JP2009118739A - Manufacturing method of permanent magnet type rotating electric machine, and the permanent magnet type rotating electric machine - Google Patents

Manufacturing method of permanent magnet type rotating electric machine, and the permanent magnet type rotating electric machine Download PDF

Info

Publication number
JP2009118739A
JP2009118739A JP2009052163A JP2009052163A JP2009118739A JP 2009118739 A JP2009118739 A JP 2009118739A JP 2009052163 A JP2009052163 A JP 2009052163A JP 2009052163 A JP2009052163 A JP 2009052163A JP 2009118739 A JP2009118739 A JP 2009118739A
Authority
JP
Japan
Prior art keywords
angle
rotor
permanent magnet
stator
skew angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009052163A
Other languages
Japanese (ja)
Other versions
JP5012837B2 (en
Inventor
Shinichi Yamaguchi
信一 山口
Haruyuki Yonetani
晴之 米谷
Tomohiro Kikuchi
友弘 菊池
Takashi Miyazaki
高志 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009052163A priority Critical patent/JP5012837B2/en
Publication of JP2009118739A publication Critical patent/JP2009118739A/en
Application granted granted Critical
Publication of JP5012837B2 publication Critical patent/JP5012837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a permanent-magnet type rotating electric machine, whereby not only the fundamental components of its cogging torque is reduced, but also the higher harmonic components of its cogging torque are reduced. <P>SOLUTION: With respect to the manufacturing method of the permanent-magnet type rotating electrical machine having a rotor and a stator, in the rotor, two-stage permanent magnets provided in its axial direction are so disposed on the outer peripheral surface of its core that the permanent magnets are made skew, in its core periphery direction by a stage-skewing angle of θe (electrical angle) and is interposed between the two stages. Furthermore, in the stator, the rotor is disposed in its inside, and its cylindrical core has a stator winding for so generating a rotating magnetic field as to rotate the rotor. Moreover, the relation existing between the stage-skewing angle and the fundamental component of a cogging torque of the rotating electrical machine is searched from the magnetic characteristics of the rotor core. Furthermore, a stage-skewing angle such that the cogging torque becomes smaller than the one obtained when the stage-skewing angle is equal to a theoretical angle of θs (electric angle), is set as the stage-skewing angle of θe. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、電動モータ等の永久磁石式回転電機に関し、特に、コギングトルクの低減を図るようにした永久磁石式回転電機に関するものである。   The present invention relates to a permanent magnet type rotating electrical machine such as an electric motor, and more particularly to a permanent magnet type rotating electrical machine designed to reduce cogging torque.

永久磁石式回転電機の一般的な構成においては、固定子の中に回転子が配置されている。固定子は、円筒形状をなす固定子鉄心の内周に複数個の固定子巻線を設けて複数個の磁極を形成している。回転子は、固定子の中心を回転軸心として回転できるように回転子鉄心が配設され、回転子鉄心の表面、あるいは内部に永久磁石が設けられ、永久磁石はN極とS極が交互に並ぶように配置されている。この回転電機では、固定子巻線に適宜通電し、回転磁界を形成することにより、回転子が回転軸心回りに回転する。   In a general configuration of a permanent magnet type rotating electric machine, a rotor is disposed in a stator. The stator is provided with a plurality of stator windings on the inner periphery of a cylindrical stator core to form a plurality of magnetic poles. The rotor is provided with a rotor core so that the rotor can be rotated about the center of the stator, and a permanent magnet is provided on or inside the rotor core. The permanent magnet has alternating N and S poles. It is arranged to line up. In this rotating electrical machine, the rotor is rotated around the rotation axis by appropriately energizing the stator windings to form a rotating magnetic field.

上述のような永久磁石式回転電機にあっては、コギングトルクと称される回転トルク変動が発生する。コギングトルクは、振動や騒音を発生するばかりでなく、回転電機の制御性能を低下させる要因となる。   In the permanent magnet type rotating electrical machine as described above, a fluctuation in rotational torque called cogging torque occurs. The cogging torque not only generates vibration and noise, but also causes a decrease in the control performance of the rotating electrical machine.

従来、コギングトルクを低減するために、永久磁石を回転子鉄心の軸方向に複数段配列し、回転子鉄心の円周方向にずらすことによって、スキューの効果をもたらす工夫がなされており、複数個の永久磁石が回転子鉄心の軸方向の位置によって周方向の位置がずれるように、すなわち、スキュー角θmの角度(以下、段スキュー角という)で固定子鉄心表面にならぶようにしている(例えば、特許文献1)。   Conventionally, in order to reduce the cogging torque, a plurality of permanent magnets are arranged in the axial direction of the rotor core and shifted in the circumferential direction of the rotor core. The permanent magnets are aligned with the stator core surface at an angle of skew angle θm (hereinafter referred to as a step skew angle), for example, so that the position in the circumferential direction is shifted depending on the axial position of the rotor core (for example, step skew angle). Patent Document 1).

段スキュー角θm(機械角)は、理論的に求められる角度(以下、理論角という)を用いている。コギングトルクが最小となる理論角(機械角)は、(360/固定子磁極数と回転子磁極数の最小公倍数)/軸方向永久磁石の段数によって決定される。回転電機の固定子磁極数が12、回転子磁極数が8、永久磁石の段数が2である場合には、段スキュー角θmは7.5゜(電気角θeで30゜。なお、電気角度=機械角度×極数/2の関係式より算出した。)となる(例えば、特許文献2)。   The step skew angle θm (mechanical angle) uses a theoretically obtained angle (hereinafter referred to as a theoretical angle). The theoretical angle (mechanical angle) at which the cogging torque is minimized is determined by (360 / the least common multiple of the number of stator magnetic poles and the number of rotor magnetic poles) / the number of stages of the axial permanent magnet. When the number of stator magnetic poles of the rotating electrical machine is 12, the number of rotor magnetic poles is 8, and the number of permanent magnets is 2, the step skew angle θm is 7.5 ° (the electrical angle θe is 30 °. = Calculated from the relational expression of mechanical angle × number of poles / 2) (for example, Patent Document 2).

しかしながら、段スキュー角θmを上記のように理論的に決定し、実際の回転電機に適用した場合、コギングトルクの低減はまだ不十分であると考えられる。その理由は、段スキューを採用したことによって軸方向漏洩磁束が発生するが、この漏洩磁束による磁気飽和の影響が考慮されていないからである。コギングトルクの原因となる漏洩磁束は、永久磁石の段部、回転子鉄心内部での漏洩磁束等もあるが、固定子鉄心内部における漏洩磁束がコギングトルクの主たる原因となっている。   However, when the step skew angle θm is theoretically determined as described above and applied to an actual rotating electrical machine, it is considered that the reduction of the cogging torque is still insufficient. The reason is that the axial leakage magnetic flux is generated by adopting the step skew, but the influence of magnetic saturation due to this leakage magnetic flux is not taken into consideration. The leakage magnetic flux that causes the cogging torque includes the stepped portion of the permanent magnet and the leakage magnetic flux inside the rotor core, but the leakage magnetic flux inside the stator core is the main cause of the cogging torque.

