JP2009120924A - Film forming device and method for forming thin film - Google Patents

Film forming device and method for forming thin film Download PDF

Info

Publication number
JP2009120924A
JP2009120924A JP2007299069A JP2007299069A JP2009120924A JP 2009120924 A JP2009120924 A JP 2009120924A JP 2007299069 A JP2007299069 A JP 2007299069A JP 2007299069 A JP2007299069 A JP 2007299069A JP 2009120924 A JP2009120924 A JP 2009120924A
Authority
JP
Japan
Prior art keywords
film
film forming
film thickness
thickness sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007299069A
Other languages
Japanese (ja)
Other versions
JP4974858B2 (en
Inventor
Junichi Nagata
純一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007299069A priority Critical patent/JP4974858B2/en
Publication of JP2009120924A publication Critical patent/JP2009120924A/en
Application granted granted Critical
Publication of JP4974858B2 publication Critical patent/JP4974858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide techniques for accurately measuring a minute deposition amount. <P>SOLUTION: A cooling medium is made to flow in a film thickness sensor 10 to cool a quartz oscillator 32 to the temperature lower than 0°C so as to measure a resonant frequency. As thermal noise is reduced to improve the S/N, a deposition amount of a film forming material with a small vapor emission amount can be accurately measured. For maintenance, a heating medium is made to flow the passage where the cooling medium has flowed so as to heat the film thickness sensor 10, and then air is introduced into a vacuum chamber 11. As no dew condensation occurs on the cooled member, an evacuation time after the maintenance work is finished is shortened, and the formed thin film has high qualities. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は成膜装置の技術分野にかかり、特に、膜厚測定を行ないながら薄膜を形成する技術に関する。   The present invention relates to a technical field of a film forming apparatus, and more particularly to a technique for forming a thin film while measuring a film thickness.

真空雰囲気中で薄膜を形成する場合、成膜対象物表面に形成される薄膜の膜厚を測定するために、水晶振動子が配置された膜厚センサを真空雰囲気中に配置し、基板表面に成膜材料粒子が付着して薄膜が成長する際に水晶振動子にも成膜材料粒子を付着させ、付着量に応じて変化する水晶振動子の共振周波数を測定し、基板表面に対する付着量に換算し、基板表面に形成された薄膜の膜厚を求めている。   When forming a thin film in a vacuum atmosphere, in order to measure the film thickness of the thin film formed on the surface of the film formation target, a film thickness sensor with a quartz resonator is placed in the vacuum atmosphere and placed on the substrate surface. When the film deposition material particles adhere and the thin film grows, the film deposition material particles are also adhered to the crystal unit, and the resonance frequency of the crystal unit that changes according to the amount of deposition is measured to determine the amount of deposition on the substrate surface. In conversion, the film thickness of the thin film formed on the substrate surface is obtained.

しかし、非常に少量の成膜対象物質を基板に付着させる場合、膜厚センサで得られる信号の大きさよりも、膜厚センサに侵入するノイズの方が大きく、微少な付着量を精度よく求められないという問題がある。   However, when a very small amount of deposition target substance is attached to the substrate, the noise entering the film thickness sensor is larger than the magnitude of the signal obtained by the film thickness sensor, and a very small amount of adhesion is required with high accuracy. There is no problem.

そこで従来技術では、膜厚センサを冷却し、ノイズを減少させている。
しかし、その効果は不十分である。特に、有機EL素子の技術分野においては、母材となるホスト材料と発色材料等のドーパント材料を一緒に蒸発させ有機発色層を形成する際に、ホスト材料とドーパント材料の有機発色層中の含有比率(ドーパント比率)を正確に制御する技術は非常に重要であるが、ドーパントの蒸発量は非常に少ないため、付着量を正確に測定する技術が求められている。
特開平7−34248号公報
Therefore, in the prior art, the film thickness sensor is cooled to reduce noise.
However, the effect is insufficient. In particular, in the technical field of organic EL elements, the host material and the dopant material such as the coloring material are evaporated together to form the organic coloring layer, so that the host material and the dopant material are contained in the organic coloring layer. A technique for accurately controlling the ratio (dopant ratio) is very important. However, since the evaporation amount of the dopant is very small, a technique for accurately measuring the adhesion amount is required.
Japanese Patent Laid-Open No. 7-34248

本発明は、上記従来技術の課題を解決するために創作されたものであり、微小な付着量を正確に測定する技術を提供する。   The present invention was created to solve the above-described problems of the prior art, and provides a technique for accurately measuring a minute amount of adhesion.

