JP2009118041A - Position relation detection system for node station - Google Patents

Position relation detection system for node station Download PDF

Info

Publication number
JP2009118041A
JP2009118041A JP2007287114A JP2007287114A JP2009118041A JP 2009118041 A JP2009118041 A JP 2009118041A JP 2007287114 A JP2007287114 A JP 2007287114A JP 2007287114 A JP2007287114 A JP 2007287114A JP 2009118041 A JP2009118041 A JP 2009118041A
Authority
JP
Japan
Prior art keywords
node
positional relationship
measurement
repeater
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007287114A
Other languages
Japanese (ja)
Other versions
JP4935631B2 (en
Inventor
Yoshimi Niwa
祥実 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2007287114A priority Critical patent/JP4935631B2/en
Publication of JP2009118041A publication Critical patent/JP2009118041A/en
Application granted granted Critical
Publication of JP4935631B2 publication Critical patent/JP4935631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To detect the position relation of a slave and a repeater, etc., connected to a network in a field network of bus type. <P>SOLUTION: A master unit 11 and a measurement tool apparatus 60 send a command to selected two node stations #1 and #2 and measure the time t1, t2, s1 and s2 taken until the return of a response. Obtained measured values are substituted to y=(t1-t2)-(s1-s2), and it is determined that the node station #1 is positioned on the master unit side when the value of y is negative and that the node station #2 is on the master unit side when it is positive. Even while the respective node stations have the internal processing time intrinsic to a communication IC and it is individually different, since the subtraction processing of the measured values takes place for the same node station like t1-s1 and -t2-(-s2) in the determination equation, the internal processing time is offset, the value of y corresponds to a distance, and the position relation is accurately specified. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、ノード局の位置関係検出システムに関するものである。   The present invention relates to a positional relationship detection system for a node station.

FA(Factory Automation)におけるネットワークシステムは、生産設備の制御を司るPLC(プログラマブルコントローラ)と、そのPLCにより動作が制御される機器とが、制御系のネットワークに接続される。それらPLCと機器は、その制御系のネットワークを介してサイクリックに通信を行なうことで、IOデータの送受を行ない、生産設備を制御する。   In a network system in FA (Factory Automation), a PLC (programmable controller) that controls production facilities and a device whose operation is controlled by the PLC are connected to a network of a control system. These PLCs and devices communicate with each other cyclically via the network of the control system, thereby transmitting / receiving IO data and controlling production facilities.

このとき、PLCを構成するマスタユニットと、IOターミナル等のスレーブとを、フィールドネットワークを介して接続し、マスタ−スレーブ通信によりIOデータの送受を行なうものがある。また、この種のフィールドネットワークは、生産現場において設備のリモート制御、稼動状態管理の目的で使用されるネットワークとして知られている。フィールドネットワークの各ノードの設定および状態監視は、上位コントローラ(たとえば、上記のマスタユニットを備えたPLC)に接続したツール装置を用いて行なう。   At this time, there is a type in which a master unit constituting a PLC and a slave such as an IO terminal are connected via a field network, and IO data is transmitted and received by master-slave communication. In addition, this type of field network is known as a network used for the purpose of remote control of equipment and operation state management at a production site. The setting and status monitoring of each node of the field network is performed using a tool device connected to a host controller (for example, a PLC having the above master unit).

このツール装置は、たとえばハードウェアの観点からは一般的なパーソナル・コンピュータであり、Windows(登録商標)などのオペレーティング・システム上で稼動するアプリケーション・プログラムによって、各機能が実現される。このツール装置の機能の1つとして、実際にネットワークに加入しているスレーブのノードアドレスを取得し、その取得した情報に基づいてネットワーク構成図を作成し、表示装置に出力するものがある。   This tool device is, for example, a general personal computer from the viewpoint of hardware, and each function is realized by an application program that runs on an operating system such as Windows (registered trademark). As one of the functions of this tool device, there is one that obtains a node address of a slave that actually joins a network, creates a network configuration diagram based on the obtained information, and outputs it to a display device.

図1(a)は、表示装置に表示するネットワーク構成図の一例を示している。図示するように、このネットワーク構成図では、幹線ネットワークS1にマスタS2と複数のスレーブS3とリピータS4とが接続され、その幹線ネットワークS1の端部には終端抵抗S5が接続されている。さらに、リピータS4の下位には、支線ネットワークS6が接続され、その支線ネットワークS6にスレーブS3が接続されるとともに、支線ネットワークS6の端部に終端抵抗S5が接続される。そして、ネットワークS1,S6の途中に接続されるスレーブS3は、マスタS1側からノードアドレスの順番に表示される。なお、ツール装置は、各スレーブS3が幹線ネットワークS1と支線ネットワークS6のどのネットワークに接続しているかの情報を取得しており、それに従って、各スレーブがどのネットワークに加入しているかを認識し、それぞれ適切なネットワークに接続することで、ネットワーク構成図を作成する。
特開2000−115213
Fig.1 (a) has shown an example of the network block diagram displayed on a display apparatus. As shown in the figure, in this network configuration diagram, a master S2, a plurality of slaves S3, and a repeater S4 are connected to the trunk network S1, and a termination resistor S5 is connected to the end of the trunk network S1. Further, a branch line network S6 is connected to the lower side of the repeater S4, a slave S3 is connected to the branch line network S6, and a termination resistor S5 is connected to an end of the branch line network S6. Then, the slave S3 connected in the middle of the networks S1 and S6 is displayed in the order of the node address from the master S1 side. Note that the tool device has acquired information on which network of each of the slave networks S1 and the branch network S6 each slave S3 is connected to, and accordingly recognizes which network each slave has joined, Create a network configuration diagram by connecting to each appropriate network.
JP 2000-115213 A

従来のツール装置は、ネットワークに加入しているスレーブのノードアドレスを確認することはできたが、スレーブの位置関係を把握することはできなかった。そのため、実際のネットワーク構成における幹線ネットワークケーブル1や支線ネットワークケーブル6に接続されるマスタ2,スレーブ2,リピータ3及び終端抵抗5の配置状況が、図1(b)に示すようになっていたとしても、ツール装置で表示されるネットワーク構成図は、図1(a)に示すようになり、両者が一致しない現象が発生する可能性が高い。   Although the conventional tool device can confirm the node address of the slave joining the network, it cannot grasp the positional relationship of the slave. Therefore, it is assumed that the arrangement of the master 2, slave 2, repeater 3 and termination resistor 5 connected to the trunk network cable 1 and branch network cable 6 in the actual network configuration is as shown in FIG. However, the network configuration diagram displayed on the tool device is as shown in FIG. 1A, and there is a high possibility that a phenomenon in which both do not match will occur.

一方、生産現場では、設備の保守は、重要視される。特に設備異常が起きた場合、ユーザは、迅速な復旧対応を行なうことが必要である。したがって、設備異常が起きた場合、ユーザは、迅速に異常箇所と異常原因を把握し復旧作業を行わなければならないが、ツール装置(管理ソフトウェア)でネットワーク上の異常の起きているスレーブのノードアドレスがわかっても、その場所がどのあたりなのかを視覚的に知ることができず、対応が遅れることがあった。   On the other hand, maintenance of facilities is regarded as important at production sites. In particular, when an equipment abnormality occurs, the user needs to perform a quick recovery response. Therefore, when an equipment failure occurs, the user must quickly grasp the location and cause of the failure and perform recovery work. However, the node address of the slave where the network failure occurs in the tool device (management software) Even if I knew, I couldn't visually know where the place was, and the response could be delayed.

さらに、生産現場においては設備の増設によってスレーブが後から追加されることが多い。その場合、追加されたスレーブは、同じ設備内でも離れた数字のアドレスが割り当てられることがある。その場合、特に位置関係を把握するのが難しくなる。   Further, in production sites, slaves are often added later due to the expansion of facilities. In that case, the added slaves may be assigned different numerical addresses even within the same facility. In that case, it is particularly difficult to grasp the positional relationship.

ところで、スレーブの位置関係を把握するためには、マスタから各スレーブまでの距離を知ることができればよい。その手段としては、マスタが送信したコマンドに対しスレーブからのレスポンスが帰ってくるまでの時間を測定することが考えられる。しかし、実際には、各スレーブの通信IC固有の性能のばらつきが大きいため、測定した各スレーブのコマンド−レスポンス時間の差が実際の距離の差と異なる場合がでてくる。従って、単純にマスタがレスポンスを受信するまでの時間に基づいて位置関係を求める技術は、採用できない。   By the way, in order to grasp the positional relationship of the slaves, it is only necessary to know the distance from the master to each slave. As a means for that, it is conceivable to measure the time until the response from the slave returns to the command transmitted by the master. However, in practice, there is a large variation in performance unique to the communication IC of each slave, and thus the measured command-response time difference of each slave may be different from the actual distance difference. Therefore, a technique for simply obtaining the positional relationship based on the time until the master receives a response cannot be adopted.

また、この問題を解決する方法として、特許文献1で説明される方法が考案されている。この方法は、バス型ネットワークの両端にネットワーク接続装置を接続し、さらにその両端を接続することによってループ型ネットワークを構築する。そして、あるスレーブから送信されたフレームを受け取ったとき、右回りで送られて来た送信時間と左回りで送られてきた送信時間を比較し位置関係を得る。それを全スレーブに対して行ないソートをかけることによって相対的な位置関係を得るものである。   As a method for solving this problem, a method described in Patent Document 1 has been devised. In this method, a network connection apparatus is connected to both ends of a bus network, and a loop network is constructed by connecting both ends. When a frame transmitted from a certain slave is received, the positional relationship is obtained by comparing the transmission time transmitted clockwise and the transmission time transmitted counterclockwise. The relative positional relationship is obtained by performing sorting for all slaves and applying sorting.

しかし、この方法ではループ型ネットワークを構成する必要があり、本発明が対象とするバス型のフィールドネットワークにはそのまま適用することができない。さらに、右回りと左回りの時間差を正確に求めるために受信同期をとらなければならないなどの問題点もある。   However, in this method, it is necessary to form a loop network, and the method cannot be applied as it is to the bus field network targeted by the present invention. Furthermore, there is a problem that reception synchronization must be taken in order to accurately obtain the time difference between clockwise and counterclockwise.

本発明は、バス型のフィールドネットワークにおいて、ネットワークに接続されるノード装置(スレーブ,リピータ等)の配置順(位置関係)を検出することができるノード局の位置関係検出システムを提供することにある。   It is an object of the present invention to provide a node station positional relationship detection system capable of detecting the arrangement order (positional relationship) of node devices (slave, repeater, etc.) connected to a network in a bus-type field network. .

