JP2009119544A - Surface working method and rolling member using the working method - Google Patents

Surface working method and rolling member using the working method Download PDF

Info

Publication number
JP2009119544A
JP2009119544A JP2007294528A JP2007294528A JP2009119544A JP 2009119544 A JP2009119544 A JP 2009119544A JP 2007294528 A JP2007294528 A JP 2007294528A JP 2007294528 A JP2007294528 A JP 2007294528A JP 2009119544 A JP2009119544 A JP 2009119544A
Authority
JP
Japan
Prior art keywords
electrode
tool
workpiece
electric discharge
electrode tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007294528A
Other languages
Japanese (ja)
Inventor
Hiroki Fujiwara
宏樹 藤原
Takatsugu Furubayashi
卓嗣 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007294528A priority Critical patent/JP2009119544A/en
Publication of JP2009119544A publication Critical patent/JP2009119544A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface working method capable of continuously forming fine recess parts on the surface of a workpiece by electric discharge. <P>SOLUTION: An electrode 8 of an electrode tool 3 is formed by filling a conductive material 7 into a recess part 6 provided in an insulating film 5 on the surface of a tool body 4, then the electrode tool 3 and a workpiece 1 are relatively moved, so that the electrode 8 of this electrode tool 3 is repeatedly circulated to an electric discharge position. Then, after an electric discharge phenomenon occurs between the electrode 8 of the electrode tool moved to an electric discharge working position A, and the workpiece 1, the electrode 8 of the electrode tool 3 is restored by re-filling the conductive material 7 into the recess part 6 provided in the insulating film 5 on the surface of the tool body 4, in a period while this electrode 8 moves to the electric discharge working position A again by relative movement between the electrode tool 3 and the workpiece 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、転がりを主体とする相対運動によって摩擦低減を実現する転がり軸受などの機械要素であって、特に、頻繁に起動停止する稼動条件や揺動運動、あるいは低速かつ高荷重といった稼動条件に好適な転がり接触面の表面加工方法に関するものである。   The present invention is a mechanical element such as a rolling bearing that realizes friction reduction by a relative motion mainly of rolling, and is particularly suitable for operating conditions such as frequent starting and stopping, swinging motion, or operating conditions such as low speed and high load. The present invention relates to a suitable rolling contact surface processing method.

転がり軸受などの転がり接触部では、物体の相対運動によって発生する物体間に介在する流体の動圧効果によって流体潤滑状態とすることにより、物体の直接的な接触を防止して摩擦、摩耗を低減することができる。   In rolling contact parts such as rolling bearings, direct contact of objects is prevented and friction and wear are reduced by using a fluid lubrication state due to the fluid dynamic pressure effect between the objects generated by the relative motion of the objects. can do.

ところが、潤滑油が少量の場合や速度が低い場合には、動圧効果が小さく潤滑油膜が形成されないため、固体接触を生じる危険がある。特に、近年は低トルク化のため、低粘度の潤滑油が用いられ、また、外部から供給される潤滑油量も減少しているので、固体接触状態となる可能性がより一層高くなっている。   However, when the amount of lubricating oil is small or when the speed is low, the dynamic pressure effect is small and the lubricating oil film is not formed, and there is a risk of causing solid contact. In particular, in recent years, low-viscosity lubricating oil has been used to reduce torque, and the amount of lubricating oil supplied from the outside has decreased, so the possibility of a solid contact state is even higher. .

しかしながら、接触部近傍の潤滑油量が不足していても、接触部の表面が潤滑油を保持していれば潤滑可能であることから、接触面の表面に微細な凹部を多数設けて、この凹部内に潤滑油を保持しようとする技術が特許文献1に開示されている。この技術によって、低速時の境界潤滑性能を向上させることが可能である。   However, even if the amount of lubricating oil in the vicinity of the contact portion is insufficient, lubrication is possible if the surface of the contact portion holds the lubricating oil. Japanese Patent Application Laid-Open No. H10-228688 discloses a technique for retaining lubricating oil in a recess. This technique can improve boundary lubrication performance at low speeds.

この特許文献1では、バレル加工によって微細な凹部を形成している。バレル加工によって凹部を形成することは、特許文献2にも開示されている。   In this patent document 1, the fine recessed part is formed by barrel processing. The formation of the concave portion by barrel processing is also disclosed in Patent Document 2.

さらに、ショットブラスト後にバレル加工することにより、転がり部品の表面に微細な凹凸を形成することが、特許文献3に開示されている。   Furthermore, Patent Document 3 discloses that fine irregularities are formed on the surface of a rolling part by barreling after shot blasting.

また、特許文献4には、転がり軸受の転動面に凹部を形成する方法として、熱可塑性樹脂と金属粉末を混合し、熱処理時に樹脂を流出させて凹部を形成するという金属粉末射出成形法が紹介されている。   Further, Patent Document 4 discloses a metal powder injection molding method in which a recess is formed on a rolling surface of a rolling bearing by mixing a thermoplastic resin and metal powder and allowing the resin to flow out during heat treatment to form a recess. It has been introduced.

また、特許文献5には、セラミック製転動体の表面のくぼみを潤滑油溜めに用いることが紹介されている。   Patent Document 5 introduces the use of a depression on the surface of a ceramic rolling element as a lubricating oil reservoir.