上記課題を解決するため、本発明は、真空槽内に配置された成膜源を有し、前記成膜源から放出された成膜材料粒子を成膜対象物表面に到達させ、前記成膜対象物表面に薄膜を形成する成膜装置であって、前記成膜材料粒子が到達する位置に配置された膜厚センサと、前記膜厚センサ内に設けられ前記成膜材料粒子が表面に付着する水晶振動子と、前記膜厚センサに接続され、前記水晶振動子の共振周波数の変化から前記基板表面の薄膜の膜厚を算出する測定装置と、前記膜厚センサに0℃よりも低温に冷却した冷媒体を供給する冷却装置と、前記膜厚センサに室温以上の加熱媒体を供給する昇温装置とを有する成膜装置である。
また、本発明は、前記冷却装置は、前記冷媒体を−80℃以下に冷却して前記膜厚センサに供給する成膜装置である。
また、本発明は、前記昇温装置は、前記加熱媒体を室温よりも高温に加熱して前記膜厚センサに供給する成膜装置である。
また、本発明は、真空槽内に配置された成膜源から成膜材料粒子を放出させ、成膜対象物表面に前記成膜材料粒子を付着させ、前記成膜対象物表面に薄膜を形成する薄膜形成方法であって、前記成膜材料粒子が到達する位置に膜厚センサを配置しておき、前記真空槽内を真空雰囲気にして前記膜厚センサに液体窒素を含有する冷媒体を供給しながら前記成膜材料粒子を放出させ、前記膜厚センサに設けられ、前記冷媒体によって冷却された水晶振動子表面に前記成膜材料粒子を付着させ、前記水晶振動子の共振周波数の変化を測定し、前記成膜対象物表面の前記薄膜の膜厚を求める薄膜形成方法である。
また、本発明は、前記真空槽内に大気を導入する際には、前記大気を導入する前に、前記膜厚センサに室温以上の温度の加熱媒体を供給し、前記冷媒体が流れた経路を昇温させる薄膜形成方法である。
In order to solve the above-described problems, the present invention has a film forming source disposed in a vacuum chamber, causes film forming material particles released from the film forming source to reach the surface of a film forming object, and forms the film. A film forming apparatus for forming a thin film on a surface of an object, a film thickness sensor disposed at a position where the film forming material particles reach, and the film forming material particles provided in the film thickness sensor attached to the surface A crystal resonator, a measuring device connected to the film thickness sensor and calculating the film thickness of the thin film on the substrate surface from a change in the resonance frequency of the crystal resonator, and the film thickness sensor at a temperature lower than 0 ° C. It is a film forming apparatus having a cooling device for supplying a cooled refrigerant body and a temperature raising device for supplying a heating medium at room temperature or higher to the film thickness sensor.
Moreover, this invention is a film-forming apparatus with which the said cooling device cools the said refrigerant | coolant body to -80 degrees C or less, and supplies it to the said film thickness sensor.
Moreover, this invention is a film-forming apparatus with which the said temperature rising apparatus heats the said heating medium to room temperature higher than room temperature, and supplies it to the said film thickness sensor.
In addition, the present invention releases film forming material particles from a film forming source disposed in a vacuum chamber, attaches the film forming material particles to the surface of the film forming object, and forms a thin film on the surface of the film forming object. A film thickness sensor is disposed at a position where the film forming material particles reach, and a vacuum body is provided in the vacuum chamber to supply a coolant containing liquid nitrogen to the film thickness sensor. The film-forming material particles are discharged while the film-forming material particles are attached to the surface of the crystal unit provided in the film thickness sensor and cooled by the refrigerant body, and the resonance frequency of the crystal unit is changed. It is a thin film formation method which measures and calculates | requires the film thickness of the said thin film of the said film-forming target object surface.
Further, according to the present invention, when air is introduced into the vacuum chamber, a heating medium having a temperature higher than room temperature is supplied to the film thickness sensor before the air is introduced, and the path through which the refrigerant flows Is a method for forming a thin film in which the temperature is raised.

膜厚センサを0℃よりも低温に冷却して基板表面に成膜材料を到達させるので、膜厚センサへの成膜材料の付着量を正確に測定することができる。
低温の部材を室温よりも高温に昇温させてから真空槽内に大気を導入できるので、膜厚センサや配管に結露が生じない。
Since the film thickness sensor is cooled to a temperature lower than 0 ° C. to allow the film formation material to reach the substrate surface, the amount of the film formation material adhering to the film thickness sensor can be accurately measured.
Since the air can be introduced into the vacuum chamber after raising the temperature of the low-temperature member to a temperature higher than room temperature, no dew condensation occurs on the film thickness sensor or the piping.

図1は、本発明の第一の例の成膜装置1を示している。
この成膜装置1は、真空槽11を有しており、真空槽11の内部には成膜源14が配置されており、真空槽11内部の成膜源14と対面する位置には、基板ホルダ19が配置されている。
基板ホルダ19には基板15が保持されており、成膜源14から、成膜材料の微小粒子を放出させると、基板15表面に薄膜が形成されるようになっている。
FIG. 1 shows a film forming apparatus 1 of a first example of the present invention.
The film forming apparatus 1 includes a vacuum chamber 11, a film forming source 14 is disposed inside the vacuum chamber 11, and a substrate is disposed at a position facing the film forming source 14 inside the vacuum chamber 11. A holder 19 is arranged.
The substrate 15 is held by the substrate holder 19, and a thin film is formed on the surface of the substrate 15 when fine particles of the film forming material are released from the film forming source 14.

ここでは成膜源14は、成膜材料が板状に成形されたスパッタリングターゲットであり、成膜材料粒子はスパッタリング粒子として放出されるが、後述するように、成膜材料を溶融・蒸発させる蒸気発生源や、他の方式の成膜源であってもよい。
真空槽11内の、成膜源14から放出された微小粒子が到達する測定位置には、本発明の一例の膜厚センサ10が配置されている。
Here, the film-forming source 14 is a sputtering target in which the film-forming material is formed into a plate shape, and the film-forming material particles are released as sputtering particles. As will be described later, the vapor that melts and evaporates the film-forming material. It may be a generation source or another type of film formation source.
The film thickness sensor 10 according to an example of the present invention is disposed at a measurement position in the vacuum chamber 11 where the fine particles emitted from the film forming source 14 arrive.

図3は、この膜厚センサ10を説明するための内部概略構造図である。当該膜厚センサ10は筺体31を有しており、筺体31内部には水晶振動子32が配置されている。この水晶振動子32は、止め具によって筺体31に固定されており、膜厚検出面34が、筺体31に形成された窓部39から、真空槽11の内部空間に露出されている。   FIG. 3 is an internal schematic structural diagram for explaining the film thickness sensor 10. The film thickness sensor 10 includes a housing 31, and a crystal resonator 32 is disposed inside the housing 31. The crystal unit 32 is fixed to the housing 31 by a stopper, and the film thickness detection surface 34 is exposed to the internal space of the vacuum chamber 11 from the window 39 formed in the housing 31.

