JP2009120963A - Manufacturing method of aluminum material for electrolytic capacitor electrode - Google Patents

Manufacturing method of aluminum material for electrolytic capacitor electrode Download PDF

Info

Publication number
JP2009120963A
JP2009120963A JP2009030125A JP2009030125A JP2009120963A JP 2009120963 A JP2009120963 A JP 2009120963A JP 2009030125 A JP2009030125 A JP 2009030125A JP 2009030125 A JP2009030125 A JP 2009030125A JP 2009120963 A JP2009120963 A JP 2009120963A
Authority
JP
Japan
Prior art keywords
aluminum material
rolling
electrolytic capacitor
thickness
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009030125A
Other languages
Japanese (ja)
Other versions
JP5036740B2 (en
Inventor
Katsuoki Yoshida
勝起 吉田
Tomoaki Yamanoi
智明 山ノ井
Kiyoshi Fukui
清 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009030125A priority Critical patent/JP5036740B2/en
Publication of JP2009120963A publication Critical patent/JP2009120963A/en
Application granted granted Critical
Publication of JP5036740B2 publication Critical patent/JP5036740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture an aluminum material for an electrolytic capacitor electrode, which has a thickness of 125-250 μm and is capable of achieving a high capacitance by achieving a high proportion of crystal grains with (100) plane orientation. <P>SOLUTION: An aluminum material which has an Al purity of ≥99.9 mass% and comprises 3-30 mass ppm Si, 3-18 mass ppm Fe, 5-70 mass ppm Cu and the balance being impurities is subjected to a homogenization treatment, subsequently subjected to a hot-rolling step of initiating rolling at material temperature of 500-610°C and performing rolling at a hot working rate of 97.5-99%, subsequently subjected to a cold-rolling step of performing rolling so that cold working rate R(%) and thickness T (μm) after cold-rolling satisfy the relation: -40R+4000≤T≤-100R+10000 (wherein 125≤T≤250) without performing intermediate annealing and subsequently subjected to final annealing. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電解コンデンサ陽極用アルミニウム材の製造方法に関する。   The present invention relates to a method for producing an aluminum material for an electrolytic capacitor anode.

なお、この明細書において、「アルミニウム」の語はアルミニウム及びその合金の両者を含む意味で用いられる。   In this specification, the term “aluminum” is used to include both aluminum and its alloys.

アルミニウム電解コンデンサ用電極材として一般に用いられるアルミニウム材には、その実効面積を拡大して単位面積当たりの静電容量を増大するため、通常、電気化学的あるいは化学的エッチング処理が施される。   An aluminum material generally used as an electrode material for an aluminum electrolytic capacitor is usually subjected to an electrochemical or chemical etching treatment in order to increase the capacitance per unit area by expanding its effective area.

高圧用と呼ばれるトンネル型エッチングが施されるタイプの陽極材においては、アルミニウム材表面に(100)面方位を有する立方体集合組織を優先的に成長させることにより効果的に静電容量増大を図りうることが既に知らされている。近年においては、高圧用箔に対するユーザーからの要求は益々厳しくなってきており、(100)面方位占有率が常に90%以上であることが要求されている。   In an anode material of a type that is subjected to tunnel type etching called high-pressure etching, the capacitance can be effectively increased by preferentially growing a cubic texture having a (100) plane orientation on the surface of the aluminum material. That is already known. In recent years, demands from users for high-pressure foils have become more severe, and it is required that the (100) plane orientation occupancy is always 90% or more.

この様な課題に対して、これまでにいくつかの提案がなされている(特許文献1〜3)。   Some proposals have been made for such problems (Patent Documents 1 to 3).

例えば、特許文献1(特開2001−73105号公報)では、製造工程によって結晶の(100)面方位を制御する方法が提案されている。即ち、Al純度が99.97%以上の鋳塊に対して、均質化処理、熱間圧延、一次冷間圧延及び中間焼鈍を施し、板厚断面において、粒径が10μm以下の(100)方位を有する結晶粒の平均存在数が2000〜4700個/mm2であり、且つ(100)方位を有する結晶粒の平均占有率が8〜37%のアルミニウム薄板を得る。そして、この薄板に対して、10〜20%の最終冷間圧延、続く最終焼鈍を施すというものである。   For example, Patent Document 1 (Japanese Patent Laid-Open No. 2001-73105) proposes a method of controlling the (100) plane orientation of a crystal by a manufacturing process. That is, homogenization treatment, hot rolling, primary cold rolling and intermediate annealing are performed on an ingot having an Al purity of 99.97% or more, and a (100) orientation in which the grain size is 10 μm or less in the plate thickness section. An aluminum thin plate is obtained in which the average number of crystal grains having the number is 2000 to 4700 / mm @ 2 and the average occupation ratio of crystal grains having the (100) orientation is 8 to 37%. The thin plate is subjected to 10-20% final cold rolling and subsequent final annealing.

特許文献2(特開平10−189395号公報)では、高純度アルミニウム材の不可避不純物であるP,Biの含有量を規制し、合金の化学組成によって立方体方位占有率を高めることが提案されている。   Patent Document 2 (Japanese Patent Laid-Open No. 10-189395) proposes that the content of P and Bi, which are inevitable impurities in a high-purity aluminum material, is regulated and the cube orientation occupation ratio is increased by the chemical composition of the alloy. .

また、近年製品の小型化に伴ってコンデンサの小型化、高静電容量化へのニーズが高まり、上述した(100)面占有率以外の観点からも提案がなされている。例えば、特許文献3(特開平3−122260号公報)には、アルミニウム材表面に付着した油分や圧延時に形成された不均一な酸化膜を除去後、高温加熱して新たな酸化膜を形成させることにより酸化膜組織と厚さを制御し、エッチング核を均一に発生させることが提案されている。   In recent years, with the miniaturization of products, the need for miniaturization of capacitors and high capacitance has increased, and proposals have been made from a viewpoint other than the above-described (100) plane occupancy. For example, in Patent Document 3 (Japanese Patent Laid-Open No. 3-122260), after removing oil adhering to the surface of an aluminum material and a non-uniform oxide film formed during rolling, a new oxide film is formed by heating at a high temperature. Thus, it has been proposed to control the oxide film structure and thickness to uniformly generate etching nuclei.

特開2001−73105号公報JP 2001-73105 A 特開平10−189395号公報Japanese Patent Laid-Open No. 10-189395 特開平3−122260号公報Japanese Patent Laid-Open No. 3-122260

高静電容量を得るためには、上述した(100)方位の制御やエッチング核を均一にする取り組みの他に、エッチングピット長さを長くできるようにアルミニウム材の厚さを厚くして、更なる拡面化を実現し高静電容量を得るという考え方もある。例えば、アルミニウム材厚:100μm箔と200μm箔を陽極に用いて、電解コンデンサの同体積中における陽極部の体積増加割合を考えた場合(エッチング密度は両者で同一であり、芯残り部分も同じと想定)、200μm箔の方が100μm箔と比べて約30%静電容量向上効果が得られることとなる。   In order to obtain a high capacitance, in addition to the above-mentioned efforts to control the (100) orientation and uniform etching nuclei, the thickness of the aluminum material is increased so that the etching pit length can be increased. There is also a way of thinking that achieves higher surface area and higher capacitance. For example, when aluminum material thickness: 100 μm foil and 200 μm foil are used as anodes and the volume increase rate of the anode part in the same volume of the electrolytic capacitor is considered (the etching density is the same for both, the core remaining part is the same) Assuming), the 200 μm foil has a capacitance improvement effect of about 30% compared to the 100 μm foil.

前述の特許文献1、2に記載された製造方法によれば、厚さが125μm未満のアルミニウム材であれば、最終焼鈍後に粗大粒の発生がなく(100)面方位占有率が90%以上のものを得ることが可能である。しかしながら、アルミニウム材が125μm以上に厚くなると、最終焼鈍後に結晶粒が粗大化して90%以上の(100)面方位占有率面積率を得ることができず、均一なピットの発生を阻害し、高静電容量を実現できない。   According to the manufacturing methods described in Patent Documents 1 and 2 described above, if the aluminum material has a thickness of less than 125 μm, there is no generation of coarse grains after the final annealing, and the (100) plane orientation occupancy is 90% or more. It is possible to get things. However, when the aluminum material becomes thicker than 125 μm, the crystal grains become coarse after the final annealing, and the (100) plane orientation occupancy area ratio of 90% or more cannot be obtained. Capacitance cannot be realized.