また、特許文献6には、微小な凸部が形成されたローラを転がり部材の表面に押し当てるローラバニシング加工により、表面に微小な凹部を形成することが紹介されている。   Patent Document 6 introduces the formation of minute concave portions on the surface by a roller burnishing process in which a roller on which minute convex portions are formed is pressed against the surface of a rolling member.

また、特許文献7には、短パルスレーザを照射することにより、転がり摺動面に微小な凹部を形成する方法が紹介されている。   Further, Patent Document 7 introduces a method of forming a minute recess on a rolling sliding surface by irradiating a short pulse laser.

一方、すべり軸受においては、摺動面に油膜厚さ程度の深さの溝を多数形成することによって潤滑性能を向上させる技術が一般的に用いられている。これは、摺動面の深さが溝の存在によって変化するために流体力学的な動圧作用が発生することを利用している。この効果を転がり軸受に適用した例が特許文献8に開示されている。この特許文献8に開示の技術は、相対的に小さい荷重が加わる部位において、すべりが生じる転動体を動圧作用による圧力で軌道輪に押し付け、すべりを防ごうとするものである。ただし、この特許文献8の技術においては、一般の動圧軸受と同様に、接触部には十分な潤滑油が接触部の外部から供給されることが前提となっている。   On the other hand, in a plain bearing, a technique is generally used in which lubricating performance is improved by forming a number of grooves having a depth of about the oil film thickness on a sliding surface. This utilizes the fact that a hydrodynamic dynamic pressure action occurs because the depth of the sliding surface changes due to the presence of the groove. An example in which this effect is applied to a rolling bearing is disclosed in Patent Document 8. The technique disclosed in Patent Document 8 attempts to prevent slippage by pressing a rolling element in which a slip occurs at a portion to which a relatively small load is applied against a race ring with a pressure due to a dynamic pressure action. However, the technique of Patent Document 8 is based on the premise that sufficient lubricating oil is supplied to the contact portion from the outside of the contact portion, as in a general hydrodynamic bearing.

また、高面圧を支持するスラスト平面すべり軸受に深い凹部を設けた例が非特許文献1に開示されている。これは熱膨張に伴う凹部からの潤滑油の吐出によって、境界潤滑性能を向上させようとするものである。ただし、この技術は流体力学的な動圧効果の発生を目的としたものではない。   Further, Non-Patent Document 1 discloses an example in which a deep concave portion is provided in a thrust flat plain bearing that supports high surface pressure. This is intended to improve the boundary lubrication performance by discharging the lubricating oil from the recess accompanying thermal expansion. However, this technique is not intended to generate hydrodynamic dynamic pressure effects.

ところで、流体力学的な動圧作用は、主に、流体の粘度、接触面の速度、接触面のくさび形状によって発生する。通常の転がり接触では、部材の接触部は必然的にくさび形状になっているので、一定以上の粘度と速度を与えれば、油膜が形成され、接触面は分離する。   By the way, the hydrodynamic dynamic pressure action is mainly generated by the viscosity of the fluid, the speed of the contact surface, and the wedge shape of the contact surface. In normal rolling contact, the contact portion of the member is inevitably in the shape of a wedge. Therefore, if a certain viscosity or speed is applied, an oil film is formed and the contact surface is separated.

しかしながら、低速での動圧作用を増加させようとするときは、流体の粘度の制御は困難であるから、くさび形状を改善する必要がある。すなわち、マクロな形状によるくさび形状のほかに、ミクロなくさび形状を表面に設けることにより、低速での動圧作用を増加させることが考えられる。   However, when trying to increase the dynamic pressure action at low speed, it is difficult to control the viscosity of the fluid, so it is necessary to improve the wedge shape. That is, it is conceivable to increase the dynamic pressure action at a low speed by providing a micro wedge shape on the surface in addition to the macro wedge shape.

転がり軸受においては、動圧作用を発生する浅い凹部を設けることで、低速での油膜形成性が向上すると考えられる。しかし、低速の場合、接触部への外部からの潤滑油の供給は期待できない。   In a rolling bearing, it is considered that oil film formation at low speed is improved by providing a shallow concave portion that generates a dynamic pressure action. However, when the speed is low, supply of lubricating oil from the outside to the contact portion cannot be expected.

この発明の発明者らは、頻繁に起動停止する稼動条件や揺動運動、あるいは低速かつ高荷重といった、接触部への外部からの潤滑油の供給が期待できない稼動条件においては、転がり接触部に、潤滑油の存在により動圧作用を発生させる微小な深さの浅い多数の動圧発生凹部を形成し、この動圧発生面に、動圧発生凹部よりも深い潤滑油貯留凹部を設けることにより、深い潤滑油貯留凹部からの潤滑油の供給と浅い微小な多数の動圧発生凹部の動圧作用によって、低速の場合であっても十分な潤滑油膜を形成することができ、接触部の直接接触を防止し、また、極低速でも境界潤滑作用で表面損傷を防ぐことができるということを見出した。   The inventors of the present invention are not allowed to contact the rolling contact portion under operating conditions where frequent starting / stopping operation, rocking motion, or low speed and high load cannot be expected from the outside. By forming a large number of shallow dynamic pressure generating recesses that generate dynamic pressure action due to the presence of lubricating oil, and providing a lubricating oil storage recess deeper than the dynamic pressure generating recess on this dynamic pressure generating surface By supplying lubricating oil from the deep lubricating oil reservoir recess and the dynamic pressure action of the shallow small number of dynamic pressure generating recesses, a sufficient lubricating oil film can be formed even at low speeds, directly It has been found that contact damage can be prevented and surface damage can be prevented by boundary lubrication even at extremely low speeds.