実開昭61−17876号公報(第4−第6頁、第1−第6図)Japanese Utility Model Laid-Open Publication No. 61-17876 (page 4-6, FIG. 1-6) 特開2000−308286号公報(第3−第4頁、図2、図3)Japanese Unexamined Patent Publication No. 2000-308286 (page 3-4, FIG. 2, FIG. 3)

上述のように、従来の段スキューを採用した回転電機では、段スキュー角度に理論角を採用しているために、コギングトルクを十分に低減できていないという問題があった。   As described above, the conventional rotating electric machine employing the step skew has a problem that the cogging torque cannot be sufficiently reduced because the theoretical angle is adopted as the step skew angle.

この発明は、上記のような問題を解決するものであり、段スキュー角度に理論角を採用した場合よりもコギングトルクを効率よく低減し、併せてトルクリップルをも低減することができる永久磁石式回転電機を提供するものである。   The present invention solves the above-mentioned problems, and can reduce the cogging torque more efficiently than the case where the theoretical angle is adopted as the step skew angle, and can also reduce the torque ripple. A rotating electrical machine is provided.

この発明に係る永久磁石式回転電機の製造方法は、回転子鉄心の外周面に、軸方向に2段の永久磁石を設け、上記永久磁石を2段間で上記回転子鉄心の周方向に段スキュー角θe(電気角)ずらして配置した回転子と、該回転子を内部に配置し、該回転子を回転させる回転磁界を発生する固定子巻線を設けた円筒形状の固定子鉄心を有する固定子とを備えた永久磁石式回転電機の製造方法において、
上記段スキュー角θeの下限値を、理論角θs(電気角)とし、
上記段スキュー角θeの上限値を、上記理論角θsの値の略3/2倍とし、
上記段スキュー角θeが上記下限値より大きく、かつ、上記上限値以下になるように設定して製造するものである。
ただし、
θs=(180×回転子磁極数/固定子磁極数と回転子磁極数の最小公倍数)/2 (電気角)
In the method for manufacturing a permanent magnet type rotating electrical machine according to the present invention, two stages of permanent magnets are provided in the axial direction on the outer peripheral surface of the rotor core, and the permanent magnet is stepped in the circumferential direction of the rotor core between two stages. A rotor having a skew angle θe (electrical angle) and a cylindrical stator core provided with a stator winding in which the rotor is disposed inside and a rotating magnetic field for rotating the rotor is provided. In a method of manufacturing a permanent magnet type rotating electrical machine having a stator,
The lower limit of the step skew angle θe is the theoretical angle θs (electrical angle),
The upper limit value of the step skew angle θe is approximately 3/2 times the value of the theoretical angle θs,
The step skew angle θe is set to be larger than the lower limit value and equal to or smaller than the upper limit value.
However,
θs = (180 × rotor magnetic pole number / stator magnetic pole number and least common multiple of rotor magnetic pole number) / 2 (electrical angle)

また、この発明に係る別の永久磁石式回転電機の製造方法は、回転子鉄心の磁気特性から、段スキュー角とコギングトルクの基本波成分のコギングトルクとの関係を求め、段スキュー角が理論角θs(電気角)であるときのコギングトルクよりもコギングトルクが小さくなる段スキュー角を上記段スキュー角θeとして設定して製造するものである。   In addition, another method of manufacturing a permanent magnet type rotating electrical machine according to the present invention obtains the relationship between the step skew angle and the cogging torque of the fundamental wave component of the cogging torque from the magnetic characteristics of the rotor core, and the step skew angle is theoretically The step skew angle is smaller than the cogging torque at the angle θs (electrical angle), and the step skew angle θe is set as the step skew angle θe.

また、この発明に係る永久磁石式回転電機は、段スキュー角θeの下限値を、理論角θs(電気角)とし、段スキュー角θeの上限値を、上記理論角θsの値の略3/2倍とし、段スキュー角θeが上記下限値より大きく、かつ、上記上限値以下になるように設定され、さらに、回転子鉄心の外周面に設けられた一段あたりの永久磁石の数は4×N個(Nは自然数)であり、周方向に隣り合う2個の永久磁石を一組の永久磁石対とし、4×N個の永久磁石は、外周面の全周に均等に配置された状態から、一組おきに永久磁石対をそれぞれ外周面の周方向の一方に理論角θsの1/2ずらした状態に配置したものである。   In the permanent magnet type rotating electrical machine according to the present invention, the lower limit value of the step skew angle θe is a theoretical angle θs (electrical angle), and the upper limit value of the step skew angle θe is approximately 3 / of the value of the theoretical angle θs. The step skew angle θe is set to be larger than the lower limit value and equal to or smaller than the upper limit value, and the number of permanent magnets per step provided on the outer peripheral surface of the rotor core is 4 ×. N (N is a natural number), and two permanent magnets adjacent in the circumferential direction are a pair of permanent magnets, and 4 × N permanent magnets are evenly arranged on the entire circumference of the outer peripheral surface Thus, every other pair of permanent magnet pairs is arranged in a state shifted by ½ of the theoretical angle θs to one of the circumferential directions of the outer peripheral surface.

また、この発明に係る別の永久磁石式回転電機は、回転子鉄心の磁気特性から、段スキュー角とコギングトルクの基本波成分のコギングトルクとの関係を求め、段スキュー角が理論角θs(電気角)であるときのコギングトルクよりもコギングトルクが小さくなる段スキュー角を段スキュー角θeとして設定し、さらに、回転子鉄心の外周面に設けられた一段あたりの永久磁石の数は4×N個(Nは自然数)であり、周方向に隣り合う2個の永久磁石を一組の永久磁石対とし、4×N個の永久磁石は、外周面の全周に均等に配置された状態から、一組おきに永久磁石対をそれぞれ外周面の周方向の一方に理論角θsの1/2ずらした状態に配置したものである。   Another permanent magnet type rotating electrical machine according to the present invention obtains the relationship between the step skew angle and the cogging torque of the fundamental component of the cogging torque from the magnetic characteristics of the rotor core, and the step skew angle is the theoretical angle θs ( The step skew angle at which the cogging torque is smaller than the cogging torque at the time of electrical angle) is set as the step skew angle θe, and the number of permanent magnets per step provided on the outer peripheral surface of the rotor core is 4 × N (N is a natural number), and two permanent magnets adjacent in the circumferential direction are a pair of permanent magnets, and 4 × N permanent magnets are evenly arranged on the entire circumference of the outer peripheral surface Thus, every other pair of permanent magnet pairs is arranged in a state shifted by ½ of the theoretical angle θs to one of the circumferential directions of the outer peripheral surface.

