として機能するため、正極集電極及び負極集電極が配置される面積が大きい程、全固体二次電池の容量を大きくすることが可能となる。このため、正極集電極と負極集電極とは、単層活物質層のそれぞれの表面全域に配置されていることが好ましい。   In the all solid state secondary battery of the present embodiment, a single layer active material layer having a certain thickness from the surface on which the positive electrode collector electrode and the negative electrode collector electrode are arranged is the positive electrode active material layer and the negative electrode active material layer in the conventional all solid battery. Since it functions as a material layer, the capacity of the all-solid-state secondary battery can be increased as the area where the positive electrode collector and the negative electrode collector are arranged is larger. For this reason, it is preferable that the positive electrode collector electrode and the negative electrode collector electrode are disposed over the entire surface of each single-layer active material layer.

また、正極集電極及び負極集電極の厚さについては特に制限はなく、全固体二次電池の充放電をこの正極集電極と負極集電極とによって行うことが可能なものであればよいが、本実施形態の全固体二次電池は、薄型の二次電池を実現可能であることから、例えば、数μm程度の薄膜であることが好ましい。   The thickness of the positive electrode collector and the negative electrode collector is not particularly limited as long as charging and discharging of the all-solid-state secondary battery can be performed by the positive electrode collector and the negative electrode collector. Since the all-solid-state secondary battery of this embodiment can implement | achieve a thin secondary battery, it is preferable that it is a thin film about several micrometers, for example.

正極集電極及び負極集電極は、例えば、スパッタリング法、抵抗により蒸着源を加熱して蒸着させる抵抗加熱蒸着法、イオンビームにより蒸着源を加熱して蒸着させるイオンビーム蒸着法、電子ビームにより蒸着源を加熱して蒸着させる電子ビーム蒸着法等の方法によって、単層活物質層のそれぞれの表面に配設することができる。なお、本実施形態の全固体二次電池をケース等に収納する際には、正極集電極と負極集電極間の絶縁を確保する。   The positive electrode collector and the negative electrode collector are, for example, a sputtering method, a resistance heating evaporation method in which an evaporation source is heated by resistance, an ion beam evaporation method in which the evaporation source is evaporated by heating with an ion beam, and an evaporation source by an electron beam. The single layer active material layer can be disposed on each surface by a method such as an electron beam vapor deposition method in which the material is heated and deposited. In addition, when the all solid state secondary battery of this embodiment is accommodated in a case or the like, insulation between the positive electrode collector electrode and the negative electrode collector electrode is ensured.

[2]全固体二次電池の製造方法:
次に、本発明の全固体二次電池の製造方法について説明する。本発明の全固体二次電池を製造する際には、まず、複数の価数変化が可能で、それぞれの価数変化に対応した異なるレドックス電位を有する活物質材料を用いて単層活物質層を作製する。具体的には、複数の価数変化が可能で、それぞれの価数変化に対応した異なるレドックス電位を有する活物質材料の粉末を金型等に入れてプレスし、所望の厚さの単層活物質層の前駆体を成形する。又は、バインダーや有機溶剤を用いて活物質材料からなるスラリーを作製し、ドクターブレード法やリバースロールコーター法等によりシート成形する方法も好ましく採用される。なお、単層活物質層として、活物質材料と固体電解質材料とを含有するものを作製する場合には、活物質材料と固体電解質材料とを混合した粉末を用いて、上記した方法と同様にして単層活物質層の前駆体を成形する。
[2] Method for producing all-solid secondary battery:
Next, the manufacturing method of the all-solid-state secondary battery of this invention is demonstrated. When manufacturing the all solid state secondary battery of the present invention, first, a single layer active material layer using an active material having a plurality of valence changes and having different redox potentials corresponding to each valence change. Is made. Specifically, a plurality of valence changes are possible, and powders of active material materials having different redox potentials corresponding to the respective valence changes are placed in a mold or the like and pressed, and a single layer active material having a desired thickness is pressed. The precursor of the material layer is formed. Alternatively, a method in which a slurry made of an active material is prepared using a binder or an organic solvent, and a sheet is formed by a doctor blade method, a reverse roll coater method, or the like is preferably employed. Note that when a single-layer active material layer containing an active material and a solid electrolyte material is produced, a powder obtained by mixing the active material and the solid electrolyte material is used in the same manner as described above. To mold the precursor of the single layer active material layer.