この知見を具体化するためには、大きさ、深さの異なる凹部を転がり接触部に精度よく設けることが肝要であるが、上記従来の技術の加工方法では、凹部の開口面の大きさや深さをμmオーダで任意に制御することが困難であったり、加工部周辺に不要な凸部が生じたりする問題がある。   In order to embody this knowledge, it is important to provide recesses with different sizes and depths at the rolling contact portion with high accuracy. However, in the above conventional processing method, the size and depth of the opening surface of the recesses are important. There is a problem that it is difficult to arbitrarily control the thickness in the order of μm, or unnecessary convex portions are generated around the processed portion.

このような問題を解決することができる方法として、放電加工による表面加工方法を採用することが考えられる。
放電加工は、大きさ、深さ、位置をμmオーダに制御した凹部を再現性よく設けることができ、凹部周辺に突起等もほとんど生じない。さらに、同一の面に対して放電加工を複数回行うことで大きさ、深さ、位置の異なる凹部を同一表面に設けることが可能であるから、上記の問題を解決する方法としては好都合である。
As a method for solving such a problem, it is conceivable to employ a surface processing method by electric discharge machining.
In electric discharge machining, concave portions whose sizes, depths, and positions are controlled to the order of μm can be provided with good reproducibility, and projections and the like are hardly generated around the concave portions. Furthermore, it is possible to provide recesses having different sizes, depths, and positions on the same surface by performing electric discharge machining on the same surface a plurality of times, which is an advantageous method for solving the above problem. .

ところが、放電加工は、工具である電極が摩耗するので、これを修復する必要がある。この電極の修復に関しては、特許文献9、特許文献10に開示の技術がある。
しかしながら、これらの電極の修復方法は、修復のために、加工を一時的に中止しなければならないので、連続的な放電加工ができず、大量生産には適さない。
However, in the electric discharge machining, since the electrode as a tool is worn, it is necessary to repair it. Regarding the restoration of this electrode, there are technologies disclosed in Patent Document 9 and Patent Document 10.
However, these electrode repair methods are not suitable for mass production because continuous electrical discharge machining cannot be performed because the machining must be temporarily stopped for repair.

特開平02−168021号公報Japanese Patent Laid-Open No. 02-168021 特開平05−288221号公報JP 05-288221 A 特開平08−232964号公報Japanese Patent Application Laid-Open No. 08-232964 特開平10−227313号公報Japanese Patent Laid-Open No. 10-227313 特開2000−205267号公報JP 2000-205267 A 特開2004−116766号公報JP 2004-116766 A 特開2005−321048号公報JP-A-2005-32148 特開2006−105361号公報JP 2006-105361 A 特開平11−309626号公報JP-A-11-309626 特表2005−509533号公報JP 2005-509533 A H.Kotera、 A.Mori、 N.Tagawa、 PROPOSAL OF A SEIZURE PREVENTING METHOD IN HEAVILY LOADED SLIDING PAIRS、 Synopses of the International TribologyConferenceKobe、 2005、 D-04H.Kotera, A.Mori, N.Tagawa, PROPOSAL OF A SEIZURE PREVENTING METHOD IN HEAVILY LOADED SLIDING PAIRS, Synopses of the International Tribology ConferenceKobe, 2005, D-04

そこで、この発明は、電極の修復を、放電加工を中止することなく行えるようにして、被加工物の表面に微細な凹部を放電加工により連続的に形成することができる表面加工方法を提供しようとするものである。   Accordingly, the present invention provides a surface processing method capable of continuously forming fine recesses on the surface of a workpiece by electric discharge machining so that the electrode can be repaired without stopping electric discharge machining. It is what.

この発明は、電極工具と被加工物の間に電気エネルギーを加えて、電極工具の電極と被加工物の間の放電現象により、電極工具の電極形状を被加工物に転写して被加工物の表面に凹部を形成する放電加工を用いた表面加工方法において、電極工具の電極を、工具本体の表面の絶縁体膜に設けた凹部に導電材料を充填して形成し、この電極工具の電極が放電加工位置に繰り返し循環するように電極工具と被加工物とを相対移動させ、放電加工位置に移動した電極工具の電極が被加工物との間で放電現象を発生した後、この電極が、電極工具と被加工物との相対移動により、再び放電加工位置に移動してくるまでの間に、工具本体の表面の絶縁体膜に設けた凹部に導電材料を再充填して電極工具の電極を修復するようにしたものである。   The present invention applies electrical energy between the electrode tool and the workpiece, and transfers the electrode shape of the electrode tool to the workpiece by a discharge phenomenon between the electrode of the electrode tool and the workpiece. In the surface machining method using electric discharge machining that forms a recess on the surface of the electrode, the electrode of the electrode tool is formed by filling the recess provided in the insulator film on the surface of the tool body with a conductive material, and this electrode tool electrode The electrode tool and the workpiece are moved relative to each other so as to repeatedly circulate to the electric discharge machining position, and the electrode of the electrode tool moved to the electric discharge machining position generates an electric discharge phenomenon with the workpiece. The conductive material is refilled in the recesses provided in the insulator film on the surface of the tool body until the electrode tool and workpiece are moved to the electric discharge machining position again due to relative movement between the electrode tool and the workpiece. The electrode is repaired.