この膜厚検出面34は、成膜源14に向けられており、成膜源14から放出される微小粒子は水晶振動子32の膜厚検出面34に付着し、その部分には、基板15表面と同じ成膜材料が付着する。膜厚センサ10が配置された測定位置は、基板15と成膜源14の間から離間した位置に設けられており、成膜源14から基板15方向に飛行する成膜材料の微小粒子を遮らず、成膜作業の邪魔にならないようにされている。   The film thickness detection surface 34 is directed to the film formation source 14, and the fine particles emitted from the film formation source 14 adhere to the film thickness detection surface 34 of the crystal resonator 32, and the substrate 15 The same deposition material as the surface adheres. The measurement position at which the film thickness sensor 10 is arranged is provided at a position spaced from the substrate 15 and the film formation source 14 and blocks fine particles of the film formation material flying from the film formation source 14 toward the substrate 15. Therefore, it does not interfere with the film forming operation.

膜厚センサ10は測定装置4に接続されており、測定装置4は水晶振動子32の共振周波数の変化から水晶振動子32の膜厚検出面34に付着した成膜材料の質量を算出し、測定装置4内部に記憶された補正係数から、水晶振動子32表面の付着量を基板15表面の膜厚に換算し、設定された膜厚と比較して、成膜作業を続行するか終了するか判断するように構成されている。   The film thickness sensor 10 is connected to the measurement device 4, and the measurement device 4 calculates the mass of the film forming material attached to the film thickness detection surface 34 of the crystal resonator 32 from the change in the resonance frequency of the crystal resonator 32. From the correction coefficient stored in the measuring apparatus 4, the amount of adhesion on the surface of the crystal unit 32 is converted into the film thickness on the surface of the substrate 15, and compared with the set film thickness, the film forming operation is continued or ended. It is configured to determine whether or not.

膜厚センサ10の筺体31には、液体又は気体が流れる熱媒体流路23が形成されている。この熱媒体流路23は筺体31に巻き回した管や筺体31内部に形成した貫通孔によって構成させることができる。   A heat medium passage 23 through which a liquid or gas flows is formed in the housing 31 of the film thickness sensor 10. The heat medium flow path 23 can be configured by a tube wound around the casing 31 or a through hole formed inside the casing 31.

真空槽11の外部には、冷却装置5と昇温装置6が配置されており、熱媒体流路23の一端は、供給管21により、切替装置8を介して冷却装置5と昇温装置6のいずれか一方に接続可能に構成されている。
熱媒体流路23の他端は排気管22によって排ガス処理装置18に接続されている。図4は、熱媒体流路23と供給管21と排気管22を説明するための模式図である。
The cooling device 5 and the temperature raising device 6 are disposed outside the vacuum chamber 11, and one end of the heat medium passage 23 is connected to the cooling device 5 and the temperature raising device 6 via the switching device 8 by the supply pipe 21. It is configured to be connectable to either one of these.
The other end of the heat medium passage 23 is connected to the exhaust gas treatment device 18 by an exhaust pipe 22. FIG. 4 is a schematic diagram for explaining the heat medium flow path 23, the supply pipe 21, and the exhaust pipe 22.

冷却装置5の内部には、液体の冷媒体が配置されている。
冷媒体は0℃よりも低温にしても流動性を維持する物質であり(例えば、フッ素化合物)、好ましくは、−80℃以下の温度に冷却しても流動性を失わない物質(例えば液体窒素)である。
昇温装置6の内部には、加熱媒体(気体、液体のどちらでも良い、例えば室温以上に加熱された窒素ガスが用いられる。)が充填されたガスボンベと加熱装置が配置されている。
A liquid refrigerant body is arranged inside the cooling device 5.
The refrigerant body is a substance that maintains fluidity even when the temperature is lower than 0 ° C. (for example, a fluorine compound), and preferably a substance that does not lose fluidity even when cooled to a temperature of −80 ° C. or lower (for example, liquid nitrogen). ).
Inside the temperature raising device 6, a gas cylinder and a heating device filled with a heating medium (which may be either gas or liquid, for example, nitrogen gas heated to room temperature or higher) are arranged.

切替装置8は供給管21によって冷却装置5が膜厚センサ10に接続された場合、冷却装置5は冷却媒体を膜厚センサ10に供給すると、熱媒体流路23には冷却媒体が流れ、膜厚センサ10(特に、水晶振動子32)は冷却媒体と同じ温度まで冷却される。   In the switching device 8, when the cooling device 5 is connected to the film thickness sensor 10 by the supply pipe 21, when the cooling device 5 supplies the cooling medium to the film thickness sensor 10, the cooling medium flows into the heat medium flow path 23, and the film The thickness sensor 10 (in particular, the crystal unit 32) is cooled to the same temperature as the cooling medium.