次に、得られた単層活物質層の前駆体を焼成して単層活物質層を作製する。このように焼成することによって、活物質や固体電解質の粒子間の接続部分(ネッキング)を良好なものとすることができる。   Next, the obtained single layer active material layer precursor is fired to produce a single layer active material layer. By firing in this way, the connection part (necking) between the particles of the active material or the solid electrolyte can be made favorable.

なお、焼成条件については、使用する活物質材料や固体電解質材料の種類等によっても異なるが、十分な接続部分(ネッキング)を得るためには、用いる材料の焼結可能な温度、即ち活物質材料のみで形成される場合には、活物質材料が焼結可能な温度、また混合した層とする場合には、何れかの材料が焼結可能な温度で、且つ材料間の反応による変質等が生じない温度により焼成することが好ましい。   The firing conditions vary depending on the active material used and the type of the solid electrolyte material, but in order to obtain a sufficient connecting portion (necking), the temperature at which the used material can be sintered, that is, the active material. In the case where the active material is formed only by the temperature, the active material can be sintered at a temperature, or in the case of a mixed layer, any material can be sintered at a temperature, and the quality change due to the reaction between the materials. Firing is preferably performed at a temperature that does not occur.

次に、得られた単層活物質層の一方の表面と他方の表面とに、集電極(正極集電極,負極集電極)を配置する。正極集電極及び負極集電極を構成する材料としては、上記したような金属を、例えば、スパッタリング法等によって配置する。このようにして、本発明の全固体二次電池を製造することができる。   Next, collector electrodes (a positive electrode collector electrode and a negative electrode collector electrode) are disposed on one surface and the other surface of the obtained single-layer active material layer. As a material constituting the positive electrode collecting electrode and the negative electrode collecting electrode, the above-described metals are arranged by, for example, a sputtering method or the like. In this way, the all solid state secondary battery of the present invention can be manufactured.

また、得られた全固体二次電池の側壁外周を、樹脂やガラス材料によりモールディングすることによって被覆処理して、全固体二次電池の製品形状としてもよい。   Moreover, it is good also as a product shape of an all-solid-state secondary battery by coat | covering the outer periphery of the side wall of the obtained all-solid-state secondary battery by molding with resin or glass material.

[3]全固体二次電池ユニット:
次に、本発明の全固体二次電池の更に他の実施形態である全固体二次電池ユニットについて説明する。本実施形態の全固体二次電池ユニットは、これまでに説明した、単一層からなる単層活物質層の複数個を、集電体を介して、電気的に直列となるように積み重ねて構成された全固体二次電池ユニットである。
[3] All-solid-state secondary battery unit:
Next, an all solid state secondary battery unit which is still another embodiment of the all solid state secondary battery of the present invention will be described. The all-solid-state secondary battery unit of the present embodiment is configured by stacking a plurality of single-layer active material layers, which have been described so far, electrically in series via a current collector. All-solid-state secondary battery unit.

即ち、本実施形態の全固体二次電池ユニットは、図3に示すように、複数の価数変化が可能で、それぞれの価数変化に対応した異なるレドックス電位を有する活物質材料32、即ち、正極と負極とのそれぞれの電極となり得る活物質材料を含む単一層からなる単層活物質層42の複数個を、集電極48を介して電気的に直列となるように積み重ねられた積層体(以下、「単層活物質層積層体50」という)を備えた全固体二次電池ユニット40(全固体二次電池)であり、1つの単層活物質層42が電池の単セルとなり、この単セルを複数積層することによって構成された電池ユニットである。   That is, as shown in FIG. 3, the all-solid-state secondary battery unit of the present embodiment is capable of changing a plurality of valences, and an active material 32 having different redox potentials corresponding to each valence change, that is, A laminate in which a plurality of single-layer active material layers 42 including a single layer containing an active material that can serve as the positive electrode and the negative electrode are stacked in series via a collector electrode 48 ( Hereinafter, it is an all-solid-state secondary battery unit 40 (all-solid-state secondary battery) having a “single-layer active material layer laminate 50”, and one single-layer active material layer 42 becomes a single cell of the battery. It is a battery unit configured by stacking a plurality of single cells.