工具本体の表面の絶縁体膜の材料としては、各種樹脂やセラミックを用いることができる。
この絶縁体膜には、電極を形成する凹部が設けられている。この凹部の形状は、被加工物の表面に形成する凹部の形状に対応している。絶縁体膜の凹部には、導電材料が充填され、この充填された導電材料が電極として機能するようになっている。工具本体の表面には、この電極が連続的に多数設けられ、工具本体と被加工物とを相対移動させることにより、工具本体に設けた電極が、放電加工位置に次々に移動し、被加工物との間で放電加工が次々に連続的に行われるようにした。
As the material for the insulator film on the surface of the tool body, various resins and ceramics can be used.
The insulator film is provided with a recess for forming an electrode. The shape of the recess corresponds to the shape of the recess formed on the surface of the workpiece. The concave portion of the insulator film is filled with a conductive material, and the filled conductive material functions as an electrode. A large number of these electrodes are continuously provided on the surface of the tool body. By relatively moving the tool body and the workpiece, the electrodes provided on the tool body move one after another to the electric discharge machining position, and the workpiece is processed. Electrical discharge machining was continuously performed between the workpieces.

電極工具と被加工物とは、電極工具の電極が放電加工位置に繰り返し循環するように相対移動するように制御され、放電加工位置に移動した電極工具の電極が被加工物との間で放電現象を発生した後、この電極が、電極工具と被加工物との相対移動により、再び放電加工位置に移動してくるようにしている。   The electrode tool and the workpiece are controlled so as to move relative to each other so that the electrode of the electrode tool repeatedly circulates to the electric discharge machining position, and the electrode of the electrode tool moved to the electric discharge machining position is discharged between the workpiece and the workpiece. After the phenomenon occurs, the electrode is moved again to the electric discharge machining position by the relative movement between the electrode tool and the workpiece.

そして、放電加工により摩耗した電極が、再び放電加工位置に移動してくるまでの工程中に、工具本体の表面の絶縁体膜に設けた凹部に導電材料を再充填して電極工具の電極を修復するようにしたのである。   Then, during the process until the electrode worn by the electric discharge machining moves again to the electric discharge machining position, the electrode material of the electrode tool is refilled with a conductive material in the recess provided in the insulator film on the surface of the tool body. I tried to repair it.

この導電材料の再充填方法としては、絶縁体膜に設けた凹部に充填した電極の摩耗部分に、導電体粉末を供給し、この導電体粉末を圧縮ローラにより圧縮して凹部に充填し、工具本体の絶縁体膜の表面に付着する余分な導電体粉末をスクレーパによって削り取るという方法を採用することができる。この方法により、摩耗した電極が再び放電加工位置に移動するまでの間に、摩耗した電極が修復されるので、電極の修復の際に放電加工を中止することなく、放電加工を連続的に行うことができる。   As a method for refilling the conductive material, the conductive powder is supplied to the worn portion of the electrode filled in the concave portion provided in the insulator film, and the conductive powder is compressed by a compression roller to fill the concave portion. A method of scraping off excess conductor powder adhering to the surface of the insulator film of the main body with a scraper can be employed. By this method, since the worn electrode is repaired before the worn electrode moves to the electric discharge machining position again, the electric discharge machining is continuously performed without stopping the electric discharge machining when the electrode is repaired. be able to.

以上のように、この発明によれば、放電加工を行う電極の修復を、放電加工を中止することなく、連続的に行えるので、被加工物の表面に微細な凹部を連続的に形成することができる。
したがって、この発明の表面加工方法を用いると、転がり/すべり部材の表面や、転がり軸受の転動体や内外輪の表面に、放電加工により、微細な凹部を精度よく、効率的に加工することができる。
As described above, according to the present invention, it is possible to continuously repair an electrode that performs electric discharge machining without stopping electric discharge machining, so that fine concave portions are continuously formed on the surface of the workpiece. Can do.
Therefore, when the surface processing method of the present invention is used, fine concave portions can be accurately and efficiently processed by electric discharge machining on the surface of the rolling / sliding member, the rolling element of the rolling bearing, and the inner and outer rings. it can.

図1は、ころ等の円柱形の被加工物1の表面に、放電加工により微小な凹部2を形成するこの発明の表面加工方法の一例を示している。
図1の例で使用する電極工具3は、金属等の導電体によって形成された円筒形の工具本体4と、この工具本体4の表面に設けた絶縁体膜5と、この絶縁体膜5に設けた凹部6に導電体粉末7を充填して形成した電極8からなる。この電極8は、工具本体4の外周面に所定間隔で多数設けられている。
FIG. 1 shows an example of the surface processing method of the present invention in which minute concave portions 2 are formed on the surface of a cylindrical workpiece 1 such as a roller by electric discharge machining.
The electrode tool 3 used in the example of FIG. 1 includes a cylindrical tool body 4 formed of a conductor such as metal, an insulator film 5 provided on the surface of the tool body 4, and an insulator film 5 It consists of an electrode 8 formed by filling the provided recess 6 with a conductor powder 7. A large number of the electrodes 8 are provided on the outer peripheral surface of the tool body 4 at a predetermined interval.