他方、切替装置8によって昇温装置6が膜厚センサ10に接続された場合、昇温装置6は、室温の加熱媒体か、又は室温よりも高温に加熱した加熱媒体を膜厚センサ10に供給する。この場合、熱媒体流路23には室温又は室温よりも高温に加熱された加熱媒体が流され、加熱媒体が流れる通路(供給管21、熱媒体流路23、排気管22)は、室温以上の温度に昇温される。   On the other hand, when the temperature raising device 6 is connected to the film thickness sensor 10 by the switching device 8, the temperature raising device 6 supplies the film thickness sensor 10 with a heating medium at room temperature or a heating medium heated to a temperature higher than room temperature. To do. In this case, a heating medium heated to room temperature or a temperature higher than room temperature is passed through the heat medium flow path 23, and the passages through which the heating medium flows (supply pipe 21, heat medium flow path 23, exhaust pipe 22) are at room temperature or higher. The temperature is raised to

真空槽11の内部で冷却媒体が流れた部分には、加熱媒体が流れるようにされているので、真空槽11の内部の冷却媒体によって冷却された部材は、加熱媒体によって昇温される。
膜厚センサ10の内部を流れた冷却媒体や加熱媒体は排出管を通って排ガス処理装置18に導かれ、安全に処理される。
Since the heating medium flows in the portion where the cooling medium flows inside the vacuum chamber 11, the member cooled by the cooling medium inside the vacuum chamber 11 is heated by the heating medium.
The cooling medium and the heating medium that have flowed inside the film thickness sensor 10 are guided to the exhaust gas treatment device 18 through the discharge pipe, and are safely processed.

上記の成膜装置1によって、基板15表面に薄膜を形成する工程について説明する。
真空槽11には真空排気系17が接続されており、真空排気系17を動作させ、真空槽11内を真空排気しておく。
切替装置8によって膜厚センサ10と冷却装置5を接続しておき、真空槽11内が所定圧力に低下するまで真空排気した後、真空排気しながら冷却装置5から0℃よりも低温に冷却した冷却媒体を膜厚センサ10に供給し、膜厚センサ10内部の水晶振動子32を冷却媒体と同じ温度に冷却しておく。
A process of forming a thin film on the surface of the substrate 15 by the film forming apparatus 1 will be described.
An evacuation system 17 is connected to the vacuum chamber 11, and the evacuation system 17 is operated to evacuate the vacuum chamber 11.
The film thickness sensor 10 and the cooling device 5 are connected by the switching device 8, and after evacuating until the inside of the vacuum chamber 11 is lowered to a predetermined pressure, the cooling device 5 is cooled to a temperature lower than 0 ° C. while evacuating. A cooling medium is supplied to the film thickness sensor 10, and the crystal unit 32 inside the film thickness sensor 10 is cooled to the same temperature as the cooling medium.

次いで、真空槽11内の真空雰囲気を維持しながら成膜対象物である基板15を真空槽11内に搬入し、基板ホルダ19に保持させ、ガス導入系からスパッタリングガスを導入し、スパッタ電源によって成膜源14内部に設けられたターゲットに電圧を印加し、ターゲットをスパッタリングする。   Next, while maintaining the vacuum atmosphere in the vacuum chamber 11, the substrate 15, which is a film formation target, is carried into the vacuum chamber 11, held by the substrate holder 19, a sputtering gas is introduced from the gas introduction system, and a sputtering power source is used. A voltage is applied to the target provided in the film forming source 14 to sputter the target.

スパッタリングが安定したところで、シャッター24、25を開け、基板15表面に成膜材料粒子(ここではスパッタリング粒子)を到達させ、薄膜形成を開始する。
スパッタリングの際には膜厚センサ10にもスパッタリング粒子が到達し、水晶振動子32表面に薄膜が形成される。
When the sputtering is stabilized, the shutters 24 and 25 are opened, the film forming material particles (sputtering particles in this case) are allowed to reach the surface of the substrate 15, and thin film formation is started.
During sputtering, the sputtered particles reach the film thickness sensor 10 and a thin film is formed on the surface of the crystal unit 32.

水晶振動子32は0℃よりも低温にされており、熱雑音が減少されている。従って、水晶振動子32表面への成膜材料粒子の付着速度が小さく、共振周波数変化が少ない場合であっても、S/N比が向上する為、付着量を正確に測定することができる。   The crystal resonator 32 is set to a temperature lower than 0 ° C., and thermal noise is reduced. Therefore, even when the deposition rate of the film-forming material particles on the surface of the crystal unit 32 is small and the change in the resonance frequency is small, the S / N ratio is improved, so that the amount of deposition can be accurately measured.

図5は成膜材料を付着させない状態で出力された膜厚センサの信号を基板表面の膜厚に換算した結果のグラフである。
膜厚センサに一般的に用いられる冷却水(約20℃)を流している時(グラフ中の0〜10分)は約0.06Åの熱雑音(ノイズ)が観察される。時刻tで冷却媒体を切り替え、−80℃の冷却媒体を供給すると、熱雑音は温度低下に伴って漸減し、観測されなくなった。
FIG. 5 is a graph showing the result obtained by converting the signal of the film thickness sensor output without depositing the film forming material into the film thickness of the substrate surface.
When cooling water (about 20 ° C.) generally used for a film thickness sensor is flowing (0 to 10 minutes in the graph), thermal noise of about 0.06 cm is observed. When the cooling medium was switched at time t and a cooling medium at −80 ° C. was supplied, the thermal noise gradually decreased as the temperature decreased and was no longer observed.

水晶振動子32の温度が異なると、成膜材料が水晶振動子32に付着する確率が変化したり、水晶振動子32の発振周波数が変化したりする。その為、水晶振動子32の温度により、後述する測定装置4の補正係数を変更する必要がある。   When the temperature of the crystal unit 32 is different, the probability that the film forming material adheres to the crystal unit 32 changes, or the oscillation frequency of the crystal unit 32 changes. For this reason, it is necessary to change the correction coefficient of the measuring device 4 described later depending on the temperature of the crystal unit 32.