この全固体二次電池ユニット40においては、単層活物質層積層体50における隣り合う単層活物質層42を通電するための複数の通電用集電極48と、単層活物質層積層体50の一方の表面(最も外側の一方の表面)に配置された正極集電極44と、他方の表面(最も外側の他方の表面)に配置された負極集電極46とを備えている。   In the all-solid-state secondary battery unit 40, a plurality of energizing collector electrodes 48 for energizing adjacent single-layer active material layers 42 in the single-layer active material layer stack 50, and the single-layer active material layer stack 50. Positive electrode collector electrode 44 arranged on one surface (one outermost surface) and a negative electrode collector electrode 46 arranged on the other surface (the other outermost surface).

ここで、図3は、本発明の全固体二次電池の更に他の実施形態である全固体二次電池ユニットの構成を説明する模式図である。   Here, FIG. 3 is a schematic diagram illustrating the configuration of an all solid state secondary battery unit which is still another embodiment of the all solid state secondary battery of the present invention.

このような全固体二次電池ユニットは、単セルの全固体二次電池では実現困難な高電位を発生させることが可能となり、集電体を介して積層する単層活物質層積層体の数によって、必要とする電位(高電位)を確保することができる。特に、本発明の全固体二次電池は、単層活物質層という薄型化が可能な活物質層を用いているため、全固体二次電池ユニット全体の厚さを薄くすることが可能となる。   Such an all-solid-state secondary battery unit can generate a high potential that is difficult to achieve with a single-cell all-solid-state secondary battery, and the number of single-layer active material layer stacks stacked via a current collector Thus, the required potential (high potential) can be secured. In particular, the all-solid-state secondary battery of the present invention uses an active material layer that can be thinned, which is a single-layer active material layer, so that the entire thickness of the all-solid-state secondary battery unit can be reduced. .

なお、図3においては、5個の単層活物質層42を、通電用集電極48を介して電気的に直列となるように積み重ねられた全固体二次電池ユニット40を示しているが、単層活物質層の数については特に制限はない。   FIG. 3 shows an all solid state secondary battery unit 40 in which five single-layer active material layers 42 are stacked so as to be electrically in series via a current collecting electrode 48. There is no restriction | limiting in particular about the number of single layer active material layers.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

(実施例1)
正負のどちらの電極としても用いることが可能な特定の活物質材料と、固体電解質とを、質量比が1:1となるように混合した粉末を加圧力約500kg/cmにて圧粉して、焼成後の寸法が直径約15.5mm、厚み1mmのペレット(単層活物質層の前駆体)を成形した。このペレットをAr雰囲気にて200℃/hrの昇温速度にて600℃まで昇温後、40時間キープした後、200℃/hrにて降温(温度追従しない範囲では放冷にて降温)にて焼成して、単層活物質層を作製した。
Example 1
A powder obtained by mixing a specific active material that can be used as either a positive or negative electrode and a solid electrolyte so as to have a mass ratio of 1: 1 is compacted at a pressing force of about 500 kg / cm 2 . Then, a pellet (a single layer active material layer precursor) having a diameter of about 15.5 mm and a thickness of 1 mm after firing was formed. The pellet was heated up to 600 ° C. at a temperature increase rate of 200 ° C./hr in an Ar atmosphere, kept for 40 hours, and then cooled down at 200 ° C./hr (to cool down by allowing to cool in a range where temperature does not follow) And fired to prepare a single layer active material layer.

なお、活物質材料としては、LVP:Li(POを用い、固体電解質としては、LAGP:Li1.5Al0.5Ge1.5(POを用いた。 Note that LVP: Li 3 V 2 (PO 4 ) 3 was used as the active material, and LAGP: Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 was used as the solid electrolyte.

次に、本焼成して得られた単層活物質層の両方の表面(一方の表面の面積が約1.89cm)に、金(Au)をスパッタして、厚みが約500オングストロームの正極集電極と負極集電極とをそれぞれ形成して内部電極体を作製した。 Next, gold (Au) is sputtered on both surfaces of the single layer active material layer obtained by the main firing (the area of one surface is about 1.89 cm 2 ), and the positive electrode has a thickness of about 500 angstroms. A collector electrode and a negative electrode collector electrode were formed to produce an internal electrode body.