この点について、特許文献1には、熱間加工率:99.2〜99.8%の条件で熱間圧延を行い、その後、冷間圧延途中に中間焼鈍を施さずに、冷間加工率:75.0〜97.0%の条件で冷間圧延を行い、最終焼鈍を施すことによって、厚さ:90〜300μmの電解コンデンサ用高純度アルミニウム材を得る方法が開示されている。しかしながら、このような高加工率の熱間圧延では、圧延中の加工発熱が大きすぎるため、熱間圧延中の板幅方向の温度ばらつきが大きくなり、板幅方向に均一な組織を有する熱間圧延板を得ることが難しく、ひいては、最終(100)面方位占有率が幅方向でばらつくという問題があった。   In this regard, Patent Document 1 discloses that hot rolling is performed under the condition of 99.2 to 99.8%, and then the cold working rate without performing intermediate annealing during the cold rolling. : A method of obtaining a high-purity aluminum material for an electrolytic capacitor having a thickness of 90 to 300 μm by performing cold rolling under conditions of 75.0 to 97.0% and performing final annealing is disclosed. However, in such hot rolling with a high processing rate, since the processing heat generation during rolling is too large, the temperature variation in the plate width direction during hot rolling becomes large, and the hot rolling having a uniform structure in the plate width direction. It was difficult to obtain a rolled sheet, and as a result, there was a problem that the final (100) plane orientation occupancy varied in the width direction.

本発明はこうした背景技術からなされたものであり、厚さが125〜250μmと従来のものより厚い場合においても、最終焼鈍時の結晶粒の粗大化を抑止し、エッチング処理後の状態で高いレベルの静電容量を有する電解コンデンサ電極用アルミニウム材及びその製造方法、ならびに電解コンデンサを提供することを目的とする。   The present invention has been made from such background art, and even when the thickness is 125 to 250 μm, which is thicker than the conventional one, it suppresses the coarsening of crystal grains during the final annealing, and has a high level in the state after the etching treatment. It is an object of the present invention to provide an aluminum material for electrolytic capacitor electrodes having a certain capacitance, a manufacturing method thereof, and an electrolytic capacitor.

上記目的を達成するために、発明者らは鋭意研究の結果、厚さが125〜250μmの厚いアルミニウム材においても、結晶粒の粗大化を抑止し、90%以上の(100)面方位占有率を確保し、高静電容量を得ることに成功した。   In order to achieve the above object, as a result of intensive studies, the inventors have suppressed the coarsening of crystal grains even in a thick aluminum material having a thickness of 125 to 250 μm, and the (100) plane orientation occupation ratio is 90% or more. And succeeded in obtaining high capacitance.

即ち、本発明は下記の構成を有する。
(1) Al純度が99.9質量%以上であって、Si:3〜30質量ppm、Fe:3〜18質量ppm、Cu:5〜70質量ppmを含有し、残部が不純物からなるアルミニウム材料に対して、均質化処理を施した後、熱間圧延工程において、材料温度が500℃〜610℃で圧延を開始するとともに、熱間加工率97.5〜99%で圧延を施し、その後、冷間圧延工程において、中間焼鈍を施すことなく、冷間加工率R(%)と冷間圧延上がりの厚さT(μm)とが、−40R+4000≦T≦−100R+10000(但し、125≦T≦250)の関係を満たすように圧延を施し、さらに最終焼鈍を施すことを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(2) 前記アルミニウム材料は、化学組成において、さらに、Pb,In,Sn,Sbのうちの1種以上を含有し、且つこれらの元素の合計量が0.3〜30質量ppmである前項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(3) 前記アルミニウム材料は、化学組成において、さらに、Ga,Zn,Mn,Cr,Ti,Zr、Vのうちの1種以上を含有するものであり、且つGa含有量/10、Zn含有量/10、Mn含有量、Cr含有量、Ti含有量、Zr含有量、V含有量の合計が2〜50質量ppmである前項1または2に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(4) 前記アルミニウム材料は、化学組成において、不純物としてのB,Mg,Niが合計量で12質量ppm以下に規制されている前項1〜3のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(5) 熱間圧延の開始温度は520〜590℃である前項1〜4のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(6) 熱間加工率は98〜99%である前項1〜5のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(7) 冷間圧延工程において、冷間加工率R(%)と冷間圧延上がりの厚さT(μm)とが、−40R+4010<T<−100R+9970の関係を満たすように圧延を施す前項1〜6のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
That is, the present invention has the following configuration.
(1) An aluminum material having an Al purity of 99.9% by mass or more, Si: 3 to 30 ppm by mass, Fe: 3 to 18 ppm by mass, Cu: 5 to 70 ppm by mass, and the balance being impurities On the other hand, after performing the homogenization treatment, in the hot rolling step, the rolling starts at a material temperature of 500 ° C. to 610 ° C. and a hot working rate of 97.5 to 99%, In the cold rolling process, the cold working rate R (%) and the cold rolled thickness T (μm) are −40R + 4000 ≦ T ≦ −100R + 10000 (provided that 125 ≦ T ≦ 10000) without intermediate annealing. 250) A method for producing an aluminum material for electrolytic capacitor electrodes, wherein rolling is performed so as to satisfy the relationship 250), and final annealing is further performed.
(2) The aluminum material further includes one or more of Pb, In, Sn, and Sb in the chemical composition, and the total amount of these elements is 0.3 to 30 ppm by mass. The manufacturing method of the aluminum material for electrolytic capacitor electrodes as described in any one of.
(3) In the chemical composition, the aluminum material further contains one or more of Ga, Zn, Mn, Cr, Ti, Zr, and V, and Ga content / 10 and Zn content. / 10, The manufacturing method of the aluminum material for electrolytic capacitor electrodes of the preceding clause 1 or 2 whose sum total of Mn content, Cr content, Ti content, Zr content, and V content is 2-50 mass ppm.
(4) The aluminum material for an electrolytic capacitor electrode according to any one of the preceding items 1 to 3, wherein B, Mg, and Ni as impurities are regulated to a total amount of 12 mass ppm or less in a chemical composition. Production method.
(5) The manufacturing method of the aluminum material for electrolytic capacitor electrodes as described in any one of 1 to 4 above, wherein the hot rolling start temperature is 520 to 590 ° C.
(6) The manufacturing method of the aluminum material for electrolytic capacitor electrodes in any one of the preceding clauses 1-5 whose hot work rate is 98 to 99%.
(7) In the cold rolling step, rolling is performed so that the cold work rate R (%) and the thickness T (μm) after the cold rolling satisfy a relationship of −40R + 4010 <T <−100R + 9970. The manufacturing method of the aluminum material for electrolytic capacitor electrodes in any one of -6.

本発明によれば、厚さが125〜250μmで、結晶粒径が規定されるとともに、90%以上の(100)面方位占有率が確保され、かつ酸化膜厚が規定された電解コンデンサ電極用アルミニウム材を製造できる。ひいては、エッチングによって均一で長いエッチングピットを形成し得て、高く均一な静電容量が得られるアルミニウム材を製造できる。   According to the present invention, the electrolytic capacitor electrode has a thickness of 125 to 250 μm, a crystal grain size is defined, a (100) plane occupancy of 90% or more is ensured, and an oxide film thickness is defined. Aluminum material can be manufactured. As a result, it is possible to form an aluminum material which can form uniform and long etching pits by etching and can obtain a high and uniform capacitance.

本発明におけるPb,In,Sn,Sbのいずれか1種以上を添加したアルミニウム材料の使用によれば、初期のエッチングピット発生を均一化してさらに高い静電容量を得られるアルミニウム材を製造できる。   By using an aluminum material to which any one or more of Pb, In, Sn, and Sb is added in the present invention, an aluminum material that can obtain a higher electrostatic capacity by making the initial etching pit generation uniform can be manufactured.

本発明におけるGa,Zn,Mn,Cr,Ti,Zr,Vのいずれか1種以上を添加したアルミニウム材料によれば、エッチングピット径を拡大して拡面率を向上させ、さらに高い静電容量を得られるアルミニウム材を製造できる。   According to the aluminum material to which any one or more of Ga, Zn, Mn, Cr, Ti, Zr, and V are added in the present invention, the etching pit diameter is enlarged to improve the surface expansion ratio, and the higher capacitance. Can be produced.