電極工具3と円柱形の被加工物1とは、平行な回転軸で互いに逆方向に回転し、電極工具3と被加工物1との間に絶縁油を介在させ、電極工具3と被加工物1との間に印加された直流電圧により、電極工具3と円柱形の被加工物1とが最も近接する位置(図1のA)で放電現象が生じるようにしている。この放電現象により、電極工具3の電極8の形状が被加工物1の表面に転写され、被加工物1の表面に電極8の形状に応じた凹部2が形成され、電極8が消耗する。放電は、コンデンサ、あるいはトランジスタ等を利用したパルス放電を利用することができ、放電電圧を制御することにより、凹部2の加工深さを制御することができる。   The electrode tool 3 and the cylindrical workpiece 1 rotate in opposite directions with parallel rotation axes, and an insulating oil is interposed between the electrode tool 3 and the workpiece 1 so that the electrode tool 3 and the workpiece 1 are processed. Due to the DC voltage applied between the workpiece 1 and the electrode tool 3 and the cylindrical workpiece 1, the discharge phenomenon occurs at the closest position (A in FIG. 1). Due to this discharge phenomenon, the shape of the electrode 8 of the electrode tool 3 is transferred to the surface of the workpiece 1, the concave portion 2 corresponding to the shape of the electrode 8 is formed on the surface of the workpiece 1, and the electrode 8 is consumed. For discharge, pulse discharge using a capacitor, a transistor, or the like can be used, and the processing depth of the recess 2 can be controlled by controlling the discharge voltage.

電極工具3と被加工物1とは、互いに逆方向に周速が一致するように回転運動し、電極工具3の周面の電極8が次々に放電加工位置に繰り返し循環するようになっている。電極8は、放電現象により消耗し、電極8の部分に凹みができる。   The electrode tool 3 and the workpiece 1 are rotated so that the peripheral speeds coincide with each other in opposite directions, and the electrodes 8 on the peripheral surface of the electrode tool 3 are repeatedly circulated one after another to the electric discharge machining position. . The electrode 8 is consumed due to the discharge phenomenon, and the electrode 8 is recessed.

この消耗した電極8の凹みは、消耗した電極8が放電加工位置に戻る途中で導電体粉末7によって埋め戻されて修復される。この埋め戻しは、絶縁体膜5に設けた凹部6に充填した電極8の摩耗部分に、導電体粉末7を供給し、この導電体粉末7を圧縮ローラ9により圧縮して凹部6内に導電体粉末7を詰め、工具本体4の絶縁体膜5の表面に付着する余分な導電体粉末7をスクレーパ10によって削り取るという方法で行っている。   The dent of the consumed electrode 8 is backfilled with the conductor powder 7 and repaired while the consumed electrode 8 returns to the electric discharge machining position. In this backfilling, the conductive powder 7 is supplied to the worn portion of the electrode 8 filled in the concave portion 6 provided in the insulator film 5, and the conductive powder 7 is compressed by the compression roller 9 to be conductive in the concave portion 6. The body powder 7 is packed, and the excess conductor powder 7 adhering to the surface of the insulator film 5 of the tool body 4 is scraped off by the scraper 10.

被加工物1が一回転して加工が終了した後、新たな被加工物1をセットし、上記の放電加工を繰り返す。以上のようにして、電極8を修復しながら、放電加工を連続的に行うことができる。   After the workpiece 1 is rotated once and the machining is completed, a new workpiece 1 is set and the electric discharge machining is repeated. As described above, electric discharge machining can be continuously performed while repairing the electrode 8.

次に、図2の(a)、(b)、(c)は、板状の電極工具3を用いた表面加工方法であり、加工原理は、図1の例と同一である。   Next, (a), (b), and (c) of FIG. 2 are surface processing methods using the plate-like electrode tool 3, and the processing principle is the same as the example of FIG.

図2の例では、電極工具3が、金属等の導電体で形成された板状の工具本体4と、この工具本体4の表面に設けた絶縁体膜5と、この絶縁体膜5に設けた凹部6に充填した導電材料の電極8からなり、この電極工具3を往復運動させ、この往復運動する電極工具3に対し、円柱形の被加工物1を回転運動させ、電極工具3の往復運動と被加工物1の回転運動により、電極工具3の電極8が放電加工位置Aに繰り返し循環するようにしている。   In the example of FIG. 2, the electrode tool 3 includes a plate-like tool body 4 formed of a conductor such as metal, an insulator film 5 provided on the surface of the tool body 4, and the insulator film 5. The electrode tool 3 is reciprocated and the cylindrical workpiece 1 is rotated relative to the reciprocating electrode tool 3 to reciprocate the electrode tool 3. The electrode 8 of the electrode tool 3 is repeatedly circulated to the electric discharge machining position A by the movement and the rotational movement of the workpiece 1.