上記の目的を達成するため、本発明に係るノード局の位置関係検出システムは、(1)バス型のフィールドネットワークに加入する複数のノード局の位置関係を検出する位置関係検出システムであって、ネットワークケーブルの両端に接続され、そのネットワークケーブルに接続される各ノード局に対してコマンドを送信してからレスポンスを受信するまでの時間を測定する測定ツール機能を備えた測定装置と、その測定ツール機能で測定した測定値に基づき、各ノード局の位置関係を特定する位置関係判定装置と、を備える。そして、その位置関係判定装置は、複数のノード局のうち、任意の2つのノード局を第1判定対象局と第2判定対象局として選択し、その選択された2つのノード局に対して両測定装置でそれぞれ求めた測定値から当該2つのノード局の前記ネットワークケーブルに接続される相対位置関係を特定し、その相対位置関係を求める処理を判定対象として選択される全ての組み合わせについて行なうことで、複数のノード局の位置関係を特定する機能を備える。上記の2つのノード局の相対位置関係を求める処理は、一方の測定装置で得た第1判定対象局に対する測定値と第2判定対象局に対する測定値の差をΔtとし、他方の測定装置で得た第1判定対象局に対する測定値と第2判定対象局に対する測定値の差をΔsとした場合に、ΔtとΔsを一方から他方を減算処理し、その処理結果の正負により決定するものとした。   In order to achieve the above object, a node station positional relationship detection system according to the present invention is (1) a positional relationship detection system for detecting the positional relationship of a plurality of node stations joining a bus-type field network, A measuring device that is connected to both ends of a network cable and has a measuring tool function for measuring a time from when a command is transmitted to each node station connected to the network cable until a response is received, and the measuring tool And a positional relationship determination device that identifies the positional relationship of each node station based on the measured value measured by the function. Then, the positional relationship determination device selects any two node stations from among the plurality of node stations as the first determination target station and the second determination target station, and both the selected two node stations with respect to the selected two node stations. By identifying the relative positional relationship connected to the network cable of the two node stations from the measured values respectively obtained by the measuring device, and performing the process for obtaining the relative positional relationship for all combinations selected as determination targets And a function of specifying the positional relationship of a plurality of node stations. The above processing for obtaining the relative positional relationship between the two node stations is such that the difference between the measurement value for the first determination target station and the measurement value for the second determination target station obtained by one measurement apparatus is Δt, and the other measurement apparatus When the difference between the obtained measurement value for the first determination target station and the measurement value for the second determination target station is Δs, Δt and Δs are subtracted from one to the other, and the result of the processing is determined to be positive or negative did.

バス型フィールドネットワークは、たとえば、CC−Link,CC−Link/LT,デバイスネットなどがある。測定装置は、ネットワークシステムを構成するノード局に組み込まれて実現される場合と、別途独立して設けた測定装置(実施形態の“測定ツール装置”に対応)を用意し、終端抵抗器(終端装置)と置き換えるようにしてもよい。また、実施形態では、終端抵抗器40を測定ツール装置に置き換えるようにしたが、終端抵抗器に測定ツール機能を実装し、測定装置と兼用するようにしても良い。位置関係判定装置は、実施形態では、ツール装置50により実現されているが、測定装置に組み込みで一体化されていても良い。   Examples of the bus-type field network include CC-Link, CC-Link / LT, and device network. For the measurement device, a case where it is realized by being incorporated in a node station constituting the network system, or a separate measurement device (corresponding to the “measurement tool device” in the embodiment) are prepared, and a termination resistor (termination terminal) (Device). In the embodiment, the termination resistor 40 is replaced with a measurement tool device. However, a measurement tool function may be mounted on the termination resistor so that it is also used as a measurement device. In the embodiment, the positional relationship determination device is realized by the tool device 50. However, the positional relationship determination device may be integrated in the measurement device.

ノード局内部で実行されるレスポンスを返信するための処理時間が各ノード局で等しいとすると、測定装置が求めた測定値に基づいて算出されたΔtとΔsは、第1判定対象局の方が測定装置に近い場合には、負の値となり、第2判定対象局の方が測定装置に近い場合には、正の値となる。2つの測定装置は、ネットワークの両端に配置されているので、第1判定対象局が一方の測定装置に近いとすると、第2判定対象局は他方の測定装置に近いことになる。よって、Δtが正ならばΔsは負になり、Δtが負ならばΔsは正になると言う関係をとる。よって、Δt−Δs(或いは、Δs−Δt)の値の正負により、基準とした測定装置に対して第1判定対象局の方が近いか遠いかを判定することができる。   Assuming that the processing time for returning a response executed inside the node station is the same at each node station, Δt and Δs calculated based on the measured values obtained by the measuring apparatus are greater for the first determination target station. When it is close to the measuring device, it becomes a negative value, and when the second determination target station is closer to the measuring device, it becomes a positive value. Since the two measurement devices are arranged at both ends of the network, if the first determination target station is close to one measurement device, the second determination target station is close to the other measurement device. Therefore, if Δt is positive, Δs becomes negative, and if Δt is negative, Δs becomes positive. Therefore, it is possible to determine whether the first determination target station is nearer or farther from the reference measurement device based on the sign of Δt−Δs (or Δs−Δt).

更に、本発明は、ネットワークケーブルの両端に設けた測定装置にて2つの判定対象局に対してのレスポンスを受けるまでの時間を測定し、得られた測定値に基づいて上記のようにΔt−Δs(或いは、Δs−Δt)を求めるようにしているので、各ノード局におけるコマンドを受信してからレスポンスを作成し、送信するまでに要する通信処理時間のばらつきの影響が解消される。すなわち、各ノード局は、内装される通信IC固有の性能のばらつきがあるので、測定装置で計測した測定値は、距離に応じて決定されるフレームを伝送するために要する時間と、上記通信IC固有の性能に基づいて決定されるノード局内での処理時間を含む。そこで、2つの判定対象局の設置位置の距離の差が短く、通信IC固有の性能に基づくノード局内での処理時間の差が大きい場合、測定装置に近い判定対象局についての測定値の方が長くなることがあり得る。   Furthermore, according to the present invention, the time required to receive responses to the two determination target stations is measured by the measuring devices provided at both ends of the network cable, and Δt− as described above based on the obtained measurement values. Since Δs (or Δs−Δt) is obtained, the influence of variations in the communication processing time required to generate and transmit a response after receiving a command in each node station is eliminated. In other words, each node station has a variation in performance inherent in the communication ICs installed therein, so that the measurement value measured by the measurement device is the time required to transmit a frame determined according to the distance, and the communication IC. It includes the processing time within the node station that is determined based on the inherent performance. Therefore, when the difference in the distance between the installation positions of the two determination target stations is short and the difference in processing time within the node station based on the performance unique to the communication IC is large, the measurement value for the determination target station closer to the measurement device is better. It can be long.

そこで、Δt−Δs(或いは、Δs−Δt)を演算すると、ΔtとΔsには、それぞれ同一対象局について求めた測定値が含まれるので、当該演算処理は、同一対象局についてそれぞれの測定装置で求めた測定値の差を求めることも実行されるので、通信IC固有の性能に基づいて決定されるノード局内での処理時間は相殺される。よって、最終的に演算処理して求められた値は、当該ノード局内での処理時間の影響が無く、フレーム伝送に基づく時間により決定されることになり、2つの判定対象局の相対位置関係を正確に判定できる。   Therefore, when Δt−Δs (or Δs−Δt) is calculated, since Δt and Δs include measurement values obtained for the same target station, the calculation processing is performed by each measurement device for the same target station. Since the difference between the obtained measurement values is also executed, the processing time in the node station determined based on the performance unique to the communication IC is canceled out. Therefore, the value finally obtained by the arithmetic processing is not affected by the processing time in the node station and is determined by the time based on the frame transmission, and the relative positional relationship between the two determination target stations is determined. Can be judged accurately.

そして、判定対象となるネットワークに加入するノード局の全ての組み合わせについて、位置関係を求めると、ある1つのノード局に着目した場合、そのノード局を基準に一方の測定装置側に位置するノード局と、他方の測定装置側に位置するノード局とを分けることができる。よって、着目するノード局を順次替えることで、結果として全てのノード局の位置関係を特定することができる。係る全てのノード局の位置関係の特定処理は、たとえば、一方の測定装置を基準にし、判定対象の2のノード局のうちその一方の測定装置に近い方のノード局を加点(たとえば+1)することを全ての組み合わせについて行なうことで、加点された総得点が最も大きい値を採ったノード局が、一方の測定装置に最も近い位置にあるといえる。よって、総得点の高い順に並べることで、ノード局の位置関係を特定できる。もちろん、全てのノード局の位置関係の特定方法は、上記のものに限るものではない。   Then, when determining the positional relationship for all combinations of node stations that join the network to be determined, when focusing on one node station, the node station located on the one measuring device side with reference to that node station And a node station located on the other measuring device side can be separated. Therefore, by sequentially changing the node stations of interest, it is possible to specify the positional relationships of all the node stations as a result. The identification processing of the positional relationship of all the node stations is based on, for example, one measurement apparatus, and the node station closer to one of the two measurement target node stations is added (for example, +1). By performing this operation for all combinations, it can be said that the node station having the highest value of the added total score is in the position closest to one of the measurement apparatuses. Therefore, the positional relationship of the node stations can be specified by arranging them in descending order of the total score. Of course, the method of specifying the positional relationship of all node stations is not limited to the above.

このように、全てのノード局の位置関係を特定することができるので、その位置関係の情報に基づいてネットワーク構成図を作成すると、実際のネットワークの配置状況に一致したネットワーク構成図が作成できる。よって、ユーザは、視覚的に各ノード局の位置関係を知ることができる。   As described above, since the positional relationships of all the node stations can be specified, if a network configuration diagram is created based on the positional relationship information, a network configuration diagram that matches the actual network arrangement status can be created. Therefore, the user can visually know the positional relationship between the node stations.

また、2つの測定装置は、それぞれ独立して各ノード局に対してコマンドを発信し、レスポンスを受信するまでの時間を計測して測定値を得るので、2つの測定装置の同期を取る必要がない。   In addition, since the two measuring devices independently send a command to each node station and measure the time until receiving a response to obtain a measured value, it is necessary to synchronize the two measuring devices. Absent.

(2)フィールドネットワークは、マスタ−スレーブ方式のフィールドネットワークであって、測定装置の1つはマスタにより構成され、測定装置の他の1つは、終端装置の設置位置に取り付けるものであり、他の1つの測定装置は、マスタから送信されたメッセージに従い、指定されたノード局に対する測定値を求め、測定結果をマスタに返信するように構成することができる。終端装置(実施形態では、終端抵抗器)の設置位置に取り付ける測定装置は、終端装置と交換してネットワークケーブルの端部に接続するようにしてもよいし、終端装置に機能として組み込まれていてもよい。マスタは、自己が測定して得られた測定値と、他の測定装置が測定した測定値とを記憶保持する。よって、マスタは、その記憶した2つの測定装置により測定値を位置関係判定装置に渡し、そこにおいてネットワークに加入するノードの位置関係を特定する。マスタが位置関係判定装置を兼用する場合には、マスタにて位置関係を求めるので、たとえば、ネットワーク構成図を作成するツール装置は、そのマスタが求めた位置関係を取得し、適切なネットワーク構成図を作成することになる。   (2) The field network is a master-slave type field network, in which one of the measuring devices is constituted by a master, and the other one of the measuring devices is attached to the installation position of the terminating device. The one measuring device can be configured to obtain a measured value for a designated node station in accordance with a message transmitted from the master, and return the measurement result to the master. The measuring device attached to the installation position of the termination device (in the embodiment, termination resistor) may be replaced with the termination device and connected to the end of the network cable, or incorporated in the termination device as a function. Also good. The master stores and holds the measurement values obtained by measurement by itself and the measurement values measured by other measurement devices. Therefore, the master passes the measurement value to the positional relationship determination device using the stored two measuring devices, and specifies the positional relationship of the nodes joining the network there. When the master also serves as a positional relationship determination device, the positional relationship is obtained by the master. For example, the tool device that creates the network configuration diagram acquires the positional relationship obtained by the master and obtains an appropriate network configuration diagram. Will be created.