上記発明に係る永久磁石式回転電機の製造方法および永久磁石式回転電機によれば、段スキュー角θeを理論角θsとした場合よりもコギングトルク基本波成分を低減できるとともに、コギングトルク高調波成分も低減でき、かつ、トルクリップルを低減できる。   According to the method for manufacturing a permanent magnet type rotating electrical machine and the permanent magnet type rotating electrical machine according to the above invention, the cogging torque fundamental wave component can be reduced and the cogging torque harmonic component can be reduced as compared with the case where the step skew angle θe is the theoretical angle θs. And torque ripple can be reduced.

この発明に係る永久磁石式回転電機の実施の形態1を示す斜視図である。1 is a perspective view showing a first embodiment of a permanent magnet type rotating electric machine according to the present invention. この発明に係る永久磁石式回転電機の実施の形態1を示す断面図である。It is sectional drawing which shows Embodiment 1 of the permanent-magnet-type rotary electric machine which concerns on this invention. この発明に係る永久磁石式回転電機の実施の形態1を示す側面図である。It is a side view which shows Embodiment 1 of the permanent magnet type rotary electric machine which concerns on this invention. この発明に係る永久磁石式回転電機の実施の形態1を示す平面図である。It is a top view which shows Embodiment 1 of the permanent magnet type rotary electric machine which concerns on this invention. 図1〜図4に示した回転子及び回転電機について、3次元磁界解析を実施して得られたコギングトルク基本波成分の結果を示す図である。It is a figure which shows the result of the cogging torque fundamental wave component obtained by implementing a three-dimensional magnetic field analysis about the rotor and rotary electric machine shown in FIGS. 図1〜図4に示した回転子及び回転電機について、3次元磁界解析を実施して得られたコギングトルク第2次高調波成分の結果を示す図である。It is a figure which shows the result of the cogging torque 2nd harmonic component obtained by implementing a three-dimensional magnetic field analysis about the rotor and rotary electric machine shown in FIGS. 3次元解析に用いた回転子鉄心の磁気特性を示す図である。It is a figure which shows the magnetic characteristic of the rotor core used for the three-dimensional analysis. 段スキュー角に対する5次及び7次のスキュー係数を示す図である。It is a figure which shows the 5th-order and 7th-order skew coefficient with respect to a stage skew angle. 段スキュー角に対するトルクリップル6f成分係数を示す図である。It is a figure which shows the torque ripple 6f component coefficient with respect to a step skew angle. この発明に係る永久磁石式回転電機の実施の形態2を示す斜視図である。It is a perspective view which shows Embodiment 2 of the permanent magnet type rotary electric machine which concerns on this invention. この発明に係る永久磁石式回転電機の実施の形態2を示す断面図である。It is sectional drawing which shows Embodiment 2 of the permanent-magnet-type rotary electric machine which concerns on this invention. この発明に係る永久磁石式回転電機の実施の形態3を示す斜視図である。It is a perspective view which shows Embodiment 3 of the permanent magnet type rotary electric machine which concerns on this invention. 実施の形態3における固定子のブロックによる構成を示す斜視図である。FIG. 10 is a perspective view showing a configuration of a stator block in a third embodiment. 実施の形態3における固定子のブロックの断面図である。FIG. 6 is a cross-sectional view of a stator block in a third embodiment.

以下に、図面に基づき、この発明に係る永久磁石式回転電機の好適な実施の形態を詳細に説明する。   Hereinafter, a preferred embodiment of a permanent magnet type rotating electrical machine according to the present invention will be described in detail with reference to the drawings.

実施の形態1.
図1、図2、図3及び図4は、この発明の実施の形態1を示す斜視図、断面図、側面図及び平面図であり、図1〜図3は、回転子における永久磁石の配置を説明するものである。
Embodiment 1 FIG.
1, 2, 3 and 4 are a perspective view, a cross-sectional view, a side view and a plan view showing Embodiment 1 of the present invention, and FIGS. 1 to 3 show the arrangement of permanent magnets in the rotor. Is described.

図1〜図3に示したように、回転子30は、回転子鉄心31外周面に上段の永久磁石32aと下段の永久磁石32bが貼り付けられ、段スキュー角θe(電気角)だけ円周方向にずれるように、また、N極とS極が交互に並ぶように配置されている。回転子30の磁極数は8、永久磁石の段数は2である。   As shown in FIG. 1 to FIG. 3, the rotor 30 has an upper permanent magnet 32 a and a lower permanent magnet 32 b attached to the outer peripheral surface of the rotor core 31, so that the rotor 30 has a circumference of a step skew angle θe (electrical angle). The N poles and the S poles are alternately arranged so as to be displaced in the direction. The number of magnetic poles of the rotor 30 is 8, and the number of stages of permanent magnets is 2.

また、図4に示したように、固定子20は、円筒形状をなす固定子鉄心21の内周に複数個の固定子巻線22を設けて複数個の磁極を形成している。回転子30は、固定子20の中心を回転軸心として回転できるように回転子鉄心31が配設され、固定子巻線22に適宜通電し、回転磁界を形成することにより、回転子30が回転軸心回りに回転する。   As shown in FIG. 4, the stator 20 has a plurality of stator windings 22 provided on the inner periphery of a cylindrical stator core 21 to form a plurality of magnetic poles. The rotor 30 is provided with a rotor core 31 so as to be able to rotate with the center of the stator 20 as a rotation axis. By appropriately energizing the stator winding 22 and forming a rotating magnetic field, the rotor 30 is It rotates around the axis of rotation.

図2、図3及び図4に示したように、上段の永久磁石32aの基準線Aに対して下段の永久磁石32bは電気角で36゜(機械角で8゜)円周方向にずらしている。すなわち、段スキュー角θeを、(180×回転子磁極数/固定子磁極数と回転子磁極数の最小公倍数)/2(軸方向永久磁石の段数)の式で求められる理論角θs(30゜)よりも大きな値にしている。前述のように、この段スキュー角を機械角で表わした式は、(360/固定子磁極数と回転子磁極数の最小公倍数)/2(軸方向永久磁石の段数)であり、この式で求められる理論角(機械角)7.5゜よりも大きな値にしている。   As shown in FIGS. 2, 3 and 4, the lower permanent magnet 32b is shifted in the circumferential direction by 36 ° in electrical angle (8 ° in mechanical angle) with respect to the reference line A of the upper permanent magnet 32a. Yes. That is, the step skew angle θe is calculated by the following formula: (180 × number of rotor magnetic poles / number of stator magnetic poles and least common multiple of the number of rotor magnetic poles) / 2 (the number of stages of axial permanent magnets). ) Is a larger value. As described above, the equation representing the step skew angle in terms of the mechanical angle is (360 / the least common multiple of the number of stator magnetic poles and the number of rotor magnetic poles) / 2 (the number of steps of the axial permanent magnet). The required theoretical angle (mechanical angle) is larger than 7.5 °.