このようにして得られた内部電極体を、真空中にて加熱乾燥(130℃、一晩)を行った後に不活性雰囲気のグローブボックス内でCR2032型のコイン電池に組み込み、全固体二次電池(実施例1)を製造した。   The internal electrode body thus obtained was heat-dried in a vacuum (130 ° C., overnight) and then incorporated into a CR2032-type coin battery in a glove box in an inert atmosphere. (Example 1) was manufactured.

[充放電特性の評価]:得られた全固体二次電池に、CCCV(Constant Current Constant Voltage)方式にて充放電を行い、全固体二次電池の充放電評価を行った。具体的に、充電特性としては、定電流5μA/cmにて2.4Vカットオフまで充電後、2.4V定電圧にて0.5μA/cmの電流値まで充電した際の容量(μAh)を測定した。放電特性としては、定電流5μA/cmにて0.1Vカットオフまで放電後、0.1V定電圧にて0.5μA/cmの電流値まで放電した際の放電容量(μAh)を測定した。充電と放電とは、計2サイクル行った。 [Evaluation of Charging / Discharging Characteristics]: The obtained all-solid-state secondary battery was charged and discharged by a CCCV (Constant Current Constant Voltage) method, and the charging / discharging evaluation of the all-solid-state secondary battery was performed. Specifically, the charging characteristics, was charged at a constant current 5 .mu.A / cm 2 to 2.4V cutoff capacity when charged at 2.4V constant voltage until the current value of 0.5μA / cm 2 (μAh ) Was measured. The discharge characteristics measured and was discharged at a constant current of 5 .mu.A / cm 2 to 0.1V cutoff discharge capacity when discharged at 0.1V constant voltage until the current value of 0.5μA / cm 2 (μAh) did. Charging and discharging were performed for a total of two cycles.

図4は、実施例1における全固体二次電池の充放電特性の評価の評価結果を示すグラフである。図4において、縦軸は、充放電時における電圧(V)を示し、横軸は、容量(μAh)(放電時においては、放電容量(μAh))を示す。なお、グラフにおける細線が、1回目の充放電における結果を示し、太線が、2回目の充放電における結果を示す。   FIG. 4 is a graph showing the evaluation results of the evaluation of the charge / discharge characteristics of the all-solid-state secondary battery in Example 1. In FIG. 4, the vertical axis represents voltage (V) during charging and discharging, and the horizontal axis represents capacity (μAh) (discharge capacity (μAh) during discharging). In addition, the thin line in a graph shows the result in the 1st charge / discharge, and the thick line shows the result in the 2nd charge / discharge.

[交流インピーダンス]:交流インピーダンスの測定は、ソーラートロン社製の1287型ポテンショ/ガルバノスタット(商品名)と1255B型周波数応答アナライザ(商品名)を組合せて使用した。測定周波数は、1MHzから0.1Hzまでとし、測定信号電圧10mVにて測定した。   [AC Impedance]: AC impedance was measured using a combination of Solartron 1287 type potentio / galvanostat (trade name) and 1255B type frequency response analyzer (trade name). The measurement frequency was 1 MHz to 0.1 Hz, and measurement was performed at a measurement signal voltage of 10 mV.

また、図5は、実施例1における全固体二次電池の交流インピーダンス波形を示すグラフである。図5は、交流インピーダンス測定によって得られたデータを、実数成分と虚数成分と分けてプロットしたグラフである。縦軸は、インピーダンス虚数部(Ω)を示し、横軸は、インピーダンス実数部(Ω)を示す。これによると1MHzから1kHzにかけての円弧に相当する高周波側(1MHz側)の実軸側切片より約1kΩの粒内抵抗と、1MHzから1kHzにかけての円弧に相当する実軸側両切片間から約4kΩの粒内抵抗と、更に低周波側に掛けての円弧に相当する実軸側切片間から約8kΩの界面反応抵抗、より形成される内部抵抗を有する電池となっていることがわかる。この結果から、実施例1の全固体二次電池が、単なるコンデンサーのような構成ではなく、イオン伝導(化学反応)を利用した二次電池であることが確認された。   FIG. 5 is a graph showing an AC impedance waveform of the all-solid-state secondary battery in Example 1. FIG. 5 is a graph in which data obtained by AC impedance measurement is plotted separately for a real component and an imaginary component. The vertical axis represents the imaginary part of impedance (Ω), and the horizontal axis represents the real part of impedance (Ω). According to this, the intragranular resistance of about 1 kΩ from the real axis side intercept on the high frequency side (1 MHz side) corresponding to the arc from 1 MHz to 1 kHz, and about 4 kΩ from the real axis side intercept corresponding to the arc from 1 MHz to 1 kHz. It can be seen that the battery has an internal resistance formed by an intergranular resistance and an interfacial reaction resistance of about 8 kΩ from the section on the real axis side corresponding to the arc on the low frequency side. From this result, it was confirmed that the all-solid-state secondary battery of Example 1 was not a configuration like a simple capacitor but a secondary battery using ionic conduction (chemical reaction).