(3)フィールドネットワークには、リピータが加入され、そのリピータの下位に接続される支線ネットワークケーブルに複数のノード局が接続された構成を採り、その支線ネットワークケーブルに接続された複数のノード局の接続関係は、前記マスタと、その支線ネットワークの端部に接続される測定装置でそれぞれ求めた測定値に基づいて求めることができる。   (3) In the field network, a repeater is joined, and a plurality of node stations are connected to a branch network cable connected to the lower level of the repeater, and a plurality of node stations connected to the branch network cable are connected. The connection relationship can be obtained based on the measured values obtained by the master and the measuring device connected to the end of the branch network.

(4)フィールドネットワークには、リピータが加入され、そのリピータの下位に接続される支線ネットワークケーブルに複数のノード局が接続された構成を採り、その支線ネットワークケーブルに接続された複数のノード局の接続関係は、そのリピータと、その下位に接続されたネットワークケーブルの端部に接続される測定装置でそれぞれ求めた測定値に基づいて求めるように構成することもできる。   (4) A repeater is added to the field network, and a plurality of node stations are connected to a branch network cable connected to the lower side of the repeater, and a plurality of node stations connected to the branch network cable are connected. The connection relationship can also be determined based on the measured values obtained by the repeater and the measuring device connected to the end of the network cable connected to the lower part thereof.

(3),(4)の発明によれば、幹線ネットワークから分岐した支線ネットワークを有するネットワークシステムでも、ネットワークシステムに加入するノード局の位置関係を特定することができる。(4)の発明のように、リピータに測定装置を組み込むことで、リピータの下位に接続されたノード局は、リピータと終端に設けた測定値とがそれぞれ求めた測定値に基づいて位置関係を特定することができるので、リピータにおけるリピータ処理に要する時間の影響が無くなり、より正確に位置関係を特定することができる。   According to the inventions of (3) and (4), even in a network system having a branch network branched from a trunk network, the positional relationship of node stations that join the network system can be specified. As in the invention of (4), by incorporating the measuring device into the repeater, the node station connected to the lower level of the repeater has a positional relationship based on the measured values obtained by the repeater and the measured values provided at the terminal. Since it can be specified, the influence of the time required for repeater processing in the repeater is eliminated, and the positional relationship can be specified more accurately.

(5)測定値は、予め設定した回数だけコマンドの送信,レスポンスの受信処理を実行し、各回で取得した時間のトータルとするとよい。複数のコマンド−レスポンスのトータル時間で比較するためサンプル時間が大きくとれ、簡易に差分を求め、位置関係を判定することができる。   (5) The measured value may be the total of the times acquired by executing command transmission and response reception processing a predetermined number of times. Since the comparison is made with the total time of a plurality of command-responses, the sampling time can be increased, and the difference can be easily obtained to determine the positional relationship.

本発明では、バス型のフィールドネットワークにおいて、ネットワークに接続されるノード局(スレーブ,リピータ等)の配置順(位置関係)を特定することができる。   In the present invention, in the bus-type field network, the arrangement order (positional relationship) of node stations (slave, repeater, etc.) connected to the network can be specified.

図2は、本発明が適用されるネットワークシステムの一例を示している。このネットワークシステムは、FAネットワークの一種で、ライン内の装置制御を行なうためにPLCと種々のフィールド機器の間で通信を行なうためのネットワークであり、CC−Link,CC−Link/LT,デバイスネットなどで実現される。そして、本実施形態は、バス型のフィールドネットワークを構成する。   FIG. 2 shows an example of a network system to which the present invention is applied. This network system is a type of FA network, and is a network for communicating between a PLC and various field devices in order to perform device control within a line. CC-Link, CC-Link / LT, device network Etc. In this embodiment, a bus type field network is configured.

PLC10のマスタユニット11は、幹線ネットワークケーブル1の一端に接続される。この幹線ネットワークケーブル1に、1または複数のスレーブ20が接続されるとともに、幹線ネットワーク1の他端に終端抵抗器40が接続される。また、幹線ネットワークケーブル1から分岐して支線ネットワークケーブル6を配線する場合、その分岐点にリピータ30を配置することができる。そして、リピータ30の下位に接続された支線ネットワークケーブル6には、1または複数のスレーブ20が接続されるとともに、支線ネットワークケーブル6の他端に終端抵抗器40が接続される。なお、リピータ30を設けることなく、T分岐コネクタ等を用いて幹線ネットワークケーブル1に支線ネットワークケーブルを接続して分岐する場合もある。   The master unit 11 of the PLC 10 is connected to one end of the main line network cable 1. One or more slaves 20 are connected to the main network cable 1, and a termination resistor 40 is connected to the other end of the main network 1. In addition, when the branch network cable 6 is branched from the main network cable 1, the repeater 30 can be arranged at the branch point. One or more slaves 20 are connected to the branch network cable 6 connected to the lower side of the repeater 30, and a termination resistor 40 is connected to the other end of the branch network cable 6. In some cases, a branch network cable may be connected to the main network cable 1 using a T-branch connector or the like without using the repeater 30 and branched.

さらに、ツール装置50が、PLC10に接続される。図示の例では、ツール装置50は、PLC10に対して直接ケーブルを接続しているが、ネットワークを経由して接続することもできる。   Further, the tool device 50 is connected to the PLC 10. In the illustrated example, the tool device 50 is directly connected to the PLC 10 with a cable, but can also be connected via a network.

幹線ネットワークケーブル1の全長は、リピータ30が存在しない場合、通信速度にもよるが最大500mにも及ぶことができる。そのため、各スレーブ20は、生産現場における生産ラインの配置レイアウトに応じて広範囲における適宜箇所に設置され、しかも、一旦配置した後で生産ラインの変更等により、スレーブの追加・削除や設置位置の変更があることから、実際にスレーブ等の設置位置に行き、各スレーブのノードアドレスを確認することは現実的でない。そこで、以下に示す仕組みにより、ツール装置が各スレーブ20,リピータ30の位置関係を取得し、実際の位置関係にあったネットワーク構成図を作成し、表示できるようにした。   When the repeater 30 is not present, the total length of the trunk line network cable 1 can reach a maximum of 500 m depending on the communication speed. Therefore, each slave 20 is installed at an appropriate location in a wide range according to the layout of the production line on the production site, and after being arranged once, addition / deletion of slaves and change of the installation position by changing the production line, etc. Therefore, it is not practical to actually go to the installation position of the slave and confirm the node address of each slave. Therefore, the tool device acquires the positional relationship between the slaves 20 and the repeater 30 and creates a network configuration diagram that matches the actual positional relationship so that it can be displayed.

図3は、PLC10とツール装置50の接続関係とその内部構成を示している。ツール装置50は、ハードウェアの観点からは一般的なパーソナル・コンピュータであり、Windows(登録商標)などのオペレーティング・システム上で稼動するアプリケーション・プログラムによって、本装置の各機能が実現されている。従って、図3に示すように、ツール装置50は、ハードウェア構成としては、各種の処理を実行するプロセッサ(MPU)50aと、プロセッサ11が処理を実行する際にワークエリアとして使用するメモリ(RAM)50bと、キーボード,ポインティングデバイス等の入力装置50cと、表示装置50dと、外部装置と接続するための外部インタフェース50eと、を備える。図示省略するが、各種の情報を格納するデータベースとしてのハードディスクも備えている。外部インタフェース50eは、通信インタフェースであり、PLC10(CPUユニット12)と接続され、本発明との関係でいうと、スレーブ,リピータの位置関係に関する情報の収集命令を送ったり、収集した取得したりする。   FIG. 3 shows a connection relationship between the PLC 10 and the tool device 50 and its internal configuration. The tool device 50 is a general personal computer from the viewpoint of hardware, and each function of this device is realized by an application program that runs on an operating system such as Windows (registered trademark). Therefore, as shown in FIG. 3, the tool device 50 has a hardware configuration of a processor (MPU) 50a that executes various processes and a memory (RAM) that is used as a work area when the processor 11 executes the processes. ) 50b, an input device 50c such as a keyboard and a pointing device, a display device 50d, and an external interface 50e for connecting to an external device. Although not shown, a hard disk is also provided as a database for storing various types of information. The external interface 50e is a communication interface and is connected to the PLC 10 (CPU unit 12), and in relation to the present invention, sends an instruction to collect information on the positional relationship between slaves and repeaters, and collects and acquires information. .

よく知られているように、PLC10は、制御プログラムに基づいて演算実行するCPUユニット、センサやスイッチなどの入力機器を接続してそれらのオン・オフ信号を入力信号として取り込む入力ユニット、アクチュエータやリレーなどの出力機器を接続してそれらに対して出力信号を送り出す出力ユニット、ネットワークに接続された他の装置とデータの送受を行なう通信ユニット、マスタスレーブ通信をするためのマスタユニット、各ユニットに電源を供給する電源ユニット、などの複数のユニットを組み合わせることにより構成されている。図3では、上記の各ユニットのうち、本実施形態に関係するCPUユニット12とマスタユニット11とを記載した。   As is well known, the PLC 10 is a CPU unit that performs operations based on a control program, an input unit that connects an input device such as a sensor or switch, and takes in an on / off signal as an input signal, an actuator or a relay. Output unit that connects output devices such as, and sends output signals to them, communication unit that transmits and receives data with other devices connected to the network, master unit for master-slave communication, power to each unit It is configured by combining a plurality of units such as a power supply unit that supplies power. FIG. 3 shows the CPU unit 12 and the master unit 11 related to the present embodiment among the above-described units.

CPUユニット12は、ユーザプログラム,IOリフレッシュ,周辺処理をサイクリックに実行するMPU12aと、そのMPU12aの実行時にワークメモリや、IOデータ等を格納するIOメモリ等のメモリ12bと、外部装置と接続するための外部インタフェース12cと、PLCバスに接続するPLCバスインタフェース12dと、動作状態や異常/正常などを示すLED表示部並びにアドレスの設定などを行なうための設定スイッチ等の入出力部12eと、を備えている。なお、基本的なハードウェア構成等は、従来のCPUユニットと同様であるので、その詳細な説明を省略する。   The CPU unit 12 connects an MPU 12a that cyclically executes a user program, IO refresh, and peripheral processing, a memory 12b such as an IO memory that stores work data and IO data when the MPU 12a is executed, and an external device. An external interface 12c for connecting to the PLC bus, a PLC bus interface 12d connected to the PLC bus, and an input / output unit 12e such as an LED display unit for indicating an operation state or abnormality / normality and a setting switch for setting an address, etc. I have. The basic hardware configuration and the like are the same as those of the conventional CPU unit, and thus detailed description thereof is omitted.