また、同じ成膜源14から成膜材料が放出されても、成膜源14からの距離が異なると付着量は異なるため、測定位置に配置し冷却媒体で冷却した水晶振動子32の共振周波数変化から、基板15表面の膜厚を求める補正係数が予め算出されており、測定装置4に記憶されている。   Further, even if the film forming material is released from the same film forming source 14, the adhesion amount differs depending on the distance from the film forming source 14. Therefore, the resonance frequency of the crystal unit 32 that is arranged at the measurement position and cooled by the cooling medium. From the change, a correction coefficient for obtaining the film thickness of the surface of the substrate 15 is calculated in advance and stored in the measuring device 4.

成膜の際には、測定された共振周波数変化と補正係数から、基板15表面の薄膜の膜厚が正確に求められる。
基板15表面の膜厚が予め設定された膜厚値に到達したら、スパッタリングを停止し、基板15を真空槽11の外部に搬出する。
At the time of film formation, the film thickness of the thin film on the surface of the substrate 15 is accurately obtained from the measured resonance frequency change and correction coefficient.
When the film thickness on the surface of the substrate 15 reaches a preset film thickness value, sputtering is stopped and the substrate 15 is carried out of the vacuum chamber 11.

次いで、未成膜の基板15を真空槽11の内部に搬入し上記の手順で薄膜形成作業を続行する。
このように、多数の基板15表面に薄膜を形成すると、成膜源14内のターゲットが消耗するため、ターゲットを交換する必要がある。
Next, the non-film-formed substrate 15 is carried into the vacuum chamber 11 and the thin film forming operation is continued according to the above procedure.
As described above, when a thin film is formed on the surfaces of a large number of substrates 15, the target in the film forming source 14 is consumed, and thus it is necessary to replace the target.

このようなメンテナンス作業は真空槽11を開けて行なっており、真空槽11の内部は大気に曝されてしまい、低温の部材が大気と接触するとその表面に結露が生じ、メンテナンス後の真空排気時間が長くなったり、メンテナンス後の薄膜の品質が悪化するおそれがある。   Such maintenance work is performed with the vacuum chamber 11 opened, and the inside of the vacuum chamber 11 is exposed to the atmosphere. When a low-temperature member comes into contact with the atmosphere, condensation occurs on the surface thereof, and the vacuum exhaust time after maintenance is performed. May become longer, or the quality of the thin film after maintenance may deteriorate.

本発明では、成膜源14の交換等のメンテナンス作業を行なう際には、成膜作業を停止した後真空槽11の内部を大気に曝す前に、冷却媒体の供給を停止し、切替装置8によって膜厚センサ10の接続を冷却装置5から昇温装置6に切り替え、昇温装置6から加熱媒体を膜厚センサ10に供給しており、膜厚センサ10や膜厚センサ10に接続された供給管21や排気管22等の真空槽11に露出し、冷却媒体で冷却された部材を室温以上の温度に昇温させた後、真空槽11の内部を大気に曝している。   In the present invention, when maintenance work such as replacement of the film forming source 14 is performed, the supply of the cooling medium is stopped before the film forming work is stopped and before the inside of the vacuum chamber 11 is exposed to the atmosphere. Thus, the connection of the film thickness sensor 10 is switched from the cooling device 5 to the temperature raising device 6, the heating medium is supplied from the temperature raising device 6 to the film thickness sensor 10, and the film thickness sensor 10 or the film thickness sensor 10 is connected. After the members exposed to the vacuum tank 11 such as the supply pipe 21 and the exhaust pipe 22 and heated by the cooling medium are heated to a temperature equal to or higher than room temperature, the inside of the vacuum tank 11 is exposed to the atmosphere.

真空槽11の周囲雰囲気は露点が室温よりも低温になるように湿度制御されており、室温以上の温度に昇温された部材は大気に曝されても結露が生じないため真空槽11の内部に水分は付着せず、薄膜形成作業を再開すると真空雰囲気に到達するまでの排気時間が短く、また、品質のよい薄膜が得られる。
上記第一例の成膜装置1は、スパッタリング装置であったが、本発明はそれに限定されるものではなく、無機材料、有機材料の蒸着装置等にも用いることができる。
The humidity in the surrounding atmosphere of the vacuum chamber 11 is controlled so that the dew point is lower than room temperature, and a member whose temperature has been raised to a temperature higher than room temperature does not cause condensation even when exposed to the atmosphere. Moisture does not adhere to the film, and when the thin film forming operation is resumed, the exhaust time until reaching the vacuum atmosphere is short, and a high quality thin film can be obtained.
Although the film forming apparatus 1 of the first example is a sputtering apparatus, the present invention is not limited thereto, and can be used for an inorganic material or an organic material vapor deposition apparatus.

図2の符号2は、本発明の第二例の成膜装置2であり、同じ部材には同じ符号を付して説明を省略する。
この成膜装置2は有機薄膜形成装置であり、成膜源12には、有機化合物から成るホスト材料が配置された母材蒸着源13aと、有機化合物から成るドーパント材料が配置された添加材蒸着源13bが設けられている。各蒸着源13a、13bには加熱装置26a、26bがそれぞれ接続されており、各加熱装置26a、26bを動作させ蒸着源13a,13b内部のホスト材料とドーパント材料を加熱すると、真空槽11の内部に母材蒸着源13aからホスト材料の蒸気が放出され、添加材蒸着源13bからドーパント材料の蒸気が放出される。
Reference numeral 2 in FIG. 2 is the film forming apparatus 2 of the second example of the present invention, and the same members are denoted by the same reference numerals and description thereof is omitted.
This film forming apparatus 2 is an organic thin film forming apparatus, and a film forming source 12 includes a base material vapor deposition source 13a in which a host material made of an organic compound is arranged and an additive vapor deposition in which a dopant material made of an organic compound is arranged. A source 13b is provided. Heating devices 26a and 26b are connected to the respective vapor deposition sources 13a and 13b. When the host materials and the dopant materials inside the vapor deposition sources 13a and 13b are heated by operating the respective heating devices 26a and 26b, the inside of the vacuum chamber 11 is obtained. The vapor of the host material is released from the base material vapor deposition source 13a, and the vapor of the dopant material is emitted from the additive vapor deposition source 13b.