本発明におけるB,Mg,Niが規制されたアルミニウム材料によれば、局部ピットを回避してさらに高い静電容量を得られるアルミニウム材を製造できる。   According to the aluminum material in which B, Mg, and Ni are regulated in the present invention, it is possible to manufacture an aluminum material that can obtain a higher capacitance by avoiding local pits.

本発明における熱間圧延の開始温度の好適化によれば、FeおよびSiの析出や圧延中のロールへの焼き付きが確実に回避されて、優れたエッチング特性を有するアルミニウム材を製造できる。   According to the optimization of the hot rolling start temperature in the present invention, precipitation of Fe and Si and seizure to the roll during rolling can be reliably avoided, and an aluminum material having excellent etching characteristics can be produced.

本発明における熱間圧延加工率の好適化によれば、繰り返し再結晶が起こるとともに、圧延中の板幅方向で温度のばらつきが抑制されるため、均一で高(100)面方位占有率を有するアルミニウム材を製造できる。   According to the optimization of the hot rolling processing rate in the present invention, recrystallization occurs repeatedly, and variation in temperature is suppressed in the sheet width direction during rolling, so that it has a uniform and high (100) plane orientation occupation rate. Aluminum material can be manufactured.

本発明における冷間効率と冷間圧延上がりの厚さとの関係の好適化によれば、圧延集合組織が十分に発達して確実に高(100)面方位占有率を得ることができる。   According to the optimization of the relationship between the cold efficiency and the thickness after the cold rolling in the present invention, the rolling texture is sufficiently developed and a high (100) plane orientation occupation ratio can be obtained with certainty.

この発明の電解コンデンサ電極用アルミニウム材の製造方法において、冷間加工率範囲を示すグラフである。It is a graph which shows the cold work rate range in the manufacturing method of the aluminum material for electrolytic capacitor electrodes of this invention.

以下に、本発明の電解コンデンサ電極用アルミニウム材の製造方法およびこの方法で製造される電解コンデンサ電極用アルミニウム材について詳述する。   Below, the manufacturing method of the aluminum material for electrolytic capacitor electrodes of this invention and the aluminum material for electrolytic capacitor electrodes manufactured by this method are explained in full detail.

本発明の電解コンデンサ電極用アルミニウム材の製造方法では、アルミニウム材の構成材料の化学組成、アルミニウム材の厚さ、製造工程を規定する。   In the manufacturing method of the aluminum material for electrolytic capacitor electrodes of the present invention, the chemical composition of the constituent material of the aluminum material, the thickness of the aluminum material, and the manufacturing process are defined.

アルミニウム材の構成材料は、その化学組成において、Al純度を規定するとともにSi、FeおよびCuを必須成分とし、さらに任意添加元素としてPb,In,Sn,Sbのうちの1種以上、あるいはGa,Zn,Mn,Cr,Ti,Zr,Vのうちの1種以上が添加されたものである。また、不純物としてのB,Mg,Niが規制されたものである。   In the chemical composition, the constituent material of the aluminum material defines Al purity, Si, Fe, and Cu as essential components, and one or more of Pb, In, Sn, Sb as optional additional elements, or Ga, One or more of Zn, Mn, Cr, Ti, Zr, and V are added. Further, B, Mg, and Ni as impurities are regulated.

Al純度は99.9質量%以上とする。99.9質量%未満の純度では、エッチング時にエッチングピットの成長が多くの不純物によって阻害され、均一な長いトンネル型のエッチングピットを形成できず、従って、静電容量の高いアルミニウム材を得ることができないからである。好ましくは、Al純度を99.95質量%以上とするのが良い。   Al purity shall be 99.9 mass% or more. When the purity is less than 99.9% by mass, the growth of etching pits is inhibited by many impurities during etching, and uniform long tunnel-type etching pits cannot be formed. Therefore, an aluminum material having a high capacitance can be obtained. It is not possible. Preferably, the Al purity is 99.95% by mass or more.

Siは、アルミニウム材の製造材料に不可避的に含まれている元素である。Siの含有量が3質量ppm未満では最終焼鈍時の結晶粒の粗大化を引き起こし易くなり、30質量ppmを越えると、本発明の製造方法のように中間焼鈍を施さない方法ではアルミニウム材表面における(100)面方位を有する結晶粒の占有面積率(以下、(100)面方位占有率と略する)で90%以上を確保することが困難であるため、3〜30質量ppmとする必要がある。好ましいSi含有量は3〜28質量ppmである。   Si is an element inevitably contained in the aluminum material. If the Si content is less than 3 mass ppm, it becomes easy to cause coarsening of crystal grains at the time of final annealing, and if it exceeds 30 mass ppm, the method in which the intermediate annealing is not performed as in the manufacturing method of the present invention, Since it is difficult to ensure 90% or more in the occupied area ratio of crystal grains having a (100) plane orientation (hereinafter abbreviated as (100) plane orientation occupied ratio), it is necessary to set it to 3 to 30 mass ppm. is there. The preferred Si content is 3 to 28 ppm by mass.

Feもアルミニウム材料に不可避的に含まれている元素であり、Feの含有量が3質量ppm未満では最終焼鈍時の結晶粒の粗大化を引き起こし易くなり、18質量ppmを越えると、本発明の製造方法のように中間焼鈍を施さない方法では(100)面方位占有率で90%以上を確保することが困難であるため、3〜18質量ppmとする必要がある。好ましいFe含有量は3〜16質量ppmである。   Fe is an element inevitably contained in the aluminum material. If the Fe content is less than 3 ppm by mass, it tends to cause coarsening of crystal grains during final annealing, and if it exceeds 18 ppm by mass, Since it is difficult to ensure 90% or more in the (100) plane orientation occupancy by the method that does not perform the intermediate annealing as in the manufacturing method, it is necessary to set it to 3 to 18 ppm by mass. A preferable Fe content is 3 to 16 ppm by mass.

Cuは、Alマトリックス中に固溶することにより、アルミニウム材の溶解性を増してエッチングピットの成長を促進し、静電容量を増大させる。Cuが5質量ppm未満では前記効果に乏しく、70質量ppmを越えると、本発明の製造方法のように中間焼鈍を施さない方法では(100)面方位占有率で90%以上を確保することが困難であるため、5〜70質量ppmとする必要がある。好ましいCu含有量は10〜60質量ppmである。   Cu dissolves in the Al matrix, thereby increasing the solubility of the aluminum material to promote the growth of etching pits and increase the capacitance. If the Cu content is less than 5 ppm by mass, the above effect is poor. If the Cu content exceeds 70 ppm by mass, 90% or more in the (100) plane orientation occupancy can be secured by a method that does not perform intermediate annealing as in the production method of the present invention. Since it is difficult, it is necessary to set it as 5-70 mass ppm. A preferable Cu content is 10 to 60 ppm by mass.

Pb,In,Sn,Sbは、最終焼鈍時にアルミニウム材表面に濃化し、初期のエッチピット発生を均一化し、局部エッチピットの発生を抑止する。これらの元素は少なくとも1種の含有によって前記効果を得ることができ、2種以上の併用でも同様の効果が得られる。これらの元素の含有量の合計が0.3質量ppm未満では上記効果に乏しく、30質量ppmを越えると箔の表面溶解が激しくなり、静電容量がかえって低下するため0.3〜30質量ppmとするのが好ましい。特に好ましい合計含有量は0.5〜20質量ppmである。   Pb, In, Sn, and Sb are concentrated on the surface of the aluminum material at the time of final annealing, uniformizing the initial etch pit generation, and suppressing the generation of local etch pits. The above effects can be obtained by containing at least one of these elements, and the same effect can be obtained by using two or more kinds in combination. When the total content of these elements is less than 0.3 ppm by mass, the above effect is poor, and when it exceeds 30 ppm by mass, the surface of the foil becomes solubilized and the capacitance decreases instead. Is preferable. A particularly preferable total content is 0.5 to 20 ppm by mass.