マスタユニット11は、フィールドバスである幹線ネットワークケーブル1に接続され、実際にデータの送受を行うネットワーク通信部(通信インタフェース)11cと、そのネットワーク通信部11cを介してマスタ−スレーブ間通信をし、スレーブ20,リピータ30との間でI/Oデータの送受を行なったり、所定のコマンドの送信並びにそれに基づくレスポンスの受信を行なったり、各種の制御を行うMPU11a(必要に応じてマスタ用ASICが実装される)と、各種の制御実行時にワークエリア等として使用されるメモリ(RAM)11bと、上記制御を行なうプログラムや、各種の設定データ等が格納されたEEPROM(図示せず)と、他のユニット(例えば、CPUユニット)とPLCバスを介して通信を行うためのPLCバスインタフェース11dと、動作状態(通信状態)や異常/正常などを示すLED表示部並びにアドレスの設定などを行なうための設定スイッチ等の入出力部11eと、を備えている。なお、基本的なハードウェア構成等は、従来のマスタユニットと同様であるので、その詳細な説明を省略する。   The master unit 11 is connected to the main line network cable 1 which is a field bus, and performs communication between the master and slave via a network communication unit (communication interface) 11c that actually transmits and receives data, and the network communication unit 11c. MPU 11a for performing various controls such as transmission / reception of I / O data between the slave 20 and the repeater 30, transmission of a predetermined command and reception of a response based on it, and a master ASIC is mounted if necessary. A memory (RAM) 11b used as a work area at the time of execution of various controls, an EEPROM (not shown) storing a program for performing the above control, various setting data, and the like, P for communicating with a unit (for example, a CPU unit) via a PLC bus It includes a C bus interface 11d, and the output unit 11e of the setting switch for performing such operation state (communication state) and abnormal / normal etc. LED display unit as well as the setting of the address indicating the a. The basic hardware configuration and the like are the same as those of the conventional master unit, and thus detailed description thereof is omitted.

スレーブ20は、図4(a)に示すように、フィールドバス用の通信ケーブル(幹線ネットワークケーブル1,支線ネットワークケーブル6)に接続され、実際にマスタユニット10との間でI/Oデータや各種メッセージ等の送受を行うネットワーク通信部20cと、そのネットワーク通信部20cを介して、取得したI/Oデータの送受を行なったり、所定のコマンドの受信並びにそれに基づくレスポンスの送信を行なったり各種の制御を行うMPU20a(必要に応じてスレーブ用ASICが実装される)と、各種の制御実行時にワークエリア等として使用したりIOデータを格納したりするメモリ20bと、上記制御を行うプログラムや、各種の設定データ等が格納されたEEPROM(図示せず)と、入力機器や出力機器等の外部IO機器と接続しI/Oデータの送受を行うI/Oインタフェース20eと、動作状態(通信状態)や異常/正常などを示すLED表示部並びにノードアドレスの設定などを行うための設定スイッチ等の入出力部20dと、を備えている。なお、スレーブ20の構成並びに作用効果は、従来のものと同様であるので、その詳細な説明を省略する。   As shown in FIG. 4A, the slave 20 is connected to a fieldbus communication cable (main network cable 1, branch network cable 6), and actually receives I / O data and various data with the master unit 10. A network communication unit 20c that transmits and receives messages and the like, and transmits / receives acquired I / O data through the network communication unit 20c, receives predetermined commands, and transmits responses based on them, and performs various controls. MPU 20a (slave ASIC is mounted if necessary), a memory 20b used as a work area or storing IO data when executing various controls, a program for performing the above control, EEPROM (not shown) that stores setting data, etc., and external devices such as input devices and output devices I / O interface 20e that connects to O equipment and transmits / receives I / O data, LED display unit indicating operation state (communication state), abnormality / normality, and setting switch for setting node address, etc. And an input / output unit 20d. Note that the configuration and operational effects of the slave 20 are the same as those of the conventional one, and a detailed description thereof will be omitted.

リピータ30は、図4(b)に示すように、上位側のフィールドバス用の通信ケーブル(幹線ネットワークケーブル1等)に接続される第1ネットワーク通信部30cと、下位側のフィールドバス用の通信ケーブル(支線ネットワークケーブル6等)に接続される第2ネットワーク通信部30dと、両ネットワーク通信部30c,30d間に実装され、伝送されるデータ(信号)に対して整形処理その他の所定の処理や各種の制御を行うMPU30a(必要に応じてリピータ用ASICを実装する)と、上記制御を行うプログラムや、各種の設定データ等が格納されたEEPROM(図示せず)と、動作状態(通信状態)や異常/正常などを示すLED表示部並びにノードアドレスの設定などを行うための設定スイッチ等の入出力部30eと、を備えている。なお、リピータ30の構成並びに作用効果は、従来のものと同様であるので、その詳細な説明を省略する。   As shown in FIG. 4B, the repeater 30 includes a first network communication unit 30c connected to a higher-level fieldbus communication cable (such as the trunk network cable 1) and a lower-level fieldbus communication. The second network communication unit 30d connected to the cable (branch network cable 6 etc.) and the two network communication units 30c, 30d are mounted between the network communication units 30c and 30d, and shaping processing and other predetermined processing MPU 30a for performing various controls (installing a repeater ASIC if necessary), an EEPROM (not shown) storing a program for performing the above control, various setting data, and the like, and an operating state (communication state) And an input / output unit 30e such as a setting switch for setting an LED display unit indicating abnormality or normality and a node address, etc. It is equipped with a. The configuration and operational effects of the repeater 30 are the same as those of the conventional one, and a detailed description thereof will be omitted.

本実施形態では、終端抵抗器40に替えて、図5に示す測定ツール装置60を接続し、マスタユニット11と測定ツール装置60とが、それぞれスレーブ20,リピータ30に向けて送信するコマンドとそのレスポンスにより得られた情報から、各スレーブ20,レスポンス30の位置関係を検出する。測定ツール装置60は、フィールドバス用の通信ケーブル(幹線ネットワークケーブル1,支線ネットワークケーブル6)に接続され、ネットワークに加入する他の機器との間で各種メッセージ等の送受を行うネットワーク通信部60cと、所定のコマンドの受信並びにそれに基づくレスポンスの送信を行なったり各種の制御を行ったりするMPU60aと、各種の処理実行時にワークエリア等として使用するメモリ60bと、上記位置関係検出のための情報を取得するためのプログラムや、各種の設定データ等が格納されたEEPROM(図示せず)と、動作状態(通信状態)や異常/正常などを示すLED表示部並びにノードアドレスの設定などを行うための設定スイッチ等の入出力部60dと、を備えている。すなわち、この測定ツール装置60もノードアドレスを持ち、ネットワーク上の一つのノード局となる。よって、終端抵抗側に測定ツール装置60が接続された場合、新規スレーブが追加される場合と同様に、マスタユニット11は測定ツール装置60が接続されたことを認識する。なお、図2に示すネットワークシステムの場合、終端抵抗器50は2個(幹線ネットワークケーブル1の端部と支線ネットワークケーブル6の端部)存在しているので、最終的には、測定ツール装置60を各終端抵抗器50と交換することになるが、複数の測定ツール装置60を用意し、複数の終端抵抗器と交換しても良いし、1つずつ交換していっても良い。   In this embodiment, instead of the termination resistor 40, the measurement tool device 60 shown in FIG. 5 is connected, and the master unit 11 and the measurement tool device 60 transmit commands to the slave 20 and the repeater 30, respectively, and the command. The positional relationship between each slave 20 and the response 30 is detected from the information obtained from the response. The measurement tool device 60 is connected to a fieldbus communication cable (trunk network cable 1, branch network cable 6), and a network communication unit 60c that transmits and receives various messages to and from other devices that join the network. The MPU 60a that receives a predetermined command and transmits a response based on the command and performs various controls, the memory 60b that is used as a work area when executing various processes, and the information for detecting the positional relationship are acquired. EEPROM (not shown) that stores programs and various setting data, etc., LED display that indicates operating status (communication status), abnormality / normality, etc., and settings for setting node addresses And an input / output unit 60d such as a switch. That is, the measurement tool device 60 also has a node address and becomes one node station on the network. Therefore, when the measurement tool device 60 is connected to the terminal resistance side, the master unit 11 recognizes that the measurement tool device 60 is connected, as in the case where a new slave is added. In the case of the network system shown in FIG. 2, since there are two termination resistors 50 (the end of the main network cable 1 and the end of the branch network cable 6), the measurement tool device 60 is finally used. Is replaced with each termination resistor 50, but a plurality of measurement tool devices 60 may be prepared and replaced with a plurality of termination resistors, or may be replaced one by one.

位置関係を特定する対象として2つのノード局(スレーブ20及びまたはリピータ30)を選択し、マスタユニット11と、測定ツール装置60は、それぞれその選択した2のノード局に対して、コマンドを送り、レスポンス返ってくるまでの時間を計測する。すなわち、図6に示すように、判定対象(特定対象)の2つのノード局(第1判定対象局と第2判定対象局)が、ノードアドレス#1,#2のスレーブ20の場合、マスタユニット11は、それぞれのスレーブに対してコマンドを発信し、発信してからレスポンスを受信するまでの時間t1,t2を測定し、同様に測定ツール装置60は、それぞれのスレーブに対してコマンドを発信し、発信してからレスポンスを受信するまでの時間s1,s2を測定する。   Two node stations (slave 20 and / or repeater 30) are selected as targets for specifying the positional relationship, and master unit 11 and measurement tool device 60 send commands to the selected two node stations, Measure the time until the response is returned. That is, as shown in FIG. 6, when two node stations (first determination target station and second determination target station) to be determined (specific targets) are slaves 20 of node addresses # 1 and # 2, the master unit 11 transmits a command to each slave and measures the times t1 and t2 from when the response is received until the response is received. Similarly, the measurement tool device 60 transmits a command to each slave. , S1 and s2 are measured from when the call is sent until the response is received.

ここで、送信するコマンドのデータフォーマットは、たとえば図7(a)に示す構造を採り、また、返信するレスポンスのデータフォーマットは、たとえば図7(b)に示す構造を採る。サービスコードに、予め決めた計測のためのコードデータを格納することで、位置関係判定のためのコマンド−レスポンスの通信を行なう。また、スレーブやリピータは、ネットワークに加入処理をする際、マスタユニットに対して自己のアドレスを伝え、更にリピータは、自己の下位の支線ネットワークケーブルに接続されるスレーブ(リピータ)のアドレスを取得しているので、それをマスタユニットに伝えるので、マスタユニット11は、ネットワークに加入しているスレーブ,リピータのアドレスを知っていることになる。よって、マスタユニット11は、上記のコマンドを送信する場合、上記加入処理の際にマスタユニットが取得した情報に基づいて対象とするアドレスを送信先アドレスに格納する。また、測定ツール装置60は、マスタユニット11からその対象となるアドレスを取得することで、コマンド−レスポンス通信を行なうことができる。また、上位のツール装置50は、マスタや、リピータからデータを受け取ることで、アドレスや位置関係を知ることができる。   Here, the data format of the command to be transmitted adopts the structure shown in FIG. 7A, for example, and the data format of the response to be returned takes the structure shown in FIG. 7B, for example. By storing code data for predetermined measurement in the service code, command-response communication for determining the positional relationship is performed. When a slave or repeater joins a network, it transmits its own address to the master unit, and the repeater acquires the address of the slave (repeater) connected to its lower branch network cable. Therefore, since it is transmitted to the master unit, the master unit 11 knows the addresses of slaves and repeaters that have joined the network. Therefore, when transmitting the above-mentioned command, the master unit 11 stores the target address in the transmission destination address based on the information acquired by the master unit during the subscription process. Further, the measurement tool device 60 can perform command-response communication by acquiring the target address from the master unit 11. Further, the host tool device 50 can know the address and the positional relationship by receiving data from the master and the repeater.