消耗した電極8の修復は、被加工物1が1回転して加工が終了した後、新しい被加工物1をセットしている間に、板状の電極工具3を図2(c)の位置まで一旦戻し、次いで図2(a)のように、絶縁体膜5に設けた凹部6に充填した電極8の摩耗部分に、導電体粉末7を供給し、この導電体粉末7を圧縮ローラ9により圧縮して凹部6内に導電体粉末7を詰め、工具本体4の絶縁体膜5の表面に付着する余分な導電体粉末7をスクレーパ10によって削り取るという方法で行っている。   The repair of the worn electrode 8 is performed by setting the plate-shaped electrode tool 3 to the position shown in FIG. Then, as shown in FIG. 2A, the conductor powder 7 is supplied to the worn portion of the electrode 8 filled in the recess 6 provided in the insulator film 5, and the conductor powder 7 is supplied to the compression roller 9 as shown in FIG. In this method, the conductive powder 7 is packed in the concave portion 6 and the conductive powder 7 attached to the surface of the insulator film 5 of the tool body 4 is scraped off by the scraper 10.

そして、図2の(a)、(b)、(c)の工程を繰り返すことにより、新たな被加工物1を連続的に加工することができる。   And the new workpiece 1 can be processed continuously by repeating the process of (a), (b), (c) of FIG.

次に、図3(a)、(b)は、円環状の被加工物1の内径面に、微小な凹部2を形成する例を示しており、加工原理は、図1の例及び図2の例と基本的に同一である。   Next, FIGS. 3A and 3B show an example in which a minute recess 2 is formed on the inner diameter surface of the annular workpiece 1, and the processing principle is shown in FIG. 1 and FIG. This is basically the same as the example.

この例では、円筒形の電極工具3を円環状の被加工物1の内側に挿入し、この電極工具3を回転させつつ往復運動させ、この電極工具3に対し、円環状の被加工物1を自転運動させることにより、円環状の被加工物1の内径面に放電加工により微小な凹部2を形成している。   In this example, a cylindrical electrode tool 3 is inserted inside an annular workpiece 1, and the electrode tool 3 is reciprocated while rotating, and the annular workpiece 1 is moved with respect to the electrode tool 3. , The minute recesses 2 are formed on the inner diameter surface of the annular workpiece 1 by electric discharge machining.

この例では、スクレーパ10は軸対称の形状であって、周上で電極8と接している。被加工物1の内径面に、例えば凹部2を同一円周上に配置したいときは、絶縁体膜5上の凹部6のパターン、即ち電極8のパターンを、電極工具3の送り速度に応じたピッチでねじれるように配置すればよい。   In this example, the scraper 10 has an axisymmetric shape and is in contact with the electrode 8 on the circumference. For example, when it is desired to dispose the recesses 2 on the same circumference on the inner diameter surface of the workpiece 1, the pattern of the recesses 6 on the insulator film 5, that is, the pattern of the electrodes 8, depends on the feed rate of the electrode tool 3 What is necessary is just to arrange | position so that it may twist with a pitch.

次に、図4は、この発明の表面加工方法を用いて円筒ころ軸受のころの表面に、微小な凹部2を形成した例であり、この発明の表面加工方法は、特にこのような円筒面の加工に好適である。図4において、符号11は円筒ころ、12は外輪、13は内輪、14は保持器を示しており、円筒ころ12の表面に黒丸で現しているのが微小な凹部2である。   Next, FIG. 4 is an example in which a minute concave portion 2 is formed on the surface of a roller of a cylindrical roller bearing using the surface processing method of the present invention. The surface processing method of the present invention is particularly suitable for such a cylindrical surface. It is suitable for processing. In FIG. 4, reference numeral 11 denotes a cylindrical roller, 12 denotes an outer ring, 13 denotes an inner ring, and 14 denotes a cage. The minute recess 2 is shown by a black circle on the surface of the cylindrical roller 12.

この発明の表面加工方法は、工具本体4の表面に絶縁体膜5に設け、この絶縁体膜5に導電材料を充填する凹部6を形成し、凹部6に充填した導電材料が電極8となる電極工具3を用いる。したがって、電極8の形状や配置を任意に設定可能であるから、電極8のパターンの異なる電極工具3を用いた放電加工を繰り返すことにより、大きさ、深さ、位置の異なる凹部を同一表面に容易に設けることが可能であり、転がり/すべり部材の表面に、潤滑油を供給する深い凹部と、動圧作用を発生させる浅い凹部を混在させて設けることも容易に行える。   In the surface processing method of the present invention, the insulator film 5 is provided on the surface of the tool body 4, the recess 6 for filling the insulator film 5 with the conductive material is formed, and the conductive material filled in the recess 6 becomes the electrode 8. An electrode tool 3 is used. Therefore, since the shape and arrangement of the electrode 8 can be arbitrarily set, by repeating electric discharge machining using the electrode tool 3 having a different pattern of the electrode 8, concave portions having different sizes, depths, and positions can be formed on the same surface. It is possible to provide easily, and it is possible to easily provide a deep concave portion for supplying lubricating oil and a shallow concave portion for generating a dynamic pressure action on the surface of the rolling / sliding member.

また、この発明の表面加工方法と異なるエッチング加工やレーザー加工等をこの発明の表面加工方法と組み合わせることにより、異なる種類の凹部を、円筒ころ軸受のころや内輪の表面に形成することができる。さらに、円筒ころ軸受に限らず、その他の転がり軸受にも適用可能である。   Further, by combining etching processing, laser processing, or the like different from the surface processing method of the present invention with the surface processing method of the present invention, different types of recesses can be formed on the surface of the roller or inner ring of the cylindrical roller bearing. Furthermore, it is applicable not only to a cylindrical roller bearing but also to other rolling bearings.