段スキュー角θeは、理論角θsよりも大きく、後述のように固定子鉄心21及び回転子鉄心31の磁気特性に応じて求められる段スキュー角θeの最大値以下とすることによって、段スキュー角θeを理論角θsとした場合よりも効率的にコギングトルクを低減することができ、併せてトルクリップルも低減することができる。以下、コギングトルク及びトルクリップルと段スキュー角θeとの関係を説明し、この実施の形態において、コギングトルク及びトルクリップルを低減することができることを示す。   The step skew angle θe is larger than the theoretical angle θs, and is set to be equal to or less than the maximum value of the step skew angle θe obtained according to the magnetic characteristics of the stator core 21 and the rotor core 31 as described later. Cogging torque can be reduced more efficiently than when θe is the theoretical angle θs, and torque ripple can also be reduced. Hereinafter, the relationship between the cogging torque and torque ripple and the step skew angle θe will be described, and in this embodiment, the cogging torque and torque ripple can be reduced.

図5及び図6は、図1〜図4に示した回転子及び回転電機(回転子磁極数が8、固定子磁極数が12、永久磁石段数が2)について、3次元磁界解析を実施した結果を示すものである。   FIGS. 5 and 6 performed a three-dimensional magnetic field analysis on the rotor and the rotating electrical machine (the number of rotor magnetic poles is 8, the number of stator magnetic poles is 12, and the number of permanent magnet stages is 2) shown in FIGS. The result is shown.

図5は、コギングトルク基本波成分に関する結果、図6は、コギングトルク第2次高調波に関する結果であり、それぞれ、段スキューなしの場合のコギングトルクに対する段スキューを施した場合のコギングトルクの比であるコギングトルク比と段スキュー角(電気角)θeとの関係を、固定子鉄心20の磁気特性が理想的な場合(磁気特性A)、加工工作の過程で磁気特性が劣化している場合(磁気特性B)、加工工作によってさらに磁気特性が劣化した場合(磁気特性C)について示している。   FIG. 5 shows the result regarding the cogging torque fundamental wave component, and FIG. 6 shows the result regarding the second harmonic of the cogging torque. The ratio of the cogging torque when the step skew is applied to the cogging torque when there is no step skew, respectively. The relationship between the cogging torque ratio and the step skew angle (electrical angle) θe, when the magnetic characteristics of the stator core 20 are ideal (magnetic characteristics A), and when the magnetic characteristics are deteriorated during the machining process (Magnetic characteristic B), a case where the magnetic characteristic is further deteriorated by machining (magnetic characteristic C).

図7は、解析に使用した固定子鉄心20の磁気特性A、B及びC(BH特性の関係)を示している。同図における磁束密度比は、磁気特性Aの材料の飽和磁束密度を基準値として、この基準値との比を表している。磁気特性Aはカタログ値相当の磁気特性であり、加工の影響がない場合を示しており、磁気特性Bは実機状態に相当し、磁化力H=1000A/m近辺における磁束密度比が磁気特性Aと比較して20%程度低下した特性のものであり、また、磁気特性Cは磁化力H=1000A/m近辺における磁束密度比が磁気特性Aと比較して40%程度低下した特性のものである。   FIG. 7 shows magnetic characteristics A, B, and C (relationship of BH characteristics) of the stator core 20 used for the analysis. The magnetic flux density ratio in the figure represents the ratio to the reference value with the saturation magnetic flux density of the material having the magnetic property A as the reference value. The magnetic characteristic A is a magnetic characteristic corresponding to the catalog value, and shows a case where there is no influence of processing, the magnetic characteristic B corresponds to the actual machine state, and the magnetic flux density ratio in the vicinity of the magnetizing force H = 1000 A / m is the magnetic characteristic A. The magnetic characteristic C has a characteristic in which the magnetic flux density ratio in the vicinity of the magnetizing force H = 1000 A / m is reduced by about 40% compared to the magnetic characteristic A. is there.

図5から、コギングトルク基本波成分については、固定子鉄心の磁気特性が磁気特性Aから順次、磁気特性B、磁気特性Cと劣化するに伴い、コギングトルク比が最小となる段スキュー角θeが大きくなっていることが分かる(これは、前述のように、段スキューを採用した場合、固定子鉄心内部に軸方向漏洩磁束が発生するためである)。すなわち、固定子鉄心の磁気特性が劣化するに伴い、コギングトルクが最小となる段スキュー角θeは理論角30゜よりも大きくなっている。従って、磁気特性Bにおいては、段スキュー角θeを理論角30゜とした場合、(1)の点におけるコギングトルク比(約0.18)になるのに対して、理論角30゜を越え、(1)の点におけるコギングトルク比(0.18)以下となる段スキュー角θeの最大値((2)の点における段スキュー角θe(約37゜))以下とすることによって、コギングトルクの基本波成分を理論角30゜とした場合よりも低く、またはそれ以下に低減することができる。また、磁気特性Cにおいても同様に、(3)の点におけるコギングトルク比(約0.23)以下となる段スキュー角θeの最大値((4)の点における段スキュー角θe=約43゜)以下とすることによって、コギングトルクの基本波成分を理論角30゜とした場合よりも低く、またはそれ以下に低減することができる。   As shown in FIG. 5, with respect to the cogging torque fundamental wave component, the step skew angle θe at which the cogging torque ratio becomes the minimum as the magnetic characteristics of the stator core deteriorate from the magnetic characteristics A to the magnetic characteristics B and C in sequence. It can be seen that this is large (this is because, as described above, when step skew is employed, axial leakage magnetic flux is generated inside the stator core). That is, as the magnetic characteristics of the stator core deteriorate, the step skew angle θe at which the cogging torque is minimized is larger than the theoretical angle 30 °. Accordingly, in the magnetic characteristic B, when the step skew angle θe is set to a theoretical angle of 30 °, the cogging torque ratio at the point (1) (about 0.18) is obtained, whereas the theoretical angle exceeds 30 °. By setting the cogging torque ratio (0.18) or less at the point (1) below the maximum value of the step skew angle θe (the step skew angle θe (about 37 °) at the point (2)), the cogging torque is reduced. The fundamental wave component can be reduced to a value lower than or lower than the theoretical angle of 30 °. Similarly, in the magnetic characteristic C, the step skew angle θe at the point (3) is equal to or less than the cogging torque ratio (about 0.23) (step skew angle θe at the point (4) = about 43 °. ) By making the following, the fundamental wave component of the cogging torque can be reduced to be lower or lower than that when the theoretical angle is 30 °.