上記のようにして各時間を計測したならば、次に、第1判定対象局(図6では、ノードアドレス1番:#1)に対する測定値(t1,s1)から第2判定対象局(図6では、ノードアドレス2番:#2)に対する測定値(t2,s2)をそれぞれ減算することで、測定値の差分を求める。その差分の算出結果は、原則として、第1判定対象局の方が近い場合には、負の値となり、第2判定対象局の方が近い場合には、正の値となる。よって、得られた測定値を下記式に代入すると、
y=(t1−t2)−(s1−s2)
yの値が負ならば、第1判定対象局である#1がマスタユニット11側に位置し、第2判定対象局である#2が測定ツール装置60側に位置する(マスタユニットから見ると、幹線ネットワークケーブル1に、#1,#2の順に並ぶ位置関係(図6に図示したものと同じ状態)にある)と判断でき、yの値が正ならば、第2判定対象局である#2がマスタユニット11側に位置し、第2判定対象局である#1が測定ツール装置60側に位置する(マスタユニットから見ると、幹線ネットワークケーブルに、#2,#1の順に並ぶ位置関係にある)と判断できる。
If each time is measured as described above, next, the second determination target station (FIG. 6) is calculated from the measured values (t1, s1) for the first determination target station (node address # 1: # 1 in FIG. 6). 6, the difference between the measured values is obtained by subtracting the measured values (t2, s2) from the node address # 2: # 2). The calculation result of the difference is, in principle, a negative value when the first determination target station is closer, and a positive value when the second determination target station is closer. Therefore, substituting the obtained measured value into the following formula,
y = (t1-t2)-(s1-s2)
If the value of y is negative, # 1 that is the first determination target station is located on the master unit 11 side, and # 2 that is the second determination target station is located on the measurement tool device 60 side (when viewed from the master unit). It can be determined that the positional relationship is in the order of # 1 and # 2 in the trunk network cable 1 (the same state as that illustrated in FIG. 6), and if the value of y is positive, it is the second determination target station. # 2 is located on the master unit 11 side, and # 1, which is the second determination target station, is located on the measurement tool device 60 side (when viewed from the master unit, the positions are arranged in the order of # 2 and # 1 on the trunk network cable. It can be determined that

更に、上記の判定式を用いることで、各スレーブ,リピータにおけるコマンドを受信してからレスポンスを作成し、送信するまでに要する通信処理時間のばらつきの影響を解消することができる。すなわち、各スレーブ・リピータは、内装される通信IC固有の性能のばらつきがあるので、計測したコマンド−レスポンスの時間(t1,t2,s1,s2)は、いずれもの距離に応じて決定されるフレームを伝送するために要する時間と、上記通信IC固有の性能に基づいて決定される局内での処理時間を含む。そこで、仮に、図6に示すように、#1のスレーブ20がマスタユニット11側に位置している場合でも、#1のスレーブ20の通信IC固有の性能に基づく局内での処理時間が非常に長く、逆に#2のスレーブ20の局内での処理時間が非常に短い場合、それぞれの局内の処理時間にフレーム伝送に要する時間を加えた測定値t1,t2は、t1>t2になることがあり得る。   Furthermore, by using the above-described determination formula, it is possible to eliminate the influence of variations in communication processing time required for generating and transmitting a response after receiving a command at each slave and repeater. That is, since each slave repeater has a variation in performance unique to the built-in communication IC, the measured command-response time (t1, t2, s1, s2) is a frame determined according to any distance. And the processing time within the station determined based on the performance unique to the communication IC. Therefore, as shown in FIG. 6, even when the # 1 slave 20 is located on the master unit 11 side, the processing time in the station based on the performance unique to the communication IC of the # 1 slave 20 is very long. If the processing time in the station of the slave # 2 is long and conversely very short, the measured values t1 and t2 obtained by adding the time required for frame transmission to the processing time in each station may be t1> t2. possible.

しかし、本実施形態では、マスタユニット11に加え、測定ツール装置60を設け、1つの判定対象局に対して、マスタユニット11における測定値と、測定ツール装置60における測定値を得るようにし、上記の判定式から明らかなように、その同一対象局について求めた両測定値(t1とs1,t2とs2)の差を採ることから、通信IC固有の性能に基づいて決定される局内での処理時間は相殺され、結局、判定式により求められたyの値は、当該局内での処理時間の影響が無く、フレーム伝送に基づく時間により決定されることになる。つまり、第1判定対象局についての測定値であるt1とs1に着目すると、判定式yでは、“t1−s1”が演算処理され、第2判定対象局についての測定値であるt2とs2に着目すると、判定式yでは、“−t2−(−s2)”が演算処理されることになり、各測定値に含まれる局内での処理時間は、減算処理されて0になるのである。   However, in this embodiment, the measurement tool device 60 is provided in addition to the master unit 11, and the measurement value in the master unit 11 and the measurement value in the measurement tool device 60 are obtained for one determination target station. As is clear from the determination formula, the difference between the two measured values (t1 and s1, t2 and s2) obtained for the same target station is taken, so that the processing within the station determined based on the performance unique to the communication IC The time is offset, and as a result, the value of y obtained from the determination formula is not affected by the processing time in the station, and is determined by the time based on the frame transmission. That is, when attention is paid to the measurement values t1 and s1 for the first determination target station, “t1−s1” is calculated in the determination equation y, and the measurement values t2 and s2 for the second determination target station are calculated. When attention is paid, in the determination formula y, “−t2 − (− s2)” is calculated, and the processing time in the station included in each measurement value is reduced to 0.

本実施形態では、実際には一回だけでは差がほとんどないので、例えば100回分のトータル時間を計測し、それを上記の各測定値t1,t2,s1,s2とする。更に、その計測を複数回(N回)繰り返することで、下記の測定値を得る。

Figure 2009118041
In the present embodiment, there is practically no difference in only one time. Therefore, for example, a total time of 100 times is measured and set as the above-described measured values t1, t2, s1, and s2. Furthermore, the following measured value is obtained by repeating the measurement a plurality of times (N times).
Figure 2009118041

そして、そのようにして得られたN回分の測定値に対して平均処理を行い、下記の判定条件式に従い、計測誤差成分を消した状態で、各判定対象局の位置関係を特定する。

Figure 2009118041
Then, an average process is performed on the N measurement values obtained as described above, and the positional relationship between the respective determination target stations is specified in a state where the measurement error component is eliminated according to the following determination condition formula.
Figure 2009118041

ネットワークに加入するスレーブ及びリピータの中の任意の2つのノード局における全ての組み合わせに対し、上記の位置関係の判定処理を行なう。つまり、ノードアドレスi番とノードアドレスj番のノード局を判定対象局に選択し、その選択した組み合わせの判定対象局に対して上述した測定値t1,t2,s1,s2を測定する。そして、得られた測定値(実際には、複数回のトータル時間を計測し、その計測をN回繰り返す)を下記のソートアルゴリズム判定式に従って各組み合わせの要素m(i,j)について“1/0”を決定する。この判定式は、ノードアドレスi番のノード局が、j番のノード局よりもマスタユニットに近いことを意味する。

Figure 2009118041
The above positional relationship determination processing is performed for all combinations in any two node stations among slaves and repeaters that join the network. That is, the node stations having the node address i and the node address j are selected as the determination target stations, and the above-described measurement values t1, t2, s1, and s2 are measured for the determination target stations of the selected combination. Then, the obtained measurement values (actually, a total time of a plurality of times is measured and the measurement is repeated N times) according to the following sort algorithm determination formula, “1 / 0 ”is determined. This determination formula means that the node station of the node address i is closer to the master unit than the node station of the j.
Figure 2009118041

このようにして、全ての組み合わせの要素について、1/0を求める他ならば、図8に示すようにマトリクスを作成し、各行の和を計算する。なお、このマトリクスは、概念を示すものであり、実際にはマトリクスを作成せずに、右の欄外に記載した評価値Sを求める評価式を用いて各ノードアドレスの評価値を算出すればよい。そして、評価値Siの大きい順にソートすることで、各ノード局をマスタユニット11から近い順に並べることができ、これにより、各ノード局(スレーブ,リピータ)の位置関係を特定することができる。   In this way, if 1/0 is obtained for all combinations of elements, a matrix is created as shown in FIG. 8, and the sum of each row is calculated. Note that this matrix shows a concept, and the evaluation value of each node address may be calculated using an evaluation formula for obtaining the evaluation value S described in the right column without actually creating the matrix. . Then, by sorting in descending order of the evaluation value Si, the node stations can be arranged in the order from the master unit 11, thereby identifying the positional relationship between the node stations (slave and repeater).

一例を示すと、例えば図9に示すように、マスタユニット11側から順に、ノードアドレス#4,#1,#2,#3のスレーブ20が幹線ネットワークケーブルに接続されている場合、全ての組み合わせについて測定値を求め、判定式に従って、各要素について1/0を決定する。すると、図10に示すようなマトリクスが得られ、各行の和を計算すると、図10に示すように、各評価値は、
S1=2
S2=1
S3=0
S4=3
となる。よって、各スレーブ20は、図9に示す順番に並んでいることを認識することができる。
For example, as shown in FIG. 9, for example, when the slaves 20 of node addresses # 4, # 1, # 2, and # 3 are connected to the trunk network cable in order from the master unit 11, all combinations are performed. The measured value is obtained for 1 and 1/0 is determined for each element according to the judgment formula. Then, a matrix as shown in FIG. 10 is obtained, and when the sum of each row is calculated, as shown in FIG.
S1 = 2
S2 = 1
S3 = 0
S4 = 3
It becomes. Therefore, the slaves 20 can recognize that they are arranged in the order shown in FIG.

また、図9では、各スレーブが幹線ネットワークケーブルに接続された単純なネットワーク構成について示しているが、図2に示すような支線ネットワークケーブルを有するネットワーク構成のものについても、同様にして位置関係を特定することができる。すなわち、例えば図2に示すものの場合、マスタユニット11は、支線ネットワークケーブル6に接続された2つのスレーブ20がリピータ30の配下であることを認識しているため、支線ネットワークケーブル6の端部に接続された測定ツール装置60とマスタユニット11とが、当該2つのスレーブを判定対象局とし、上記と同様の処理をすることで位置関係を特定することができる。また、幹線ネットワークケーブルに接続されたリピータの位置は、幹線ネットワークケーブルに接続された他のスレーブを含め、位置関係を特定することができる。   FIG. 9 shows a simple network configuration in which each slave is connected to a trunk network cable. However, the positional relationship is similarly applied to a network configuration having a branch network cable as shown in FIG. Can be identified. That is, for example, in the case shown in FIG. 2, the master unit 11 recognizes that the two slaves 20 connected to the branch network cable 6 are under the repeater 30, so that the master unit 11 is connected to the end of the branch network cable 6. The connected measurement tool device 60 and the master unit 11 can specify the positional relationship by performing the same processing as described above with the two slaves as the determination target stations. In addition, the position of the repeater connected to the main line network cable can specify the positional relationship including other slaves connected to the main line network cable.

さらに、リピータにも測定ツール機能を実装すると、リピータ処理による誤差が無くなり分岐先の位置関係もさらに正確に把握できるので好ましい。   Furthermore, it is preferable to install a measurement tool function on the repeater because errors due to the repeater process are eliminated and the positional relationship between branch destinations can be grasped more accurately.