Ga,Zn,Mn,Cr,Ti,Zr,Vは、ケミカルエッチング性を向上させる効果があり、エッチピット径を拡大して拡面率を増大し、静電容量の向上に効果がある。これらの元素は少なくとも1種の含有によって前記効果を得ることができ、2種以上の併用でも同様の効果が得られる。また上記の効果において、Ga,Znは均等物であり,Mn,Cr,Ti,Zr,Vも均等物である。Ga,ZnはMn,Cr,Ti,Zr,Vと比較してAlに対する固溶限が大きいため、前記した効果を比較すると約1/10となる。従って、これらの元素の含有量はGaおよびZnを他の元素の含有量の1/10と同等に評価し、Ga含有量/10、Zn含有量/10、Mn含有量、Cr含有量、Ti含有量、Zr含有量、V含有量の合計によって規定する。これらの合計が2質量ppm未満では上記効果に乏しく、50質量ppmより多いと過溶解が生じるため、2〜50質量ppmとすることが好ましい。特に好ましい範囲は5〜40質量ppmである。   Ga, Zn, Mn, Cr, Ti, Zr, and V have the effect of improving the chemical etching property, and are effective in increasing the etch pit diameter to increase the surface expansion ratio and improving the capacitance. The above effects can be obtained by containing at least one of these elements, and the same effect can be obtained by using two or more kinds in combination. In the above effect, Ga and Zn are equivalents, and Mn, Cr, Ti, Zr, and V are also equivalents. Since Ga and Zn have a larger solid solubility limit with respect to Al than Mn, Cr, Ti, Zr, and V, they are about 1/10 when the above effects are compared. Therefore, the content of these elements is evaluated as Ga and Zn equal to 1/10 of the content of other elements, Ga content / 10, Zn content / 10, Mn content, Cr content, Ti It is defined by the sum of content, Zr content, and V content. If the total of these is less than 2 ppm by mass, the above effect is poor, and if it exceeds 50 ppm by mass, over-dissolution occurs, so 2-50 ppm by mass is preferable. A particularly preferred range is 5 to 40 ppm by mass.

B,Mg,Niは、最終焼鈍時にアルミニウム材表層に濃化するが、局在化しやすく、多いと局部ピットの原因となる。よって、不純物としてのこれらの元素の合計量は12質量ppm以下に規制することが好ましい。特に好ましい上限値は8質量ppmである。   B, Mg, and Ni are concentrated on the surface layer of the aluminum material at the time of final annealing, but are easily localized, and if they are large, they cause local pits. Therefore, the total amount of these elements as impurities is preferably regulated to 12 mass ppm or less. A particularly preferable upper limit is 8 mass ppm.

アルミニウム材の厚さ(t)は125〜250μmとする。125μm未満の薄いアルミニウム材では、厚肉化による静電容量の向上効果が小さいからである。一方、250μmを越えて肉厚が厚くなっても、エッチングによってピットを長くすることが困難になるため、エッチングされない部分が厚くなって厚肉化による高容量化のメリットが得られないからである。好ましい厚さ(t)は200〜250μmである。   The thickness (t) of the aluminum material is 125 to 250 μm. This is because a thin aluminum material having a thickness of less than 125 μm has little effect of improving the capacitance due to thickening. On the other hand, even if the thickness exceeds 250 μm, it becomes difficult to lengthen the pits by etching, so that the unetched portion becomes thick and the merit of increasing the capacity by increasing the thickness cannot be obtained. . A preferred thickness (t) is 200 to 250 μm.

本発明によって製造されるアルミニウム材は、その表面の結晶組織において、(100)面方位占有率は90%以上となる。90%未満では、エッチング処理において長いトンネル型エッチングピットが形成されず、十分な拡面率を得ることができない。好ましい(100)面方位占有率は95%以上である。   The aluminum material produced according to the present invention has a (100) plane orientation occupancy of 90% or more in the crystal structure of the surface. If it is less than 90%, long tunnel-type etching pits are not formed in the etching process, and a sufficient surface expansion rate cannot be obtained. A preferable (100) plane orientation occupation ratio is 95% or more.

結晶粒については、最大結晶粒径は1500μm以下、平均結晶粒径d(μm)は、上述したアルミニウム材の厚さt(μm)との関係が70≦d≦2t+200なる関係を満たしているものとなる。結晶粒径が1500μmを超える粗大な結晶粒の存在は、エッチング処理において不均一なエッチング形態となり得る。また、結晶粒はアルミニウム材の厚さ(t)の増加と共に成長の度合いが大きくなり、最終焼鈍後の平均の結晶粒径は大きくなる。平均結晶粒径(d)が70μm未満というのは、厚さが125μm以上の高純度アルミニウム材においては実現性がなく、2t+200(μm)より大きくなると、エッチングに供する単位の材料内、例えばコイル全域において結晶粒径が1500μmを超える粗大粒の存在の危険性を示唆するので好ましくない。好ましい最大粒径は1200μm以下であり、好ましい平均結晶粒径d(μm)とアルミニウム材の厚さt(μm)との関係は、70≦d≦2tである。   Regarding the crystal grains, the maximum crystal grain size is 1500 μm or less, and the average crystal grain size d (μm) satisfies the relationship of 70 ≦ d ≦ 2t + 200 with the above-described aluminum material thickness t (μm). It becomes. Presence of coarse crystal grains having a crystal grain size exceeding 1500 μm can be a non-uniform etching form in the etching process. In addition, the degree of growth of crystal grains increases as the thickness (t) of the aluminum material increases, and the average crystal grain size after final annealing increases. The average crystal grain size (d) of less than 70 μm is not feasible in a high-purity aluminum material having a thickness of 125 μm or more, and when it exceeds 2t + 200 (μm), the material within the unit used for etching, for example, the entire coil In this case, the risk of existence of coarse grains having a crystal grain size exceeding 1500 μm is not preferable. The preferable maximum particle size is 1200 μm or less, and the relationship between the preferable average crystal particle size d (μm) and the thickness t (μm) of the aluminum material is 70 ≦ d ≦ 2t.

また、アルミニウム材表面に存在する酸化膜の厚さは、エッチングにおけるエッチングピットの発生に大きく影響を及ぼす。酸化膜の厚さが2nm未満になると、エッチング時に表面溶解を起こして拡面率が低下し、静電容量が不十分となる。一方、8nmを越えると酸化膜の絶縁性が高くなるため、エッチング性が低下し、その静電容量が低下する。従って、酸化膜厚は2〜8nm以下となる。好ましい酸化膜厚は2〜5nmである。   Further, the thickness of the oxide film existing on the surface of the aluminum material greatly affects the generation of etching pits in etching. When the thickness of the oxide film is less than 2 nm, surface dissolution occurs at the time of etching, the surface expansion ratio is lowered, and the capacitance becomes insufficient. On the other hand, when the thickness exceeds 8 nm, the insulating property of the oxide film becomes high, so that the etching property is lowered and the capacitance is lowered. Therefore, the oxide film thickness is 2 to 8 nm or less. A preferable oxide film thickness is 2 to 5 nm.

本発明によって製造された電解コンデンサ電極用アルミニウム材は、拡面率向上のためのエッチングが施される。アルミニウム材は厚さ(t)が125〜250μmと厚いものであり、化学組成、(100)面方位占有率、結晶粒径、酸化膜厚さが制御されているから、エッチングによって長いトンネル型のエッチングピットが形成される。このため、陽極材として用いて、化成処理によって耐電圧の高い酸化膜が形成される。また、耐電圧性皮膜を形成させても大きい実効面積を有する点で陽極材に適している。さらに、高い定格電圧において高くかつ均一な静電容量が得られるから、中圧用及び高圧用電解コンデンサ電極材に適している。また、この電極材を用いた電解コンデンサは大きな容量を実現できる。   The aluminum material for electrolytic capacitor electrodes manufactured according to the present invention is subjected to etching for improving the surface expansion ratio. The aluminum material is as thick as 125 to 250 μm in thickness (t), and the chemical composition, (100) plane orientation occupancy, crystal grain size, and oxide film thickness are controlled. Etching pits are formed. For this reason, an oxide film with a high withstand voltage is formed by chemical conversion treatment as an anode material. Moreover, it is suitable for an anode material in that it has a large effective area even if a voltage-resistant film is formed. Furthermore, since a high and uniform capacitance can be obtained at a high rated voltage, it is suitable for medium and high voltage electrolytic capacitor electrode materials. Moreover, the electrolytic capacitor using this electrode material can realize a large capacity.

上述した電解コンデンサ電極用アルミニウム材は、本発明の方法によって製造することができる。以下に、その製造方法について詳細に説明する。   The aluminum material for electrolytic capacitor electrodes described above can be produced by the method of the present invention. Below, the manufacturing method is demonstrated in detail.