以上は、回転子磁極数と固定子磁極数との比が2:3の場合について説明したが、図5についての上述の説明から明らかなように、回転子磁極数と固定子磁極数との比が所定の値の場合において、実機において設定する段スキュー角θeの下限値を、理論角θsより大きな値とし、段スキュー角θeの上限値を、コギングトルク比と段スキュー角θeとの関係から、固定子鉄心の磁気特性(BH特性)に応じて、理論角θsにおけるコギングトルク比以下となる段スキュー角θeの最大値以下とすることによって、理論角θsとした場合よりも低く、またはそれ以下にコギングトルクの基本波成分を低減することができる。   In the above, the case where the ratio between the number of rotor magnetic poles and the number of stator magnetic poles is 2: 3 has been described. As is apparent from the above description of FIG. 5, the ratio between the number of rotor magnetic poles and the number of stator magnetic poles. When the ratio is a predetermined value, the lower limit value of the step skew angle θe set in the actual machine is set to a value larger than the theoretical angle θs, and the upper limit value of the step skew angle θe is the relationship between the cogging torque ratio and the step skew angle θe. Thus, depending on the magnetic characteristics (BH characteristics) of the stator core, by making it not more than the maximum value of the stage skew angle θe that is not more than the cogging torque ratio at the theoretical angle θs, it is lower than the theoretical angle θs, or Below that, the fundamental wave component of the cogging torque can be reduced.

次に、図6から、コギングトルク第2次高調波成分に関しては、理論角θsの1/2または3/2(電気角15゜、電気角45゜)においてコギングトルク比が最小となることが分かる。これは、コギングトルク高調波成分は、軸方向漏洩磁束の影響(磁気飽和の影響)を受けにくいことによるものであり、コギングトルク第2次高調波成分の低減には段スキュー角θeを理論角θsの1/2または3/2とするのがよいものと考えられる。   Next, as shown in FIG. 6, with respect to the second harmonic component of the cogging torque, the cogging torque ratio is minimized at 1/2 or 3/2 of the theoretical angle θs (electrical angle 15 °, electrical angle 45 °). I understand. This is because the cogging torque harmonic component is less susceptible to the influence of magnetic flux leakage in the axial direction (the effect of magnetic saturation), and the step skew angle θe is the theoretical angle to reduce the second harmonic component of the cogging torque. It is considered that 1/2 of θs or 3/2 is good.

一方、通電時のトルクリップルと段スキュー角との関係は、一般に、スキュー係数と称される巻線係数を用いて検討する。回転電機における第ν次高調波成分に対するスキュー係数κsvは次式(2)で与えられる。但し、γはスキュー角である。   On the other hand, the relationship between the torque ripple during energization and the stage skew angle is generally examined using a winding coefficient called a skew coefficient. The skew coefficient κsv for the ν th harmonic component in the rotating electrical machine is given by the following equation (2). Where γ is a skew angle.

κsv=sin(νγ/2)/(νγ/2) …(2)   κsv = sin (νγ / 2) / (νγ / 2) (2)

ここで、段スキュー角をγdとすると、γd=γ/2であるから、段スキューを採用した場合のスキュー係数κdsvは次式(3)で与えられる。   Here, assuming that the step skew angle is γd, γd = γ / 2. Therefore, the skew coefficient κdsv when the step skew is employed is given by the following equation (3).

κdsv=sin(νγd)/(νγd) …(3)   κdsv = sin (νγd) / (νγd) (3)

また、永久磁石式回転電機のトルクリップルは、電源周波数の6倍の成分(以下6f成分という)が支配的となる。一般に、トルクリップル6f成分は5次及び7次の高調波成分に起因して発生する。   In addition, the torque ripple of the permanent magnet type rotating electrical machine is dominated by a component 6 times the power frequency (hereinafter referred to as 6f component). Generally, the torque ripple 6f component is generated due to the fifth and seventh harmonic components.

図8は、上記式(2)より算出される段スキュー角γdに対する5次及び7次のスキュー係数を示す図である。トルクリップル6f成分に対する5次及び7次高調波成分の影響度合は、近似的に次数の2乗の逆数に関係すると考えられ、5次成分の影響度合は1/52=0.04、7次成分の影響度合は1/72=0.02と考えられる。   FIG. 8 is a diagram showing fifth-order and seventh-order skew coefficients with respect to the step skew angle γd calculated from the above equation (2). The influence degree of the fifth and seventh harmonic components on the torque ripple 6f component is considered to be approximately related to the inverse of the square of the order, and the influence degree of the fifth component is 1/52 = 0.04, the seventh order. The influence degree of the component is considered to be 1/72 = 0.02.

図9は、図8のスキュー係数と5次及び7次成分のトルクリップル6f成分に関する影響度合を考慮した段スキュー角に対するトルクリップル6f成分係数を示す図である。同図より、トルクリップル6f成分係数は、段スキュー角γdが30゜を越えると、30゜におけるトルクリップル6f成分係数より小さな値になる。従って、段スキュー角γdを、コギングトルク基本波成分に対する理論角θsである30゜以上とすることによって、トルクリップル6f成分を低減することができると考えられる。   FIG. 9 is a diagram showing the torque ripple 6f component coefficient with respect to the step skew angle in consideration of the skew coefficient of FIG. 8 and the degree of influence regarding the fifth and seventh order torque ripple 6f components. From the figure, the torque ripple 6f component coefficient is smaller than the torque ripple 6f component coefficient at 30 ° when the step skew angle γd exceeds 30 °. Therefore, it is considered that the torque ripple 6f component can be reduced by setting the step skew angle γd to 30 ° or more, which is the theoretical angle θs with respect to the cogging torque fundamental wave component.

実施の形態2.
図10は、この発明の実施の形態2を示す斜視図であり、図11は、図10の回転子鉄心31の軸方向と垂直な方向の断面図である。
Embodiment 2. FIG.
10 is a perspective view showing a second embodiment of the present invention, and FIG. 11 is a cross-sectional view in a direction perpendicular to the axial direction of the rotor core 31 of FIG.

図10に示したように、上段の永久磁石32aと下段の永久磁石32bの段スキュー角θeは実施の形態1と同様とする。   As shown in FIG. 10, the step skew angle θe of the upper permanent magnet 32a and the lower permanent magnet 32b is the same as in the first embodiment.

また、図11に示したように、各段における永久磁石32a、32bの2極(N−S)毎の回転子鉄心31に対する貼り付け位置をずらして、2極毎の隣接する電気角を、一方は等角度から15゜(機械角で3.75゜)近づけ、他方は等角度から15゜(機械角で3.75゜)遠ざけている。   Moreover, as shown in FIG. 11, the adhering position with respect to the rotor core 31 for each of the two poles (N-S) of the permanent magnets 32a and 32b in each stage is shifted, and the adjacent electrical angle for each two poles is One is close to 15 ° (mechanical angle 3.75 °) from the same angle, and the other is 15 ° (mechanical angle 3.75 °) away from the same angle.