この発明の表面加工方法の一例を示す概念図である。It is a conceptual diagram which shows an example of the surface processing method of this invention. (a)(b)(c)はこの発明の表面加工方法の他の例を示す概念図である。(A) (b) (c) is a conceptual diagram which shows the other example of the surface processing method of this invention. (a)(b)はこの発明の表面加工方法の他の例を示す概念図である。(A) (b) is a conceptual diagram which shows the other example of the surface processing method of this invention. この発明の表面加工方法を適用した円筒ころ軸受の概略図である。It is the schematic of the cylindrical roller bearing to which the surface processing method of this invention is applied.

符号の説明Explanation of symbols

1 被加工物
2 凹部
3 電極工具
4 工具本体
5 絶縁体膜
6 凹部
7 導電体粉末
8 電極
9 圧縮ローラ
10 スクレーパ
DESCRIPTION OF SYMBOLS 1 Workpiece 2 Recess 3 Electrode tool 4 Tool body 5 Insulator film 6 Recess 7 Conductor powder 8 Electrode 9 Compression roller 10 Scraper

Claims (8)

電極工具と被加工物の間に電気エネルギーを加えて、電極工具の電極と被加工物の間の放電現象により、電極工具の電極形状を被加工物に転写して被加工物の表面に凹部を形成する放電加工を用いた表面加工方法において、電極工具の電極を、工具本体の表面の絶縁体膜に設けた凹部に導電材料を充填して形成し、この電極工具の電極が放電加工位置に繰り返し循環するように電極工具と被加工物とを相対移動させ、放電加工位置に移動した電極工具の電極が被加工物との間で放電現象を発生した後、この電極が、電極工具と被加工物との相対移動により、再び放電加工位置に移動してくるまでの間に、工具本体の表面の絶縁体膜に設けた凹部に導電材料を再充填して電極工具の電極を修復するようにしたことを特徴とする表面加工方法。   By applying electric energy between the electrode tool and the work piece, the electrode tool's electrode shape is transferred to the work piece by the discharge phenomenon between the electrode tool and the work piece, and the surface of the work piece is recessed. In the surface machining method using electric discharge machining, the electrode of the electrode tool is formed by filling a recess provided in the insulator film on the surface of the tool body with a conductive material, and the electrode of the electrode tool is positioned at the electric discharge machining position. The electrode tool and the workpiece are moved relative to each other so as to circulate repeatedly, and the electrode tool moved to the electric discharge machining position generates an electric discharge phenomenon between the electrode tool and the electrode tool. The electrode tool of the electrode tool is repaired by refilling the recess provided in the insulator film on the surface of the tool body with the conductive material until it moves to the electric discharge machining position again due to relative movement with the workpiece. A surface processing method characterized by the above. 電極工具が、円筒形の工具本体と、この工具本体の表面に設けた絶縁体膜と、この絶縁体膜に設けた凹部に充填した導電材料の電極からなり、この電極工具と円柱形の被加工物とを回転運動させ、電極工具と被加工物の回転運動により、電極工具の電極が放電加工位置に繰り返し循環するようにしたことを特徴とする請求項1記載の表面加工方法。   The electrode tool includes a cylindrical tool body, an insulator film provided on the surface of the tool body, and an electrode made of a conductive material filled in a recess provided in the insulator film. 2. The surface machining method according to claim 1, wherein the workpiece is rotated and the electrodes of the electrode tool are repeatedly circulated to the electric discharge machining position by the rotation of the electrode tool and the workpiece. 電極工具が、板状の工具本体と、この工具本体の表面に設けた絶縁体膜と、この絶縁体膜に設けた凹部に充填した導電材料の電極からなり、この電極工具を往復運動させ、この往復運動する電極工具に対し、円柱形の被加工物を回転運動させ、電極工具の往復運動と被加工物の回転運動により、電極工具の電極が放電加工位置に繰り返し循環するようにしたことを特徴とする請求項1記載の表面加工方法。   The electrode tool comprises a plate-shaped tool body, an insulator film provided on the surface of the tool body, and an electrode of a conductive material filled in a recess provided in the insulator film. The electrode tool is reciprocated, The cylindrical workpiece was rotated with respect to the reciprocating electrode tool, and the electrode tool electrode was repeatedly circulated to the electrical discharge machining position by the reciprocating motion of the electrode tool and the rotational motion of the workpiece. The surface processing method according to claim 1. 電極工具が、円筒形の工具本体と、この工具本体の表面に設けた絶縁体膜と、この絶縁体膜に設けた凹部に充填した導電材料の電極からなり、この電極工具を円環状の被加工物の内側に挿入し、この電極工具を回転させながら往復運動させ、この回転・往復運動する電極工具に対し、円環状の被加工物を回転運動させ、電極工具の回転・往復運動と被加工物の回転運動により、電極工具の電極が放電加工位置に繰り返し循環するようにしたことを特徴とする請求項1記載の表面加工方法。   The electrode tool comprises a cylindrical tool body, an insulator film provided on the surface of the tool body, and an electrode made of a conductive material filled in a recess provided in the insulator film. Insert inside the workpiece, reciprocate while rotating this electrode tool, rotate the annular workpiece against the rotating / reciprocating electrode tool, and rotate and reciprocate the electrode tool. 2. The surface machining method according to claim 1, wherein the electrode of the electrode tool is repeatedly circulated to the electric discharge machining position by the rotational movement of the workpiece. 請求項1〜4の放電加工を、電極形状の異なる複数の電極工具を用いて複数回実施し、同一の被加工物の表面に、大きさ、深さ、位置の異なる凹部を形成する表面加工方法。   5. Surface processing for performing electrical discharge machining according to claims 1 to 4 using a plurality of electrode tools having different electrode shapes, and forming recesses having different sizes, depths, and positions on the surface of the same workpiece. Method. 請求項1〜4の放電加工と、放電加工と異なる別な表面加工方法とを組み合わせて、同一の被加工物の表面に、大きさ、深さ、位置の異なる凹部を形成する表面加工方法。   A surface machining method for forming recesses having different sizes, depths, and positions on the surface of the same workpiece by combining the electric discharge machining according to claim 1 and another surface machining method different from electric discharge machining. 請求項5又は6の表面加工方法により、表面に微細な凹部を形成した転がり/すべり部材。   A rolling / sliding member having a fine recess formed on the surface by the surface processing method according to claim 5 or 6. 請求項5又は6の表面加工方法により、転動体、内外輪の少なくとも一つの表面に微細な凹部を形成した転がり軸受。   The rolling bearing which formed the fine recessed part in the at least one surface of the rolling element and the inner and outer ring | wheels by the surface processing method of Claim 5 or 6.
JP2007294528A 2007-11-13 2007-11-13 Surface working method and rolling member using the working method Pending JP2009119544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007294528A JP2009119544A (en) 2007-11-13 2007-11-13 Surface working method and rolling member using the working method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007294528A JP2009119544A (en) 2007-11-13 2007-11-13 Surface working method and rolling member using the working method