なお、上述した説明では、2つの判定対象局を選択し、各判定対象局に対するコマンド−レスポンスの時間を測定し、得られた測定値に基づいて2つの判定対象局のいずれがマスタ局に近い(遠い)かの位置関係を求めるようにしたが、具体的なコマンド−レスポンスの時間の測定は、2つの判定対象局の組み合わせが決まる都度それぞれに対して行なっても良いし、予め各スレーブやリピータに対して測定値(100回分の計測+その計測をN回分)を求めておき、2つの判定対象局の位置関係を求める際に、その予め求めておいた計測値を利用することもできる。   In the above description, two determination target stations are selected, the command-response time for each determination target station is measured, and any of the two determination target stations is closer to the master station based on the obtained measurement value. Although the positional relationship of (distant) is determined, a specific command-response time measurement may be performed for each combination of two determination target stations, or each slave or Measurement values (100 measurements + N measurements) are obtained for the repeater, and the obtained measurement values can be used when obtaining the positional relationship between the two determination target stations. .

次に、上記の位置関係の判定処理を行なうための、各装置の具体的な機能(アルゴリズム)を説明する。上位PCで構成されるツール装置50は、図11に示すフローチャートを実行する機能を備える。すなわち、ツール装置50は、マスタユニットに対し位置関係の測定指示メッセージを送信する(S1)。そして、ツール装置50は、そのメッセージに対するレスポンスとして、マスタユニット(必要に応じてリピータ)から位置関係データを受信する(S2)。この位置関係データは、上述した各マスタユニットや測定ツール装置で取得した測定値に関するデータである。   Next, specific functions (algorithms) of each device for performing the above positional relationship determination process will be described. The tool device 50 composed of a host PC has a function of executing the flowchart shown in FIG. In other words, the tool device 50 transmits a positional relationship measurement instruction message to the master unit (S1). Then, the tool device 50 receives the positional relationship data from the master unit (repeater as necessary) as a response to the message (S2). This positional relationship data is data relating to measurement values acquired by the above-described master units and measurement tool devices.

ツール装置50は、取得したデータに基づいて、ネットワークに加入するスレーブやリピータなどのノード局の位置関係を求め、求めた位置関係に基づき実際の配置状況と一致するネットワーク構成図を作成し、表示装置に表示する(S3)。なお、マスタから送られてくる位置関係データが、測定値ではなく、マスタ側で各ノード局の位置関係を求めた結果の場合、ツール装置50は、その位置関係のデータに基づいて実際の配置状況と一致するネットワーク構成図を作成し、表示装置に表示することになる。   Based on the acquired data, the tool device 50 obtains the positional relationship of node stations such as slaves and repeaters that join the network, creates a network configuration diagram that matches the actual arrangement based on the obtained positional relationship, and displays it. It is displayed on the device (S3). If the positional relationship data sent from the master is not a measurement value but a result of determining the positional relationship of each node station on the master side, the tool device 50 determines the actual location based on the positional relationship data. A network configuration diagram that matches the situation is created and displayed on the display device.

マスタユニット11は、図12に示すフローチャートを実施する機能を備える。すなわち、マスタユニット11は、上位PCであるツール装置50からの測定指示を受信すると(S11)、各スレーブや、リピータに対して順次位置関係を求めるためのコマンドを送信し、その送信からレスポンスを受信するまでの時間tiを求め、メモリ11bに保存する(S12)。この時間t1は、実際には、同じネットワークアドレスに対して、所定回数送信することで複数回分のデータを取得するので、その複数回分のデータを保存する。   The master unit 11 has a function of executing the flowchart shown in FIG. That is, when the master unit 11 receives a measurement instruction from the tool device 50, which is a host PC (S11), it sends a command for sequentially obtaining a positional relationship to each slave or repeater, and sends a response from the transmission. Time ti until reception is obtained and stored in the memory 11b (S12). Since the data for a plurality of times is actually acquired at this time t1 by transmitting a predetermined number of times to the same network address, the data for the plurality of times is stored.

次に、マスタユニット11は、ネットワークケーブルの端部に接続した測定ツール装置に向けて、測定指示のメッセージを送る(S13)。この測定指示のメッセージには、測定対象となるノード局を特定するためのノードアドレスなどの情報が含まれる。その測定指示のメッセージを受信した測定ツール装置は、後述する処理を実行して各スレーブや、リピータに対する測定値を求め、その測定結果をレスポンスとして返してくる。そこで、マスタユニット11は、その測定ツール装置60から送られてきた測定結果を受信する(S14)。この受信した測定結果は、メモリ11bに格納する。   Next, the master unit 11 sends a measurement instruction message to the measurement tool device connected to the end of the network cable (S13). This measurement instruction message includes information such as a node address for specifying a node station to be measured. Upon receiving the measurement instruction message, the measurement tool device performs processing to be described later, obtains measurement values for each slave and repeater, and returns the measurement results as a response. Therefore, the master unit 11 receives the measurement result sent from the measurement tool device 60 (S14). The received measurement result is stored in the memory 11b.

次に、マスタユニット11は、リピータの有無を判断する(S15)。これは、リピータがネットワークに加入する際に、その情報をノードアドレスと共にマスタユニットに伝えてくるので、マスタユニット11は、その情報からリピータの有無を知ることができる。そして、マスタユニット11は、リピータが存在する場合(S15でYes)には、そのリピータに対して測定指示のメッセージを送信する(S16)。そして、マスタユニット11は、リピータから送られてくる測定結果を受信し、メモリ11bに格納する(S17)。   Next, the master unit 11 determines the presence or absence of a repeater (S15). This is because when the repeater joins the network, the information is transmitted to the master unit together with the node address, so that the master unit 11 can know the presence or absence of the repeater from the information. When the repeater is present (Yes in S15), the master unit 11 transmits a measurement instruction message to the repeater (S16). Then, the master unit 11 receives the measurement result sent from the repeater and stores it in the memory 11b (S17).

なお、ここでは、リピータにも測定ツール装置・機能が実装され、リピータの下位に加入されたスレーブ等の位置関係は、そのリピータと、支線ネットワークケーブル6の端部に接続された測定ツール装置とでそれぞれ測定した測定値に基づき位置関係を特定するものに適用するための処理ステップであり、リピータに測定ツール装置の機能を実装しない場合には、この処理ステップを省略できる。   Here, the measurement tool device / function is also implemented in the repeater, and the positional relationship of the slaves and the like subordinate to the repeater is the same as that of the repeater and the measurement tool device connected to the end of the branch network cable 6. This processing step is applied to those for specifying the positional relationship based on the measurement values measured in step (b), and this processing step can be omitted when the function of the measurement tool device is not implemented in the repeater.

マスタユニット11は、自己で求めた測定結果並びに測定ツール装置(リピータからのも含む)から取得した測定結果に基づき、位置関係を求め(S18)、求めた結果をレスポンスとして上位PCであるツール装置50へ送信する(S19)。処理ステップS18における位置関係の算出は、取得した各計測値に基づいて、最終的な各スレーブやリピータの位置関係を求める評価値Siを算出し、位置関係を特定できるまでの情報を求めるようにしても良いし、所定回数分の測定値の総和を求めるだけでもよい。さらには、マスタユニット11では、単に測定値を計測したり、測定ツール装置が求め測定値を受信したりしたものを保存し、所定のタイミングでそれらの測定値をツール装置50へ送るだけでも良い。その場合には、処理ステップS18は無くとも良い。つまり、図12におけるフローチャートの内、S15〜S17の処理ステップや、S17の処理ステップは、設けなくても良い。   The master unit 11 obtains the positional relationship based on the measurement result obtained by itself and the measurement result obtained from the measurement tool device (including the repeater) (S18), and the tool device which is the host PC using the obtained result as a response. 50 (S19). In the calculation of the positional relationship in the processing step S18, the evaluation value Si for determining the final positional relationship of each slave or repeater is calculated based on each acquired measurement value, and information until the positional relationship can be specified is determined. Alternatively, the total sum of the measured values for a predetermined number of times may be obtained. Furthermore, the master unit 11 may simply store the measurement values measured or received by the measurement tool device and send the measurement values to the tool device 50 at a predetermined timing. . In that case, the processing step S18 may be omitted. That is, the processing steps of S15 to S17 and the processing step of S17 may not be provided in the flowchart in FIG.

リピータ30に測定ツール装置・機能を実装した場合、当該リピータ30は、図13に示すフローチャートを実行する機能を有する。すなわち、リピータ30は、マスタユニット11からの測定指示を受信すると(S41)、各スレーブや、リピータに対して順次位置関係を求めるためのコマンドを送信し、その送信からレスポンスを受信するまでの時間tiを求め、メモリ11bに保存する(S42)。この時間t1は、実際には、同じネットワークアドレスに対して、所定回数送信することで複数回分のデータを取得するので、その複数回分のデータを保存する。   When the measurement tool device / function is mounted on the repeater 30, the repeater 30 has a function of executing the flowchart shown in FIG. That is, when the repeater 30 receives the measurement instruction from the master unit 11 (S41), the repeater 30 transmits a command for sequentially obtaining the positional relationship to each slave or repeater, and the time from the transmission to the reception of the response ti is obtained and stored in the memory 11b (S42). Since the data for a plurality of times is actually acquired at this time t1 by transmitting a predetermined number of times to the same network address, the data for the plurality of times is stored.

次に、リピータ30は、ネットワークケーブルの端部に接続した測定ツール装置に向けて、測定指示のメッセージを送る(S13)。この測定指示のメッセージには、測定対象となるノード局を特定するためのノードアドレスなどの情報が含まれる。その測定指示のメッセージを受信した測定ツール装置は、後述する処理を実行して測定対象のネットワークケーブルに加入する各スレーブや、リピータに対する測定値を求め、その測定結果をレスポンスとして返してくる。そこで、リピータ30は、その測定ツール装置60から送られてきた測定結果を受信する(S44)。この受信した測定結果は、メモリ30bに格納する。   Next, the repeater 30 sends a measurement instruction message to the measurement tool device connected to the end of the network cable (S13). This measurement instruction message includes information such as a node address for specifying a node station to be measured. Upon receiving the measurement instruction message, the measurement tool device executes processing described later to obtain measurement values for each slave or repeater that joins the network cable to be measured, and returns the measurement result as a response. Therefore, the repeater 30 receives the measurement result sent from the measurement tool device 60 (S44). The received measurement result is stored in the memory 30b.

次に、リピータ30は、他のリピータの有無を判断する(S45)。これは、リピータがネットワークに加入する際に、その情報をノードアドレスと共にマスタユニット(上位のリピータ)に伝えてくるので、リピータ30はその情報から下位のネットワークにリピータが加入しているか否かを判断する。リピータ30は、リピータが存在する場合(S45でYes)には、そのリピータに対して測定指示のメッセージを送信する(S46)。そして、リピータ30は、当該メッセージを送信した下位に存在するリピータから送られてくる測定結果を受信し、メモリ30bに格納する(S47)。   Next, the repeater 30 determines the presence or absence of another repeater (S45). This is because when the repeater joins the network, the information is transmitted to the master unit (upper repeater) together with the node address, so that the repeater 30 determines whether the repeater joins the lower network from the information. to decide. When there is a repeater (Yes in S45), the repeater 30 transmits a measurement instruction message to the repeater (S46). Then, the repeater 30 receives the measurement result sent from the repeater existing in the lower order that transmitted the message, and stores it in the memory 30b (S47).