この実施の形態によれば、上段の永久磁石32aと下段の永久磁石32bの段スキュー角θeによってコギングトルク基本波成分を低減することができるとともに、各段における永久磁石32a、32bの2極(N−S)毎の回転子鉄心31に対する貼り付け位置をずらして、2極毎の隣接する電気角を、一方は等角度から15゜近づけ、他方は等角度から15゜遠ざけることによって、コギングトルク高調波成分を低減することができる。   According to this embodiment, the cogging torque fundamental wave component can be reduced by the step skew angle θe of the upper permanent magnet 32a and the lower permanent magnet 32b, and the two poles of the permanent magnets 32a and 32b ( NS) The cogging torque is shifted by shifting the position of the attachment to the rotor core 31 by moving the adjacent electrical angles of every two poles closer to 15 ° from the same angle, and 15 ° away from the other. Harmonic components can be reduced.

以上から、等角度からずらす電気角は、理論角θsの1/2とすればよいことは明かである。   From the above, it is clear that the electrical angle shifted from the equal angle may be ½ of the theoretical angle θs.

実施の形態3.
図12は、この発明の実施の形態3を示す斜視図、図13は、実施の形態3における固定子のブロックによる構成を示す斜視図、図14は、実施の形態3における固定子のブロックの断面図である。
Embodiment 3 FIG.
12 is a perspective view showing a third embodiment of the present invention, FIG. 13 is a perspective view showing a configuration of the stator block in the third embodiment, and FIG. 14 is a block diagram of the stator in the third embodiment. It is sectional drawing.

この実施の形態においては、回転子磁極数と固定子磁極数との比が所定の値の場合において、実機において設定する段スキュー角θeの下限値を、理論角θsより大きな値とし、段スキュー角θeの上限値を、コギングトルク比と段スキュー角θeとの関係から、固定子鉄心の磁気特性(BH特性)に応じて、理論角θsにおけるコギングトルク比以下となる段スキュー角θeの最大値とする構成は、上記実施の形態1と同様である。   In this embodiment, when the ratio between the number of rotor magnetic poles and the number of stator magnetic poles is a predetermined value, the lower limit value of the step skew angle θe set in the actual machine is set to a value larger than the theoretical angle θs, and the step skew is set. The upper limit of the angle θe is determined based on the relationship between the cogging torque ratio and the step skew angle θe, and the maximum step skew angle θe that is equal to or less than the cogging torque ratio at the theoretical angle θs according to the magnetic characteristic (BH characteristic) of the stator core. The configuration of values is the same as in the first embodiment.

上記実施の形態1と異なる構成は、図12及び図13に示したように固定子鉄心を上段のブロック21a、中段の21b、下段の21cに分割し、上段のブロック21a及び下段の21cと中段のブロック21bとを互いに円周に沿った反対方向にずらして段スキューするものであり、段スキュー角θeは、ブロック21a及び21cとブロック21bとをそれぞれ基準線Aから反対方向にずらし、段スキュー角θeをコギングトルク基本波成分の低減に対する理論角θsの1/2で表される理論角とするものである。   12 and 13, the stator core is divided into an upper block 21a, a middle 21b, and a lower 21c, and the upper block 21a and the lower 21c and the middle are divided. The step skew is shifted in the opposite direction along the circumference of the block 21b, and the step skew angle θe is shifted from the reference line A in the opposite direction by shifting the blocks 21a and 21c and the block 21b, respectively. The angle θe is a theoretical angle represented by ½ of the theoretical angle θs with respect to the reduction of the cogging torque fundamental wave component.

図14は、回転子磁極数と固定子磁極数との比が2:3の場合について示しており、同図に示したように、電気角で15゜(機械角で3.75゜)とすることによって、コギングトルクの高調波成分を低減することができる。なお、上段のブロック21a及び下段のブロック21cの高さは、中段のブロック21bの1/2とする。   FIG. 14 shows a case where the ratio of the number of rotor magnetic poles to the number of stator magnetic poles is 2: 3. As shown in FIG. 14, the electrical angle is 15 ° (mechanical angle is 3.75 °). By doing so, the harmonic component of the cogging torque can be reduced. Note that the height of the upper block 21a and the lower block 21c is ½ that of the middle block 21b.

20 固定子、21 固定子鉄心、21a 上段のブロック、
21b 中段のブロック、21c 下段のブロック、22 固定子巻線、30 回転子、
31 回転子鉄心、32a 上段永久磁石、32b 下段永久磁石。
20 Stator, 21 Stator core, 21a Upper block,
21b Middle block, 21c Lower block, 22 Stator winding, 30 Rotor,
31 Rotor core, 32a upper permanent magnet, 32b lower permanent magnet.

Claims (4)