まず、上述した所定組成のアルミニウム材料、例えばアルミニウム鋳塊に対して均質化処理を施し、その後、熱間圧延、冷間圧延、最終焼鈍を順次行う。   First, a homogenization process is performed on the above-described aluminum material having a predetermined composition, for example, an aluminum ingot, and then hot rolling, cold rolling, and final annealing are sequentially performed.

熱間圧延工程においては、材料温度が500〜610℃のときに圧延を開始する。この熱間圧延の開始温度が500℃より低いとFe,Siが析出し、局部エッチングの原因となるため、好ましくない。一方、610℃を越えて高い場合には、圧延中にロールへの焼き付きが生じて表面傷の原因となる。また、熱間加工率は97.5〜99%の条件にて行う。熱間加工率R(%)とは、熱間圧延に供するアルミニウム材料の厚さをxとし、熱間圧延上がりの板厚をxとしたとき、〔(x−x)/x〕×100(%)で算出されるものである。熱間加工率が97.5%未満であると、熱間圧延のパス回数が少なく再結晶が繰り返し起こらないため、高(100)面方位占有率を得ることができない。なお、1パスの圧下率は再結晶を促進するためにあまり低く設定できないため、低い圧下率でパス回数を増やしても高(100)面方位占有率を得ることは困難である。一方、熱間加工率が99%を越えると、圧延中の加工発熱が大きすぎるため、熱間圧延中の板幅方向の温度のばらつきが大きくなり、板幅方向に均一な組織を有する熱間圧延板を得ることが難しく、最終(100)面方位占有率が幅方向でばらつくため好ましくない。好ましい熱間圧延の開始温度は、520〜590℃であり、好ましい熱間加工率は98〜99%である。 In the hot rolling process, rolling is started when the material temperature is 500 to 610 ° C. When the hot rolling start temperature is lower than 500 ° C., Fe and Si are precipitated, which causes local etching. On the other hand, when the temperature is higher than 610 ° C., seizure to the roll occurs during rolling, which causes surface scratches. The hot working rate is 97.5 to 99%. The hot working rate R (%) is [(x 0 −x 0 ) / x, where x 0 is the thickness of the aluminum material used for hot rolling and x 1 is the thickness after hot rolling. 0 ] × 100 (%). When the hot working rate is less than 97.5%, the number of passes of hot rolling is small and recrystallization does not occur repeatedly, so that a high (100) plane orientation occupation rate cannot be obtained. Since the reduction rate of one pass cannot be set too low to promote recrystallization, it is difficult to obtain a high (100) plane orientation occupancy even if the number of passes is increased at a low reduction rate. On the other hand, if the hot working rate exceeds 99%, the processing heat generation during rolling is too large, so the temperature variation in the plate width direction during hot rolling becomes large, and the hot working has a uniform structure in the plate width direction. It is difficult to obtain a rolled sheet, and the final (100) plane orientation occupancy varies in the width direction, which is not preferable. A preferable hot rolling start temperature is 520 to 590 ° C., and a preferable hot working rate is 98 to 99%.

冷間圧延工程においては、冷間圧延途中にて中間焼鈍を施すことなく、冷間加工率R(%)と冷間圧延上がりの厚さT(μm)とが−40R+4000≦T≦−100R+10000(但し、125≦T≦250)の関係を満たすように圧延を施す。図1に、本発明における冷間加工率(R)%と冷間圧延上がりの厚さT(μm)との関係を示す。冷間加工率(R)%が上記範囲よりも低くなると、圧延集合組織が十分に発達できず、高(100)面方位占有率を得ることができない。また、冷間加工率(R)%が上記範囲を超えて高くなると、所要の冷間加工率を得るために熱間圧延板の板厚を厚くしなければならなくなり、熱間圧延板の組織制御が困難になる。そのため、高(100)面方位占有率を得ることができない。なお、前記冷間加工率(R)とは、冷間圧延に供するアルミニウム板の厚さをyとし、冷間圧延上がりの板厚をTとしたとき、〔(y−T)/y〕×100(%)で算出されるものである。冷間圧延工程において、冷間加工率R(%)と冷間圧延上がりの厚さT(μm)との好ましい関係は、−40R+4010<T<−100R+9970である。 In the cold rolling process, the cold working rate R (%) and the thickness T (μm) after the cold rolling are −40R + 4000 ≦ T ≦ −100R + 10000 (without intermediate annealing during the cold rolling) However, rolling is performed so as to satisfy the relationship of 125 ≦ T ≦ 250). FIG. 1 shows the relationship between the cold working rate (R)% and the thickness T (μm) after cold rolling in the present invention. When the cold work rate (R)% is lower than the above range, the rolling texture cannot be sufficiently developed, and a high (100) plane orientation occupation ratio cannot be obtained. When the cold work rate (R)% is higher than the above range, the hot rolled plate must be thickened to obtain the required cold work rate, and the structure of the hot rolled plate Control becomes difficult. Therefore, a high (100) plane orientation occupation rate cannot be obtained. The cold working rate (R) is [(y 0 −T) / y, where y 0 is the thickness of an aluminum plate subjected to cold rolling, and T is the thickness after cold rolling. 0 ] × 100 (%). In the cold rolling step, a preferable relationship between the cold work rate R (%) and the thickness T (μm) after the cold rolling is −40R + 4010 <T <−100R + 9970.

冷間圧延途中で中間焼鈍を行わない理由は、本発明のような厚さ125〜250μmのアルミニウム材では、(100)面占有率が大きく、かつ最大結晶粒径および平均結晶粒径が本発明範囲を満たすものが得られないおそれがあるからである。   The reason why the intermediate annealing is not performed during the cold rolling is that, in the aluminum material having a thickness of 125 to 250 μm as in the present invention, the (100) plane occupancy is large, and the maximum crystal grain size and the average crystal grain size are the present invention. This is because a product satisfying the range may not be obtained.

冷間圧延終了後は、最終焼鈍を施すことによって、所期する電解コンデンサ電極用アルミニウム材が製造される。冷間圧延上がりの厚さ(T)は最終焼鈍によっても変化はないから、実質的に最終的なアルミニウム材の厚さとなる。従って、所定化学組成のアルミニウム材料に上述した一連の工程、特に熱間圧延工程及び冷間圧延工程を施すことによって、厚さ(t)が125〜250μmのアルミニウム材であっても、最終(100)面方位占有率が高く、かつ、粒径が1500μm以上の粗大結晶粒の発生がなく、平均結晶粒径d(μm)が、70≦d≦2t+200を満たす本発明のアルミニウム材を得ることができる。   After the end of the cold rolling, the desired aluminum material for electrolytic capacitor electrodes is manufactured by performing final annealing. Since the thickness (T) after the cold rolling does not change even by the final annealing, it is substantially the final thickness of the aluminum material. Therefore, the aluminum material having a predetermined chemical composition is subjected to the above-described series of steps, in particular, a hot rolling step and a cold rolling step, so that even if the aluminum material has a thickness (t) of 125 to 250 μm, the final (100 ) Obtaining the aluminum material of the present invention having a high plane orientation occupation rate, no generation of coarse crystal grains having a grain size of 1500 μm or more, and an average crystal grain size d (μm) satisfying 70 ≦ d ≦ 2t + 200. it can.

なお、本発明のアルミニウム材の製造に際し、上述の工程以外の工程、即ちアルミニウム材料の溶解・成分調整・スラブ鋳造、均熱処理、最終焼鈍は、常法に従えばよく、特に限定すべき工程の指定はない。また、洗浄も適宜行う。   In the production of the aluminum material of the present invention, steps other than those described above, that is, dissolution / component adjustment / slab casting, soaking, final annealing of the aluminum material may be in accordance with conventional methods and should be particularly limited. There is no specification. Also, cleaning is performed as appropriate.

なお、静電容量の測定は、エッチングされ、化成処理されたアルミニウム材について、例えば80g/lのホウ酸アンモニウム、30℃中で、白金板を対極として120Hzにて測定する等、常法に従って行えば良い。   The capacitance is measured in accordance with a conventional method, for example, by measuring an aluminum material that has been etched and subjected to chemical conversion treatment at 120 Hz with a platinum plate as a counter electrode in 30 g at 80 g / l ammonium borate. Just do it.