以上の結果から、実施例1の全固体二次電池は、充放電が可能な二次電池であることが確認された。充放電を行った結果は、0.5μA/cmの電流レートで約30μAhの放電容量が確認できた。これはLVPの理論容量を約130mAh/gで換算すると、この電池に用いた活物質材料の質量は182.4mgであったので、その半分を片側の電極として利用できると換算すると、電池の理論容量は約12mAhとなる。よって、約0.25%の活物質による充放電となるため、電池厚み1mmから換算すると、集電極から約2.5μmの深さまでの活物質が使われた計算となる。 From the above results, it was confirmed that the all solid state secondary battery of Example 1 was a secondary battery capable of being charged and discharged. As a result of charging and discharging, a discharge capacity of about 30 μAh was confirmed at a current rate of 0.5 μA / cm 2 . When the theoretical capacity of LVP is converted to about 130 mAh / g, the mass of the active material used in this battery was 182.4 mg, so that it can be used as an electrode on one side, so that the theory of the battery The capacity is about 12 mAh. Therefore, since charging / discharging is performed with an active material of about 0.25%, when converted from a battery thickness of 1 mm, the active material from the collector electrode to a depth of about 2.5 μm is used.

例えば、実施例1の全固体二次電池は、5μA/cmの電流レートでは、約10μAhの放電容量であるため、このレートでは集電から0.8μmの深さまでの活物質が使われた計算となる。このように目的とする電流レートにより使用できる深度が決まるため、そこから電池の厚みを決定することによって、より効率のよい電池を製造することができる。 For example, since the all solid state secondary battery of Example 1 has a discharge capacity of about 10 μAh at a current rate of 5 μA / cm 2 , an active material from the current collection to a depth of 0.8 μm was used at this rate. It becomes calculation. Thus, since the depth which can be used is decided by the target current rate, a more efficient battery can be manufactured by determining the thickness of the battery therefrom.

本発明の全固体二次電池は、ポータブル機器用電池、ICカード内蔵用電池、インプラント医療器具用電池、基板表面実装用電池、太陽電池をはじめとする他の電池と組み合せて用いられる電池(ハイブリッド電源用電池)等としても好適である。   The all-solid-state secondary battery of the present invention is a battery (hybrid) used in combination with other batteries such as a battery for portable devices, a battery for built-in IC card, a battery for implant medical device, a battery for surface mounting of a substrate, and a solar battery. It is also suitable as a power source battery.

本発明の全固体二次電池の一の実施形態の構成を説明する模式図である。It is a schematic diagram explaining the structure of one Embodiment of the all-solid-state secondary battery of this invention. 本発明の全固体二次電池の他の実施形態の構成を説明する模式図である。It is a schematic diagram explaining the structure of other embodiment of the all-solid-state secondary battery of this invention. 本発明の全固体二次電池の更に他の実施形態である全固体二次電池ユニットの構成を説明する模式図である。It is a schematic diagram explaining the structure of the all-solid-state secondary battery unit which is further another embodiment of the all-solid-state secondary battery of this invention. 実施例1における全固体二次電池の充放電特性の評価の評価結果を示すグラフである。4 is a graph showing an evaluation result of evaluation of charge / discharge characteristics of an all-solid secondary battery in Example 1. 実施例1における全固体二次電池の交流インピーダンス波形を示すグラフである。3 is a graph showing an AC impedance waveform of the all-solid-state secondary battery in Example 1.