リピータ30は、自己で求めた測定結果並びに測定ツール装置(他のリピータからのも含む)から取得した測定結果に基づき、位置関係を求め(S48)、求めた結果をレスポンスとしてマスタユニット11へ送信する(S49)。この処理ステップS48における位置関係の算出は、取得した各計測値に基づいて、最終的な各スレーブやリピータの位置関係を求める評価値Siを算出し、位置関係を特定できるまでの情報を求めるようにしても良いし、所定回数分の測定値の総和を求めるだけでもよい。さらには、リピータ30では、単に測定値を計測したり、測定ツール装置が求め測定値を受信したりしたものを保存し、所定のタイミングでそれらの測定値をマスタユニット11へ送るだけでも良い。また、マスタユニット11の場合と同様に、図13におけるフローチャートの内、S45〜S46の処理ステップや、S48の処理ステップは、設けなくても良い。   The repeater 30 obtains the positional relationship based on the measurement result obtained by itself and the measurement result obtained from the measurement tool device (including from other repeaters) (S48), and transmits the obtained result to the master unit 11 as a response. (S49). In the calculation of the positional relationship in this processing step S48, an evaluation value Si for determining the final positional relationship of each slave or repeater is calculated based on each acquired measurement value, and information until the positional relationship can be specified is determined. Alternatively, the total sum of measured values for a predetermined number of times may be obtained. Further, the repeater 30 may simply store the measurement values measured or received by the measurement tool device and send the measurement values to the master unit 11 at a predetermined timing. As in the case of the master unit 11, the processing steps S45 to S46 and the processing step S48 may not be provided in the flowchart in FIG.

測定ツール装置60は、図14に示すフローチャートを実行する機能を有する。測定ツール装置60は、自己が接続されたネットワークケーブルの他方の端部に接続されたマスタユニット或いはリピータから測定指示のメッセージを受信すると(S21)、受信したメッセージに含まれた測定対象のノードアドレスに基づき、各スレーブ(リピータを含む)に対し、順次位置関係を求めるためのコマンドを送信し、その送信からレスポンスを受信するまでの時間siを求め、メモリ60bに保存する(S22)。そして、測定ツール装置60は、処理ステップS21で受信したメッセージの送信元のマスタユニット或いはリピータに対して、レスポンスとして測定結果を送信する(S23)。   The measurement tool device 60 has a function of executing the flowchart shown in FIG. When the measurement tool device 60 receives a measurement instruction message from the master unit or repeater connected to the other end of the network cable to which the measurement tool device 60 is connected (S21), the node address of the measurement target included in the received message Based on the above, a command for sequentially obtaining the positional relationship is transmitted to each slave (including the repeater), and a time si from the transmission to the reception of the response is obtained and stored in the memory 60b (S22). And the measurement tool apparatus 60 transmits a measurement result as a response with respect to the master unit or repeater of the transmission origin of the message received by process step S21 (S23).

スレーブ20(リピータ30も含む)は、図15に示すフローチャートを実行する機能を有する。すなわち、スレーブは、マスタユニット,リピータ或いは測定ツール装置から、位置関係計測用のコマンドを受信したならば(S31)、そのコマンドの送信元に対してレスポンスを返す処理を実行する(S32)。   The slave 20 (including the repeater 30) has a function of executing the flowchart shown in FIG. That is, when the slave receives a positional relationship measurement command from the master unit, repeater, or measurement tool device (S31), the slave executes a process of returning a response to the command transmission source (S32).

ネットワークに加入する各装置が、上述した各フローチャートを実行する機能を備えた場合(リピータに測定ツール機能を実装する)、例えば図16に示すようなネットワーク構成からなるシステムでは、以下に示す手順によりそれぞれの位置関係を特定することができる。まず、幹線ネットワークケーブル1に加入される4つのスレーブ20のノードアドレスは、#1から#4が図示のように割り当てられており、幹線ネットワークケーブル1に加入されるリピータ30のノードアドレスは、#5が割り当てられる。このリピータ30は、測定ツール機能M3を備えている。また、マスタユニット11も測定ツール機能M1を備え、各ネットワークケーブル1,6の端部には、終端抵抗器に替えて測定ツール装置60(M2,M4)が接続される。更に、リピータ30の下位の支線ネットワークケーブル6には、3つのスレーブ20が加入されており、それぞれのノードアドレスは、#6から#8が図示のように割り当てられている。   When each device that joins the network has a function of executing the above-described flowcharts (implementing a measurement tool function in a repeater), for example, in a system having a network configuration as shown in FIG. Each positional relationship can be specified. First, the node addresses of the four slaves 20 joined to the trunk network cable 1 are assigned # 1 to # 4 as shown in the figure, and the node address of the repeater 30 joined to the trunk network cable 1 is # 5 is assigned. The repeater 30 has a measurement tool function M3. The master unit 11 also has a measurement tool function M1, and a measurement tool device 60 (M2, M4) is connected to the end of each network cable 1, 6 in place of the termination resistor. Further, three slaves 20 are joined to the branch network cable 6 below the repeater 30, and node addresses # 6 to # 8 are assigned as shown in the figure.

この場合において、ツール装置50から指示を受けたマスタユニット11は、幹線ネットワークケーブル1に加入するスレーブ(#1から#4)とリピータ30(#5)に対してコマンドを送信し、レスポンスを受信するまでの時間を測定する。マスタユニット11は、測定ツール装置(M2)に向けて、メッセージを送信し、測定ツール装置が測定した#1から#5の各測定値を測定結果として受信する。これらM1とM2で求めた測定値に基づき、#1から#5の各スレーブ,リピータの位置関係が特定できる。なお、位置関係の特定は、マスタユニットが行なっても良いし、ツール装置50が行なっても良い。   In this case, the master unit 11 receiving the instruction from the tool device 50 transmits a command to the slaves (# 1 to # 4) and the repeater 30 (# 5) that join the trunk network cable 1 and receives a response. Measure the time to complete. The master unit 11 transmits a message to the measurement tool device (M2) and receives each measurement value # 1 to # 5 measured by the measurement tool device as a measurement result. Based on the measured values obtained by these M1 and M2, the positional relationship between the slaves # 1 to # 5 and the repeater can be specified. The positional relationship may be specified by the master unit or the tool device 50.

また、マスタユニット11は、#5のノード局は、リピータ30であり、しかも、測定ツール機能を実装していることを知っている(リピータ30のネットワーク加入時に、そのリピータから送られてきた情報により)。さらに、マスタ11は、そのリピータの下位の支線ネットワークケーブル6に、#6から#8のノードアドレスを持つスレーブ20が加入していることも知っている(そのスレーブ20の加入時に、スレーブから送られてくる情報により)。そこで、マスタユニット11は、リピータに対して、その下位に接続される#6から#8のノードアドレスを持つスレーブ20の位置関係を調べるための測定指示メッセージを送る。するとリピータ30(M3)は、#6から#8のスレーブに対してコマンドを送信し、レスポンスを受信するまでの時間を測定するとともに、測定ツール装置60(M4)に対して、それらのスレーブに対する測定指示メッセージを送信する。測定ツール装置60(M4)は、受信したメッセージに従い、#6から#8のスレーブに対する測定値を求め、その測定結果をレスポンスとしてリピータ30(M3)に返す。すると、リピータ30が持つM3とM4で求めた測定値に基づき、#6から#8の各スレーブの位置関係が特定できる。なお、位置関係の特定は、リピータ30が行なっても良いし、マスタユニット11が行なっても良いし、ツール装置50が行なっても良い。   Also, the master unit 11 knows that the # 5 node station is the repeater 30 and that the measurement tool function is installed (information transmitted from the repeater 30 when the repeater 30 joins the network). By). Furthermore, the master 11 also knows that the slave 20 having node addresses # 6 to # 8 has joined the branch network cable 6 below the repeater (when the slave 20 joins, the master 11 sends the slave 20). (Depending on the information) Therefore, the master unit 11 sends a measurement instruction message for checking the positional relationship of the slaves 20 having node addresses # 6 to # 8 connected to the lower level to the repeater. Then, the repeater 30 (M3) transmits a command to the slaves # 6 to # 8, measures the time until the response is received, and measures the slaves to the measurement tool device 60 (M4). Send a measurement instruction message. The measurement tool device 60 (M4) obtains measurement values for the slaves # 6 to # 8 according to the received message, and returns the measurement result to the repeater 30 (M3) as a response. Then, the positional relationship between the slaves # 6 to # 8 can be specified based on the measured values obtained by M3 and M4 of the repeater 30. The positional relationship may be specified by the repeater 30, the master unit 11, or the tool device 50.

そして、リピータ30は、マスタユニットに対してM3,M4で求めた測定値(リピータで位置関係を特定した場合には、その位置関係のデータ)をレスポンスとして返す。そこで、マスタユニットは、#1から#8の位置関係を特定する情報(測定値/求めた位置関係)をツール装置50に返す。これにより、ツール装置50は、図16に示す実際の配置に一致するネットワーク構成図を作成し、表示することができる。   Then, the repeater 30 returns, as a response, the measurement values obtained by M3 and M4 (data of the positional relationship when the positional relationship is specified by the repeater) to the master unit. Therefore, the master unit returns information (measured value / calculated positional relationship) specifying the positional relationship of # 1 to # 8 to the tool device 50. Thus, the tool device 50 can create and display a network configuration diagram that matches the actual arrangement shown in FIG.

また、上記の例では、リピータが収集した測定値等の位置関係を特定するための情報はマスタユニット11が一旦取得し、ツール装置50に渡すようにしたが、ツール装置がリピータ30に対して計測指示メッセージを送信し、そのレスポンスとしてリピータ30からツール装置へ測定結果を返すようにしても良い。すなわち、上述したように、マスタユニット11は、リピータ30が測定ツール機能を備えていることと、リピータ30の下位に3つのスレーブ(#6から#8)が加入していることを知っているので、マスタユニット11がその情報をツール装置50に通知する。ツール装置50は、マスタユニット11から取得した当該情報に基づき、#5のリピータに対して、#6から#8のスレーブの測定指示メッセージを送信する。これに基づき、リピータは所定の計測を実行し、その測定結果をツール装置50に返すことができる。   In the above example, the master unit 11 once acquires the information for specifying the positional relationship such as the measurement values collected by the repeater and passes it to the tool device 50. A measurement instruction message may be transmitted, and the measurement result may be returned from the repeater 30 to the tool device as a response. That is, as described above, the master unit 11 knows that the repeater 30 has the measurement tool function and that three slaves (# 6 to # 8) are joined to the lower part of the repeater 30. Therefore, the master unit 11 notifies the information to the tool device 50. Based on the information acquired from the master unit 11, the tool device 50 transmits the measurement instruction messages of the slaves # 6 to # 8 to the repeater # 5. Based on this, the repeater can perform a predetermined measurement and return the measurement result to the tool device 50.