回転子鉄心の外周面に、軸方向に2段の永久磁石を設け、上記永久磁石を2段間で上記回転子鉄心の周方向に段スキュー角θe(電気角)ずらして配置した回転子と、該回転子を内部に配置し、該回転子を回転させる回転磁界を発生する固定子巻線を設けた円筒形状の固定子鉄心を有する固定子とを備えた永久磁石式回転電機の製造方法において、
上記段スキュー角θeの下限値を、理論角θs(電気角)とし、
上記段スキュー角θeの上限値を、上記理論角θsの値の略3/2倍とし、
上記段スキュー角θeが上記下限値より大きく、かつ、上記上限値以下になるように設定して製造することを特徴とする永久磁石式回転電機の製造方法。
ただし、
θs=(180×回転子磁極数/固定子磁極数と回転子磁極数の最小公倍数)/2 (電気角)
A rotor in which two stages of permanent magnets are provided in the axial direction on the outer peripheral surface of the rotor core, and the permanent magnets are shifted by a stage skew angle θe (electrical angle) in the circumferential direction of the rotor core between the two stages; A method of manufacturing a permanent magnet type rotating electrical machine including a stator having a cylindrical stator core provided with a stator winding in which the rotor is disposed and a rotating magnetic field for rotating the rotor is provided In
The lower limit of the step skew angle θe is the theoretical angle θs (electrical angle),
The upper limit value of the step skew angle θe is approximately 3/2 times the value of the theoretical angle θs,
A method of manufacturing a permanent magnet type rotating electrical machine, characterized in that the step skew angle θe is set to be larger than the lower limit and equal to or smaller than the upper limit.
However,
θs = (180 × rotor magnetic pole number / stator magnetic pole number and least common multiple of rotor magnetic pole number) / 2 (electrical angle)
回転子鉄心の外周面に、軸方向に2段の永久磁石を設け、上記永久磁石を2段間で上記回転子鉄心の周方向に段スキュー角θe(電気角)ずらして配置した回転子と、該回転子を内部に配置し、該回転子を回転させる回転磁界を発生する固定子巻線を設けた円筒形状の固定子鉄心を有する固定子とを備えた永久磁石式回転電機の製造方法において、
上記回転子鉄心の磁気特性から、段スキュー角とコギングトルクの基本波成分のコギングトルクとの関係を求め、段スキュー角が理論角θs(電気角)であるときのコギングトルクよりもコギングトルクが小さくなる段スキュー角を上記段スキュー角θeとして設定して製造することを特徴とする永久磁石式回転電機の製造方法。
ただし、
θs=(180×回転子磁極数/固定子磁極数と回転子磁極数の最小公倍数)/2 (電気角)
A rotor in which two stages of permanent magnets are provided in the axial direction on the outer peripheral surface of the rotor core, and the permanent magnets are shifted by a stage skew angle θe (electrical angle) in the circumferential direction of the rotor core between the two stages; A method of manufacturing a permanent magnet type rotating electrical machine including a stator having a cylindrical stator core provided with a stator winding in which the rotor is disposed and a rotating magnetic field for rotating the rotor is provided In
The relationship between the step skew angle and the cogging torque of the fundamental component of the cogging torque is obtained from the magnetic characteristics of the rotor core, and the cogging torque is greater than the cogging torque when the step skew angle is the theoretical angle θs (electrical angle). A method for manufacturing a permanent magnet type rotating electrical machine, wherein the step skew angle is set to be a step skew angle θe that becomes smaller.
However,
θs = (180 × rotor magnetic pole number / stator magnetic pole number and least common multiple of rotor magnetic pole number) / 2 (electrical angle)
回転子鉄心の外周面に、軸方向に2段の永久磁石を設け、上記永久磁石を2段間で上記回転子鉄心の周方向に段スキュー角θe(電気角)ずらして配置した回転子と、該回転子を内部に配置し、該回転子を回転させる回転磁界を発生する固定子巻線を設けた円筒形状の固定子鉄心を有する固定子とを備えた永久磁石式回転電機において、
上記段スキュー角θeの下限値を、理論角θs(電気角)とし、
上記段スキュー角θeの上限値を、上記理論角θsの値の略3/2倍とし、
上記段スキュー角θeが上記下限値より大きく、かつ、上記上限値以下になるように設定され、
さらに、上記回転子鉄心の外周面に設けられた一段あたりの永久磁石の数は4×N個(Nは自然数)であり、周方向に隣り合う2個の永久磁石を一組の永久磁石対とし、
上記4×N個の永久磁石は、上記外周面の全周に均等に配置された状態から、一組おきに上記永久磁石対をそれぞれ上記外周面の周方向の一方に上記理論角θsの1/2ずらした状態に配置したことを特徴とする永久磁石式回転電機。
ただし、
θs=(180×回転子磁極数/固定子磁極数と回転子磁極数の最小公倍数)/2 (電気角)
A rotor in which two stages of permanent magnets are provided in the axial direction on the outer peripheral surface of the rotor core, and the permanent magnets are shifted by a stage skew angle θe (electrical angle) in the circumferential direction of the rotor core between the two stages; In the permanent magnet type rotating electrical machine, comprising a stator having a cylindrical stator core provided with a stator winding that generates a rotating magnetic field for rotating the rotor.
The lower limit of the step skew angle θe is the theoretical angle θs (electrical angle),
The upper limit value of the step skew angle θe is approximately 3/2 times the value of the theoretical angle θs,
The step skew angle θe is set to be larger than the lower limit value and not more than the upper limit value,
Furthermore, the number of permanent magnets per stage provided on the outer peripheral surface of the rotor core is 4 × N (N is a natural number), and two permanent magnets adjacent in the circumferential direction are combined into a set of permanent magnet pairs. age,
From the state in which the 4 × N permanent magnets are uniformly arranged on the entire circumference of the outer peripheral surface, every other pair of the permanent magnet pairs is set to one of the theoretical angles θs on one side in the circumferential direction of the outer peripheral surface. Permanent magnet type rotating electrical machine characterized by being arranged in a / 2 shifted state.
However,
θs = (180 × rotor magnetic pole number / stator magnetic pole number and least common multiple of rotor magnetic pole number) / 2 (electrical angle)
回転子鉄心の外周面に、軸方向に2段の永久磁石を設け、上記永久磁石を2段間で上記回転子鉄心の周方向に段スキュー角θe(電気角)ずらして配置した回転子と、該回転子を内部に配置し、該回転子を回転させる回転磁界を発生する固定子巻線を設けた円筒形状の固定子鉄心を有する固定子とを備えた永久磁石式回転電機において、
上記回転子鉄心の磁気特性から、段スキュー角とコギングトルクの基本波成分のコギングトルクとの関係を求め、段スキュー角が理論角θs(電気角)であるときのコギングトルクよりもコギングトルクが小さくなる段スキュー角を上記段スキュー角θeとして設定し、
さらに、上記回転子鉄心の外周面に設けられた一段あたりの永久磁石の数は4×N個(Nは自然数)であり、周方向に隣り合う2個の永久磁石を一組の永久磁石対とし、
上記4×N個の永久磁石は、上記外周面の全周に均等に配置された状態から、一組おきに上記永久磁石対をそれぞれ上記外周面の周方向の一方に上記理論角θsの1/2ずらした状態に配置したことを特徴とする永久磁石式回転電機。
ただし、
θs=(180×回転子磁極数/固定子磁極数と回転子磁極数の最小公倍数)/2 (電気角)
A rotor in which two stages of permanent magnets are provided in the axial direction on the outer peripheral surface of the rotor core, and the permanent magnets are shifted by a stage skew angle θe (electrical angle) in the circumferential direction of the rotor core between the two stages; In the permanent magnet type rotating electrical machine, comprising a stator having a cylindrical stator core provided with a stator winding that generates a rotating magnetic field for rotating the rotor.
The relationship between the step skew angle and the cogging torque of the fundamental component of the cogging torque is obtained from the magnetic characteristics of the rotor core, and the cogging torque is greater than the cogging torque when the step skew angle is the theoretical angle θs (electrical angle). Set the step skew angle to be smaller as the step skew angle θe,
Furthermore, the number of permanent magnets per stage provided on the outer peripheral surface of the rotor core is 4 × N (N is a natural number), and two permanent magnets adjacent in the circumferential direction are combined into a set of permanent magnet pairs. age,
From the state in which the 4 × N permanent magnets are uniformly arranged on the entire circumference of the outer peripheral surface, every other pair of the permanent magnet pairs is set to one of the theoretical angles θs on one side in the circumferential direction of the outer peripheral surface. Permanent magnet type rotating electrical machine characterized by being arranged in a / 2 shifted state.
However,
θs = (180 × rotor magnetic pole number / stator magnetic pole number and least common multiple of rotor magnetic pole number) / 2 (electrical angle)
JP2009052163A 2002-10-18 2009-03-05 Manufacturing method of permanent magnet type rotating electrical machine Expired - Lifetime JP5012837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009052163A JP5012837B2 (en) 2002-10-18 2009-03-05 Manufacturing method of permanent magnet type rotating electrical machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002303944 2002-10-18
JP2002303944 2002-10-18
JP2009052163A JP5012837B2 (en) 2002-10-18 2009-03-05 Manufacturing method of permanent magnet type rotating electrical machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003349042A Division JP4415634B2 (en) 2002-10-18 2003-10-08 Permanent magnet rotating electric machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010277084A Division JP5093339B2 (en) 2002-10-18 2010-12-13 Permanent magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JP2009118739A true JP2009118739A (en) 2009-05-28
JP5012837B2 JP5012837B2 (en) 2012-08-29