Publications (1)

Publication Number Publication Date
JP2009119544A true JP2009119544A (en) 2009-06-04

Family

ID=40812287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007294528A Pending JP2009119544A (en) 2007-11-13 2007-11-13 Surface working method and rolling member using the working method

Country Status (1)

Country Link
JP (1) JP2009119544A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493404B1 (en) * 2013-09-03 2015-02-16 송병준 curved punch and curved Punching holes device
CN106624220A (en) * 2017-03-17 2017-05-10 广东工业大学 Tool electrode automatic compensation discharge grinding machining device and method
CN106825803A (en) * 2017-03-17 2017-06-13 广东工业大学 Discharging milling processing unit (plant) and method that a kind of tool-electrode is compensated automatically
US20220305587A1 (en) * 2020-09-16 2022-09-29 Jiangsu University Composite processing method and device for texture on inner surface of bearing shell of radial sliding bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493404B1 (en) * 2013-09-03 2015-02-16 송병준 curved punch and curved Punching holes device
CN106624220A (en) * 2017-03-17 2017-05-10 广东工业大学 Tool electrode automatic compensation discharge grinding machining device and method
CN106825803A (en) * 2017-03-17 2017-06-13 广东工业大学 Discharging milling processing unit (plant) and method that a kind of tool-electrode is compensated automatically
US20220305587A1 (en) * 2020-09-16 2022-09-29 Jiangsu University Composite processing method and device for texture on inner surface of bearing shell of radial sliding bearing

Similar Documents

Publication Publication Date Title
CN101573206B (en) Friction element operating at a contact pressure of greater than 200MPa in a working lubricating medium and use thereof in the automotive field
CN104625558B (en) Rolling tool
JP2009119544A (en) Surface working method and rolling member using the working method
CN102226459A (en) Method for self-lubricating treatment of laser micro-texture of bearing
US20010050235A1 (en) Electrode design for electrochemical machining of grooves
US20220305587A1 (en) Composite processing method and device for texture on inner surface of bearing shell of radial sliding bearing
US20160273576A1 (en) Sliding surface
US20170298990A1 (en) Self-lubricating roller bearing and methods of making and using self-lubricating roller bearing
JP2019049330A (en) Slide bearing
CN108127546B (en) Extrusion grinding device and method for slender inner wall curve groove
JP2008298144A (en) Method of processing of rolling contact surface
US20200147746A1 (en) Tool Head
CN108893733A (en) A kind of laser Thermal-mechanical Coupling texture solid lubricant coating preparation method
EP1068921A1 (en) Device for electrolytically machining microgrooves on internal surface of aerodynamic bearing housing
JP2010032025A (en) Planetary roller screw device
JP7223130B2 (en) Tool and method for mechanical surface treatment
JP2003247552A (en) Manufacturing method of crown retainer for rolling ball bearing, die used for manufacturing crown retainer for rolling ball bearing, crown retainer for rolling ball bearing, and rolling ball bearing
JP2008298143A (en) Method of processing of rolling contact surface
JP6549851B2 (en) Texturing method for sliding member
JP2008260998A (en) Method of surface processing of rolling contact surface
RU2571011C2 (en) Finishing-hardening of cylindrical surfaces by burnishing
JP2015072050A (en) Slide component and slide component manufacturing method
JP2006009871A (en) Planetary roller screw device and method of manufacturing the same
RU2383428C1 (en) Facility for screw centrifugal strengthening
CN103306929B (en) The manufacture method of hydraulic rotating machinery and hydraulic rotating machinery