ドーパント材料の蒸気はホスト材料の蒸気よりも少量であり、両方の蒸気が一緒に放出されると、基板表面には、ホスト材料中にドーパント材料が添加された有機薄膜が形成される。
ホスト材料の蒸気が到達しドーパント材料の蒸気が到達しない位置(到達するドーパント材料の蒸気が無視できる程少量である位置)には、ホスト材料用の膜厚センサ10aが配置されており、ドーパント材料の蒸気が到達しホスト材料の蒸気が到達しない位置(到達するホスト材料の蒸気が無視できる程少量である位置)には、ドーパント材料用の膜厚センサ10bが配置されている。
The vapor of the dopant material is smaller than the vapor of the host material, and when both vapors are released together, an organic thin film in which the dopant material is added to the host material is formed on the substrate surface.
A film thickness sensor 10a for the host material is disposed at a position where the vapor of the host material reaches but does not reach the vapor of the dopant material (position where the vapor of the reaching dopant material is so small that it can be ignored). The film thickness sensor 10b for the dopant material is disposed at a position where the vapor of the host material reaches but does not reach the vapor of the host material (a position where the amount of vapor of the host material that reaches the layer is negligibly small).

各膜厚センサ10a、10bは、それぞれ切替装置8を介して冷却装置5と昇温装置6に接続されている。
各膜厚センサ10a、10bは、切替装置8によって冷却装置5か、又は昇温装置6のいずれか一方に一緒に切り替えられるように構成されており、真空槽11の内部の真空排気を開始した後、各膜厚センサ10a、10bを冷却装置5に接続し、真空槽11内が所定圧力まで真空排気された後、各膜厚センサ10a、10bに冷却した冷却媒体をそれぞれ供給すると、各膜厚センサ10a、10b内部に配置された水晶振動子がそれぞれ冷却媒体の温度まで冷却される。
Each film thickness sensor 10a, 10b is connected to the cooling device 5 and the temperature raising device 6 via the switching device 8, respectively.
Each film thickness sensor 10a, 10b is configured to be switched together by the switching device 8 to either the cooling device 5 or the temperature raising device 6, and started evacuation inside the vacuum chamber 11. Thereafter, each film thickness sensor 10a, 10b is connected to the cooling device 5, and after the inside of the vacuum chamber 11 is evacuated to a predetermined pressure, a cooling medium is supplied to each film thickness sensor 10a, 10b. The quartz oscillators arranged in the thickness sensors 10a and 10b are each cooled to the temperature of the cooling medium.

この状態で成膜源12からホスト材料の蒸気とドーパント材料の蒸気が放出されると、基板15の表面に有機薄膜が形成される。
このとき、ドーパント用の膜厚センサ10b内の水晶振動子32は0℃よりも低温に冷却されており、ドーパント材料の蒸気はその水晶振動子32の表面に付着して共振周波数を変化させると、変化量と補正係数から基板15表面の付着量が正確に求められる。
When the vapor of the host material and the vapor of the dopant material are released from the film forming source 12 in this state, an organic thin film is formed on the surface of the substrate 15.
At this time, when the crystal resonator 32 in the dopant film thickness sensor 10b is cooled to a temperature lower than 0 ° C., the vapor of the dopant material adheres to the surface of the crystal resonator 32 and changes the resonance frequency. The amount of adhesion on the surface of the substrate 15 can be accurately obtained from the change amount and the correction coefficient.

この成膜装置2では、ホスト用の膜厚センサ10aでも、ホスト材料の基板15表面への付着量が正確に求められており、ドーパント材料の付着量とホスト材料の付着量の比が予め測定装置4内に設定された含有比率と比較され、不一致である場合は、測定装置4は測定した付着量の比率が設定された含有比率に一致するように蒸気発生源内の加熱装置への通電量を変化させ、ドーパント材料の蒸気発生量とホスト材料の蒸気発生量を制御し、設定された含有率に近づけることができる。
この成膜装置2の膜厚センサ10a、10bでも、昇温装置6によって加熱媒体が供給され、室温以上の温度に昇温された後、真空槽11が開けられる。
In the film forming apparatus 2, the host film thickness sensor 10 a also accurately determines the amount of host material adhering to the surface of the substrate 15, and the ratio of the dopant material adhering amount and the host material adhering amount is measured in advance. When it is compared with the content ratio set in the device 4 and does not match, the measuring device 4 supplies the energization amount to the heating device in the steam generation source so that the measured adhesion amount ratio matches the set content ratio. , And the vapor generation amount of the dopant material and the vapor generation amount of the host material can be controlled to approach the set content rate.
Also in the film thickness sensors 10a and 10b of the film forming apparatus 2, the heating medium is supplied by the temperature raising device 6 and the temperature is raised to a temperature equal to or higher than room temperature, and then the vacuum chamber 11 is opened.