Family

ID=40785210

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009052163A Expired - Lifetime JP5012837B2 (en) 2002-10-18 2009-03-05 Manufacturing method of permanent magnet type rotating electrical machine
JP2010277084A Expired - Lifetime JP5093339B2 (en) 2002-10-18 2010-12-13 Permanent magnet rotating electric machine

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010277084A Expired - Lifetime JP5093339B2 (en) 2002-10-18 2010-12-13 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (2) JP5012837B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108737A1 (en) * 2010-03-03 2011-09-09 Nidec Corporation Rotor, method of manufacturing rotor, and motor
JP2013099095A (en) * 2011-10-31 2013-05-20 Taiho Kogyo Co Ltd Motor
JP2013106392A (en) * 2011-11-11 2013-05-30 Taketsune Nakamura Electric generator
JP2013132154A (en) * 2011-12-22 2013-07-04 Aisin Seiki Co Ltd Rotary electric machine and rotor thereof
JP2015019577A (en) * 2014-09-05 2015-01-29 日本電産株式会社 Rotor, method for manufacturing rotor, and motor
JP2017112778A (en) * 2015-12-18 2017-06-22 日立オートモティブシステムズエンジニアリング株式会社 Permanent magnet synchronous motor
JP2018026952A (en) * 2016-08-10 2018-02-15 日立オートモティブシステムズエンジニアリング株式会社 Dynamo-electric machine
CN114899996A (en) * 2022-07-11 2022-08-12 浙江大学 Permanent magnet synchronous motor magnetic pole structure design method for weakening cogging torque
WO2024111373A1 (en) * 2022-11-25 2024-05-30 株式会社デンソー Rotary electric machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5653984B2 (en) 2012-10-17 2015-01-14 ファナック株式会社 Electric motor having a stator core for reducing cogging torque
JP6121002B2 (en) 2014-02-10 2017-04-26 三菱電機株式会社 Rotor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199447A (en) * 1985-02-28 1986-09-03 Mitsubishi Chem Ind Ltd Motor
JPH08251847A (en) * 1995-03-08 1996-09-27 Yaskawa Electric Corp Permanent magnet type rotary machine
JP2001190039A (en) * 1999-10-19 2001-07-10 Asmo Co Ltd Rotating field type motor
JP2001314050A (en) * 2000-04-27 2001-11-09 Sony Corp Ac servo motor
JP2001359266A (en) * 2000-06-13 2001-12-26 Aichi Emerson Electric Co Ltd Structure of brushless dc motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308286A (en) * 1999-04-16 2000-11-02 Yamaha Motor Co Ltd Rotating electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199447A (en) * 1985-02-28 1986-09-03 Mitsubishi Chem Ind Ltd Motor
JPH08251847A (en) * 1995-03-08 1996-09-27 Yaskawa Electric Corp Permanent magnet type rotary machine
JP2001190039A (en) * 1999-10-19 2001-07-10 Asmo Co Ltd Rotating field type motor
JP2001314050A (en) * 2000-04-27 2001-11-09 Sony Corp Ac servo motor
JP2001359266A (en) * 2000-06-13 2001-12-26 Aichi Emerson Electric Co Ltd Structure of brushless dc motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108737A1 (en) * 2010-03-03 2011-09-09 Nidec Corporation Rotor, method of manufacturing rotor, and motor
JP2011182603A (en) * 2010-03-03 2011-09-15 Nippon Densan Corp Rotor, method of manufacturing the same, and motor
JP2013099095A (en) * 2011-10-31 2013-05-20 Taiho Kogyo Co Ltd Motor
JP2013106392A (en) * 2011-11-11 2013-05-30 Taketsune Nakamura Electric generator
JP2013132154A (en) * 2011-12-22 2013-07-04 Aisin Seiki Co Ltd Rotary electric machine and rotor thereof
JP2015019577A (en) * 2014-09-05 2015-01-29 日本電産株式会社 Rotor, method for manufacturing rotor, and motor
JP2017112778A (en) * 2015-12-18 2017-06-22 日立オートモティブシステムズエンジニアリング株式会社 Permanent magnet synchronous motor
WO2017104436A1 (en) * 2015-12-18 2017-06-22 日立オートモティブシステムズエンジニアリング株式会社 Permanent magnet synchronization motor
JP2018026952A (en) * 2016-08-10 2018-02-15 日立オートモティブシステムズエンジニアリング株式会社 Dynamo-electric machine
CN114899996A (en) * 2022-07-11 2022-08-12 浙江大学 Permanent magnet synchronous motor magnetic pole structure design method for weakening cogging torque
WO2024111373A1 (en) * 2022-11-25 2024-05-30 株式会社デンソー Rotary electric machine

Also Published As

Publication number Publication date
JP5093339B2 (en) 2012-12-12
JP2011055706A (en) 2011-03-17
JP5012837B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5093339B2 (en) Permanent magnet rotating electric machine
US7067948B2 (en) Permanent-magnet rotating machine
KR101288732B1 (en) Permanent-magnet type synchronous motor
JP4214998B2 (en) Permanent magnet motor
KR100697771B1 (en) Permanent magnet type motor
US7626299B2 (en) Motor
JP4849071B2 (en) Motor with two rotors
JP4415634B2 (en) Permanent magnet rotating electric machine
JP2007074870A (en) Rotor embedded with permanent magnet and motor embedded with permanent magnet
JP2007274869A (en) Slot-less permanent magnet type rotary electric machine
JP2006288043A (en) Permanent magnet type motor
JP2003284276A (en) Dynamo-electric machine
JP5419991B2 (en) Permanent magnet synchronous motor
JP2004180491A (en) Permanent magnet type dynamo-electric machine and apparatus
JP2007097290A (en) Permanent magnet type reluctance dynamo-electric machine
JP2006262603A (en) Rotary electric machine
WO2016117217A1 (en) Permanent-magnet-type rotating electrical machine
JP5183601B2 (en) Synchronous motor rotor and synchronous motor
JP5278238B2 (en) Rotating electric machine
JP5171767B2 (en) Synchronous motor rotor and synchronous motor
JP2018182118A (en) Magnetizing device and magnetizing method
JP2010154672A (en) Permanent-magnet rotary electric machine and electric power steering device using the same
JP2010246301A (en) Rotor for permanent magnet type motor
WO2002082622A1 (en) Permanent magnet type synchronous motor
JP2014131373A (en) Permanent magnet synchronous machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5012837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term