以上の次第で、上述した、厚さが125〜250μmの電解コンデンサ電極用アルミニウム材において、結晶粒径が規定されるとともに、90%以上の(100)面方位占有率が確保され、かつ酸化膜厚が規定されているため、エッチングによって均一な長いトンネル型のエッチングピットを形成することができる。このため、均一で高い静電容量を得ることができる。   Depending on the above, in the above-described aluminum material for electrolytic capacitor electrodes having a thickness of 125 to 250 μm, the crystal grain size is defined, and a (100) plane orientation occupation ratio of 90% or more is ensured, and the oxide film Since the thickness is regulated, uniform and long tunnel-type etching pits can be formed by etching. For this reason, uniform and high electrostatic capacity can be obtained.

また、Al純度の好適化によれば、エッチングピットの成長により長いエッチングピットの形成が確かなものとなり、さらに高い静電容量を得ることができる。   Further, by optimizing the Al purity, the formation of long etching pits is ensured by the growth of etching pits, and a higher capacitance can be obtained.

また、Si含有量の好適化によれば、結晶粒の粗大化が抑制されて、確実に高い(100)面方位占有率を得て静電容量の増大が可能となる。   Further, by optimizing the Si content, coarsening of crystal grains is suppressed, and a high (100) plane orientation occupancy can be obtained with certainty, and the capacitance can be increased.

また、Fe含有量の好適化によれば、中間焼鈍を施さずとも確実に高い(100)面方位占有率を得て静電容量の増大が可能となる。   Further, by optimizing the Fe content, it is possible to reliably obtain a high (100) plane orientation occupancy without performing intermediate annealing and increase the capacitance.

また、本発明におけるCu含有量の好適化によれば、さらに溶解性を増してエッチングピットの成長が促進され、静電容量の増大が可能となる。   Further, according to the optimization of the Cu content in the present invention, the solubility is further increased, the growth of etching pits is promoted, and the capacitance can be increased.

また、Pb,In,Sn,Sbのいずれか1種以上の添加によれば、初期のエッチングピット発生が均一化されてさらに高い静電容量を得ることができる。   In addition, when one or more of Pb, In, Sn, and Sb are added, the initial etching pit generation is made uniform and a higher capacitance can be obtained.

また、Ga,Zn,Mn,Cr,Ti,Zr,Vのいずれか1種以上の添加によれば、エッチングピット径が拡大されて拡面率が向上してさらに高い静電容量を得ることができる。   Moreover, according to the addition of one or more of Ga, Zn, Mn, Cr, Ti, Zr, and V, the etching pit diameter is enlarged, the surface expansion ratio is improved, and a higher capacitance can be obtained. it can.

また、B,Mg,Niの規制によれば、局部ピットを回避してさらに高い静電容量を得ることができる。   Further, according to the regulation of B, Mg, and Ni, it is possible to avoid a local pit and obtain a higher capacitance.

また、アルミニウム材の厚さの好適化によれば、厚肉化による高静電容量化の効果が得られる。   Further, by optimizing the thickness of the aluminum material, the effect of increasing the capacitance by increasing the thickness can be obtained.

また、(100)面占有率の好適化によれば、エッチングによって確実に長いトンネル型エッチングピットが形成され、静電容量の増大が確実なものとなる。   Further, by optimizing the (100) plane occupancy, long tunnel-type etching pits are surely formed by etching, and the increase in capacitance is ensured.

また、最大結晶粒径の好適化によれば、均一なエッチングピットが確実に形成されて、静電容量の増大が確実なものとなる。   Further, by optimizing the maximum crystal grain size, uniform etching pits are reliably formed, and the increase in capacitance is ensured.

また、平均結晶粒径dと厚さ(t)との関係の好適化によれば、均一なエッチングピットが確実に形成されて、静電容量の増大が確実なものとなる。   Further, by optimizing the relationship between the average crystal grain size d and the thickness (t), uniform etching pits are reliably formed, and the increase in capacitance is ensured.

また、中高圧用陽極材において高く均一な静電容量を得ることができる。   In addition, a high and uniform capacitance can be obtained in the medium-high voltage anode material.

また、前記アルミニウム材を電極材として用いた電解コンデンサは、大きな均一な静電容量を有する電解コンデンサとなし得る。   In addition, an electrolytic capacitor using the aluminum material as an electrode material can be an electrolytic capacitor having a large and uniform capacitance.

この発明によって製造される電解コンデンサ電極用アルミニウム材および電解コンデンサは、実施例のものに限定されることはない。   The aluminum material for electrolytic capacitor electrodes and the electrolytic capacitor produced by the present invention are not limited to those of the examples.

〔試験1:アルミニウム材〕
まず、表1〜4に示す実施例No.1〜11、No.21〜41、実施例46〜69、実施例71〜93、比較例No.12〜20、比較例42〜45、比較例70、比較例94、95の各種組成のアルミニウム鋳塊を面削し、600℃×10時間の均質化処理を施した。次いで、異なる条件で熱間圧延、冷間圧延を施して厚さ(t)を70〜270μmとし、更に最終焼鈍を行ってアルミニウム材を作製した。最終焼鈍条件は各No.共通で500℃×10時間とした。
[Test 1: Aluminum material]
First, Examples No. 1-11, Nos. 21-41, Examples 46-69, Examples 71-93, Comparative Examples No. 12-20, Comparative Examples 42-45, Comparative Examples shown in Tables 1-4 70, comparative ingots 94 and 95 of aluminum ingots having various compositions were chamfered and homogenized at 600 ° C. for 10 hours. Subsequently, hot rolling and cold rolling were performed under different conditions to obtain a thickness (t) of 70 to 270 μm, and final annealing was performed to produce an aluminum material. The final annealing condition was 500 ° C. × 10 hours for each No ..

上述のようにして作製した各アルミニウム材について、次の方法により(100)面方位占有率及び、最大結晶粒径、平均結晶粒径及び酸化膜厚を調べた。   About each aluminum material produced as mentioned above, the (100) plane orientation occupation rate, the maximum crystal grain size, the average crystal grain size, and the oxide film thickness were investigated by the following method.

(100)面方位占有率及び最大結晶粒径は、アルミニウム材を塩酸:硝酸:弗酸=50:47:3の容積比を有する溶液中に浸漬し、結晶粒を現出させ、画像解析装置にて測定した。なお(100)面方位占有率については、アルミニウム材の幅方向の両端部および中央部の平均値とした。   The (100) plane orientation occupancy and the maximum crystal grain size are obtained by immersing an aluminum material in a solution having a volume ratio of hydrochloric acid: nitric acid: hydrofluoric acid = 50: 47: 3 to reveal crystal grains, and image analysis apparatus Measured with In addition, about (100) plane orientation occupation rate, it was set as the average value of the both ends and center part of the width direction of an aluminum material.

平均結晶粒径(d)は、アルミニウム材を硼弗化水素酸:3%の液中にて、電圧:30V、時間:1分の条件にてエッチングし、結晶粒を現出させた後、求積法(JIS H 0501)により測定した。   The average crystal grain size (d) is obtained by etching an aluminum material in a solution of borohydrofluoric acid: 3% under the conditions of voltage: 30 V and time: 1 minute to reveal crystal grains. It measured by the quadrature method (JIS H 0501).

酸化膜厚さは、ハンターホール法(M.S.Hunter and P.Fowle, J.Electrochem. Soc., 101[9], 483(1954)参照)により測定した。   The oxide film thickness was measured by the Hunter Hall method (see M. S. Hunter and P. Fowle, J. Electrochem. Soc., 101 [9], 483 (1954)).

これらの結果を表1〜4に示す。   These results are shown in Tables 1-4.

次に、各アルミニウム材について、HCl:1mol/dmとHSO:3.5mol/dmを含む液温:75℃の水溶液に浸漬した後、電流密度:0.2A/cmで電解処理を施した。電解処理後のアルミニウム材をさらに前記組成の塩酸−硫酸混合水溶液に90℃にて360秒間浸漬し、エッチングされたアルミニウム材を得た。得られたアルミニウム材を、化成電圧:270VにてEIAJ規格に従い化成処理して陽極材とし、静電容量を測定した。その結果を比較例No.20の静電容量を100としたときの相対比較にて、併せて表1〜4に示す。 Next, after each aluminum material was immersed in an aqueous solution containing HCl: 1 mol / dm 3 and H 2 SO 4 : 3.5 mol / dm 3 at a liquid temperature of 75 ° C., the current density was 0.2 A / cm 2 . Electrolytic treatment was performed. The aluminum material after the electrolytic treatment was further immersed in a hydrochloric acid-sulfuric acid mixed aqueous solution having the above composition at 90 ° C. for 360 seconds to obtain an etched aluminum material. The obtained aluminum material was subjected to chemical conversion treatment according to EIAJ standards at a chemical conversion voltage of 270 V to obtain an anode material, and the capacitance was measured. The results are shown in Tables 1 to 4 together with relative comparison when the capacitance of Comparative Example No. 20 is 100.