符号の説明Explanation of symbols

10:全固体二次電池、12:単層活物質層、14:正極集電極、16:負極集電極、20:全固体二次電池、22:単層活物質層、32:活物質材料、34:固体電解質、40:全固体二次電池(全固体二次電池ユニット)、42:単層活物質層、44:正極集電極、46:負極集電極、48:集電極(通電用集電極)、50:単層活物質層積層体。 10: all solid state secondary battery, 12: single layer active material layer, 14: positive electrode current collector, 16: negative electrode current collector, 20: all solid state secondary battery, 22: single layer active material layer, 32: active material, 34: solid electrolyte, 40: all solid state secondary battery (all solid state secondary battery unit), 42: single layer active material layer, 44: positive electrode collector electrode, 46: negative electrode collector electrode, 48: collector electrode (collector electrode for energization) ), 50: Single layer active material layer laminate.

Claims (6)

複数の価数変化が可能で、それぞれの価数変化に対応した異なるレドックス電位を有する活物質材料を含む単一層からなる単層活物質層と、
前記単層活物質層の一方の表面に配置された正極集電極と、
前記単層活物質層の他方の表面に配置された負極集電極と、を備えた全固体二次電池。
A single-layer active material layer comprising a single layer including an active material having a plurality of valence changes, each having a different redox potential corresponding to each valence change;
A positive electrode collector electrode disposed on one surface of the single-layer active material layer;
An all-solid-state secondary battery comprising: a negative electrode collector electrode disposed on the other surface of the single-layer active material layer.
前記単層活物質層が、固体電解質を更に含むものである請求項1に記載の全固体二次電池。   The all-solid-state secondary battery according to claim 1, wherein the single-layer active material layer further includes a solid electrolyte. 前記活物質材料、及び前記固体電解質が、それぞれナシコン構造又はオリビン構造を有するリン酸化合物である請求項2に記載の全固体二次電池。   The all solid state secondary battery according to claim 2, wherein the active material and the solid electrolyte are phosphoric acid compounds each having a NASICON structure or an olivine structure. 前記単層活物質層が、非晶質のリン酸化合物からなる固体電解質材料を含む単層活物質層の前駆体を加熱焼成してなるものである請求項3に記載の全固体二次電池。   The all-solid-state secondary battery according to claim 3, wherein the single-layer active material layer is obtained by heating and firing a precursor of a single-layer active material layer containing a solid electrolyte material made of an amorphous phosphate compound. . 前記固体電解質が、下記一般式(1)で表されるリン酸化合物である請求項2〜4のいずれか一項に記載の全固体二次電池。
Li1+yAlGe2−y(PO (1)
(上記一般式(1)中、yは、0≦y≦1である)
The all-solid-state secondary battery according to any one of claims 2 to 4, wherein the solid electrolyte is a phosphoric acid compound represented by the following general formula (1).
Li 1 + y Al y Ge 2 -y (PO 4) 3 (1)
(In the general formula (1), y is 0 ≦ y ≦ 1)
前記活物質材料が、下記一般式(2)で表されるリン酸化合物である請求項1〜5のいずれか一項に記載の全固体二次電池。
Li(PO (2)
(上記一般式(2)中、xは、1≦x≦5である)
The all-solid-state secondary battery according to any one of claims 1 to 5, wherein the active material is a phosphoric acid compound represented by the following general formula (2).
Li x V 2 (PO 4 ) 3 (2)
(In the above general formula (2), x is 1 ≦ x ≦ 5)
JP2007293459A 2007-11-12 2007-11-12 All solid state secondary battery Active JP5164256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007293459A JP5164256B2 (en) 2007-11-12 2007-11-12 All solid state secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007293459A JP5164256B2 (en) 2007-11-12 2007-11-12 All solid state secondary battery

Publications (2)

Publication Number Publication Date
JP2009123389A true JP2009123389A (en) 2009-06-04
JP5164256B2 JP5164256B2 (en) 2013-03-21

Family

ID=40815354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293459A Active JP5164256B2 (en) 2007-11-12 2007-11-12 All solid state secondary battery

Country Status (1)