従来例を示す図である。It is a figure which shows a prior art example. ネットワークシステムの一例を示す図である。It is a figure which shows an example of a network system. PLC10とツール装置50の接続関係とその内部構成を示す図である。It is a figure which shows the connection relation of PLC10 and the tool apparatus 50, and its internal structure. スレーブとリピータの内部構成を示す図である。It is a figure which shows the internal structure of a slave and a repeater. 測定ツール装置の内部構成を示す図である。It is a figure which shows the internal structure of a measurement tool apparatus. 作用・動作原理を説明する図である。It is a figure explaining an action and an operation principle. コマンド・レスポンスのデータフォーマットの一例を示す図である。It is a figure which shows an example of the data format of a command response. 作用・動作原理を説明する図である。It is a figure explaining an action and an operation principle. 作用を説明する図である。It is a figure explaining an effect | action. 作用を説明する図である。It is a figure explaining an effect | action. ツール装置の機能を説明するフローチャートである。It is a flowchart explaining the function of a tool apparatus. マスタユニットの機能を説明するフローチャートである。It is a flowchart explaining the function of a master unit. リピータ(測定ツール装置を実装)の機能を説明するフローチャートである。It is a flowchart explaining the function of a repeater (mounting a measurement tool apparatus). 測定ツール装置の機能を説明するフローチャートである。It is a flowchart explaining the function of a measurement tool apparatus. スレーブの機能を説明するフローチャートである。It is a flowchart explaining the function of a slave. 作用を説明する図である。It is a figure explaining an effect | action.

符号の説明Explanation of symbols

10 マスタ
20 スレーブ
30 ネットワーク
10 Master 20 Slave 30 Network

Claims (5)

バス型のフィールドネットワークに加入する複数のノード局の位置関係を検出する位置関係検出システムであって、
ネットワークケーブルの両端に接続され、そのネットワークケーブルに接続される各ノード局に対してコマンドを送信してからレスポンスを受信するまでの時間を測定する測定ツール機能を備えた測定装置と、
その測定ツール機能で測定した測定値に基づき、各ノード局の位置関係を特定する位置関係判定装置と、を備え、
その位置関係判定装置は、前記複数のノード局のうち、任意の2つのノード局を第1判定対象局と第2判定対象局として選択し、その選択された2つのノード局に対して前記両測定装置でそれぞれ求めた測定値から当該2つのノード局の前記ネットワークケーブルに接続される相対位置関係を特定し、その相対位置関係を求める処理を判定対象として選択される全ての組み合わせについて行なうことで、複数のノード局の位置関係を特定する機能を備え、
前記2つのノード局の相対位置関係を求める処理は、一方の測定装置で得た第1判定対象局に対する測定値と第2判定対象局に対する測定値の差をΔtとし、他方の測定装置で得た第1判定対象局に対する測定値と第2判定対象局に対する測定値の差をΔsとした場合に、ΔtとΔsを一方から他方を減算処理し、その処理結果の正負により決定すること、を特徴とするノード局の位置関係検出システム。
A positional relationship detection system for detecting a positional relationship of a plurality of node stations joining a bus-type field network,
A measuring device that is connected to both ends of the network cable and has a measurement tool function that measures a time from when a command is transmitted to each node station connected to the network cable until a response is received;
A positional relationship determination device that identifies the positional relationship of each node station based on the measurement value measured by the measurement tool function,
The positional relationship determination apparatus selects any two node stations from among the plurality of node stations as a first determination target station and a second determination target station, and selects both of the selected two node stations with respect to the selected two node stations. By identifying the relative positional relationship connected to the network cable of the two node stations from the measured values respectively obtained by the measuring device, and performing the process for obtaining the relative positional relationship for all combinations selected as determination targets , With the ability to identify the positional relationship of multiple node stations,
The processing for obtaining the relative positional relationship between the two node stations is obtained by using Δt as the difference between the measured value for the first determination target station obtained by one measurement device and the measurement value for the second determination target station, and by the other measurement device. When the difference between the measured value for the first determination target station and the measured value for the second determination target station is Δs, Δt and Δs are subtracted from one to the other, and the result of the processing is determined by the positive / negative A node station positional relationship detection system that is characterized.
前記フィールドネットワークは、マスタ−スレーブ方式のフィールドネットワークであって、
前記測定装置の1つはマスタにより構成され、前記測定装置の他の1つは、終端装置の設置位置に取り付けるものであり、
前記他の1つの測定装置は、マスタから送信されたメッセージに従い、指定されたノード局に対する測定値を求め、測定結果をマスタに返信するようにしたことを特徴とする請求項1に記載のノード局の位置関係検出システム。
The field network is a master-slave field network,
One of the measuring devices is constituted by a master, and the other one of the measuring devices is attached to the installation position of the terminal device,
2. The node according to claim 1, wherein the other one measurement device obtains a measurement value for a designated node station in accordance with a message transmitted from the master, and returns a measurement result to the master. Station position detection system.
前記フィールドネットワークには、リピータが加入され、そのリピータの下位に接続される支線ネットワークケーブルに複数のノード局が接続された構成を採り、
その支線ネットワークケーブルに接続された複数のノード局の接続関係は、前記マスタと、その支線ネットワークの端部に接続される測定装置でそれぞれ求めた測定値に基づいて求めることを特徴とする請求項1または2に記載のノード局の位置関係検出システム。
The field network employs a configuration in which a repeater is joined, and a plurality of node stations are connected to a branch network cable connected to the lower side of the repeater.
The connection relationship between a plurality of node stations connected to the branch network cable is obtained based on measured values obtained by the master and a measuring device connected to an end of the branch network. The node station positional relationship detection system according to 1 or 2.
前記フィールドネットワークには、リピータが加入され、そのリピータの下位に接続される支線ネットワークケーブルに複数のノード局が接続された構成を採り、
その支線ネットワークケーブルに接続された複数のノード局の接続関係は、そのリピータと、その下位に接続されたネットワークケーブルの端部に接続される測定装置でそれぞれ求めた測定値に基づいて求めることを特徴とする請求項1または2に記載のノード局の位置関係検出システム。
The field network employs a configuration in which a repeater is joined, and a plurality of node stations are connected to a branch network cable connected to the lower side of the repeater.
The connection relationship of a plurality of node stations connected to the branch network cable should be determined based on the measured values obtained by the repeater and the measuring device connected to the end of the network cable connected to the lower level. The node station positional relationship detection system according to claim 1 or 2, characterized in that:
前記測定値は、予め設定した回数だけコマンドの送信,レスポンスの受信処理を実行し、各回で取得した時間のトータルであることを特徴とする請求項1から4のいずれか1項に記載のノード局の位置関係検出システム。   5. The node according to claim 1, wherein the measured value is a total of times acquired by executing command transmission and response reception processing a predetermined number of times and obtaining each time. 6. Station position detection system.
JP2007287114A 2007-11-05 2007-11-05 Node station positional relationship detection system Active JP4935631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007287114A JP4935631B2 (en) 2007-11-05 2007-11-05 Node station positional relationship detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007287114A JP4935631B2 (en) 2007-11-05 2007-11-05 Node station positional relationship detection system

Publications (2)

Publication Number Publication Date
JP2009118041A true JP2009118041A (en) 2009-05-28
JP4935631B2 JP4935631B2 (en) 2012-05-23

Family

ID=40784692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007287114A Active JP4935631B2 (en) 2007-11-05 2007-11-05 Node station positional relationship detection system

Country Status (1)

Country Link
JP (1) JP4935631B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201735A (en) * 2012-03-26 2013-10-03 Mitsubishi Electric Corp Control device, control method, and program
WO2015049803A1 (en) * 2013-10-04 2015-04-09 三菱電機株式会社 Distance measurement device and distance measurement method
WO2015192374A1 (en) * 2014-06-20 2015-12-23 奇点新源国际技术开发(北京)有限公司 Method and device for measuring distance characteristic information

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107423A (en) * 1994-10-05 1996-04-23 Fujitsu Ltd System and device for detecting positions of nodes on lan
JP2000201162A (en) * 1998-08-13 2000-07-18 Motorola Inc Distributed control system initialization method
JP2003505984A (en) * 1999-07-22 2003-02-12 ピルツ ゲーエムベーハー アンド コー. How to configure a station connected to a fieldbus
JP2003087260A (en) * 2001-09-07 2003-03-20 Sanyo Electric Co Ltd Communication system and communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107423A (en) * 1994-10-05 1996-04-23 Fujitsu Ltd System and device for detecting positions of nodes on lan
JP2000201162A (en) * 1998-08-13 2000-07-18 Motorola Inc Distributed control system initialization method
JP2003505984A (en) * 1999-07-22 2003-02-12 ピルツ ゲーエムベーハー アンド コー. How to configure a station connected to a fieldbus
JP2003087260A (en) * 2001-09-07 2003-03-20 Sanyo Electric Co Ltd Communication system and communication device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201735A (en) * 2012-03-26 2013-10-03 Mitsubishi Electric Corp Control device, control method, and program
WO2015049803A1 (en) * 2013-10-04 2015-04-09 三菱電機株式会社 Distance measurement device and distance measurement method
CN105637810A (en) * 2013-10-04 2016-06-01 三菱电机株式会社 Distance measurement device and distance measurement method
TWI551084B (en) * 2013-10-04 2016-09-21 三菱電機股份有限公司 Distance measuring device and distance measuring method
US9513101B2 (en) 2013-10-04 2016-12-06 Mitsubishi Electric Corporation Distance measurement device and distance measurement method
DE112013007362B4 (en) * 2013-10-04 2017-01-26 Mitsubishi Electric Corporation Distance measuring device and distance measuring method
CN105637810B (en) * 2013-10-04 2017-06-16 三菱电机株式会社 Distance-measuring device and distance measurement method
WO2015192374A1 (en) * 2014-06-20 2015-12-23 奇点新源国际技术开发(北京)有限公司 Method and device for measuring distance characteristic information

Also Published As

Publication number Publication date
JP4935631B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
EP1811350B1 (en) Slave unit, node unit, controllers and network system
KR20180018704A (en) How to detect home appliance bus control system
CN108377255B (en) Information processing apparatus, information processing method, and recording medium
EP2942680B1 (en) Process control system and process control method
US8818531B2 (en) Distributed control system
CN108376111B (en) Information processing apparatus, information processing method, and computer-readable storage medium
US10007633B2 (en) Field bus coupler for connecting input/output modules to a field bus, and method of operation for a field bus coupler
JP4935631B2 (en) Node station positional relationship detection system
CA2528782A1 (en) Method and device for determining the causes of failures in industrial processes
JP2018010430A (en) Device and system for remotely monitoring control system
EP3651420B1 (en) Control system and control method
JP6815978B2 (en) Initial setting method for remote monitoring system and monitored equipment
CN113557694B (en) Network management device, management method, and recording medium
JP4549926B2 (en) Programmable control device
JP4873220B2 (en) Field communication system
KR100902808B1 (en) Debugging terminal with a real-time debugging function for a large scale real-time monitoring system, and debugging system with the same
JP4965239B2 (en) Remote monitoring system
KR102269641B1 (en) Input/output module checking system
US20170278025A1 (en) Energy management method, energy management device, switching device for an energy management device, and computer software product
CN111033400B (en) Control device, control method, and storage medium for control program
JP2017228976A (en) Communication network determination device, communication network determination method, and communication network determination program
JP4280140B2 (en) Communication system, electronic equipment
KR20140122820A (en) Apparatus for monitoring communication between digital metering-protective relay and supervisory control panel
JP6042649B2 (en) Device management system using LAN communication
JP2021144458A (en) Monitoring device, monitoring system, program, and monitoring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4935631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150