Figure 2009120963
Figure 2009120963

Figure 2009120963
Figure 2009120963

Figure 2009120963
Figure 2009120963

Figure 2009120963
Figure 2009120963

表1の結果より、アルミニウム材の組成、厚さ、(100)面方位占有率、最大結晶粒径、平均結晶粒径及び酸化膜厚が本発明の範囲内にある各実施例は、これらが本発明範囲を逸脱する比較例に比べて、エッチングにより静電容量を増大し得ることを確認した。比較例No.12,14,16では、最終焼鈍後に1500μm以上の粗大結晶粒が発生し、比較例No.13,15,17,18では(100)面方位占有率で90%以上を確保できないことがわかる。また、比較例No.19は、アルミニウム材厚さが250μm以上に厚くなっても、エッチピットがそれ以上に成長しないため、静電容量は実施例No.10(アルミニウム材厚さ:240μm)と比べても向上しないことを示している。   From the results of Table 1, each example in which the composition, thickness, (100) plane orientation occupancy, maximum crystal grain size, average crystal grain size and oxide film thickness of the aluminum material are within the scope of the present invention is as follows. It was confirmed that the capacitance can be increased by etching as compared with the comparative example that departs from the scope of the present invention. In Comparative Examples No. 12, 14, and 16, coarse crystal grains of 1500 μm or more are generated after the final annealing, and in Comparative Examples No. 13, 15, 17, and 18, 90% or more cannot be secured in the (100) plane orientation occupation ratio. I understand that. Further, in Comparative Example No. 19, even when the aluminum material thickness is increased to 250 μm or more, the etch pits do not grow any further. Therefore, the capacitance is Example No. 10 (aluminum material thickness: 240 μm). It shows that there is no improvement even when compared.

表2の結果より、所定量のPb,In,Sn,Sbの添加によってさらに静電容量を増大しうること確認した。   From the results in Table 2, it was confirmed that the capacitance could be further increased by adding a predetermined amount of Pb, In, Sn, Sb.

表3の結果より、所定量のGa,Zn,Mn,Cr,Ti,Zr,Vの添加によってさらに静電容量を増大しうること確認した。   From the results in Table 3, it was confirmed that the capacitance can be further increased by adding predetermined amounts of Ga, Zn, Mn, Cr, Ti, Zr, and V.

表4の結果より、不純物としてのB,Mg,Niを規制することによってさらに静電容量を増大しうること確認した。
〔試験2:アルミニウム材の製造方法〕
まず、表5に示すA〜Jの各種組成のアルミニウム鋳塊を面削した後、600℃×10時間の均質化処理を施した。その後、表6、7の各No.に示す条件(熱間圧延開始時の材料温度、熱間加工率)にて熱間圧延した。続いて、表6、7に示す冷間加工率R(%)で冷間圧延を実施し、冷間圧延上がりの厚さ(T):100〜250μmとし、更に最終焼鈍を行ってアルミニウム材を作製した。最終焼鈍条件は各No.共通で500℃×10時間とした。なお、本試験では冷間圧延上がりの厚さ(T)が最終的なアルミニウム材厚となる。
From the results in Table 4, it was confirmed that the capacitance can be further increased by regulating B, Mg, and Ni as impurities.
[Test 2: Method for producing aluminum material]
First, after chamfering aluminum ingots having various compositions A to J shown in Table 5, homogenization treatment was performed at 600 ° C. for 10 hours. Then, it hot-rolled on the conditions (material temperature at the time of a hot rolling start, hot work rate) shown to each No. of Table 6,7. Subsequently, cold rolling is performed at a cold working rate R (%) shown in Tables 6 and 7, the thickness after cold rolling (T) is set to 100 to 250 μm, and final annealing is performed to obtain an aluminum material. Produced. The final annealing condition was 500 ° C. × 10 hours for each No .. In this test, the thickness (T) after the cold rolling is the final aluminum material thickness.

上述のようにして作製した各アルミニウム材について、(100)面方位占有率、最大結晶粒径、平均結晶粒径及び酸化膜厚を試験1と同じ方法により調べた。さらに、(100)面方位占有率については、試験1と同様の幅方向における平均値の他、幅方向のばらつきについて、端部と中央部の差が3%未満のものを○、3%以上のものを×として判定を行った。これらの結果を表6、7に示す。   About each aluminum material produced as mentioned above, the (100) plane orientation occupation rate, the maximum crystal grain size, the average crystal grain size, and the oxide film thickness were examined by the same method as in Test 1. Further, regarding the (100) plane orientation occupancy, in addition to the average value in the width direction similar to that in Test 1, for the variation in the width direction, the difference between the end and the center is less than 3%. Judgment was carried out by making x of those. These results are shown in Tables 6 and 7.

次に、各アルミニウム材について、試験1と同じ条件にてエッチングし、さらに化成処理して陽極材とし、静電容量を測定した。その結果を表6については比較例No.122の静電容量を100としたときの相対比較にて示し、表7については同一合金の比較例(例えば、実施例No.125、126は比較例No.127)の静電容量を100としたときの相対比較にて示す。   Next, each aluminum material was etched under the same conditions as in Test 1, and further subjected to chemical conversion to form an anode material, and the capacitance was measured. The results are shown in Table 6 by relative comparison when the capacitance of Comparative Example No. 122 is 100, and Table 7 is a comparative example of the same alloy (for example, Examples No. 125 and 126 are comparative examples). It shows by relative comparison when the electrostatic capacity of No.127) is 100.

Figure 2009120963
Figure 2009120963

Figure 2009120963
Figure 2009120963

Figure 2009120963
Figure 2009120963

表6、7の結果より、所定化学組成のアルミニウム材料を用い、本発明範囲の条件で熱間圧延及び冷間圧延を施して所定厚さに作製した各実施例のアルミニウム材では、本発明範囲を逸脱する比較例に比べて(100)面方位占有率が高く、かつ(100)面方位占有率の幅方向のばらつきが小さい。また各実施例では、最大結晶粒径が1500μmを越えるような粗大結晶粒の発生がなく、平均結晶粒径が(d)と厚さ(t=T)との関係が70≦d≦2t+200を満たしており、酸化膜は2〜5nmであることを確認した。また、各実施例のアルミニウム材は比較例に比べて、エッチングにより静電容量を増大し得ることを確認した。   From the results of Tables 6 and 7, the aluminum material of each example prepared by using an aluminum material having a predetermined chemical composition and hot-rolling and cold-rolling under the conditions of the present invention to have a predetermined thickness is within the scope of the present invention. The (100) plane orientation occupancy is high and the variation in the width direction of the (100) plane orientation occupancy is small compared to the comparative example that deviates from. In each example, there is no generation of coarse crystal grains having a maximum crystal grain size exceeding 1500 μm, and the relationship between the average crystal grain size (d) and the thickness (t = T) is 70 ≦ d ≦ 2t + 200. It was satisfied and the oxide film was confirmed to be 2 to 5 nm. Moreover, it confirmed that the aluminum material of each Example can increase an electrostatic capacity by an etching compared with a comparative example.

なお、比較例No.117、119は、(100)面方位占有率のばらつきが大きいために、静電容量のばらつきも大きいものであった。また、比較例No.124は実施例No.100と同等の静電容量を得たが、熱間圧延の開始温度が高いために表面に傷が発生して外観不良品であった。   Note that Comparative Example Nos. 117 and 119 had large variations in capacitance because the variation in (100) plane orientation occupation ratio was large. Moreover, although the comparative example No. 124 obtained the electrostatic capacity equivalent to Example No. 100, since the start temperature of hot rolling was high, the surface generate | occur | produced the damage | wound and it was a defective product.