Country Link
JP (1) JP5164256B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125481A1 (en) * 2010-03-31 2011-10-13 ナミックス株式会社 Lithium ion secondary battery and method for producing same
JP2014093189A (en) * 2012-11-02 2014-05-19 Kyocera Corp Secondary battery and using method thereof, and power storage device
WO2018181576A1 (en) * 2017-03-30 2018-10-04 Tdk株式会社 All-solid-state battery
WO2019093404A1 (en) * 2017-11-13 2019-05-16 株式会社村田製作所 Non-polar all-solid battery and electronic device
CN110233285A (en) * 2019-06-18 2019-09-13 北京化工大学 A method of improving solid state battery interface stability using polymer dielectric

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223893A (en) * 2000-01-18 2003-08-08 Valence Technology Inc Electrochemical electrode active material and electrode using the same, and lithium ion battery using the same
JP2007005279A (en) * 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
WO2007086289A1 (en) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, manufacturing method thereof, and mounting method thereof
JP2007258165A (en) * 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
JP2007258148A (en) * 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223893A (en) * 2000-01-18 2003-08-08 Valence Technology Inc Electrochemical electrode active material and electrode using the same, and lithium ion battery using the same
JP2007005279A (en) * 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
WO2007086289A1 (en) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, manufacturing method thereof, and mounting method thereof
JP2007258165A (en) * 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
JP2007258148A (en) * 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125481A1 (en) * 2010-03-31 2011-10-13 ナミックス株式会社 Lithium ion secondary battery and method for producing same
JP2011216234A (en) * 2010-03-31 2011-10-27 Namics Corp Lithium ion secondary battery and method for manufacturing the same
CN102844928A (en) * 2010-03-31 2012-12-26 纳美仕有限公司 Lithium ion secondary battery and method for producing same
US9054391B2 (en) 2010-03-31 2015-06-09 Namics Corporation Lithium ion secondary battery and method for producing same
JP2014093189A (en) * 2012-11-02 2014-05-19 Kyocera Corp Secondary battery and using method thereof, and power storage device
JPWO2018181576A1 (en) * 2017-03-30 2020-05-14 Tdk株式会社 All solid state battery
WO2018181576A1 (en) * 2017-03-30 2018-10-04 Tdk株式会社 All-solid-state battery
WO2019093404A1 (en) * 2017-11-13 2019-05-16 株式会社村田製作所 Non-polar all-solid battery and electronic device
CN111149248A (en) * 2017-11-13 2020-05-12 株式会社村田制作所 Non-polar all-solid battery and electronic device
JPWO2019093404A1 (en) * 2017-11-13 2020-07-16 株式会社村田製作所 Non-polar all-solid-state battery and electronic equipment
US11430982B2 (en) 2017-11-13 2022-08-30 Murata Manufacturing Co., Ltd. Nonpolar all-solid-state battery and electronic device
CN111149248B (en) * 2017-11-13 2023-08-18 株式会社村田制作所 Non-polar all-solid-state battery and electronic equipment
CN110233285A (en) * 2019-06-18 2019-09-13 北京化工大学 A method of improving solid state battery interface stability using polymer dielectric

Also Published As

Publication number Publication date
JP5164256B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
US20200335756A1 (en) Solid-state battery separators and methods of fabrication
JP7038761B2 (en) Electrolyte and method of manufacturing electrolyte
JP5115920B2 (en) All solid battery
JP5078120B2 (en) All solid battery
KR101792296B1 (en) Lithium ion secondary battery
JP5418803B2 (en) All solid battery
US7824795B2 (en) Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods
JPWO2013137224A1 (en) All-solid battery and method for manufacturing the same
JP2000311710A (en) Solid electrolyte battery and its manufacture
CN110235295B (en) Lithium ion solid storage battery and method for manufacturing same
JPWO2018062080A1 (en) All solid lithium ion rechargeable battery
JP2020009619A (en) All-solid battery, and method for manufacturing the same
JP5164256B2 (en) All solid state secondary battery
US11302967B2 (en) Low-voltage microbattery
CN115004433A (en) Lithium ion secondary battery
JP2019149298A (en) All-solid battery
WO2024070660A1 (en) Solid electrolyte, solid electrolyte layer, and solid electrolyte battery
JPH07105952A (en) Lithium secondary battery and its current collecting body
WO2023171825A1 (en) Solid electrolyte, solid electrolyte layer, and solid electrolyte battery
JP2012209205A (en) Electrode material, method of manufacturing the same, and secondary battery
JP2015099632A (en) All-solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350