本発明の第一例の成膜装置First example film forming apparatus of the present invention 本発明の第二例の成膜装置The film forming apparatus of the second example of the present invention 膜厚センサを説明するための内部概略構成図Internal schematic diagram for explaining film thickness sensor 膜厚センサの配管を説明するための図面Drawing to explain piping of film thickness sensor 冷却媒体の温度と、共振周波数変化から算出した基板表面の成膜レートの関係を示すグラフGraph showing the relationship between the temperature of the cooling medium and the film formation rate on the substrate surface calculated from the change in resonance frequency

符号の説明Explanation of symbols

1、2……成膜装置
4……測定装置
5……冷却装置
6……昇温装置
10、10a、10b……膜厚センサ
12……成膜源
32……水晶振動子
DESCRIPTION OF SYMBOLS 1, 2 ... Film-forming apparatus 4 ... Measuring apparatus 5 ... Cooling apparatus 6 ... Temperature rising device 10, 10a, 10b ... Film thickness sensor 12 ... Film-forming source 32 ... Crystal oscillator

Claims (5)

真空槽内に配置された成膜源を有し、前記成膜源から放出された成膜材料粒子を成膜対象物表面に到達させ、前記成膜対象物表面に薄膜を形成する成膜装置であって、
前記成膜材料粒子が到達する位置に配置された膜厚センサと、
前記膜厚センサ内に設けられ前記成膜材料粒子が表面に付着する水晶振動子と、
前記膜厚センサに接続され、前記水晶振動子の共振周波数の変化から前記基板表面の薄膜の膜厚を算出する測定装置と、
前記膜厚センサに0℃よりも低温に冷却した冷媒体を供給する冷却装置と、
前記膜厚センサに室温以上の加熱媒体を供給する昇温装置とを有する成膜装置。
A film forming apparatus having a film forming source disposed in a vacuum chamber, causing film forming material particles released from the film forming source to reach the surface of the film forming object, and forming a thin film on the surface of the film forming object Because
A film thickness sensor disposed at a position where the film-forming material particles reach;
A crystal resonator provided in the film thickness sensor and having the film forming material particles attached to the surface thereof;
A measuring device connected to the film thickness sensor and calculating a film thickness of the thin film on the substrate surface from a change in a resonance frequency of the crystal resonator;
A cooling device for supplying a cooling medium cooled to a temperature lower than 0 ° C. to the film thickness sensor;
A film forming apparatus comprising: a temperature raising device that supplies a heating medium at room temperature or higher to the film thickness sensor.
前記冷却装置は、前記冷媒体を−80℃以下に冷却して前記膜厚センサに供給する請求項1記載の成膜装置。   The film forming apparatus according to claim 1, wherein the cooling device cools the refrigerant body to −80 ° C. or less and supplies the coolant to the film thickness sensor. 前記昇温装置は、前記加熱媒体を室温よりも高温に加熱して前記膜厚センサに供給する請求項1又は請求項2のいずれか1項記載の成膜装置。   The film forming apparatus according to claim 1, wherein the temperature raising device heats the heating medium to a temperature higher than room temperature and supplies the heating medium to the film thickness sensor. 真空槽内に配置された成膜源から成膜材料粒子を放出させ、成膜対象物表面に前記成膜材料粒子を付着させ、前記成膜対象物表面に薄膜を形成する薄膜形成方法であって、
前記成膜材料粒子が到達する位置に膜厚センサを配置しておき、
前記真空槽内を真空雰囲気にして前記膜厚センサに液体窒素を含有する冷媒体を供給しながら前記成膜材料粒子を放出させ、
前記膜厚センサに設けられ、前記冷媒体によって冷却された水晶振動子表面に前記成膜材料粒子を付着させ、前記水晶振動子の共振周波数の変化を測定し、前記成膜対象物表面の前記薄膜の膜厚を求める薄膜形成方法。
In this thin film forming method, film forming material particles are released from a film forming source disposed in a vacuum chamber, the film forming material particles are adhered to the surface of the film forming target, and a thin film is formed on the surface of the film forming target. And
A film thickness sensor is arranged at a position where the film forming material particles reach,
The film forming material particles are released while supplying a refrigerant body containing liquid nitrogen to the film thickness sensor in a vacuum atmosphere in the vacuum chamber,
The film-forming material particles are attached to the surface of the crystal unit that is provided in the film thickness sensor and is cooled by the refrigerant body, and the change in the resonance frequency of the crystal unit is measured. A thin film forming method for obtaining the thickness of a thin film.
前記真空槽内に大気を導入する際には、前記大気を導入する前に、前記膜厚センサに室温以上の温度の加熱媒体を供給し、前記冷媒体が流れた経路を昇温させる請求項4記載の薄膜形成方法。   When introducing the atmosphere into the vacuum chamber, before introducing the atmosphere, a heating medium having a temperature equal to or higher than room temperature is supplied to the film thickness sensor to raise the temperature of the path through which the refrigerant body flows. 5. The thin film forming method according to 4.
JP2007299069A 2007-11-19 2007-11-19 Film forming apparatus and thin film forming method Active JP4974858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007299069A JP4974858B2 (en) 2007-11-19 2007-11-19 Film forming apparatus and thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007299069A JP4974858B2 (en) 2007-11-19 2007-11-19 Film forming apparatus and thin film forming method

Publications (2)

Publication Number Publication Date
JP2009120924A true JP2009120924A (en) 2009-06-04
JP4974858B2 JP4974858B2 (en) 2012-07-11

Family

ID=40813392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299069A Active JP4974858B2 (en) 2007-11-19 2007-11-19 Film forming apparatus and thin film forming method

Country Status (1)

Country Link
JP (1) JP4974858B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112038A (en) * 2010-11-04 2012-06-14 Canon Inc Film forming device and film forming method using the same
JP2012222004A (en) * 2011-04-04 2012-11-12 Ulvac Japan Ltd Semiconductor layer formation device, semiconductor layer manufacturing method
CN103710666A (en) * 2012-09-28 2014-04-09 株式会社日立高新技术 Quartz oscillator-type film thickness monitoring sensor head
WO2014076770A1 (en) 2012-11-13 2014-05-22 三菱重工業株式会社 Vacuum vapor deposition apparatus
JP2016040415A (en) * 2010-11-04 2016-03-24 キヤノン株式会社 Film deposition apparatus
KR20160077687A (en) * 2014-12-24 2016-07-04 주성엔지니어링(주) Substrate disposition apparatus including interval measuring element
US10135025B2 (en) 2016-02-16 2018-11-20 Samsung Display Co., Ltd. Organic light-emitting display apparatus and fabrication method thereof
TWI655407B (en) * 2014-05-15 2019-04-01 日商佳能特機股份有限公司 Crystal oscillating film thickness meter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014102484A1 (en) * 2014-02-26 2015-08-27 Aixtron Se Use of a QCM sensor to determine the vapor concentration in the OVPD process or in an OVPD coating system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261812A (en) * 1990-03-12 1991-11-21 Sharp Corp Film thickness monitoring apparatus
JPH0734248A (en) * 1993-07-23 1995-02-03 Toyota Motor Corp Quartz crystal type film thickness gage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261812A (en) * 1990-03-12 1991-11-21 Sharp Corp Film thickness monitoring apparatus
JPH0734248A (en) * 1993-07-23 1995-02-03 Toyota Motor Corp Quartz crystal type film thickness gage

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040415A (en) * 2010-11-04 2016-03-24 キヤノン株式会社 Film deposition apparatus
JP2012112038A (en) * 2010-11-04 2012-06-14 Canon Inc Film forming device and film forming method using the same
JP2012222004A (en) * 2011-04-04 2012-11-12 Ulvac Japan Ltd Semiconductor layer formation device, semiconductor layer manufacturing method
CN103710666A (en) * 2012-09-28 2014-04-09 株式会社日立高新技术 Quartz oscillator-type film thickness monitoring sensor head
KR101643107B1 (en) * 2012-11-13 2016-07-26 미츠비시 쥬고교 가부시키가이샤 Vacuum vapor deposition apparatus
CN104508172A (en) * 2012-11-13 2015-04-08 三菱重工业株式会社 Vacuum vapor deposition apparatus
KR20150018885A (en) 2012-11-13 2015-02-24 미츠비시 쥬고교 가부시키가이샤 Vacuum vapor deposition apparatus
WO2014076770A1 (en) 2012-11-13 2014-05-22 三菱重工業株式会社 Vacuum vapor deposition apparatus
TWI655407B (en) * 2014-05-15 2019-04-01 日商佳能特機股份有限公司 Crystal oscillating film thickness meter
KR20160077687A (en) * 2014-12-24 2016-07-04 주성엔지니어링(주) Substrate disposition apparatus including interval measuring element
KR102267200B1 (en) * 2014-12-24 2021-06-22 주성엔지니어링(주) Substrate disposition apparatus including interval measuring element
US10135025B2 (en) 2016-02-16 2018-11-20 Samsung Display Co., Ltd. Organic light-emitting display apparatus and fabrication method thereof
US10529952B2 (en) 2016-02-16 2020-01-07 Samsung Display Co., Ltd. Organic light-emitting display apparatus
US10714707B2 (en) 2016-02-16 2020-07-14 Samsung Display Co., Ltd. Organic light-emitting display apparatus and fabrication method thereof
US11251401B2 (en) 2016-02-16 2022-02-15 Samsung Display Co., Ltd. Organic light-emitting display apparatus and fabrication method thereof
US11737311B2 (en) 2016-02-16 2023-08-22 Samsung Display Co., Ltd. Organic light-emitting display apparatus and fabrication method thereof

Also Published As

Publication number Publication date
JP4974858B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4974858B2 (en) Film forming apparatus and thin film forming method
TWI601846B (en) Gas supply method and storage medium
WO2017056244A1 (en) Substrate treatment apparatus, method for manufacturing semiconductor device, and recording medium
CN1792474B (en) Ceramic sprayed member-cleaning method
TWI485281B (en) Film formation apparatus
US20100092665A1 (en) Evaporating apparatus, apparatus for controlling evaporating apparatus, method for controlling evaporating apparatus and method for using evaporating apparatus
JP2004091858A (en) Vacuum evaporation system and method for manufacturing evaporated film-applied product
JP2012112035A (en) Vacuum vapor deposition system
JP2010196082A (en) Vacuum vapor deposition apparatus
JP2012112034A (en) Vacuum vapor deposition system
JP2012046780A (en) Vapor deposition processing device and vapor deposition processing method
JP2014162969A (en) Vapor deposition apparatus and vapor deposition method
JPWO2016140321A1 (en) Film thickness monitoring device sensor, film thickness monitoring device including the same, and method for manufacturing film thickness monitoring device sensor
JP5433786B2 (en) Sputtering equipment production return method
JP2012127711A (en) Vacuum vapor deposition apparatus and method for manufacturing thin film
JP2009149919A (en) Film thickness monitoring device and vapor deposition apparatus having the same
KR102609982B1 (en) Method for preprocessing vibrating crystals for measuring deposition rate, deposition rate measurement device, evaporation source and deposition apparatus
KR100518147B1 (en) Evaporation apparatus, organic material evaporation source, and method of manufacturing thin organic film
JP2013014798A (en) Vacuum deposition apparatus and method for manufacturing thin film
JP5709661B2 (en) Lithium nitride phosphate film forming method and lithium nitride phosphate film forming apparatus
JP2005241282A (en) Film thickness detection method and apparatus and film deposition method and apparatus
JP6091590B2 (en) Deposition equipment
JP5647854B2 (en) Film forming apparatus and film forming method
JP2000107587A (en) Method and apparatus for calibrating gas pressure in bell jar (vacuum film forming chamber or container)
JP2005314730A (en) Method and apparatus for forming organic thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120301

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Ref document number: 4974858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250