Claims (7)

Al純度が99.9質量%以上であって、Si:3〜30質量ppm、Fe:3〜18質量ppm、Cu:5〜70質量ppmを含有し、残部が不純物からなるアルミニウム材料に対して、均質化処理を施した後、熱間圧延工程において、材料温度が500℃〜610℃で圧延を開始するとともに、熱間加工率97.5〜99%で圧延を施し、その後、冷間圧延工程において、中間焼鈍を施すことなく、冷間加工率R(%)と冷間圧延上がりの厚さT(μm)とが、−40R+4000≦T≦−100R+10000(但し、125≦T≦250)の関係を満たすように圧延を施し、さらに最終焼鈍を施すことを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。   For an aluminum material having an Al purity of 99.9% by mass or more, containing Si: 3 to 30 ppm by mass, Fe: 3 to 18 ppm by mass, Cu: 5 to 70 ppm by mass, and the balance being impurities. After the homogenization treatment, in the hot rolling step, the rolling is started at a material temperature of 500 ° C. to 610 ° C. and the hot working rate is 97.5 to 99%, and then cold rolling. In the process, the cold working rate R (%) and the cold rolled thickness T (μm) are −40R + 4000 ≦ T ≦ −100R + 10000 (provided that 125 ≦ T ≦ 250) without intermediate annealing. The manufacturing method of the aluminum material for electrolytic capacitor electrodes characterized by performing rolling so that a relationship may be satisfy | filled, and also giving final annealing. 前記アルミニウム材料は、化学組成において、さらに、Pb,In,Sn,Sbのうちの1種以上を含有し、且つこれらの元素の合計量が0.3〜30質量ppmである請求項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。   2. The aluminum material according to claim 1, wherein the aluminum material further contains one or more of Pb, In, Sn, and Sb in chemical composition, and the total amount of these elements is 0.3 to 30 ppm by mass. Manufacturing method of aluminum material for electrolytic capacitor electrodes. 前記アルミニウム材料は、化学組成において、さらに、Ga,Zn,Mn,Cr,Ti,Zr、Vのうちの1種以上を含有するものであり、且つGa含有量/10、Zn含有量/10、Mn含有量、Cr含有量、Ti含有量、Zr含有量、V含有量の合計が2〜50質量ppmである請求項1または2に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The aluminum material further contains one or more of Ga, Zn, Mn, Cr, Ti, Zr, and V in chemical composition, and Ga content / 10, Zn content / 10, The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 1 or 2, wherein the total of Mn content, Cr content, Ti content, Zr content, and V content is 2 to 50 ppm by mass. 前記アルミニウム材料は、化学組成において、不純物としてのB,Mg,Niが合計量で12質量ppm以下に規制されている請求項1〜3のいずれか記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 3, wherein the aluminum material is regulated such that B, Mg, and Ni as impurities are not more than 12 mass ppm in terms of chemical composition. 熱間圧延の開始温度は520〜590℃である請求項1〜4のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 4, wherein a hot rolling start temperature is 520 to 590 ° C. 熱間加工率は98〜99%である請求項1〜5のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 5, wherein the hot working rate is 98 to 99%. 冷間圧延工程において、冷間加工率R(%)と冷間圧延上がりの厚さT(μm)とが、−40R+4010<T<−100R+9970の関係を満たすように圧延を施す請求項1〜6のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。   In the cold rolling step, rolling is performed so that the cold working rate R (%) and the thickness T (µm) after the cold rolling satisfy a relationship of -40R + 4010 <T <-100R + 9970. The manufacturing method of the aluminum material for electrolytic capacitor electrodes in any one of these.
JP2009030125A 2002-08-21 2009-02-12 Method for producing aluminum material for electrolytic capacitor electrode Expired - Fee Related JP5036740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009030125A JP5036740B2 (en) 2002-08-21 2009-02-12 Method for producing aluminum material for electrolytic capacitor electrode

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002240546 2002-08-21
JP2002240546 2002-08-21
JP2002380345 2002-12-27
JP2002380345 2002-12-27
JP2009030125A JP5036740B2 (en) 2002-08-21 2009-02-12 Method for producing aluminum material for electrolytic capacitor electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003065394A Division JP4300041B2 (en) 2002-08-21 2003-03-11 Aluminum material for electrolytic capacitor electrode and electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2009120963A true JP2009120963A (en) 2009-06-04
JP5036740B2 JP5036740B2 (en) 2012-09-26

Family

ID=40813420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030125A Expired - Fee Related JP5036740B2 (en) 2002-08-21 2009-02-12 Method for producing aluminum material for electrolytic capacitor electrode

Country Status (1)

Country Link
JP (1) JP5036740B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018028A1 (en) * 2015-07-30 2017-02-02 昭和電工株式会社 Method for manufacturing aluminum material for electrolytic capacitor electrodes, method for manufacturing electrode material for aluminum electrolytic capacitors, and method for manufacturing aluminum electrolytic capacitor
CN110042278A (en) * 2019-05-14 2019-07-23 上海汉行科技有限公司 A kind of aluminium-air cell anode material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140276A (en) * 1996-11-11 1998-05-26 Toyo Alum Kk Aluminum alloy for electrolytic capacitor high tension anode and its foil
JP2001172754A (en) * 1999-12-14 2001-06-26 Nippon Foil Mfg Co Ltd Method of manufacturing for high purity aluminum foil for electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140276A (en) * 1996-11-11 1998-05-26 Toyo Alum Kk Aluminum alloy for electrolytic capacitor high tension anode and its foil
JP2001172754A (en) * 1999-12-14 2001-06-26 Nippon Foil Mfg Co Ltd Method of manufacturing for high purity aluminum foil for electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018028A1 (en) * 2015-07-30 2017-02-02 昭和電工株式会社 Method for manufacturing aluminum material for electrolytic capacitor electrodes, method for manufacturing electrode material for aluminum electrolytic capacitors, and method for manufacturing aluminum electrolytic capacitor
CN107847995A (en) * 2015-07-30 2018-03-27 昭和电工株式会社 Manufacture method, the manufacture method of aluminium electrolutic capacitor electrode material and the manufacture method of aluminium electrolutic capacitor of ALuminum material for electrode of electrolytic capacitor
CN110042278A (en) * 2019-05-14 2019-07-23 上海汉行科技有限公司 A kind of aluminium-air cell anode material and preparation method thereof

Also Published As

Publication number Publication date
JP5036740B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP4300041B2 (en) Aluminum material for electrolytic capacitor electrode and electrolytic capacitor
JPH06181146A (en) Aluminum foil for electrolytic capacitor anode and manufacture thereof
JP5036740B2 (en) Method for producing aluminum material for electrolytic capacitor electrode
JP2007046093A (en) Aluminum foil for electrolytic capacitor electrode, and manufacturing method therefor
JP2803762B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JP2626845B2 (en) Hard aluminum foil for anode of electrolytic capacitor
JP2602357B2 (en) Aluminum alloy foil for electrolytic capacitor electrodes
JP2002043186A (en) Method of manufacturing aluminum foil for electrode of electrolytic capacitor
JP3959106B2 (en) Hard aluminum foil for electrolytic capacitor electrodes
JP2002173748A (en) Method for producing high purity aluminum foil
JP2007169690A (en) Aluminum foil for electrolytic capacitor
CN112646990A (en) Rolled aluminum material for anode of low-voltage electrolytic capacitor and method for producing same
JP2008045172A (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4916605B2 (en) Aluminum material for electrolytic capacitor electrode, aluminum foil, and method for producing aluminum foil
JP2008150692A (en) Aluminum material for electrolytic capacitor electrode
JP2007067052A (en) Aluminum foil for electrolytic capacitor
JP2006152394A (en) Aluminum foil for electrolytic capacitor
JP2010100917A (en) Aluminum foil for electrolytic capacitor electrode
JP4223659B2 (en) Aluminum alloy foil for electrolytic capacitor cathode
JP5523731B2 (en) Aluminum foil for electrolytic capacitor cathode and manufacturing method thereof
JP4958464B2 (en) Aluminum foil for electrolytic capacitor electrode
JP3899479B2 (en) Aluminum foil for electrolytic capacitor electrode
JP2002118035A (en) Electrolytic capacitor electrode aluminum foil
JP2009270138A (en) Aluminum foil for electrolytic capacitor
JPH05311360A (en) Manufacture of aluminum alloy foil for electrode of electrolytic capacitor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5036740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees